xref: /linux/drivers/power/supply/intel_dc_ti_battery.c (revision b615879dbfea6cf1236acbc3f2fb25ae84e07071)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Battery driver for the coulomb-counter of the Intel Dollar Cove TI PMIC
4  *
5  * Note the Intel Dollar Cove TI PMIC coulomb-counter is not a full-featured
6  * autonomous fuel-gauge. It is intended to work together with an always on
7  * micro-controller monitoring it.
8  *
9  * Since Linux does not monitor coulomb-counter changes while the device
10  * is off or suspended, voltage based capacity estimation from
11  * the adc-battery-helper code is used.
12  *
13  * Copyright (C) 2024 Hans de Goede <hansg@kernel.org>
14  *
15  * Register definitions and calibration code was taken from
16  * kernel/drivers/platform/x86/dc_ti_cc.c from the Acer A1-840 Android kernel
17  * which has the following copyright header:
18  *
19  * Copyright (C) 2014 Intel Corporation
20  * Author: Ramakrishna Pallala <ramakrishna.pallala@intel.com>
21  *
22  * dc_ti_cc.c is part of the Acer A1-840 Android kernel source-code archive
23  * named: "App. Guide_Acer_20151221_A_A.zip"
24  * which is distributed by Acer from the Acer A1-840 support page:
25  * https://www.acer.com/us-en/support/product-support/A1-840/downloads
26  */
27 
28 #include <linux/acpi.h>
29 #include <linux/bits.h>
30 #include <linux/bitfield.h>
31 #include <linux/cleanup.h>
32 #include <linux/err.h>
33 #include <linux/gpio/consumer.h>
34 #include <linux/iio/consumer.h>
35 #include <linux/mfd/intel_soc_pmic.h>
36 #include <linux/module.h>
37 #include <linux/platform_device.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/power_supply.h>
40 #include <linux/property.h>
41 #include <linux/regmap.h>
42 #include <linux/timekeeping.h>
43 
44 #include "adc-battery-helper.h"
45 
46 #define DC_TI_PMIC_VERSION_REG		0x00
47 #define PMIC_VERSION_A0			0xC0
48 #define PMIC_VERSION_A1			0xC1
49 
50 #define DC_TI_CC_CNTL_REG		0x60
51 #define CC_CNTL_CC_CTR_EN		BIT(0)
52 #define CC_CNTL_CC_CLR_EN		BIT(1)
53 #define CC_CNTL_CC_CAL_EN		BIT(2)
54 #define CC_CNTL_CC_OFFSET_EN		BIT(3)
55 #define CC_CNTL_SMPL_INTVL		GENMASK(5, 4)
56 #define CC_CNTL_SMPL_INTVL_15MS		FIELD_PREP(CC_CNTL_SMPL_INTVL, 0)
57 #define CC_CNTL_SMPL_INTVL_62MS		FIELD_PREP(CC_CNTL_SMPL_INTVL, 1)
58 #define CC_CNTL_SMPL_INTVL_125MS	FIELD_PREP(CC_CNTL_SMPL_INTVL, 2)
59 #define CC_CNTL_SMPL_INTVL_250MS	FIELD_PREP(CC_CNTL_SMPL_INTVL, 3)
60 
61 #define DC_TI_SMPL_CTR0_REG		0x69
62 #define DC_TI_SMPL_CTR1_REG		0x68
63 #define DC_TI_SMPL_CTR2_REG		0x67
64 
65 #define DC_TI_CC_OFFSET_HI_REG		0x61
66 #define CC_OFFSET_HI_MASK		0x3F
67 #define DC_TI_CC_OFFSET_LO_REG		0x62
68 
69 #define DC_TI_SW_OFFSET_REG		0x6C
70 
71 #define DC_TI_CC_ACC3_REG		0x63
72 #define DC_TI_CC_ACC2_REG		0x64
73 #define DC_TI_CC_ACC1_REG		0x65
74 #define DC_TI_CC_ACC0_REG		0x66
75 
76 #define DC_TI_CC_INTG1_REG		0x6A
77 #define DC_TI_CC_INTG1_MASK		0x3F
78 #define DC_TI_CC_INTG0_REG		0x6B
79 
80 #define DC_TI_EEPROM_ACCESS_CONTROL	0x88
81 #define EEPROM_UNLOCK			0xDA
82 #define EEPROM_LOCK			0x00
83 
84 #define DC_TI_EEPROM_CC_GAIN_REG	0xF4
85 #define CC_TRIM_REVISION		GENMASK(3, 0)
86 #define CC_GAIN_CORRECTION		GENMASK(7, 4)
87 
88 #define PMIC_VERSION_A0_TRIM_REV	3
89 #define PMIC_VERSION_A1_MIN_TRIM_REV	1
90 
91 #define DC_TI_EEPROM_CC_OFFSET_REG	0xFD
92 
93 #define DC_TI_EEPROM_CTRL		0xFE
94 #define EEPROM_BANK0_SEL		0x01
95 #define EEPROM_BANK1_SEL		0x02
96 
97 #define SMPL_INTVL_US			15000
98 #define SMPL_INTVL_MS			(SMPL_INTVL_US / USEC_PER_MSEC)
99 #define CALIBRATION_TIME_US		(10 * SMPL_INTVL_US)
100 #define SLEEP_SLACK_US			2500
101 
102 /* CC gain correction is in 0.0025 increments */
103 #define CC_GAIN_STEP			25
104 #define CC_GAIN_DIV			10000
105 
106 /* CC offset is in 0.5 units per 250ms (default sample interval) */
107 #define CC_OFFSET_DIV			2
108 #define CC_OFFSET_SMPL_INTVL_MS		250
109 
110 /* CC accumulator scale is 366.2 ųCoulumb / unit */
111 #define CC_ACC_TO_UA(acc, smpl_ctr)	\
112 	((acc) * (3662 * MSEC_PER_SEC / 10) / ((smpl_ctr) * SMPL_INTVL_MS))
113 
114 #define DEV_NAME			"chtdc_ti_battery"
115 
116 struct dc_ti_battery_chip {
117 	/* Must be the first member see adc-battery-helper documentation */
118 	struct adc_battery_helper helper;
119 	struct device *dev;
120 	struct regmap *regmap;
121 	struct iio_channel *vbat_channel;
122 	struct power_supply *psy;
123 	int cc_gain;
124 	int cc_offset;
125 };
126 
127 static int dc_ti_battery_get_voltage_and_current_now(struct power_supply *psy, int *volt, int *curr)
128 {
129 	struct dc_ti_battery_chip *chip = power_supply_get_drvdata(psy);
130 	s64 cnt_start_usec, now_usec, sleep_usec;
131 	unsigned int reg_val;
132 	s32 acc, smpl_ctr;
133 	int ret;
134 
135 	/*
136 	 * Enable coulomb-counter before reading Vbat from ADC, so that the CC
137 	 * samples are from the same time period as the Vbat reading.
138 	 */
139 	ret = regmap_write(chip->regmap, DC_TI_CC_CNTL_REG,
140 			   CC_CNTL_SMPL_INTVL_15MS | CC_CNTL_CC_OFFSET_EN | CC_CNTL_CC_CTR_EN);
141 	if (ret)
142 		goto out_err;
143 
144 	cnt_start_usec = ktime_get_ns() / NSEC_PER_USEC;
145 
146 	/* Read Vbat, convert IIO mV to power-supply ųV */
147 	ret = iio_read_channel_processed_scale(chip->vbat_channel, volt, 1000);
148 	if (ret < 0)
149 		goto out_err;
150 
151 	/* Sleep at least 3 sample-times + slack to get 3+ CC samples */
152 	now_usec = ktime_get_ns() / NSEC_PER_USEC;
153 	sleep_usec = 3 * SMPL_INTVL_US + SLEEP_SLACK_US - (now_usec - cnt_start_usec);
154 	if (sleep_usec > 0 && sleep_usec < 1000000)
155 		usleep_range(sleep_usec, sleep_usec + SLEEP_SLACK_US);
156 
157 	/*
158 	 * The PMIC latches the coulomb- and sample-counters upon reading the
159 	 * CC_ACC0 register. Reading multiple registers at once is not supported.
160 	 *
161 	 * Step 1: Read CC_ACC0 - CC_ACC3
162 	 */
163 	ret = regmap_read(chip->regmap, DC_TI_CC_ACC0_REG, &reg_val);
164 	if (ret)
165 		goto out_err;
166 
167 	acc = reg_val;
168 
169 	ret = regmap_read(chip->regmap, DC_TI_CC_ACC1_REG, &reg_val);
170 	if (ret)
171 		goto out_err;
172 
173 	acc |= reg_val << 8;
174 
175 	ret = regmap_read(chip->regmap, DC_TI_CC_ACC2_REG, &reg_val);
176 	if (ret)
177 		goto out_err;
178 
179 	acc |= reg_val << 16;
180 
181 	ret = regmap_read(chip->regmap, DC_TI_CC_ACC3_REG, &reg_val);
182 	if (ret)
183 		goto out_err;
184 
185 	acc |= reg_val << 24;
186 
187 	/* Step 2: Read SMPL_CTR0 - SMPL_CTR2 */
188 	ret = regmap_read(chip->regmap, DC_TI_SMPL_CTR0_REG, &reg_val);
189 	if (ret)
190 		goto out_err;
191 
192 	smpl_ctr = reg_val;
193 
194 	ret = regmap_read(chip->regmap, DC_TI_SMPL_CTR1_REG, &reg_val);
195 	if (ret)
196 		goto out_err;
197 
198 	smpl_ctr |= reg_val << 8;
199 
200 	ret = regmap_read(chip->regmap, DC_TI_SMPL_CTR2_REG, &reg_val);
201 	if (ret)
202 		goto out_err;
203 
204 	smpl_ctr |= reg_val << 16;
205 
206 	/* Disable the coulumb-counter again */
207 	ret = regmap_write(chip->regmap, DC_TI_CC_CNTL_REG,
208 			   CC_CNTL_SMPL_INTVL_15MS | CC_CNTL_CC_OFFSET_EN);
209 	if (ret)
210 		goto out_err;
211 
212 	/* Apply calibration */
213 	acc -= chip->cc_offset * smpl_ctr * SMPL_INTVL_MS /
214 	       (CC_OFFSET_SMPL_INTVL_MS * CC_OFFSET_DIV);
215 	acc = acc * (CC_GAIN_DIV - chip->cc_gain * CC_GAIN_STEP) / CC_GAIN_DIV;
216 	*curr = CC_ACC_TO_UA(acc, smpl_ctr);
217 
218 	return 0;
219 
220 out_err:
221 	dev_err(chip->dev, "IO-error %d communicating with PMIC\n", ret);
222 	return ret;
223 }
224 
225 static const struct power_supply_desc dc_ti_battery_psy_desc = {
226 	.name		= "intel_dc_ti_battery",
227 	.type		= POWER_SUPPLY_TYPE_BATTERY,
228 	.get_property	= adc_battery_helper_get_property,
229 	.external_power_changed	= adc_battery_helper_external_power_changed,
230 	.properties	= adc_battery_helper_properties,
231 	.num_properties	= ADC_HELPER_NUM_PROPERTIES,
232 };
233 
234 static int dc_ti_battery_hw_init(struct dc_ti_battery_chip *chip)
235 {
236 	u8 pmic_version, cc_trim_rev;
237 	unsigned int reg_val;
238 	int ret;
239 
240 	/* Set sample rate to 15 ms and calibrate the coulomb-counter */
241 	ret = regmap_write(chip->regmap, DC_TI_CC_CNTL_REG,
242 			   CC_CNTL_SMPL_INTVL_15MS | CC_CNTL_CC_OFFSET_EN |
243 			   CC_CNTL_CC_CAL_EN | CC_CNTL_CC_CTR_EN);
244 	if (ret)
245 		goto out;
246 
247 	fsleep(CALIBRATION_TIME_US);
248 
249 	/* Disable coulomb-counter it is only used while getting the current */
250 	ret = regmap_write(chip->regmap, DC_TI_CC_CNTL_REG,
251 			   CC_CNTL_SMPL_INTVL_15MS | CC_CNTL_CC_OFFSET_EN);
252 	if (ret)
253 		goto out;
254 
255 	ret = regmap_read(chip->regmap, DC_TI_PMIC_VERSION_REG, &reg_val);
256 	if (ret)
257 		goto out;
258 
259 	pmic_version = reg_val;
260 
261 	/*
262 	 * As per the PMIC vendor (TI), the calibration offset and gain err
263 	 * values are stored in EEPROM Bank 0 and Bank 1 of the PMIC.
264 	 * We need to read the stored offset and gain margins and need
265 	 * to apply the corrections to the raw coulomb counter value.
266 	 */
267 
268 	/* Unlock the EEPROM Access */
269 	ret = regmap_write(chip->regmap, DC_TI_EEPROM_ACCESS_CONTROL, EEPROM_UNLOCK);
270 	if (ret)
271 		goto out;
272 
273 	/* Select Bank 1 to read CC GAIN Err correction */
274 	ret = regmap_write(chip->regmap, DC_TI_EEPROM_CTRL, EEPROM_BANK1_SEL);
275 	if (ret)
276 		goto out;
277 
278 	ret = regmap_read(chip->regmap, DC_TI_EEPROM_CC_GAIN_REG, &reg_val);
279 	if (ret)
280 		goto out;
281 
282 	cc_trim_rev = FIELD_GET(CC_TRIM_REVISION, reg_val);
283 
284 	dev_dbg(chip->dev, "pmic-ver 0x%02x trim-rev %d\n", pmic_version, cc_trim_rev);
285 
286 	if (!(pmic_version == PMIC_VERSION_A0 && cc_trim_rev == PMIC_VERSION_A0_TRIM_REV) &&
287 	    !(pmic_version == PMIC_VERSION_A1 && cc_trim_rev >= PMIC_VERSION_A1_MIN_TRIM_REV)) {
288 		dev_dbg(chip->dev, "unsupported trim-revision, using uncalibrated CC values\n");
289 		goto out_relock;
290 	}
291 
292 	chip->cc_gain = 1 - (int)FIELD_GET(CC_GAIN_CORRECTION, reg_val);
293 
294 	/* Select Bank 0 to read CC OFFSET Correction */
295 	ret = regmap_write(chip->regmap, DC_TI_EEPROM_CTRL, EEPROM_BANK0_SEL);
296 	if (ret)
297 		goto out_relock;
298 
299 	ret = regmap_read(chip->regmap, DC_TI_EEPROM_CC_OFFSET_REG, &reg_val);
300 	if (ret)
301 		goto out_relock;
302 
303 	chip->cc_offset = (s8)reg_val;
304 
305 	dev_dbg(chip->dev, "cc-offset %d cc-gain %d\n", chip->cc_offset, chip->cc_gain);
306 
307 out_relock:
308 	/* Re-lock the EEPROM Access */
309 	regmap_write(chip->regmap, DC_TI_EEPROM_ACCESS_CONTROL, EEPROM_LOCK);
310 out:
311 	if (ret)
312 		dev_err(chip->dev, "IO-error %d initializing PMIC\n", ret);
313 
314 	return ret;
315 }
316 
317 static int dc_ti_battery_probe(struct platform_device *pdev)
318 {
319 	struct device *dev = &pdev->dev;
320 	struct intel_soc_pmic *pmic = dev_get_drvdata(dev->parent);
321 	struct power_supply_config psy_cfg = {};
322 	struct fwnode_reference_args args;
323 	struct gpio_desc *charge_finished;
324 	struct dc_ti_battery_chip *chip;
325 	int ret;
326 
327 	/* On most devices with a Dollar Cove TI the battery is handled by ACPI */
328 	if (!acpi_quirk_skip_acpi_ac_and_battery())
329 		return -ENODEV;
330 
331 	/* ACPI glue code adds a "monitored-battery" fwnode, wait for this */
332 	ret = fwnode_property_get_reference_args(dev_fwnode(dev), "monitored-battery",
333 						 NULL, 0, 0, &args);
334 	if (ret) {
335 		dev_dbg(dev, "fwnode_property_get_ref() ret %d\n", ret);
336 		return dev_err_probe(dev, -EPROBE_DEFER, "Waiting for monitored-battery fwnode\n");
337 	}
338 
339 	fwnode_handle_put(args.fwnode);
340 
341 	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
342 	if (!chip)
343 		return -ENOMEM;
344 
345 	chip->dev = dev;
346 	chip->regmap = pmic->regmap;
347 
348 	chip->vbat_channel = devm_iio_channel_get(dev, "VBAT");
349 	if (IS_ERR(chip->vbat_channel)) {
350 		dev_dbg(dev, "devm_iio_channel_get() ret %ld\n", PTR_ERR(chip->vbat_channel));
351 		return dev_err_probe(dev, -EPROBE_DEFER, "Waiting for VBAT IIO channel\n");
352 	}
353 
354 	charge_finished = devm_gpiod_get_optional(dev, "charged", GPIOD_IN);
355 	if (IS_ERR(charge_finished))
356 		return dev_err_probe(dev, PTR_ERR(charge_finished), "Getting charged GPIO\n");
357 
358 	ret = dc_ti_battery_hw_init(chip);
359 	if (ret)
360 		return ret;
361 
362 	platform_set_drvdata(pdev, chip);
363 
364 	psy_cfg.drv_data = chip;
365 	chip->psy = devm_power_supply_register(dev, &dc_ti_battery_psy_desc, &psy_cfg);
366 	if (IS_ERR(chip->psy))
367 		return PTR_ERR(chip->psy);
368 
369 	return adc_battery_helper_init(&chip->helper, chip->psy,
370 				       dc_ti_battery_get_voltage_and_current_now,
371 				       charge_finished);
372 }
373 
374 static DEFINE_RUNTIME_DEV_PM_OPS(dc_ti_battery_pm_ops, adc_battery_helper_suspend,
375 				 adc_battery_helper_resume, NULL);
376 
377 static struct platform_driver dc_ti_battery_driver = {
378 	.driver = {
379 		.name = DEV_NAME,
380 		.pm = pm_sleep_ptr(&dc_ti_battery_pm_ops),
381 	},
382 	.probe = dc_ti_battery_probe,
383 };
384 module_platform_driver(dc_ti_battery_driver);
385 
386 MODULE_ALIAS("platform:" DEV_NAME);
387 MODULE_AUTHOR("Hans de Goede <hansg@kernel.org>");
388 MODULE_DESCRIPTION("Intel Dollar Cove (TI) battery driver");
389 MODULE_LICENSE("GPL");
390