1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Universal power supply monitor class 4 * 5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru> 6 * Copyright © 2004 Szabolcs Gyurko 7 * Copyright © 2003 Ian Molton <spyro@f2s.com> 8 * 9 * Modified: 2004, Oct Szabolcs Gyurko 10 */ 11 12 #include <linux/module.h> 13 #include <linux/types.h> 14 #include <linux/init.h> 15 #include <linux/slab.h> 16 #include <linux/delay.h> 17 #include <linux/device.h> 18 #include <linux/notifier.h> 19 #include <linux/err.h> 20 #include <linux/of.h> 21 #include <linux/power_supply.h> 22 #include <linux/property.h> 23 #include <linux/thermal.h> 24 #include <linux/fixp-arith.h> 25 #include "power_supply.h" 26 #include "samsung-sdi-battery.h" 27 28 /* exported for the APM Power driver, APM emulation */ 29 struct class *power_supply_class; 30 EXPORT_SYMBOL_GPL(power_supply_class); 31 32 static BLOCKING_NOTIFIER_HEAD(power_supply_notifier); 33 34 static struct device_type power_supply_dev_type; 35 36 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME msecs_to_jiffies(10) 37 38 static bool __power_supply_is_supplied_by(struct power_supply *supplier, 39 struct power_supply *supply) 40 { 41 int i; 42 43 if (!supply->supplied_from && !supplier->supplied_to) 44 return false; 45 46 /* Support both supplied_to and supplied_from modes */ 47 if (supply->supplied_from) { 48 if (!supplier->desc->name) 49 return false; 50 for (i = 0; i < supply->num_supplies; i++) 51 if (!strcmp(supplier->desc->name, supply->supplied_from[i])) 52 return true; 53 } else { 54 if (!supply->desc->name) 55 return false; 56 for (i = 0; i < supplier->num_supplicants; i++) 57 if (!strcmp(supplier->supplied_to[i], supply->desc->name)) 58 return true; 59 } 60 61 return false; 62 } 63 64 static int __power_supply_changed_work(struct device *dev, void *data) 65 { 66 struct power_supply *psy = data; 67 struct power_supply *pst = dev_get_drvdata(dev); 68 69 if (__power_supply_is_supplied_by(psy, pst)) { 70 if (pst->desc->external_power_changed) 71 pst->desc->external_power_changed(pst); 72 } 73 74 return 0; 75 } 76 77 static void power_supply_changed_work(struct work_struct *work) 78 { 79 unsigned long flags; 80 struct power_supply *psy = container_of(work, struct power_supply, 81 changed_work); 82 83 dev_dbg(&psy->dev, "%s\n", __func__); 84 85 spin_lock_irqsave(&psy->changed_lock, flags); 86 /* 87 * Check 'changed' here to avoid issues due to race between 88 * power_supply_changed() and this routine. In worst case 89 * power_supply_changed() can be called again just before we take above 90 * lock. During the first call of this routine we will mark 'changed' as 91 * false and it will stay false for the next call as well. 92 */ 93 if (likely(psy->changed)) { 94 psy->changed = false; 95 spin_unlock_irqrestore(&psy->changed_lock, flags); 96 class_for_each_device(power_supply_class, NULL, psy, 97 __power_supply_changed_work); 98 power_supply_update_leds(psy); 99 blocking_notifier_call_chain(&power_supply_notifier, 100 PSY_EVENT_PROP_CHANGED, psy); 101 kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE); 102 spin_lock_irqsave(&psy->changed_lock, flags); 103 } 104 105 /* 106 * Hold the wakeup_source until all events are processed. 107 * power_supply_changed() might have called again and have set 'changed' 108 * to true. 109 */ 110 if (likely(!psy->changed)) 111 pm_relax(&psy->dev); 112 spin_unlock_irqrestore(&psy->changed_lock, flags); 113 } 114 115 void power_supply_changed(struct power_supply *psy) 116 { 117 unsigned long flags; 118 119 dev_dbg(&psy->dev, "%s\n", __func__); 120 121 spin_lock_irqsave(&psy->changed_lock, flags); 122 psy->changed = true; 123 pm_stay_awake(&psy->dev); 124 spin_unlock_irqrestore(&psy->changed_lock, flags); 125 schedule_work(&psy->changed_work); 126 } 127 EXPORT_SYMBOL_GPL(power_supply_changed); 128 129 /* 130 * Notify that power supply was registered after parent finished the probing. 131 * 132 * Often power supply is registered from driver's probe function. However 133 * calling power_supply_changed() directly from power_supply_register() 134 * would lead to execution of get_property() function provided by the driver 135 * too early - before the probe ends. 136 * 137 * Avoid that by waiting on parent's mutex. 138 */ 139 static void power_supply_deferred_register_work(struct work_struct *work) 140 { 141 struct power_supply *psy = container_of(work, struct power_supply, 142 deferred_register_work.work); 143 144 if (psy->dev.parent) { 145 while (!mutex_trylock(&psy->dev.parent->mutex)) { 146 if (psy->removing) 147 return; 148 msleep(10); 149 } 150 } 151 152 power_supply_changed(psy); 153 154 if (psy->dev.parent) 155 mutex_unlock(&psy->dev.parent->mutex); 156 } 157 158 #ifdef CONFIG_OF 159 static int __power_supply_populate_supplied_from(struct device *dev, 160 void *data) 161 { 162 struct power_supply *psy = data; 163 struct power_supply *epsy = dev_get_drvdata(dev); 164 struct device_node *np; 165 int i = 0; 166 167 do { 168 np = of_parse_phandle(psy->of_node, "power-supplies", i++); 169 if (!np) 170 break; 171 172 if (np == epsy->of_node) { 173 dev_dbg(&psy->dev, "%s: Found supply : %s\n", 174 psy->desc->name, epsy->desc->name); 175 psy->supplied_from[i-1] = (char *)epsy->desc->name; 176 psy->num_supplies++; 177 of_node_put(np); 178 break; 179 } 180 of_node_put(np); 181 } while (np); 182 183 return 0; 184 } 185 186 static int power_supply_populate_supplied_from(struct power_supply *psy) 187 { 188 int error; 189 190 error = class_for_each_device(power_supply_class, NULL, psy, 191 __power_supply_populate_supplied_from); 192 193 dev_dbg(&psy->dev, "%s %d\n", __func__, error); 194 195 return error; 196 } 197 198 static int __power_supply_find_supply_from_node(struct device *dev, 199 void *data) 200 { 201 struct device_node *np = data; 202 struct power_supply *epsy = dev_get_drvdata(dev); 203 204 /* returning non-zero breaks out of class_for_each_device loop */ 205 if (epsy->of_node == np) 206 return 1; 207 208 return 0; 209 } 210 211 static int power_supply_find_supply_from_node(struct device_node *supply_node) 212 { 213 int error; 214 215 /* 216 * class_for_each_device() either returns its own errors or values 217 * returned by __power_supply_find_supply_from_node(). 218 * 219 * __power_supply_find_supply_from_node() will return 0 (no match) 220 * or 1 (match). 221 * 222 * We return 0 if class_for_each_device() returned 1, -EPROBE_DEFER if 223 * it returned 0, or error as returned by it. 224 */ 225 error = class_for_each_device(power_supply_class, NULL, supply_node, 226 __power_supply_find_supply_from_node); 227 228 return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER; 229 } 230 231 static int power_supply_check_supplies(struct power_supply *psy) 232 { 233 struct device_node *np; 234 int cnt = 0; 235 236 /* If there is already a list honor it */ 237 if (psy->supplied_from && psy->num_supplies > 0) 238 return 0; 239 240 /* No device node found, nothing to do */ 241 if (!psy->of_node) 242 return 0; 243 244 do { 245 int ret; 246 247 np = of_parse_phandle(psy->of_node, "power-supplies", cnt++); 248 if (!np) 249 break; 250 251 ret = power_supply_find_supply_from_node(np); 252 of_node_put(np); 253 254 if (ret) { 255 dev_dbg(&psy->dev, "Failed to find supply!\n"); 256 return ret; 257 } 258 } while (np); 259 260 /* Missing valid "power-supplies" entries */ 261 if (cnt == 1) 262 return 0; 263 264 /* All supplies found, allocate char ** array for filling */ 265 psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from), 266 GFP_KERNEL); 267 if (!psy->supplied_from) 268 return -ENOMEM; 269 270 *psy->supplied_from = devm_kcalloc(&psy->dev, 271 cnt - 1, sizeof(**psy->supplied_from), 272 GFP_KERNEL); 273 if (!*psy->supplied_from) 274 return -ENOMEM; 275 276 return power_supply_populate_supplied_from(psy); 277 } 278 #else 279 static int power_supply_check_supplies(struct power_supply *psy) 280 { 281 int nval, ret; 282 283 if (!psy->dev.parent) 284 return 0; 285 286 nval = device_property_string_array_count(psy->dev.parent, "supplied-from"); 287 if (nval <= 0) 288 return 0; 289 290 psy->supplied_from = devm_kmalloc_array(&psy->dev, nval, 291 sizeof(char *), GFP_KERNEL); 292 if (!psy->supplied_from) 293 return -ENOMEM; 294 295 ret = device_property_read_string_array(psy->dev.parent, 296 "supplied-from", (const char **)psy->supplied_from, nval); 297 if (ret < 0) 298 return ret; 299 300 psy->num_supplies = nval; 301 302 return 0; 303 } 304 #endif 305 306 struct psy_am_i_supplied_data { 307 struct power_supply *psy; 308 unsigned int count; 309 }; 310 311 static int __power_supply_am_i_supplied(struct device *dev, void *_data) 312 { 313 union power_supply_propval ret = {0,}; 314 struct power_supply *epsy = dev_get_drvdata(dev); 315 struct psy_am_i_supplied_data *data = _data; 316 317 if (__power_supply_is_supplied_by(epsy, data->psy)) { 318 data->count++; 319 if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE, 320 &ret)) 321 return ret.intval; 322 } 323 324 return 0; 325 } 326 327 int power_supply_am_i_supplied(struct power_supply *psy) 328 { 329 struct psy_am_i_supplied_data data = { psy, 0 }; 330 int error; 331 332 error = class_for_each_device(power_supply_class, NULL, &data, 333 __power_supply_am_i_supplied); 334 335 dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error); 336 337 if (data.count == 0) 338 return -ENODEV; 339 340 return error; 341 } 342 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied); 343 344 static int __power_supply_is_system_supplied(struct device *dev, void *data) 345 { 346 union power_supply_propval ret = {0,}; 347 struct power_supply *psy = dev_get_drvdata(dev); 348 unsigned int *count = data; 349 350 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret)) 351 if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE) 352 return 0; 353 354 (*count)++; 355 if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY) 356 if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE, 357 &ret)) 358 return ret.intval; 359 360 return 0; 361 } 362 363 int power_supply_is_system_supplied(void) 364 { 365 int error; 366 unsigned int count = 0; 367 368 error = class_for_each_device(power_supply_class, NULL, &count, 369 __power_supply_is_system_supplied); 370 371 /* 372 * If no system scope power class device was found at all, most probably we 373 * are running on a desktop system, so assume we are on mains power. 374 */ 375 if (count == 0) 376 return 1; 377 378 return error; 379 } 380 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied); 381 382 struct psy_get_supplier_prop_data { 383 struct power_supply *psy; 384 enum power_supply_property psp; 385 union power_supply_propval *val; 386 }; 387 388 static int __power_supply_get_supplier_property(struct device *dev, void *_data) 389 { 390 struct power_supply *epsy = dev_get_drvdata(dev); 391 struct psy_get_supplier_prop_data *data = _data; 392 393 if (__power_supply_is_supplied_by(epsy, data->psy)) 394 if (!power_supply_get_property(epsy, data->psp, data->val)) 395 return 1; /* Success */ 396 397 return 0; /* Continue iterating */ 398 } 399 400 int power_supply_get_property_from_supplier(struct power_supply *psy, 401 enum power_supply_property psp, 402 union power_supply_propval *val) 403 { 404 struct psy_get_supplier_prop_data data = { 405 .psy = psy, 406 .psp = psp, 407 .val = val, 408 }; 409 int ret; 410 411 /* 412 * This function is not intended for use with a supply with multiple 413 * suppliers, we simply pick the first supply to report the psp. 414 */ 415 ret = class_for_each_device(power_supply_class, NULL, &data, 416 __power_supply_get_supplier_property); 417 if (ret < 0) 418 return ret; 419 if (ret == 0) 420 return -ENODEV; 421 422 return 0; 423 } 424 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier); 425 426 int power_supply_set_battery_charged(struct power_supply *psy) 427 { 428 if (atomic_read(&psy->use_cnt) >= 0 && 429 psy->desc->type == POWER_SUPPLY_TYPE_BATTERY && 430 psy->desc->set_charged) { 431 psy->desc->set_charged(psy); 432 return 0; 433 } 434 435 return -EINVAL; 436 } 437 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged); 438 439 static int power_supply_match_device_by_name(struct device *dev, const void *data) 440 { 441 const char *name = data; 442 struct power_supply *psy = dev_get_drvdata(dev); 443 444 return strcmp(psy->desc->name, name) == 0; 445 } 446 447 /** 448 * power_supply_get_by_name() - Search for a power supply and returns its ref 449 * @name: Power supply name to fetch 450 * 451 * If power supply was found, it increases reference count for the 452 * internal power supply's device. The user should power_supply_put() 453 * after usage. 454 * 455 * Return: On success returns a reference to a power supply with 456 * matching name equals to @name, a NULL otherwise. 457 */ 458 struct power_supply *power_supply_get_by_name(const char *name) 459 { 460 struct power_supply *psy = NULL; 461 struct device *dev = class_find_device(power_supply_class, NULL, name, 462 power_supply_match_device_by_name); 463 464 if (dev) { 465 psy = dev_get_drvdata(dev); 466 atomic_inc(&psy->use_cnt); 467 } 468 469 return psy; 470 } 471 EXPORT_SYMBOL_GPL(power_supply_get_by_name); 472 473 /** 474 * power_supply_put() - Drop reference obtained with power_supply_get_by_name 475 * @psy: Reference to put 476 * 477 * The reference to power supply should be put before unregistering 478 * the power supply. 479 */ 480 void power_supply_put(struct power_supply *psy) 481 { 482 might_sleep(); 483 484 atomic_dec(&psy->use_cnt); 485 put_device(&psy->dev); 486 } 487 EXPORT_SYMBOL_GPL(power_supply_put); 488 489 #ifdef CONFIG_OF 490 static int power_supply_match_device_node(struct device *dev, const void *data) 491 { 492 return dev->parent && dev->parent->of_node == data; 493 } 494 495 /** 496 * power_supply_get_by_phandle() - Search for a power supply and returns its ref 497 * @np: Pointer to device node holding phandle property 498 * @property: Name of property holding a power supply name 499 * 500 * If power supply was found, it increases reference count for the 501 * internal power supply's device. The user should power_supply_put() 502 * after usage. 503 * 504 * Return: On success returns a reference to a power supply with 505 * matching name equals to value under @property, NULL or ERR_PTR otherwise. 506 */ 507 struct power_supply *power_supply_get_by_phandle(struct device_node *np, 508 const char *property) 509 { 510 struct device_node *power_supply_np; 511 struct power_supply *psy = NULL; 512 struct device *dev; 513 514 power_supply_np = of_parse_phandle(np, property, 0); 515 if (!power_supply_np) 516 return ERR_PTR(-ENODEV); 517 518 dev = class_find_device(power_supply_class, NULL, power_supply_np, 519 power_supply_match_device_node); 520 521 of_node_put(power_supply_np); 522 523 if (dev) { 524 psy = dev_get_drvdata(dev); 525 atomic_inc(&psy->use_cnt); 526 } 527 528 return psy; 529 } 530 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle); 531 532 static void devm_power_supply_put(struct device *dev, void *res) 533 { 534 struct power_supply **psy = res; 535 536 power_supply_put(*psy); 537 } 538 539 /** 540 * devm_power_supply_get_by_phandle() - Resource managed version of 541 * power_supply_get_by_phandle() 542 * @dev: Pointer to device holding phandle property 543 * @property: Name of property holding a power supply phandle 544 * 545 * Return: On success returns a reference to a power supply with 546 * matching name equals to value under @property, NULL or ERR_PTR otherwise. 547 */ 548 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev, 549 const char *property) 550 { 551 struct power_supply **ptr, *psy; 552 553 if (!dev->of_node) 554 return ERR_PTR(-ENODEV); 555 556 ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL); 557 if (!ptr) 558 return ERR_PTR(-ENOMEM); 559 560 psy = power_supply_get_by_phandle(dev->of_node, property); 561 if (IS_ERR_OR_NULL(psy)) { 562 devres_free(ptr); 563 } else { 564 *ptr = psy; 565 devres_add(dev, ptr); 566 } 567 return psy; 568 } 569 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle); 570 #endif /* CONFIG_OF */ 571 572 int power_supply_get_battery_info(struct power_supply *psy, 573 struct power_supply_battery_info **info_out) 574 { 575 struct power_supply_resistance_temp_table *resist_table; 576 struct power_supply_battery_info *info; 577 struct device_node *battery_np = NULL; 578 struct fwnode_reference_args args; 579 struct fwnode_handle *fwnode = NULL; 580 const char *value; 581 int err, len, index; 582 const __be32 *list; 583 u32 min_max[2]; 584 585 if (psy->of_node) { 586 battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0); 587 if (!battery_np) 588 return -ENODEV; 589 590 fwnode = fwnode_handle_get(of_fwnode_handle(battery_np)); 591 } else if (psy->dev.parent) { 592 err = fwnode_property_get_reference_args( 593 dev_fwnode(psy->dev.parent), 594 "monitored-battery", NULL, 0, 0, &args); 595 if (err) 596 return err; 597 598 fwnode = args.fwnode; 599 } 600 601 if (!fwnode) 602 return -ENOENT; 603 604 err = fwnode_property_read_string(fwnode, "compatible", &value); 605 if (err) 606 goto out_put_node; 607 608 609 /* Try static batteries first */ 610 err = samsung_sdi_battery_get_info(&psy->dev, value, &info); 611 if (!err) 612 goto out_ret_pointer; 613 else if (err == -ENODEV) 614 /* 615 * Device does not have a static battery. 616 * Proceed to look for a simple battery. 617 */ 618 err = 0; 619 620 if (strcmp("simple-battery", value)) { 621 err = -ENODEV; 622 goto out_put_node; 623 } 624 625 info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL); 626 if (!info) { 627 err = -ENOMEM; 628 goto out_put_node; 629 } 630 631 info->technology = POWER_SUPPLY_TECHNOLOGY_UNKNOWN; 632 info->energy_full_design_uwh = -EINVAL; 633 info->charge_full_design_uah = -EINVAL; 634 info->voltage_min_design_uv = -EINVAL; 635 info->voltage_max_design_uv = -EINVAL; 636 info->precharge_current_ua = -EINVAL; 637 info->charge_term_current_ua = -EINVAL; 638 info->constant_charge_current_max_ua = -EINVAL; 639 info->constant_charge_voltage_max_uv = -EINVAL; 640 info->tricklecharge_current_ua = -EINVAL; 641 info->precharge_voltage_max_uv = -EINVAL; 642 info->charge_restart_voltage_uv = -EINVAL; 643 info->overvoltage_limit_uv = -EINVAL; 644 info->maintenance_charge = NULL; 645 info->alert_low_temp_charge_current_ua = -EINVAL; 646 info->alert_low_temp_charge_voltage_uv = -EINVAL; 647 info->alert_high_temp_charge_current_ua = -EINVAL; 648 info->alert_high_temp_charge_voltage_uv = -EINVAL; 649 info->temp_ambient_alert_min = INT_MIN; 650 info->temp_ambient_alert_max = INT_MAX; 651 info->temp_alert_min = INT_MIN; 652 info->temp_alert_max = INT_MAX; 653 info->temp_min = INT_MIN; 654 info->temp_max = INT_MAX; 655 info->factory_internal_resistance_uohm = -EINVAL; 656 info->resist_table = NULL; 657 info->bti_resistance_ohm = -EINVAL; 658 info->bti_resistance_tolerance = -EINVAL; 659 660 for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) { 661 info->ocv_table[index] = NULL; 662 info->ocv_temp[index] = -EINVAL; 663 info->ocv_table_size[index] = -EINVAL; 664 } 665 666 /* The property and field names below must correspond to elements 667 * in enum power_supply_property. For reasoning, see 668 * Documentation/power/power_supply_class.rst. 669 */ 670 671 if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) { 672 if (!strcmp("nickel-cadmium", value)) 673 info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd; 674 else if (!strcmp("nickel-metal-hydride", value)) 675 info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH; 676 else if (!strcmp("lithium-ion", value)) 677 /* Imprecise lithium-ion type */ 678 info->technology = POWER_SUPPLY_TECHNOLOGY_LION; 679 else if (!strcmp("lithium-ion-polymer", value)) 680 info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO; 681 else if (!strcmp("lithium-ion-iron-phosphate", value)) 682 info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe; 683 else if (!strcmp("lithium-ion-manganese-oxide", value)) 684 info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn; 685 else 686 dev_warn(&psy->dev, "%s unknown battery type\n", value); 687 } 688 689 fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours", 690 &info->energy_full_design_uwh); 691 fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours", 692 &info->charge_full_design_uah); 693 fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt", 694 &info->voltage_min_design_uv); 695 fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt", 696 &info->voltage_max_design_uv); 697 fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp", 698 &info->tricklecharge_current_ua); 699 fwnode_property_read_u32(fwnode, "precharge-current-microamp", 700 &info->precharge_current_ua); 701 fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt", 702 &info->precharge_voltage_max_uv); 703 fwnode_property_read_u32(fwnode, "charge-term-current-microamp", 704 &info->charge_term_current_ua); 705 fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt", 706 &info->charge_restart_voltage_uv); 707 fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt", 708 &info->overvoltage_limit_uv); 709 fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp", 710 &info->constant_charge_current_max_ua); 711 fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt", 712 &info->constant_charge_voltage_max_uv); 713 fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms", 714 &info->factory_internal_resistance_uohm); 715 716 if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius", 717 min_max, ARRAY_SIZE(min_max))) { 718 info->temp_ambient_alert_min = min_max[0]; 719 info->temp_ambient_alert_max = min_max[1]; 720 } 721 if (!fwnode_property_read_u32_array(fwnode, "alert-celsius", 722 min_max, ARRAY_SIZE(min_max))) { 723 info->temp_alert_min = min_max[0]; 724 info->temp_alert_max = min_max[1]; 725 } 726 if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius", 727 min_max, ARRAY_SIZE(min_max))) { 728 info->temp_min = min_max[0]; 729 info->temp_max = min_max[1]; 730 } 731 732 /* 733 * The below code uses raw of-data parsing to parse 734 * /schemas/types.yaml#/definitions/uint32-matrix 735 * data, so for now this is only support with of. 736 */ 737 if (!battery_np) 738 goto out_ret_pointer; 739 740 len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius"); 741 if (len < 0 && len != -EINVAL) { 742 err = len; 743 goto out_put_node; 744 } else if (len > POWER_SUPPLY_OCV_TEMP_MAX) { 745 dev_err(&psy->dev, "Too many temperature values\n"); 746 err = -EINVAL; 747 goto out_put_node; 748 } else if (len > 0) { 749 of_property_read_u32_array(battery_np, "ocv-capacity-celsius", 750 info->ocv_temp, len); 751 } 752 753 for (index = 0; index < len; index++) { 754 struct power_supply_battery_ocv_table *table; 755 char *propname; 756 int i, tab_len, size; 757 758 propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index); 759 if (!propname) { 760 power_supply_put_battery_info(psy, info); 761 err = -ENOMEM; 762 goto out_put_node; 763 } 764 list = of_get_property(battery_np, propname, &size); 765 if (!list || !size) { 766 dev_err(&psy->dev, "failed to get %s\n", propname); 767 kfree(propname); 768 power_supply_put_battery_info(psy, info); 769 err = -EINVAL; 770 goto out_put_node; 771 } 772 773 kfree(propname); 774 tab_len = size / (2 * sizeof(__be32)); 775 info->ocv_table_size[index] = tab_len; 776 777 table = info->ocv_table[index] = 778 devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL); 779 if (!info->ocv_table[index]) { 780 power_supply_put_battery_info(psy, info); 781 err = -ENOMEM; 782 goto out_put_node; 783 } 784 785 for (i = 0; i < tab_len; i++) { 786 table[i].ocv = be32_to_cpu(*list); 787 list++; 788 table[i].capacity = be32_to_cpu(*list); 789 list++; 790 } 791 } 792 793 list = of_get_property(battery_np, "resistance-temp-table", &len); 794 if (!list || !len) 795 goto out_ret_pointer; 796 797 info->resist_table_size = len / (2 * sizeof(__be32)); 798 resist_table = info->resist_table = devm_kcalloc(&psy->dev, 799 info->resist_table_size, 800 sizeof(*resist_table), 801 GFP_KERNEL); 802 if (!info->resist_table) { 803 power_supply_put_battery_info(psy, info); 804 err = -ENOMEM; 805 goto out_put_node; 806 } 807 808 for (index = 0; index < info->resist_table_size; index++) { 809 resist_table[index].temp = be32_to_cpu(*list++); 810 resist_table[index].resistance = be32_to_cpu(*list++); 811 } 812 813 out_ret_pointer: 814 /* Finally return the whole thing */ 815 *info_out = info; 816 817 out_put_node: 818 fwnode_handle_put(fwnode); 819 of_node_put(battery_np); 820 return err; 821 } 822 EXPORT_SYMBOL_GPL(power_supply_get_battery_info); 823 824 void power_supply_put_battery_info(struct power_supply *psy, 825 struct power_supply_battery_info *info) 826 { 827 int i; 828 829 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { 830 if (info->ocv_table[i]) 831 devm_kfree(&psy->dev, info->ocv_table[i]); 832 } 833 834 if (info->resist_table) 835 devm_kfree(&psy->dev, info->resist_table); 836 837 devm_kfree(&psy->dev, info); 838 } 839 EXPORT_SYMBOL_GPL(power_supply_put_battery_info); 840 841 const enum power_supply_property power_supply_battery_info_properties[] = { 842 POWER_SUPPLY_PROP_TECHNOLOGY, 843 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 844 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 845 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN, 846 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 847 POWER_SUPPLY_PROP_PRECHARGE_CURRENT, 848 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT, 849 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX, 850 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX, 851 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN, 852 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX, 853 POWER_SUPPLY_PROP_TEMP_ALERT_MIN, 854 POWER_SUPPLY_PROP_TEMP_ALERT_MAX, 855 POWER_SUPPLY_PROP_TEMP_MIN, 856 POWER_SUPPLY_PROP_TEMP_MAX, 857 }; 858 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties); 859 860 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties); 861 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size); 862 863 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info, 864 enum power_supply_property psp) 865 { 866 if (!info) 867 return false; 868 869 switch (psp) { 870 case POWER_SUPPLY_PROP_TECHNOLOGY: 871 return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN; 872 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 873 return info->energy_full_design_uwh >= 0; 874 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 875 return info->charge_full_design_uah >= 0; 876 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 877 return info->voltage_min_design_uv >= 0; 878 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 879 return info->voltage_max_design_uv >= 0; 880 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 881 return info->precharge_current_ua >= 0; 882 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 883 return info->charge_term_current_ua >= 0; 884 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 885 return info->constant_charge_current_max_ua >= 0; 886 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 887 return info->constant_charge_voltage_max_uv >= 0; 888 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: 889 return info->temp_ambient_alert_min > INT_MIN; 890 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: 891 return info->temp_ambient_alert_max < INT_MAX; 892 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: 893 return info->temp_alert_min > INT_MIN; 894 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: 895 return info->temp_alert_max < INT_MAX; 896 case POWER_SUPPLY_PROP_TEMP_MIN: 897 return info->temp_min > INT_MIN; 898 case POWER_SUPPLY_PROP_TEMP_MAX: 899 return info->temp_max < INT_MAX; 900 default: 901 return false; 902 } 903 } 904 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop); 905 906 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info, 907 enum power_supply_property psp, 908 union power_supply_propval *val) 909 { 910 if (!info) 911 return -EINVAL; 912 913 if (!power_supply_battery_info_has_prop(info, psp)) 914 return -EINVAL; 915 916 switch (psp) { 917 case POWER_SUPPLY_PROP_TECHNOLOGY: 918 val->intval = info->technology; 919 return 0; 920 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 921 val->intval = info->energy_full_design_uwh; 922 return 0; 923 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 924 val->intval = info->charge_full_design_uah; 925 return 0; 926 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN: 927 val->intval = info->voltage_min_design_uv; 928 return 0; 929 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN: 930 val->intval = info->voltage_max_design_uv; 931 return 0; 932 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT: 933 val->intval = info->precharge_current_ua; 934 return 0; 935 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT: 936 val->intval = info->charge_term_current_ua; 937 return 0; 938 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX: 939 val->intval = info->constant_charge_current_max_ua; 940 return 0; 941 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX: 942 val->intval = info->constant_charge_voltage_max_uv; 943 return 0; 944 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN: 945 val->intval = info->temp_ambient_alert_min; 946 return 0; 947 case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX: 948 val->intval = info->temp_ambient_alert_max; 949 return 0; 950 case POWER_SUPPLY_PROP_TEMP_ALERT_MIN: 951 val->intval = info->temp_alert_min; 952 return 0; 953 case POWER_SUPPLY_PROP_TEMP_ALERT_MAX: 954 val->intval = info->temp_alert_max; 955 return 0; 956 case POWER_SUPPLY_PROP_TEMP_MIN: 957 val->intval = info->temp_min; 958 return 0; 959 case POWER_SUPPLY_PROP_TEMP_MAX: 960 val->intval = info->temp_max; 961 return 0; 962 default: 963 return -EINVAL; 964 } 965 } 966 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop); 967 968 /** 969 * power_supply_temp2resist_simple() - find the battery internal resistance 970 * percent from temperature 971 * @table: Pointer to battery resistance temperature table 972 * @table_len: The table length 973 * @temp: Current temperature 974 * 975 * This helper function is used to look up battery internal resistance percent 976 * according to current temperature value from the resistance temperature table, 977 * and the table must be ordered descending. Then the actual battery internal 978 * resistance = the ideal battery internal resistance * percent / 100. 979 * 980 * Return: the battery internal resistance percent 981 */ 982 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table, 983 int table_len, int temp) 984 { 985 int i, high, low; 986 987 for (i = 0; i < table_len; i++) 988 if (temp > table[i].temp) 989 break; 990 991 /* The library function will deal with high == low */ 992 if (i == 0) 993 high = low = i; 994 else if (i == table_len) 995 high = low = i - 1; 996 else 997 high = (low = i) - 1; 998 999 return fixp_linear_interpolate(table[low].temp, 1000 table[low].resistance, 1001 table[high].temp, 1002 table[high].resistance, 1003 temp); 1004 } 1005 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple); 1006 1007 /** 1008 * power_supply_vbat2ri() - find the battery internal resistance 1009 * from the battery voltage 1010 * @info: The battery information container 1011 * @vbat_uv: The battery voltage in microvolt 1012 * @charging: If we are charging (true) or not (false) 1013 * 1014 * This helper function is used to look up battery internal resistance 1015 * according to current battery voltage. Depending on whether the battery 1016 * is currently charging or not, different resistance will be returned. 1017 * 1018 * Returns the internal resistance in microohm or negative error code. 1019 */ 1020 int power_supply_vbat2ri(struct power_supply_battery_info *info, 1021 int vbat_uv, bool charging) 1022 { 1023 struct power_supply_vbat_ri_table *vbat2ri; 1024 int table_len; 1025 int i, high, low; 1026 1027 /* 1028 * If we are charging, and the battery supplies a separate table 1029 * for this state, we use that in order to compensate for the 1030 * charging voltage. Otherwise we use the main table. 1031 */ 1032 if (charging && info->vbat2ri_charging) { 1033 vbat2ri = info->vbat2ri_charging; 1034 table_len = info->vbat2ri_charging_size; 1035 } else { 1036 vbat2ri = info->vbat2ri_discharging; 1037 table_len = info->vbat2ri_discharging_size; 1038 } 1039 1040 /* 1041 * If no tables are specified, or if we are above the highest voltage in 1042 * the voltage table, just return the factory specified internal resistance. 1043 */ 1044 if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) { 1045 if (charging && (info->factory_internal_resistance_charging_uohm > 0)) 1046 return info->factory_internal_resistance_charging_uohm; 1047 else 1048 return info->factory_internal_resistance_uohm; 1049 } 1050 1051 /* Break loop at table_len - 1 because that is the highest index */ 1052 for (i = 0; i < table_len - 1; i++) 1053 if (vbat_uv > vbat2ri[i].vbat_uv) 1054 break; 1055 1056 /* The library function will deal with high == low */ 1057 if ((i == 0) || (i == (table_len - 1))) 1058 high = i; 1059 else 1060 high = i - 1; 1061 low = i; 1062 1063 return fixp_linear_interpolate(vbat2ri[low].vbat_uv, 1064 vbat2ri[low].ri_uohm, 1065 vbat2ri[high].vbat_uv, 1066 vbat2ri[high].ri_uohm, 1067 vbat_uv); 1068 } 1069 EXPORT_SYMBOL_GPL(power_supply_vbat2ri); 1070 1071 struct power_supply_maintenance_charge_table * 1072 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info, 1073 int index) 1074 { 1075 if (index >= info->maintenance_charge_size) 1076 return NULL; 1077 return &info->maintenance_charge[index]; 1078 } 1079 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting); 1080 1081 /** 1082 * power_supply_ocv2cap_simple() - find the battery capacity 1083 * @table: Pointer to battery OCV lookup table 1084 * @table_len: OCV table length 1085 * @ocv: Current OCV value 1086 * 1087 * This helper function is used to look up battery capacity according to 1088 * current OCV value from one OCV table, and the OCV table must be ordered 1089 * descending. 1090 * 1091 * Return: the battery capacity. 1092 */ 1093 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table, 1094 int table_len, int ocv) 1095 { 1096 int i, high, low; 1097 1098 for (i = 0; i < table_len; i++) 1099 if (ocv > table[i].ocv) 1100 break; 1101 1102 /* The library function will deal with high == low */ 1103 if (i == 0) 1104 high = low = i; 1105 else if (i == table_len) 1106 high = low = i - 1; 1107 else 1108 high = (low = i) - 1; 1109 1110 return fixp_linear_interpolate(table[low].ocv, 1111 table[low].capacity, 1112 table[high].ocv, 1113 table[high].capacity, 1114 ocv); 1115 } 1116 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple); 1117 1118 struct power_supply_battery_ocv_table * 1119 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info, 1120 int temp, int *table_len) 1121 { 1122 int best_temp_diff = INT_MAX, temp_diff; 1123 u8 i, best_index = 0; 1124 1125 if (!info->ocv_table[0]) 1126 return NULL; 1127 1128 for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) { 1129 /* Out of capacity tables */ 1130 if (!info->ocv_table[i]) 1131 break; 1132 1133 temp_diff = abs(info->ocv_temp[i] - temp); 1134 1135 if (temp_diff < best_temp_diff) { 1136 best_temp_diff = temp_diff; 1137 best_index = i; 1138 } 1139 } 1140 1141 *table_len = info->ocv_table_size[best_index]; 1142 return info->ocv_table[best_index]; 1143 } 1144 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table); 1145 1146 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info, 1147 int ocv, int temp) 1148 { 1149 struct power_supply_battery_ocv_table *table; 1150 int table_len; 1151 1152 table = power_supply_find_ocv2cap_table(info, temp, &table_len); 1153 if (!table) 1154 return -EINVAL; 1155 1156 return power_supply_ocv2cap_simple(table, table_len, ocv); 1157 } 1158 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap); 1159 1160 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info, 1161 int resistance) 1162 { 1163 int low, high; 1164 1165 /* Nothing like this can be checked */ 1166 if (info->bti_resistance_ohm <= 0) 1167 return false; 1168 1169 /* This will be extremely strict and unlikely to work */ 1170 if (info->bti_resistance_tolerance <= 0) 1171 return (info->bti_resistance_ohm == resistance); 1172 1173 low = info->bti_resistance_ohm - 1174 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; 1175 high = info->bti_resistance_ohm + 1176 (info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100; 1177 1178 return ((resistance >= low) && (resistance <= high)); 1179 } 1180 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range); 1181 1182 static bool psy_has_property(const struct power_supply_desc *psy_desc, 1183 enum power_supply_property psp) 1184 { 1185 bool found = false; 1186 int i; 1187 1188 for (i = 0; i < psy_desc->num_properties; i++) { 1189 if (psy_desc->properties[i] == psp) { 1190 found = true; 1191 break; 1192 } 1193 } 1194 1195 return found; 1196 } 1197 1198 int power_supply_get_property(struct power_supply *psy, 1199 enum power_supply_property psp, 1200 union power_supply_propval *val) 1201 { 1202 if (atomic_read(&psy->use_cnt) <= 0) { 1203 if (!psy->initialized) 1204 return -EAGAIN; 1205 return -ENODEV; 1206 } 1207 1208 if (psy_has_property(psy->desc, psp)) 1209 return psy->desc->get_property(psy, psp, val); 1210 else if (power_supply_battery_info_has_prop(psy->battery_info, psp)) 1211 return power_supply_battery_info_get_prop(psy->battery_info, psp, val); 1212 else 1213 return -EINVAL; 1214 } 1215 EXPORT_SYMBOL_GPL(power_supply_get_property); 1216 1217 int power_supply_set_property(struct power_supply *psy, 1218 enum power_supply_property psp, 1219 const union power_supply_propval *val) 1220 { 1221 if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property) 1222 return -ENODEV; 1223 1224 return psy->desc->set_property(psy, psp, val); 1225 } 1226 EXPORT_SYMBOL_GPL(power_supply_set_property); 1227 1228 int power_supply_property_is_writeable(struct power_supply *psy, 1229 enum power_supply_property psp) 1230 { 1231 if (atomic_read(&psy->use_cnt) <= 0 || 1232 !psy->desc->property_is_writeable) 1233 return -ENODEV; 1234 1235 return psy->desc->property_is_writeable(psy, psp); 1236 } 1237 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable); 1238 1239 void power_supply_external_power_changed(struct power_supply *psy) 1240 { 1241 if (atomic_read(&psy->use_cnt) <= 0 || 1242 !psy->desc->external_power_changed) 1243 return; 1244 1245 psy->desc->external_power_changed(psy); 1246 } 1247 EXPORT_SYMBOL_GPL(power_supply_external_power_changed); 1248 1249 int power_supply_powers(struct power_supply *psy, struct device *dev) 1250 { 1251 return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers"); 1252 } 1253 EXPORT_SYMBOL_GPL(power_supply_powers); 1254 1255 static void power_supply_dev_release(struct device *dev) 1256 { 1257 struct power_supply *psy = to_power_supply(dev); 1258 dev_dbg(dev, "%s\n", __func__); 1259 kfree(psy); 1260 } 1261 1262 int power_supply_reg_notifier(struct notifier_block *nb) 1263 { 1264 return blocking_notifier_chain_register(&power_supply_notifier, nb); 1265 } 1266 EXPORT_SYMBOL_GPL(power_supply_reg_notifier); 1267 1268 void power_supply_unreg_notifier(struct notifier_block *nb) 1269 { 1270 blocking_notifier_chain_unregister(&power_supply_notifier, nb); 1271 } 1272 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier); 1273 1274 #ifdef CONFIG_THERMAL 1275 static int power_supply_read_temp(struct thermal_zone_device *tzd, 1276 int *temp) 1277 { 1278 struct power_supply *psy; 1279 union power_supply_propval val; 1280 int ret; 1281 1282 WARN_ON(tzd == NULL); 1283 psy = thermal_zone_device_priv(tzd); 1284 ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val); 1285 if (ret) 1286 return ret; 1287 1288 /* Convert tenths of degree Celsius to milli degree Celsius. */ 1289 *temp = val.intval * 100; 1290 1291 return ret; 1292 } 1293 1294 static struct thermal_zone_device_ops psy_tzd_ops = { 1295 .get_temp = power_supply_read_temp, 1296 }; 1297 1298 static int psy_register_thermal(struct power_supply *psy) 1299 { 1300 int ret; 1301 1302 if (psy->desc->no_thermal) 1303 return 0; 1304 1305 /* Register battery zone device psy reports temperature */ 1306 if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) { 1307 /* Prefer our hwmon device and avoid duplicates */ 1308 struct thermal_zone_params tzp = { 1309 .no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON) 1310 }; 1311 psy->tzd = thermal_tripless_zone_device_register(psy->desc->name, 1312 psy, &psy_tzd_ops, &tzp); 1313 if (IS_ERR(psy->tzd)) 1314 return PTR_ERR(psy->tzd); 1315 ret = thermal_zone_device_enable(psy->tzd); 1316 if (ret) 1317 thermal_zone_device_unregister(psy->tzd); 1318 return ret; 1319 } 1320 1321 return 0; 1322 } 1323 1324 static void psy_unregister_thermal(struct power_supply *psy) 1325 { 1326 if (IS_ERR_OR_NULL(psy->tzd)) 1327 return; 1328 thermal_zone_device_unregister(psy->tzd); 1329 } 1330 1331 #else 1332 static int psy_register_thermal(struct power_supply *psy) 1333 { 1334 return 0; 1335 } 1336 1337 static void psy_unregister_thermal(struct power_supply *psy) 1338 { 1339 } 1340 #endif 1341 1342 static struct power_supply *__must_check 1343 __power_supply_register(struct device *parent, 1344 const struct power_supply_desc *desc, 1345 const struct power_supply_config *cfg, 1346 bool ws) 1347 { 1348 struct device *dev; 1349 struct power_supply *psy; 1350 int rc; 1351 1352 if (!desc || !desc->name || !desc->properties || !desc->num_properties) 1353 return ERR_PTR(-EINVAL); 1354 1355 if (!parent) 1356 pr_warn("%s: Expected proper parent device for '%s'\n", 1357 __func__, desc->name); 1358 1359 if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) && 1360 (!desc->usb_types || !desc->num_usb_types)) 1361 return ERR_PTR(-EINVAL); 1362 1363 psy = kzalloc(sizeof(*psy), GFP_KERNEL); 1364 if (!psy) 1365 return ERR_PTR(-ENOMEM); 1366 1367 dev = &psy->dev; 1368 1369 device_initialize(dev); 1370 1371 dev->class = power_supply_class; 1372 dev->type = &power_supply_dev_type; 1373 dev->parent = parent; 1374 dev->release = power_supply_dev_release; 1375 dev_set_drvdata(dev, psy); 1376 psy->desc = desc; 1377 if (cfg) { 1378 dev->groups = cfg->attr_grp; 1379 psy->drv_data = cfg->drv_data; 1380 psy->of_node = 1381 cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node; 1382 dev->of_node = psy->of_node; 1383 psy->supplied_to = cfg->supplied_to; 1384 psy->num_supplicants = cfg->num_supplicants; 1385 } 1386 1387 rc = dev_set_name(dev, "%s", desc->name); 1388 if (rc) 1389 goto dev_set_name_failed; 1390 1391 INIT_WORK(&psy->changed_work, power_supply_changed_work); 1392 INIT_DELAYED_WORK(&psy->deferred_register_work, 1393 power_supply_deferred_register_work); 1394 1395 rc = power_supply_check_supplies(psy); 1396 if (rc) { 1397 dev_dbg(dev, "Not all required supplies found, defer probe\n"); 1398 goto check_supplies_failed; 1399 } 1400 1401 /* 1402 * Expose constant battery info, if it is available. While there are 1403 * some chargers accessing constant battery data, we only want to 1404 * expose battery data to userspace for battery devices. 1405 */ 1406 if (desc->type == POWER_SUPPLY_TYPE_BATTERY) { 1407 rc = power_supply_get_battery_info(psy, &psy->battery_info); 1408 if (rc && rc != -ENODEV && rc != -ENOENT) 1409 goto check_supplies_failed; 1410 } 1411 1412 spin_lock_init(&psy->changed_lock); 1413 rc = device_add(dev); 1414 if (rc) 1415 goto device_add_failed; 1416 1417 rc = device_init_wakeup(dev, ws); 1418 if (rc) 1419 goto wakeup_init_failed; 1420 1421 rc = psy_register_thermal(psy); 1422 if (rc) 1423 goto register_thermal_failed; 1424 1425 rc = power_supply_create_triggers(psy); 1426 if (rc) 1427 goto create_triggers_failed; 1428 1429 rc = power_supply_add_hwmon_sysfs(psy); 1430 if (rc) 1431 goto add_hwmon_sysfs_failed; 1432 1433 /* 1434 * Update use_cnt after any uevents (most notably from device_add()). 1435 * We are here still during driver's probe but 1436 * the power_supply_uevent() calls back driver's get_property 1437 * method so: 1438 * 1. Driver did not assigned the returned struct power_supply, 1439 * 2. Driver could not finish initialization (anything in its probe 1440 * after calling power_supply_register()). 1441 */ 1442 atomic_inc(&psy->use_cnt); 1443 psy->initialized = true; 1444 1445 queue_delayed_work(system_power_efficient_wq, 1446 &psy->deferred_register_work, 1447 POWER_SUPPLY_DEFERRED_REGISTER_TIME); 1448 1449 return psy; 1450 1451 add_hwmon_sysfs_failed: 1452 power_supply_remove_triggers(psy); 1453 create_triggers_failed: 1454 psy_unregister_thermal(psy); 1455 register_thermal_failed: 1456 wakeup_init_failed: 1457 device_del(dev); 1458 device_add_failed: 1459 check_supplies_failed: 1460 dev_set_name_failed: 1461 put_device(dev); 1462 return ERR_PTR(rc); 1463 } 1464 1465 /** 1466 * power_supply_register() - Register new power supply 1467 * @parent: Device to be a parent of power supply's device, usually 1468 * the device which probe function calls this 1469 * @desc: Description of power supply, must be valid through whole 1470 * lifetime of this power supply 1471 * @cfg: Run-time specific configuration accessed during registering, 1472 * may be NULL 1473 * 1474 * Return: A pointer to newly allocated power_supply on success 1475 * or ERR_PTR otherwise. 1476 * Use power_supply_unregister() on returned power_supply pointer to release 1477 * resources. 1478 */ 1479 struct power_supply *__must_check power_supply_register(struct device *parent, 1480 const struct power_supply_desc *desc, 1481 const struct power_supply_config *cfg) 1482 { 1483 return __power_supply_register(parent, desc, cfg, true); 1484 } 1485 EXPORT_SYMBOL_GPL(power_supply_register); 1486 1487 /** 1488 * power_supply_register_no_ws() - Register new non-waking-source power supply 1489 * @parent: Device to be a parent of power supply's device, usually 1490 * the device which probe function calls this 1491 * @desc: Description of power supply, must be valid through whole 1492 * lifetime of this power supply 1493 * @cfg: Run-time specific configuration accessed during registering, 1494 * may be NULL 1495 * 1496 * Return: A pointer to newly allocated power_supply on success 1497 * or ERR_PTR otherwise. 1498 * Use power_supply_unregister() on returned power_supply pointer to release 1499 * resources. 1500 */ 1501 struct power_supply *__must_check 1502 power_supply_register_no_ws(struct device *parent, 1503 const struct power_supply_desc *desc, 1504 const struct power_supply_config *cfg) 1505 { 1506 return __power_supply_register(parent, desc, cfg, false); 1507 } 1508 EXPORT_SYMBOL_GPL(power_supply_register_no_ws); 1509 1510 static void devm_power_supply_release(struct device *dev, void *res) 1511 { 1512 struct power_supply **psy = res; 1513 1514 power_supply_unregister(*psy); 1515 } 1516 1517 /** 1518 * devm_power_supply_register() - Register managed power supply 1519 * @parent: Device to be a parent of power supply's device, usually 1520 * the device which probe function calls this 1521 * @desc: Description of power supply, must be valid through whole 1522 * lifetime of this power supply 1523 * @cfg: Run-time specific configuration accessed during registering, 1524 * may be NULL 1525 * 1526 * Return: A pointer to newly allocated power_supply on success 1527 * or ERR_PTR otherwise. 1528 * The returned power_supply pointer will be automatically unregistered 1529 * on driver detach. 1530 */ 1531 struct power_supply *__must_check 1532 devm_power_supply_register(struct device *parent, 1533 const struct power_supply_desc *desc, 1534 const struct power_supply_config *cfg) 1535 { 1536 struct power_supply **ptr, *psy; 1537 1538 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); 1539 1540 if (!ptr) 1541 return ERR_PTR(-ENOMEM); 1542 psy = __power_supply_register(parent, desc, cfg, true); 1543 if (IS_ERR(psy)) { 1544 devres_free(ptr); 1545 } else { 1546 *ptr = psy; 1547 devres_add(parent, ptr); 1548 } 1549 return psy; 1550 } 1551 EXPORT_SYMBOL_GPL(devm_power_supply_register); 1552 1553 /** 1554 * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply 1555 * @parent: Device to be a parent of power supply's device, usually 1556 * the device which probe function calls this 1557 * @desc: Description of power supply, must be valid through whole 1558 * lifetime of this power supply 1559 * @cfg: Run-time specific configuration accessed during registering, 1560 * may be NULL 1561 * 1562 * Return: A pointer to newly allocated power_supply on success 1563 * or ERR_PTR otherwise. 1564 * The returned power_supply pointer will be automatically unregistered 1565 * on driver detach. 1566 */ 1567 struct power_supply *__must_check 1568 devm_power_supply_register_no_ws(struct device *parent, 1569 const struct power_supply_desc *desc, 1570 const struct power_supply_config *cfg) 1571 { 1572 struct power_supply **ptr, *psy; 1573 1574 ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL); 1575 1576 if (!ptr) 1577 return ERR_PTR(-ENOMEM); 1578 psy = __power_supply_register(parent, desc, cfg, false); 1579 if (IS_ERR(psy)) { 1580 devres_free(ptr); 1581 } else { 1582 *ptr = psy; 1583 devres_add(parent, ptr); 1584 } 1585 return psy; 1586 } 1587 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws); 1588 1589 /** 1590 * power_supply_unregister() - Remove this power supply from system 1591 * @psy: Pointer to power supply to unregister 1592 * 1593 * Remove this power supply from the system. The resources of power supply 1594 * will be freed here or on last power_supply_put() call. 1595 */ 1596 void power_supply_unregister(struct power_supply *psy) 1597 { 1598 WARN_ON(atomic_dec_return(&psy->use_cnt)); 1599 psy->removing = true; 1600 cancel_work_sync(&psy->changed_work); 1601 cancel_delayed_work_sync(&psy->deferred_register_work); 1602 sysfs_remove_link(&psy->dev.kobj, "powers"); 1603 power_supply_remove_hwmon_sysfs(psy); 1604 power_supply_remove_triggers(psy); 1605 psy_unregister_thermal(psy); 1606 device_init_wakeup(&psy->dev, false); 1607 device_unregister(&psy->dev); 1608 } 1609 EXPORT_SYMBOL_GPL(power_supply_unregister); 1610 1611 void *power_supply_get_drvdata(struct power_supply *psy) 1612 { 1613 return psy->drv_data; 1614 } 1615 EXPORT_SYMBOL_GPL(power_supply_get_drvdata); 1616 1617 static int __init power_supply_class_init(void) 1618 { 1619 power_supply_class = class_create("power_supply"); 1620 1621 if (IS_ERR(power_supply_class)) 1622 return PTR_ERR(power_supply_class); 1623 1624 power_supply_class->dev_uevent = power_supply_uevent; 1625 power_supply_init_attrs(&power_supply_dev_type); 1626 1627 return 0; 1628 } 1629 1630 static void __exit power_supply_class_exit(void) 1631 { 1632 class_destroy(power_supply_class); 1633 } 1634 1635 subsys_initcall(power_supply_class_init); 1636 module_exit(power_supply_class_exit); 1637 1638 MODULE_DESCRIPTION("Universal power supply monitor class"); 1639 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>, " 1640 "Szabolcs Gyurko, " 1641 "Anton Vorontsov <cbou@mail.ru>"); 1642