xref: /linux/drivers/power/supply/power_supply_core.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Universal power supply monitor class
4  *
5  *  Copyright © 2007  Anton Vorontsov <cbou@mail.ru>
6  *  Copyright © 2004  Szabolcs Gyurko
7  *  Copyright © 2003  Ian Molton <spyro@f2s.com>
8  *
9  *  Modified: 2004, Oct     Szabolcs Gyurko
10  */
11 
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/notifier.h>
19 #include <linux/err.h>
20 #include <linux/of.h>
21 #include <linux/power_supply.h>
22 #include <linux/property.h>
23 #include <linux/thermal.h>
24 #include <linux/fixp-arith.h>
25 #include "power_supply.h"
26 #include "samsung-sdi-battery.h"
27 
28 static const struct class power_supply_class = {
29 	.name = "power_supply",
30 	.dev_uevent = power_supply_uevent,
31 };
32 
33 static BLOCKING_NOTIFIER_HEAD(power_supply_notifier);
34 
35 static const struct device_type power_supply_dev_type = {
36 	.name = "power_supply",
37 	.groups = power_supply_attr_groups,
38 };
39 
40 #define POWER_SUPPLY_DEFERRED_REGISTER_TIME	msecs_to_jiffies(10)
41 
42 static bool __power_supply_is_supplied_by(struct power_supply *supplier,
43 					 struct power_supply *supply)
44 {
45 	int i;
46 
47 	if (!supply->supplied_from && !supplier->supplied_to)
48 		return false;
49 
50 	/* Support both supplied_to and supplied_from modes */
51 	if (supply->supplied_from) {
52 		if (!supplier->desc->name)
53 			return false;
54 		for (i = 0; i < supply->num_supplies; i++)
55 			if (!strcmp(supplier->desc->name, supply->supplied_from[i]))
56 				return true;
57 	} else {
58 		if (!supply->desc->name)
59 			return false;
60 		for (i = 0; i < supplier->num_supplicants; i++)
61 			if (!strcmp(supplier->supplied_to[i], supply->desc->name))
62 				return true;
63 	}
64 
65 	return false;
66 }
67 
68 static int __power_supply_changed_work(struct device *dev, void *data)
69 {
70 	struct power_supply *psy = data;
71 	struct power_supply *pst = dev_get_drvdata(dev);
72 
73 	if (__power_supply_is_supplied_by(psy, pst)) {
74 		if (pst->desc->external_power_changed)
75 			pst->desc->external_power_changed(pst);
76 	}
77 
78 	return 0;
79 }
80 
81 static void power_supply_changed_work(struct work_struct *work)
82 {
83 	unsigned long flags;
84 	struct power_supply *psy = container_of(work, struct power_supply,
85 						changed_work);
86 
87 	dev_dbg(&psy->dev, "%s\n", __func__);
88 
89 	spin_lock_irqsave(&psy->changed_lock, flags);
90 	/*
91 	 * Check 'changed' here to avoid issues due to race between
92 	 * power_supply_changed() and this routine. In worst case
93 	 * power_supply_changed() can be called again just before we take above
94 	 * lock. During the first call of this routine we will mark 'changed' as
95 	 * false and it will stay false for the next call as well.
96 	 */
97 	if (likely(psy->changed)) {
98 		psy->changed = false;
99 		spin_unlock_irqrestore(&psy->changed_lock, flags);
100 		power_supply_for_each_device(psy, __power_supply_changed_work);
101 		power_supply_update_leds(psy);
102 		blocking_notifier_call_chain(&power_supply_notifier,
103 				PSY_EVENT_PROP_CHANGED, psy);
104 		kobject_uevent(&psy->dev.kobj, KOBJ_CHANGE);
105 		spin_lock_irqsave(&psy->changed_lock, flags);
106 	}
107 
108 	/*
109 	 * Hold the wakeup_source until all events are processed.
110 	 * power_supply_changed() might have called again and have set 'changed'
111 	 * to true.
112 	 */
113 	if (likely(!psy->changed))
114 		pm_relax(&psy->dev);
115 	spin_unlock_irqrestore(&psy->changed_lock, flags);
116 }
117 
118 int power_supply_for_each_device(void *data, int (*fn)(struct device *dev, void *data))
119 {
120 	return class_for_each_device(&power_supply_class, NULL, data, fn);
121 }
122 EXPORT_SYMBOL_GPL(power_supply_for_each_device);
123 
124 void power_supply_changed(struct power_supply *psy)
125 {
126 	unsigned long flags;
127 
128 	dev_dbg(&psy->dev, "%s\n", __func__);
129 
130 	spin_lock_irqsave(&psy->changed_lock, flags);
131 	psy->changed = true;
132 	pm_stay_awake(&psy->dev);
133 	spin_unlock_irqrestore(&psy->changed_lock, flags);
134 	schedule_work(&psy->changed_work);
135 }
136 EXPORT_SYMBOL_GPL(power_supply_changed);
137 
138 /*
139  * Notify that power supply was registered after parent finished the probing.
140  *
141  * Often power supply is registered from driver's probe function. However
142  * calling power_supply_changed() directly from power_supply_register()
143  * would lead to execution of get_property() function provided by the driver
144  * too early - before the probe ends.
145  *
146  * Avoid that by waiting on parent's mutex.
147  */
148 static void power_supply_deferred_register_work(struct work_struct *work)
149 {
150 	struct power_supply *psy = container_of(work, struct power_supply,
151 						deferred_register_work.work);
152 
153 	if (psy->dev.parent) {
154 		while (!mutex_trylock(&psy->dev.parent->mutex)) {
155 			if (psy->removing)
156 				return;
157 			msleep(10);
158 		}
159 	}
160 
161 	power_supply_changed(psy);
162 
163 	if (psy->dev.parent)
164 		mutex_unlock(&psy->dev.parent->mutex);
165 }
166 
167 #ifdef CONFIG_OF
168 static int __power_supply_populate_supplied_from(struct device *dev,
169 						 void *data)
170 {
171 	struct power_supply *psy = data;
172 	struct power_supply *epsy = dev_get_drvdata(dev);
173 	struct device_node *np;
174 	int i = 0;
175 
176 	do {
177 		np = of_parse_phandle(psy->of_node, "power-supplies", i++);
178 		if (!np)
179 			break;
180 
181 		if (np == epsy->of_node) {
182 			dev_dbg(&psy->dev, "%s: Found supply : %s\n",
183 				psy->desc->name, epsy->desc->name);
184 			psy->supplied_from[i-1] = (char *)epsy->desc->name;
185 			psy->num_supplies++;
186 			of_node_put(np);
187 			break;
188 		}
189 		of_node_put(np);
190 	} while (np);
191 
192 	return 0;
193 }
194 
195 static int power_supply_populate_supplied_from(struct power_supply *psy)
196 {
197 	int error;
198 
199 	error = power_supply_for_each_device(psy, __power_supply_populate_supplied_from);
200 
201 	dev_dbg(&psy->dev, "%s %d\n", __func__, error);
202 
203 	return error;
204 }
205 
206 static int  __power_supply_find_supply_from_node(struct device *dev,
207 						 void *data)
208 {
209 	struct device_node *np = data;
210 	struct power_supply *epsy = dev_get_drvdata(dev);
211 
212 	/* returning non-zero breaks out of power_supply_for_each_device loop */
213 	if (epsy->of_node == np)
214 		return 1;
215 
216 	return 0;
217 }
218 
219 static int power_supply_find_supply_from_node(struct device_node *supply_node)
220 {
221 	int error;
222 
223 	/*
224 	 * power_supply_for_each_device() either returns its own errors or values
225 	 * returned by __power_supply_find_supply_from_node().
226 	 *
227 	 * __power_supply_find_supply_from_node() will return 0 (no match)
228 	 * or 1 (match).
229 	 *
230 	 * We return 0 if power_supply_for_each_device() returned 1, -EPROBE_DEFER if
231 	 * it returned 0, or error as returned by it.
232 	 */
233 	error = power_supply_for_each_device(supply_node, __power_supply_find_supply_from_node);
234 
235 	return error ? (error == 1 ? 0 : error) : -EPROBE_DEFER;
236 }
237 
238 static int power_supply_check_supplies(struct power_supply *psy)
239 {
240 	struct device_node *np;
241 	int cnt = 0;
242 
243 	/* If there is already a list honor it */
244 	if (psy->supplied_from && psy->num_supplies > 0)
245 		return 0;
246 
247 	/* No device node found, nothing to do */
248 	if (!psy->of_node)
249 		return 0;
250 
251 	do {
252 		int ret;
253 
254 		np = of_parse_phandle(psy->of_node, "power-supplies", cnt++);
255 		if (!np)
256 			break;
257 
258 		ret = power_supply_find_supply_from_node(np);
259 		of_node_put(np);
260 
261 		if (ret) {
262 			dev_dbg(&psy->dev, "Failed to find supply!\n");
263 			return ret;
264 		}
265 	} while (np);
266 
267 	/* Missing valid "power-supplies" entries */
268 	if (cnt == 1)
269 		return 0;
270 
271 	/* All supplies found, allocate char ** array for filling */
272 	psy->supplied_from = devm_kzalloc(&psy->dev, sizeof(*psy->supplied_from),
273 					  GFP_KERNEL);
274 	if (!psy->supplied_from)
275 		return -ENOMEM;
276 
277 	*psy->supplied_from = devm_kcalloc(&psy->dev,
278 					   cnt - 1, sizeof(**psy->supplied_from),
279 					   GFP_KERNEL);
280 	if (!*psy->supplied_from)
281 		return -ENOMEM;
282 
283 	return power_supply_populate_supplied_from(psy);
284 }
285 #else
286 static int power_supply_check_supplies(struct power_supply *psy)
287 {
288 	int nval, ret;
289 
290 	if (!psy->dev.parent)
291 		return 0;
292 
293 	nval = device_property_string_array_count(psy->dev.parent, "supplied-from");
294 	if (nval <= 0)
295 		return 0;
296 
297 	psy->supplied_from = devm_kmalloc_array(&psy->dev, nval,
298 						sizeof(char *), GFP_KERNEL);
299 	if (!psy->supplied_from)
300 		return -ENOMEM;
301 
302 	ret = device_property_read_string_array(psy->dev.parent,
303 		"supplied-from", (const char **)psy->supplied_from, nval);
304 	if (ret < 0)
305 		return ret;
306 
307 	psy->num_supplies = nval;
308 
309 	return 0;
310 }
311 #endif
312 
313 struct psy_am_i_supplied_data {
314 	struct power_supply *psy;
315 	unsigned int count;
316 };
317 
318 static int __power_supply_am_i_supplied(struct device *dev, void *_data)
319 {
320 	union power_supply_propval ret = {0,};
321 	struct power_supply *epsy = dev_get_drvdata(dev);
322 	struct psy_am_i_supplied_data *data = _data;
323 
324 	if (__power_supply_is_supplied_by(epsy, data->psy)) {
325 		data->count++;
326 		if (!epsy->desc->get_property(epsy, POWER_SUPPLY_PROP_ONLINE,
327 					&ret))
328 			return ret.intval;
329 	}
330 
331 	return 0;
332 }
333 
334 int power_supply_am_i_supplied(struct power_supply *psy)
335 {
336 	struct psy_am_i_supplied_data data = { psy, 0 };
337 	int error;
338 
339 	error = power_supply_for_each_device(&data, __power_supply_am_i_supplied);
340 
341 	dev_dbg(&psy->dev, "%s count %u err %d\n", __func__, data.count, error);
342 
343 	if (data.count == 0)
344 		return -ENODEV;
345 
346 	return error;
347 }
348 EXPORT_SYMBOL_GPL(power_supply_am_i_supplied);
349 
350 static int __power_supply_is_system_supplied(struct device *dev, void *data)
351 {
352 	union power_supply_propval ret = {0,};
353 	struct power_supply *psy = dev_get_drvdata(dev);
354 	unsigned int *count = data;
355 
356 	if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_SCOPE, &ret))
357 		if (ret.intval == POWER_SUPPLY_SCOPE_DEVICE)
358 			return 0;
359 
360 	(*count)++;
361 	if (psy->desc->type != POWER_SUPPLY_TYPE_BATTERY)
362 		if (!psy->desc->get_property(psy, POWER_SUPPLY_PROP_ONLINE,
363 					&ret))
364 			return ret.intval;
365 
366 	return 0;
367 }
368 
369 int power_supply_is_system_supplied(void)
370 {
371 	int error;
372 	unsigned int count = 0;
373 
374 	error = power_supply_for_each_device(&count, __power_supply_is_system_supplied);
375 
376 	/*
377 	 * If no system scope power class device was found at all, most probably we
378 	 * are running on a desktop system, so assume we are on mains power.
379 	 */
380 	if (count == 0)
381 		return 1;
382 
383 	return error;
384 }
385 EXPORT_SYMBOL_GPL(power_supply_is_system_supplied);
386 
387 struct psy_get_supplier_prop_data {
388 	struct power_supply *psy;
389 	enum power_supply_property psp;
390 	union power_supply_propval *val;
391 };
392 
393 static int __power_supply_get_supplier_property(struct device *dev, void *_data)
394 {
395 	struct power_supply *epsy = dev_get_drvdata(dev);
396 	struct psy_get_supplier_prop_data *data = _data;
397 
398 	if (__power_supply_is_supplied_by(epsy, data->psy))
399 		if (!power_supply_get_property(epsy, data->psp, data->val))
400 			return 1; /* Success */
401 
402 	return 0; /* Continue iterating */
403 }
404 
405 int power_supply_get_property_from_supplier(struct power_supply *psy,
406 					    enum power_supply_property psp,
407 					    union power_supply_propval *val)
408 {
409 	struct psy_get_supplier_prop_data data = {
410 		.psy = psy,
411 		.psp = psp,
412 		.val = val,
413 	};
414 	int ret;
415 
416 	/*
417 	 * This function is not intended for use with a supply with multiple
418 	 * suppliers, we simply pick the first supply to report the psp.
419 	 */
420 	ret = power_supply_for_each_device(&data, __power_supply_get_supplier_property);
421 	if (ret < 0)
422 		return ret;
423 	if (ret == 0)
424 		return -ENODEV;
425 
426 	return 0;
427 }
428 EXPORT_SYMBOL_GPL(power_supply_get_property_from_supplier);
429 
430 int power_supply_set_battery_charged(struct power_supply *psy)
431 {
432 	if (atomic_read(&psy->use_cnt) >= 0 &&
433 			psy->desc->type == POWER_SUPPLY_TYPE_BATTERY &&
434 			psy->desc->set_charged) {
435 		psy->desc->set_charged(psy);
436 		return 0;
437 	}
438 
439 	return -EINVAL;
440 }
441 EXPORT_SYMBOL_GPL(power_supply_set_battery_charged);
442 
443 static int power_supply_match_device_by_name(struct device *dev, const void *data)
444 {
445 	const char *name = data;
446 	struct power_supply *psy = dev_get_drvdata(dev);
447 
448 	return strcmp(psy->desc->name, name) == 0;
449 }
450 
451 /**
452  * power_supply_get_by_name() - Search for a power supply and returns its ref
453  * @name: Power supply name to fetch
454  *
455  * If power supply was found, it increases reference count for the
456  * internal power supply's device. The user should power_supply_put()
457  * after usage.
458  *
459  * Return: On success returns a reference to a power supply with
460  * matching name equals to @name, a NULL otherwise.
461  */
462 struct power_supply *power_supply_get_by_name(const char *name)
463 {
464 	struct power_supply *psy = NULL;
465 	struct device *dev = class_find_device(&power_supply_class, NULL, name,
466 					       power_supply_match_device_by_name);
467 
468 	if (dev) {
469 		psy = dev_get_drvdata(dev);
470 		atomic_inc(&psy->use_cnt);
471 	}
472 
473 	return psy;
474 }
475 EXPORT_SYMBOL_GPL(power_supply_get_by_name);
476 
477 /**
478  * power_supply_put() - Drop reference obtained with power_supply_get_by_name
479  * @psy: Reference to put
480  *
481  * The reference to power supply should be put before unregistering
482  * the power supply.
483  */
484 void power_supply_put(struct power_supply *psy)
485 {
486 	might_sleep();
487 
488 	atomic_dec(&psy->use_cnt);
489 	put_device(&psy->dev);
490 }
491 EXPORT_SYMBOL_GPL(power_supply_put);
492 
493 #ifdef CONFIG_OF
494 static int power_supply_match_device_node(struct device *dev, const void *data)
495 {
496 	return dev->parent && dev->parent->of_node == data;
497 }
498 
499 /**
500  * power_supply_get_by_phandle() - Search for a power supply and returns its ref
501  * @np: Pointer to device node holding phandle property
502  * @property: Name of property holding a power supply name
503  *
504  * If power supply was found, it increases reference count for the
505  * internal power supply's device. The user should power_supply_put()
506  * after usage.
507  *
508  * Return: On success returns a reference to a power supply with
509  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
510  */
511 struct power_supply *power_supply_get_by_phandle(struct device_node *np,
512 							const char *property)
513 {
514 	struct device_node *power_supply_np;
515 	struct power_supply *psy = NULL;
516 	struct device *dev;
517 
518 	power_supply_np = of_parse_phandle(np, property, 0);
519 	if (!power_supply_np)
520 		return ERR_PTR(-ENODEV);
521 
522 	dev = class_find_device(&power_supply_class, NULL, power_supply_np,
523 				power_supply_match_device_node);
524 
525 	of_node_put(power_supply_np);
526 
527 	if (dev) {
528 		psy = dev_get_drvdata(dev);
529 		atomic_inc(&psy->use_cnt);
530 	}
531 
532 	return psy;
533 }
534 EXPORT_SYMBOL_GPL(power_supply_get_by_phandle);
535 
536 static void devm_power_supply_put(struct device *dev, void *res)
537 {
538 	struct power_supply **psy = res;
539 
540 	power_supply_put(*psy);
541 }
542 
543 /**
544  * devm_power_supply_get_by_phandle() - Resource managed version of
545  *  power_supply_get_by_phandle()
546  * @dev: Pointer to device holding phandle property
547  * @property: Name of property holding a power supply phandle
548  *
549  * Return: On success returns a reference to a power supply with
550  * matching name equals to value under @property, NULL or ERR_PTR otherwise.
551  */
552 struct power_supply *devm_power_supply_get_by_phandle(struct device *dev,
553 						      const char *property)
554 {
555 	struct power_supply **ptr, *psy;
556 
557 	if (!dev->of_node)
558 		return ERR_PTR(-ENODEV);
559 
560 	ptr = devres_alloc(devm_power_supply_put, sizeof(*ptr), GFP_KERNEL);
561 	if (!ptr)
562 		return ERR_PTR(-ENOMEM);
563 
564 	psy = power_supply_get_by_phandle(dev->of_node, property);
565 	if (IS_ERR_OR_NULL(psy)) {
566 		devres_free(ptr);
567 	} else {
568 		*ptr = psy;
569 		devres_add(dev, ptr);
570 	}
571 	return psy;
572 }
573 EXPORT_SYMBOL_GPL(devm_power_supply_get_by_phandle);
574 #endif /* CONFIG_OF */
575 
576 int power_supply_get_battery_info(struct power_supply *psy,
577 				  struct power_supply_battery_info **info_out)
578 {
579 	struct power_supply_resistance_temp_table *resist_table;
580 	struct power_supply_battery_info *info;
581 	struct device_node *battery_np = NULL;
582 	struct fwnode_reference_args args;
583 	struct fwnode_handle *fwnode = NULL;
584 	const char *value;
585 	int err, len, index;
586 	const __be32 *list;
587 	u32 min_max[2];
588 
589 	if (psy->of_node) {
590 		battery_np = of_parse_phandle(psy->of_node, "monitored-battery", 0);
591 		if (!battery_np)
592 			return -ENODEV;
593 
594 		fwnode = fwnode_handle_get(of_fwnode_handle(battery_np));
595 	} else if (psy->dev.parent) {
596 		err = fwnode_property_get_reference_args(
597 					dev_fwnode(psy->dev.parent),
598 					"monitored-battery", NULL, 0, 0, &args);
599 		if (err)
600 			return err;
601 
602 		fwnode = args.fwnode;
603 	}
604 
605 	if (!fwnode)
606 		return -ENOENT;
607 
608 	err = fwnode_property_read_string(fwnode, "compatible", &value);
609 	if (err)
610 		goto out_put_node;
611 
612 
613 	/* Try static batteries first */
614 	err = samsung_sdi_battery_get_info(&psy->dev, value, &info);
615 	if (!err)
616 		goto out_ret_pointer;
617 	else if (err == -ENODEV)
618 		/*
619 		 * Device does not have a static battery.
620 		 * Proceed to look for a simple battery.
621 		 */
622 		err = 0;
623 
624 	if (strcmp("simple-battery", value)) {
625 		err = -ENODEV;
626 		goto out_put_node;
627 	}
628 
629 	info = devm_kzalloc(&psy->dev, sizeof(*info), GFP_KERNEL);
630 	if (!info) {
631 		err = -ENOMEM;
632 		goto out_put_node;
633 	}
634 
635 	info->technology                     = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
636 	info->energy_full_design_uwh         = -EINVAL;
637 	info->charge_full_design_uah         = -EINVAL;
638 	info->voltage_min_design_uv          = -EINVAL;
639 	info->voltage_max_design_uv          = -EINVAL;
640 	info->precharge_current_ua           = -EINVAL;
641 	info->charge_term_current_ua         = -EINVAL;
642 	info->constant_charge_current_max_ua = -EINVAL;
643 	info->constant_charge_voltage_max_uv = -EINVAL;
644 	info->tricklecharge_current_ua       = -EINVAL;
645 	info->precharge_voltage_max_uv       = -EINVAL;
646 	info->charge_restart_voltage_uv      = -EINVAL;
647 	info->overvoltage_limit_uv           = -EINVAL;
648 	info->maintenance_charge             = NULL;
649 	info->alert_low_temp_charge_current_ua = -EINVAL;
650 	info->alert_low_temp_charge_voltage_uv = -EINVAL;
651 	info->alert_high_temp_charge_current_ua = -EINVAL;
652 	info->alert_high_temp_charge_voltage_uv = -EINVAL;
653 	info->temp_ambient_alert_min         = INT_MIN;
654 	info->temp_ambient_alert_max         = INT_MAX;
655 	info->temp_alert_min                 = INT_MIN;
656 	info->temp_alert_max                 = INT_MAX;
657 	info->temp_min                       = INT_MIN;
658 	info->temp_max                       = INT_MAX;
659 	info->factory_internal_resistance_uohm  = -EINVAL;
660 	info->resist_table                   = NULL;
661 	info->bti_resistance_ohm             = -EINVAL;
662 	info->bti_resistance_tolerance       = -EINVAL;
663 
664 	for (index = 0; index < POWER_SUPPLY_OCV_TEMP_MAX; index++) {
665 		info->ocv_table[index]       = NULL;
666 		info->ocv_temp[index]        = -EINVAL;
667 		info->ocv_table_size[index]  = -EINVAL;
668 	}
669 
670 	/* The property and field names below must correspond to elements
671 	 * in enum power_supply_property. For reasoning, see
672 	 * Documentation/power/power_supply_class.rst.
673 	 */
674 
675 	if (!fwnode_property_read_string(fwnode, "device-chemistry", &value)) {
676 		if (!strcmp("nickel-cadmium", value))
677 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiCd;
678 		else if (!strcmp("nickel-metal-hydride", value))
679 			info->technology = POWER_SUPPLY_TECHNOLOGY_NiMH;
680 		else if (!strcmp("lithium-ion", value))
681 			/* Imprecise lithium-ion type */
682 			info->technology = POWER_SUPPLY_TECHNOLOGY_LION;
683 		else if (!strcmp("lithium-ion-polymer", value))
684 			info->technology = POWER_SUPPLY_TECHNOLOGY_LIPO;
685 		else if (!strcmp("lithium-ion-iron-phosphate", value))
686 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiFe;
687 		else if (!strcmp("lithium-ion-manganese-oxide", value))
688 			info->technology = POWER_SUPPLY_TECHNOLOGY_LiMn;
689 		else
690 			dev_warn(&psy->dev, "%s unknown battery type\n", value);
691 	}
692 
693 	fwnode_property_read_u32(fwnode, "energy-full-design-microwatt-hours",
694 			     &info->energy_full_design_uwh);
695 	fwnode_property_read_u32(fwnode, "charge-full-design-microamp-hours",
696 			     &info->charge_full_design_uah);
697 	fwnode_property_read_u32(fwnode, "voltage-min-design-microvolt",
698 			     &info->voltage_min_design_uv);
699 	fwnode_property_read_u32(fwnode, "voltage-max-design-microvolt",
700 			     &info->voltage_max_design_uv);
701 	fwnode_property_read_u32(fwnode, "trickle-charge-current-microamp",
702 			     &info->tricklecharge_current_ua);
703 	fwnode_property_read_u32(fwnode, "precharge-current-microamp",
704 			     &info->precharge_current_ua);
705 	fwnode_property_read_u32(fwnode, "precharge-upper-limit-microvolt",
706 			     &info->precharge_voltage_max_uv);
707 	fwnode_property_read_u32(fwnode, "charge-term-current-microamp",
708 			     &info->charge_term_current_ua);
709 	fwnode_property_read_u32(fwnode, "re-charge-voltage-microvolt",
710 			     &info->charge_restart_voltage_uv);
711 	fwnode_property_read_u32(fwnode, "over-voltage-threshold-microvolt",
712 			     &info->overvoltage_limit_uv);
713 	fwnode_property_read_u32(fwnode, "constant-charge-current-max-microamp",
714 			     &info->constant_charge_current_max_ua);
715 	fwnode_property_read_u32(fwnode, "constant-charge-voltage-max-microvolt",
716 			     &info->constant_charge_voltage_max_uv);
717 	fwnode_property_read_u32(fwnode, "factory-internal-resistance-micro-ohms",
718 			     &info->factory_internal_resistance_uohm);
719 
720 	if (!fwnode_property_read_u32_array(fwnode, "ambient-celsius",
721 					    min_max, ARRAY_SIZE(min_max))) {
722 		info->temp_ambient_alert_min = min_max[0];
723 		info->temp_ambient_alert_max = min_max[1];
724 	}
725 	if (!fwnode_property_read_u32_array(fwnode, "alert-celsius",
726 					    min_max, ARRAY_SIZE(min_max))) {
727 		info->temp_alert_min = min_max[0];
728 		info->temp_alert_max = min_max[1];
729 	}
730 	if (!fwnode_property_read_u32_array(fwnode, "operating-range-celsius",
731 					    min_max, ARRAY_SIZE(min_max))) {
732 		info->temp_min = min_max[0];
733 		info->temp_max = min_max[1];
734 	}
735 
736 	/*
737 	 * The below code uses raw of-data parsing to parse
738 	 * /schemas/types.yaml#/definitions/uint32-matrix
739 	 * data, so for now this is only support with of.
740 	 */
741 	if (!battery_np)
742 		goto out_ret_pointer;
743 
744 	len = of_property_count_u32_elems(battery_np, "ocv-capacity-celsius");
745 	if (len < 0 && len != -EINVAL) {
746 		err = len;
747 		goto out_put_node;
748 	} else if (len > POWER_SUPPLY_OCV_TEMP_MAX) {
749 		dev_err(&psy->dev, "Too many temperature values\n");
750 		err = -EINVAL;
751 		goto out_put_node;
752 	} else if (len > 0) {
753 		of_property_read_u32_array(battery_np, "ocv-capacity-celsius",
754 					   info->ocv_temp, len);
755 	}
756 
757 	for (index = 0; index < len; index++) {
758 		struct power_supply_battery_ocv_table *table;
759 		char *propname;
760 		int i, tab_len, size;
761 
762 		propname = kasprintf(GFP_KERNEL, "ocv-capacity-table-%d", index);
763 		if (!propname) {
764 			power_supply_put_battery_info(psy, info);
765 			err = -ENOMEM;
766 			goto out_put_node;
767 		}
768 		list = of_get_property(battery_np, propname, &size);
769 		if (!list || !size) {
770 			dev_err(&psy->dev, "failed to get %s\n", propname);
771 			kfree(propname);
772 			power_supply_put_battery_info(psy, info);
773 			err = -EINVAL;
774 			goto out_put_node;
775 		}
776 
777 		kfree(propname);
778 		tab_len = size / (2 * sizeof(__be32));
779 		info->ocv_table_size[index] = tab_len;
780 
781 		table = info->ocv_table[index] =
782 			devm_kcalloc(&psy->dev, tab_len, sizeof(*table), GFP_KERNEL);
783 		if (!info->ocv_table[index]) {
784 			power_supply_put_battery_info(psy, info);
785 			err = -ENOMEM;
786 			goto out_put_node;
787 		}
788 
789 		for (i = 0; i < tab_len; i++) {
790 			table[i].ocv = be32_to_cpu(*list);
791 			list++;
792 			table[i].capacity = be32_to_cpu(*list);
793 			list++;
794 		}
795 	}
796 
797 	list = of_get_property(battery_np, "resistance-temp-table", &len);
798 	if (!list || !len)
799 		goto out_ret_pointer;
800 
801 	info->resist_table_size = len / (2 * sizeof(__be32));
802 	resist_table = info->resist_table = devm_kcalloc(&psy->dev,
803 							 info->resist_table_size,
804 							 sizeof(*resist_table),
805 							 GFP_KERNEL);
806 	if (!info->resist_table) {
807 		power_supply_put_battery_info(psy, info);
808 		err = -ENOMEM;
809 		goto out_put_node;
810 	}
811 
812 	for (index = 0; index < info->resist_table_size; index++) {
813 		resist_table[index].temp = be32_to_cpu(*list++);
814 		resist_table[index].resistance = be32_to_cpu(*list++);
815 	}
816 
817 out_ret_pointer:
818 	/* Finally return the whole thing */
819 	*info_out = info;
820 
821 out_put_node:
822 	fwnode_handle_put(fwnode);
823 	of_node_put(battery_np);
824 	return err;
825 }
826 EXPORT_SYMBOL_GPL(power_supply_get_battery_info);
827 
828 void power_supply_put_battery_info(struct power_supply *psy,
829 				   struct power_supply_battery_info *info)
830 {
831 	int i;
832 
833 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
834 		if (info->ocv_table[i])
835 			devm_kfree(&psy->dev, info->ocv_table[i]);
836 	}
837 
838 	if (info->resist_table)
839 		devm_kfree(&psy->dev, info->resist_table);
840 
841 	devm_kfree(&psy->dev, info);
842 }
843 EXPORT_SYMBOL_GPL(power_supply_put_battery_info);
844 
845 const enum power_supply_property power_supply_battery_info_properties[] = {
846 	POWER_SUPPLY_PROP_TECHNOLOGY,
847 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
848 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
849 	POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
850 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
851 	POWER_SUPPLY_PROP_PRECHARGE_CURRENT,
852 	POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT,
853 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX,
854 	POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX,
855 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN,
856 	POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX,
857 	POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
858 	POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
859 	POWER_SUPPLY_PROP_TEMP_MIN,
860 	POWER_SUPPLY_PROP_TEMP_MAX,
861 };
862 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties);
863 
864 const size_t power_supply_battery_info_properties_size = ARRAY_SIZE(power_supply_battery_info_properties);
865 EXPORT_SYMBOL_GPL(power_supply_battery_info_properties_size);
866 
867 bool power_supply_battery_info_has_prop(struct power_supply_battery_info *info,
868 					enum power_supply_property psp)
869 {
870 	if (!info)
871 		return false;
872 
873 	switch (psp) {
874 	case POWER_SUPPLY_PROP_TECHNOLOGY:
875 		return info->technology != POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
876 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
877 		return info->energy_full_design_uwh >= 0;
878 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
879 		return info->charge_full_design_uah >= 0;
880 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
881 		return info->voltage_min_design_uv >= 0;
882 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
883 		return info->voltage_max_design_uv >= 0;
884 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
885 		return info->precharge_current_ua >= 0;
886 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
887 		return info->charge_term_current_ua >= 0;
888 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
889 		return info->constant_charge_current_max_ua >= 0;
890 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
891 		return info->constant_charge_voltage_max_uv >= 0;
892 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
893 		return info->temp_ambient_alert_min > INT_MIN;
894 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
895 		return info->temp_ambient_alert_max < INT_MAX;
896 	case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
897 		return info->temp_alert_min > INT_MIN;
898 	case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
899 		return info->temp_alert_max < INT_MAX;
900 	case POWER_SUPPLY_PROP_TEMP_MIN:
901 		return info->temp_min > INT_MIN;
902 	case POWER_SUPPLY_PROP_TEMP_MAX:
903 		return info->temp_max < INT_MAX;
904 	default:
905 		return false;
906 	}
907 }
908 EXPORT_SYMBOL_GPL(power_supply_battery_info_has_prop);
909 
910 int power_supply_battery_info_get_prop(struct power_supply_battery_info *info,
911 				       enum power_supply_property psp,
912 				       union power_supply_propval *val)
913 {
914 	if (!info)
915 		return -EINVAL;
916 
917 	if (!power_supply_battery_info_has_prop(info, psp))
918 		return -EINVAL;
919 
920 	switch (psp) {
921 	case POWER_SUPPLY_PROP_TECHNOLOGY:
922 		val->intval = info->technology;
923 		return 0;
924 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
925 		val->intval = info->energy_full_design_uwh;
926 		return 0;
927 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
928 		val->intval = info->charge_full_design_uah;
929 		return 0;
930 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
931 		val->intval = info->voltage_min_design_uv;
932 		return 0;
933 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
934 		val->intval = info->voltage_max_design_uv;
935 		return 0;
936 	case POWER_SUPPLY_PROP_PRECHARGE_CURRENT:
937 		val->intval = info->precharge_current_ua;
938 		return 0;
939 	case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT:
940 		val->intval = info->charge_term_current_ua;
941 		return 0;
942 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX:
943 		val->intval = info->constant_charge_current_max_ua;
944 		return 0;
945 	case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX:
946 		val->intval = info->constant_charge_voltage_max_uv;
947 		return 0;
948 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN:
949 		val->intval = info->temp_ambient_alert_min;
950 		return 0;
951 	case POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX:
952 		val->intval = info->temp_ambient_alert_max;
953 		return 0;
954 	case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
955 		val->intval = info->temp_alert_min;
956 		return 0;
957 	case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
958 		val->intval = info->temp_alert_max;
959 		return 0;
960 	case POWER_SUPPLY_PROP_TEMP_MIN:
961 		val->intval = info->temp_min;
962 		return 0;
963 	case POWER_SUPPLY_PROP_TEMP_MAX:
964 		val->intval = info->temp_max;
965 		return 0;
966 	default:
967 		return -EINVAL;
968 	}
969 }
970 EXPORT_SYMBOL_GPL(power_supply_battery_info_get_prop);
971 
972 /**
973  * power_supply_temp2resist_simple() - find the battery internal resistance
974  * percent from temperature
975  * @table: Pointer to battery resistance temperature table
976  * @table_len: The table length
977  * @temp: Current temperature
978  *
979  * This helper function is used to look up battery internal resistance percent
980  * according to current temperature value from the resistance temperature table,
981  * and the table must be ordered descending. Then the actual battery internal
982  * resistance = the ideal battery internal resistance * percent / 100.
983  *
984  * Return: the battery internal resistance percent
985  */
986 int power_supply_temp2resist_simple(struct power_supply_resistance_temp_table *table,
987 				    int table_len, int temp)
988 {
989 	int i, high, low;
990 
991 	for (i = 0; i < table_len; i++)
992 		if (temp > table[i].temp)
993 			break;
994 
995 	/* The library function will deal with high == low */
996 	if (i == 0)
997 		high = low = i;
998 	else if (i == table_len)
999 		high = low = i - 1;
1000 	else
1001 		high = (low = i) - 1;
1002 
1003 	return fixp_linear_interpolate(table[low].temp,
1004 				       table[low].resistance,
1005 				       table[high].temp,
1006 				       table[high].resistance,
1007 				       temp);
1008 }
1009 EXPORT_SYMBOL_GPL(power_supply_temp2resist_simple);
1010 
1011 /**
1012  * power_supply_vbat2ri() - find the battery internal resistance
1013  * from the battery voltage
1014  * @info: The battery information container
1015  * @vbat_uv: The battery voltage in microvolt
1016  * @charging: If we are charging (true) or not (false)
1017  *
1018  * This helper function is used to look up battery internal resistance
1019  * according to current battery voltage. Depending on whether the battery
1020  * is currently charging or not, different resistance will be returned.
1021  *
1022  * Returns the internal resistance in microohm or negative error code.
1023  */
1024 int power_supply_vbat2ri(struct power_supply_battery_info *info,
1025 			 int vbat_uv, bool charging)
1026 {
1027 	struct power_supply_vbat_ri_table *vbat2ri;
1028 	int table_len;
1029 	int i, high, low;
1030 
1031 	/*
1032 	 * If we are charging, and the battery supplies a separate table
1033 	 * for this state, we use that in order to compensate for the
1034 	 * charging voltage. Otherwise we use the main table.
1035 	 */
1036 	if (charging && info->vbat2ri_charging) {
1037 		vbat2ri = info->vbat2ri_charging;
1038 		table_len = info->vbat2ri_charging_size;
1039 	} else {
1040 		vbat2ri = info->vbat2ri_discharging;
1041 		table_len = info->vbat2ri_discharging_size;
1042 	}
1043 
1044 	/*
1045 	 * If no tables are specified, or if we are above the highest voltage in
1046 	 * the voltage table, just return the factory specified internal resistance.
1047 	 */
1048 	if (!vbat2ri || (table_len <= 0) || (vbat_uv > vbat2ri[0].vbat_uv)) {
1049 		if (charging && (info->factory_internal_resistance_charging_uohm > 0))
1050 			return info->factory_internal_resistance_charging_uohm;
1051 		else
1052 			return info->factory_internal_resistance_uohm;
1053 	}
1054 
1055 	/* Break loop at table_len - 1 because that is the highest index */
1056 	for (i = 0; i < table_len - 1; i++)
1057 		if (vbat_uv > vbat2ri[i].vbat_uv)
1058 			break;
1059 
1060 	/* The library function will deal with high == low */
1061 	if ((i == 0) || (i == (table_len - 1)))
1062 		high = i;
1063 	else
1064 		high = i - 1;
1065 	low = i;
1066 
1067 	return fixp_linear_interpolate(vbat2ri[low].vbat_uv,
1068 				       vbat2ri[low].ri_uohm,
1069 				       vbat2ri[high].vbat_uv,
1070 				       vbat2ri[high].ri_uohm,
1071 				       vbat_uv);
1072 }
1073 EXPORT_SYMBOL_GPL(power_supply_vbat2ri);
1074 
1075 struct power_supply_maintenance_charge_table *
1076 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info *info,
1077 					      int index)
1078 {
1079 	if (index >= info->maintenance_charge_size)
1080 		return NULL;
1081 	return &info->maintenance_charge[index];
1082 }
1083 EXPORT_SYMBOL_GPL(power_supply_get_maintenance_charging_setting);
1084 
1085 /**
1086  * power_supply_ocv2cap_simple() - find the battery capacity
1087  * @table: Pointer to battery OCV lookup table
1088  * @table_len: OCV table length
1089  * @ocv: Current OCV value
1090  *
1091  * This helper function is used to look up battery capacity according to
1092  * current OCV value from one OCV table, and the OCV table must be ordered
1093  * descending.
1094  *
1095  * Return: the battery capacity.
1096  */
1097 int power_supply_ocv2cap_simple(struct power_supply_battery_ocv_table *table,
1098 				int table_len, int ocv)
1099 {
1100 	int i, high, low;
1101 
1102 	for (i = 0; i < table_len; i++)
1103 		if (ocv > table[i].ocv)
1104 			break;
1105 
1106 	/* The library function will deal with high == low */
1107 	if (i == 0)
1108 		high = low = i;
1109 	else if (i == table_len)
1110 		high = low = i - 1;
1111 	else
1112 		high = (low = i) - 1;
1113 
1114 	return fixp_linear_interpolate(table[low].ocv,
1115 				       table[low].capacity,
1116 				       table[high].ocv,
1117 				       table[high].capacity,
1118 				       ocv);
1119 }
1120 EXPORT_SYMBOL_GPL(power_supply_ocv2cap_simple);
1121 
1122 struct power_supply_battery_ocv_table *
1123 power_supply_find_ocv2cap_table(struct power_supply_battery_info *info,
1124 				int temp, int *table_len)
1125 {
1126 	int best_temp_diff = INT_MAX, temp_diff;
1127 	u8 i, best_index = 0;
1128 
1129 	if (!info->ocv_table[0])
1130 		return NULL;
1131 
1132 	for (i = 0; i < POWER_SUPPLY_OCV_TEMP_MAX; i++) {
1133 		/* Out of capacity tables */
1134 		if (!info->ocv_table[i])
1135 			break;
1136 
1137 		temp_diff = abs(info->ocv_temp[i] - temp);
1138 
1139 		if (temp_diff < best_temp_diff) {
1140 			best_temp_diff = temp_diff;
1141 			best_index = i;
1142 		}
1143 	}
1144 
1145 	*table_len = info->ocv_table_size[best_index];
1146 	return info->ocv_table[best_index];
1147 }
1148 EXPORT_SYMBOL_GPL(power_supply_find_ocv2cap_table);
1149 
1150 int power_supply_batinfo_ocv2cap(struct power_supply_battery_info *info,
1151 				 int ocv, int temp)
1152 {
1153 	struct power_supply_battery_ocv_table *table;
1154 	int table_len;
1155 
1156 	table = power_supply_find_ocv2cap_table(info, temp, &table_len);
1157 	if (!table)
1158 		return -EINVAL;
1159 
1160 	return power_supply_ocv2cap_simple(table, table_len, ocv);
1161 }
1162 EXPORT_SYMBOL_GPL(power_supply_batinfo_ocv2cap);
1163 
1164 bool power_supply_battery_bti_in_range(struct power_supply_battery_info *info,
1165 				       int resistance)
1166 {
1167 	int low, high;
1168 
1169 	/* Nothing like this can be checked */
1170 	if (info->bti_resistance_ohm <= 0)
1171 		return false;
1172 
1173 	/* This will be extremely strict and unlikely to work */
1174 	if (info->bti_resistance_tolerance <= 0)
1175 		return (info->bti_resistance_ohm == resistance);
1176 
1177 	low = info->bti_resistance_ohm -
1178 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1179 	high = info->bti_resistance_ohm +
1180 		(info->bti_resistance_ohm * info->bti_resistance_tolerance) / 100;
1181 
1182 	return ((resistance >= low) && (resistance <= high));
1183 }
1184 EXPORT_SYMBOL_GPL(power_supply_battery_bti_in_range);
1185 
1186 static bool psy_has_property(const struct power_supply_desc *psy_desc,
1187 			     enum power_supply_property psp)
1188 {
1189 	bool found = false;
1190 	int i;
1191 
1192 	for (i = 0; i < psy_desc->num_properties; i++) {
1193 		if (psy_desc->properties[i] == psp) {
1194 			found = true;
1195 			break;
1196 		}
1197 	}
1198 
1199 	return found;
1200 }
1201 
1202 int power_supply_get_property(struct power_supply *psy,
1203 			    enum power_supply_property psp,
1204 			    union power_supply_propval *val)
1205 {
1206 	if (atomic_read(&psy->use_cnt) <= 0) {
1207 		if (!psy->initialized)
1208 			return -EAGAIN;
1209 		return -ENODEV;
1210 	}
1211 
1212 	if (psy_has_property(psy->desc, psp))
1213 		return psy->desc->get_property(psy, psp, val);
1214 	else if (power_supply_battery_info_has_prop(psy->battery_info, psp))
1215 		return power_supply_battery_info_get_prop(psy->battery_info, psp, val);
1216 	else
1217 		return -EINVAL;
1218 }
1219 EXPORT_SYMBOL_GPL(power_supply_get_property);
1220 
1221 int power_supply_set_property(struct power_supply *psy,
1222 			    enum power_supply_property psp,
1223 			    const union power_supply_propval *val)
1224 {
1225 	if (atomic_read(&psy->use_cnt) <= 0 || !psy->desc->set_property)
1226 		return -ENODEV;
1227 
1228 	return psy->desc->set_property(psy, psp, val);
1229 }
1230 EXPORT_SYMBOL_GPL(power_supply_set_property);
1231 
1232 int power_supply_property_is_writeable(struct power_supply *psy,
1233 					enum power_supply_property psp)
1234 {
1235 	if (atomic_read(&psy->use_cnt) <= 0 ||
1236 			!psy->desc->property_is_writeable)
1237 		return -ENODEV;
1238 
1239 	return psy->desc->property_is_writeable(psy, psp);
1240 }
1241 EXPORT_SYMBOL_GPL(power_supply_property_is_writeable);
1242 
1243 void power_supply_external_power_changed(struct power_supply *psy)
1244 {
1245 	if (atomic_read(&psy->use_cnt) <= 0 ||
1246 			!psy->desc->external_power_changed)
1247 		return;
1248 
1249 	psy->desc->external_power_changed(psy);
1250 }
1251 EXPORT_SYMBOL_GPL(power_supply_external_power_changed);
1252 
1253 int power_supply_powers(struct power_supply *psy, struct device *dev)
1254 {
1255 	return sysfs_create_link(&psy->dev.kobj, &dev->kobj, "powers");
1256 }
1257 EXPORT_SYMBOL_GPL(power_supply_powers);
1258 
1259 static void power_supply_dev_release(struct device *dev)
1260 {
1261 	struct power_supply *psy = to_power_supply(dev);
1262 
1263 	dev_dbg(dev, "%s\n", __func__);
1264 	kfree(psy);
1265 }
1266 
1267 int power_supply_reg_notifier(struct notifier_block *nb)
1268 {
1269 	return blocking_notifier_chain_register(&power_supply_notifier, nb);
1270 }
1271 EXPORT_SYMBOL_GPL(power_supply_reg_notifier);
1272 
1273 void power_supply_unreg_notifier(struct notifier_block *nb)
1274 {
1275 	blocking_notifier_chain_unregister(&power_supply_notifier, nb);
1276 }
1277 EXPORT_SYMBOL_GPL(power_supply_unreg_notifier);
1278 
1279 #ifdef CONFIG_THERMAL
1280 static int power_supply_read_temp(struct thermal_zone_device *tzd,
1281 		int *temp)
1282 {
1283 	struct power_supply *psy;
1284 	union power_supply_propval val;
1285 	int ret;
1286 
1287 	WARN_ON(tzd == NULL);
1288 	psy = thermal_zone_device_priv(tzd);
1289 	ret = power_supply_get_property(psy, POWER_SUPPLY_PROP_TEMP, &val);
1290 	if (ret)
1291 		return ret;
1292 
1293 	/* Convert tenths of degree Celsius to milli degree Celsius. */
1294 	*temp = val.intval * 100;
1295 
1296 	return ret;
1297 }
1298 
1299 static struct thermal_zone_device_ops psy_tzd_ops = {
1300 	.get_temp = power_supply_read_temp,
1301 };
1302 
1303 static int psy_register_thermal(struct power_supply *psy)
1304 {
1305 	int ret;
1306 
1307 	if (psy->desc->no_thermal)
1308 		return 0;
1309 
1310 	/* Register battery zone device psy reports temperature */
1311 	if (psy_has_property(psy->desc, POWER_SUPPLY_PROP_TEMP)) {
1312 		/* Prefer our hwmon device and avoid duplicates */
1313 		struct thermal_zone_params tzp = {
1314 			.no_hwmon = IS_ENABLED(CONFIG_POWER_SUPPLY_HWMON)
1315 		};
1316 		psy->tzd = thermal_tripless_zone_device_register(psy->desc->name,
1317 				psy, &psy_tzd_ops, &tzp);
1318 		if (IS_ERR(psy->tzd))
1319 			return PTR_ERR(psy->tzd);
1320 		ret = thermal_zone_device_enable(psy->tzd);
1321 		if (ret)
1322 			thermal_zone_device_unregister(psy->tzd);
1323 		return ret;
1324 	}
1325 
1326 	return 0;
1327 }
1328 
1329 static void psy_unregister_thermal(struct power_supply *psy)
1330 {
1331 	if (IS_ERR_OR_NULL(psy->tzd))
1332 		return;
1333 	thermal_zone_device_unregister(psy->tzd);
1334 }
1335 
1336 #else
1337 static int psy_register_thermal(struct power_supply *psy)
1338 {
1339 	return 0;
1340 }
1341 
1342 static void psy_unregister_thermal(struct power_supply *psy)
1343 {
1344 }
1345 #endif
1346 
1347 static struct power_supply *__must_check
1348 __power_supply_register(struct device *parent,
1349 				   const struct power_supply_desc *desc,
1350 				   const struct power_supply_config *cfg,
1351 				   bool ws)
1352 {
1353 	struct device *dev;
1354 	struct power_supply *psy;
1355 	int rc;
1356 
1357 	if (!desc || !desc->name || !desc->properties || !desc->num_properties)
1358 		return ERR_PTR(-EINVAL);
1359 
1360 	if (!parent)
1361 		pr_warn("%s: Expected proper parent device for '%s'\n",
1362 			__func__, desc->name);
1363 
1364 	if (psy_has_property(desc, POWER_SUPPLY_PROP_USB_TYPE) &&
1365 	    (!desc->usb_types || !desc->num_usb_types))
1366 		return ERR_PTR(-EINVAL);
1367 
1368 	psy = kzalloc(sizeof(*psy), GFP_KERNEL);
1369 	if (!psy)
1370 		return ERR_PTR(-ENOMEM);
1371 
1372 	dev = &psy->dev;
1373 
1374 	device_initialize(dev);
1375 
1376 	dev->class = &power_supply_class;
1377 	dev->type = &power_supply_dev_type;
1378 	dev->parent = parent;
1379 	dev->release = power_supply_dev_release;
1380 	dev_set_drvdata(dev, psy);
1381 	psy->desc = desc;
1382 	if (cfg) {
1383 		dev->groups = cfg->attr_grp;
1384 		psy->drv_data = cfg->drv_data;
1385 		psy->of_node =
1386 			cfg->fwnode ? to_of_node(cfg->fwnode) : cfg->of_node;
1387 		dev->of_node = psy->of_node;
1388 		psy->supplied_to = cfg->supplied_to;
1389 		psy->num_supplicants = cfg->num_supplicants;
1390 	}
1391 
1392 	rc = dev_set_name(dev, "%s", desc->name);
1393 	if (rc)
1394 		goto dev_set_name_failed;
1395 
1396 	INIT_WORK(&psy->changed_work, power_supply_changed_work);
1397 	INIT_DELAYED_WORK(&psy->deferred_register_work,
1398 			  power_supply_deferred_register_work);
1399 
1400 	rc = power_supply_check_supplies(psy);
1401 	if (rc) {
1402 		dev_dbg(dev, "Not all required supplies found, defer probe\n");
1403 		goto check_supplies_failed;
1404 	}
1405 
1406 	/*
1407 	 * Expose constant battery info, if it is available. While there are
1408 	 * some chargers accessing constant battery data, we only want to
1409 	 * expose battery data to userspace for battery devices.
1410 	 */
1411 	if (desc->type == POWER_SUPPLY_TYPE_BATTERY) {
1412 		rc = power_supply_get_battery_info(psy, &psy->battery_info);
1413 		if (rc && rc != -ENODEV && rc != -ENOENT)
1414 			goto check_supplies_failed;
1415 	}
1416 
1417 	spin_lock_init(&psy->changed_lock);
1418 	rc = device_add(dev);
1419 	if (rc)
1420 		goto device_add_failed;
1421 
1422 	rc = device_init_wakeup(dev, ws);
1423 	if (rc)
1424 		goto wakeup_init_failed;
1425 
1426 	rc = psy_register_thermal(psy);
1427 	if (rc)
1428 		goto register_thermal_failed;
1429 
1430 	rc = power_supply_create_triggers(psy);
1431 	if (rc)
1432 		goto create_triggers_failed;
1433 
1434 	rc = power_supply_add_hwmon_sysfs(psy);
1435 	if (rc)
1436 		goto add_hwmon_sysfs_failed;
1437 
1438 	/*
1439 	 * Update use_cnt after any uevents (most notably from device_add()).
1440 	 * We are here still during driver's probe but
1441 	 * the power_supply_uevent() calls back driver's get_property
1442 	 * method so:
1443 	 * 1. Driver did not assigned the returned struct power_supply,
1444 	 * 2. Driver could not finish initialization (anything in its probe
1445 	 *    after calling power_supply_register()).
1446 	 */
1447 	atomic_inc(&psy->use_cnt);
1448 	psy->initialized = true;
1449 
1450 	queue_delayed_work(system_power_efficient_wq,
1451 			   &psy->deferred_register_work,
1452 			   POWER_SUPPLY_DEFERRED_REGISTER_TIME);
1453 
1454 	return psy;
1455 
1456 add_hwmon_sysfs_failed:
1457 	power_supply_remove_triggers(psy);
1458 create_triggers_failed:
1459 	psy_unregister_thermal(psy);
1460 register_thermal_failed:
1461 wakeup_init_failed:
1462 	device_del(dev);
1463 device_add_failed:
1464 check_supplies_failed:
1465 dev_set_name_failed:
1466 	put_device(dev);
1467 	return ERR_PTR(rc);
1468 }
1469 
1470 /**
1471  * power_supply_register() - Register new power supply
1472  * @parent:	Device to be a parent of power supply's device, usually
1473  *		the device which probe function calls this
1474  * @desc:	Description of power supply, must be valid through whole
1475  *		lifetime of this power supply
1476  * @cfg:	Run-time specific configuration accessed during registering,
1477  *		may be NULL
1478  *
1479  * Return: A pointer to newly allocated power_supply on success
1480  * or ERR_PTR otherwise.
1481  * Use power_supply_unregister() on returned power_supply pointer to release
1482  * resources.
1483  */
1484 struct power_supply *__must_check power_supply_register(struct device *parent,
1485 		const struct power_supply_desc *desc,
1486 		const struct power_supply_config *cfg)
1487 {
1488 	return __power_supply_register(parent, desc, cfg, true);
1489 }
1490 EXPORT_SYMBOL_GPL(power_supply_register);
1491 
1492 /**
1493  * power_supply_register_no_ws() - Register new non-waking-source power supply
1494  * @parent:	Device to be a parent of power supply's device, usually
1495  *		the device which probe function calls this
1496  * @desc:	Description of power supply, must be valid through whole
1497  *		lifetime of this power supply
1498  * @cfg:	Run-time specific configuration accessed during registering,
1499  *		may be NULL
1500  *
1501  * Return: A pointer to newly allocated power_supply on success
1502  * or ERR_PTR otherwise.
1503  * Use power_supply_unregister() on returned power_supply pointer to release
1504  * resources.
1505  */
1506 struct power_supply *__must_check
1507 power_supply_register_no_ws(struct device *parent,
1508 		const struct power_supply_desc *desc,
1509 		const struct power_supply_config *cfg)
1510 {
1511 	return __power_supply_register(parent, desc, cfg, false);
1512 }
1513 EXPORT_SYMBOL_GPL(power_supply_register_no_ws);
1514 
1515 static void devm_power_supply_release(struct device *dev, void *res)
1516 {
1517 	struct power_supply **psy = res;
1518 
1519 	power_supply_unregister(*psy);
1520 }
1521 
1522 /**
1523  * devm_power_supply_register() - Register managed power supply
1524  * @parent:	Device to be a parent of power supply's device, usually
1525  *		the device which probe function calls this
1526  * @desc:	Description of power supply, must be valid through whole
1527  *		lifetime of this power supply
1528  * @cfg:	Run-time specific configuration accessed during registering,
1529  *		may be NULL
1530  *
1531  * Return: A pointer to newly allocated power_supply on success
1532  * or ERR_PTR otherwise.
1533  * The returned power_supply pointer will be automatically unregistered
1534  * on driver detach.
1535  */
1536 struct power_supply *__must_check
1537 devm_power_supply_register(struct device *parent,
1538 		const struct power_supply_desc *desc,
1539 		const struct power_supply_config *cfg)
1540 {
1541 	struct power_supply **ptr, *psy;
1542 
1543 	ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1544 
1545 	if (!ptr)
1546 		return ERR_PTR(-ENOMEM);
1547 	psy = __power_supply_register(parent, desc, cfg, true);
1548 	if (IS_ERR(psy)) {
1549 		devres_free(ptr);
1550 	} else {
1551 		*ptr = psy;
1552 		devres_add(parent, ptr);
1553 	}
1554 	return psy;
1555 }
1556 EXPORT_SYMBOL_GPL(devm_power_supply_register);
1557 
1558 /**
1559  * devm_power_supply_register_no_ws() - Register managed non-waking-source power supply
1560  * @parent:	Device to be a parent of power supply's device, usually
1561  *		the device which probe function calls this
1562  * @desc:	Description of power supply, must be valid through whole
1563  *		lifetime of this power supply
1564  * @cfg:	Run-time specific configuration accessed during registering,
1565  *		may be NULL
1566  *
1567  * Return: A pointer to newly allocated power_supply on success
1568  * or ERR_PTR otherwise.
1569  * The returned power_supply pointer will be automatically unregistered
1570  * on driver detach.
1571  */
1572 struct power_supply *__must_check
1573 devm_power_supply_register_no_ws(struct device *parent,
1574 		const struct power_supply_desc *desc,
1575 		const struct power_supply_config *cfg)
1576 {
1577 	struct power_supply **ptr, *psy;
1578 
1579 	ptr = devres_alloc(devm_power_supply_release, sizeof(*ptr), GFP_KERNEL);
1580 
1581 	if (!ptr)
1582 		return ERR_PTR(-ENOMEM);
1583 	psy = __power_supply_register(parent, desc, cfg, false);
1584 	if (IS_ERR(psy)) {
1585 		devres_free(ptr);
1586 	} else {
1587 		*ptr = psy;
1588 		devres_add(parent, ptr);
1589 	}
1590 	return psy;
1591 }
1592 EXPORT_SYMBOL_GPL(devm_power_supply_register_no_ws);
1593 
1594 /**
1595  * power_supply_unregister() - Remove this power supply from system
1596  * @psy:	Pointer to power supply to unregister
1597  *
1598  * Remove this power supply from the system. The resources of power supply
1599  * will be freed here or on last power_supply_put() call.
1600  */
1601 void power_supply_unregister(struct power_supply *psy)
1602 {
1603 	WARN_ON(atomic_dec_return(&psy->use_cnt));
1604 	psy->removing = true;
1605 	cancel_work_sync(&psy->changed_work);
1606 	cancel_delayed_work_sync(&psy->deferred_register_work);
1607 	sysfs_remove_link(&psy->dev.kobj, "powers");
1608 	power_supply_remove_hwmon_sysfs(psy);
1609 	power_supply_remove_triggers(psy);
1610 	psy_unregister_thermal(psy);
1611 	device_init_wakeup(&psy->dev, false);
1612 	device_unregister(&psy->dev);
1613 }
1614 EXPORT_SYMBOL_GPL(power_supply_unregister);
1615 
1616 void *power_supply_get_drvdata(struct power_supply *psy)
1617 {
1618 	return psy->drv_data;
1619 }
1620 EXPORT_SYMBOL_GPL(power_supply_get_drvdata);
1621 
1622 static int __init power_supply_class_init(void)
1623 {
1624 	power_supply_init_attrs();
1625 	return class_register(&power_supply_class);
1626 }
1627 
1628 static void __exit power_supply_class_exit(void)
1629 {
1630 	class_unregister(&power_supply_class);
1631 }
1632 
1633 subsys_initcall(power_supply_class_init);
1634 module_exit(power_supply_class_exit);
1635 
1636 MODULE_DESCRIPTION("Universal power supply monitor class");
1637 MODULE_AUTHOR("Ian Molton <spyro@f2s.com>");
1638 MODULE_AUTHOR("Szabolcs Gyurko");
1639 MODULE_AUTHOR("Anton Vorontsov <cbou@mail.ru>");
1640