xref: /linux/drivers/power/supply/intel_dc_ti_battery.c (revision 127fa2ae9e2b1f9b9d876dfaa39fe3640cec5764)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Battery driver for the coulomb-counter of the Intel Dollar Cove TI PMIC
4  *
5  * Note the Intel Dollar Cove TI PMIC coulomb-counter is not a full-featured
6  * autonomous fuel-gauge. It is intended to work together with an always on
7  * micro-controller monitoring it.
8  *
9  * Since Linux does not monitor coulomb-counter changes while the device
10  * is off or suspended, voltage based capacity estimation from
11  * the adc-battery-helper code is used.
12  *
13  * Copyright (C) 2024 Hans de Goede <hansg@kernel.org>
14  *
15  * Register definitions and calibration code was taken from
16  * kernel/drivers/platform/x86/dc_ti_cc.c from the Acer A1-840 Android kernel
17  * which has the following copyright header:
18  *
19  * Copyright (C) 2014 Intel Corporation
20  * Author: Ramakrishna Pallala <ramakrishna.pallala@intel.com>
21  *
22  * dc_ti_cc.c is part of the Acer A1-840 Android kernel source-code archive
23  * named: "App. Guide_Acer_20151221_A_A.zip"
24  * which is distributed by Acer from the Acer A1-840 support page:
25  * https://www.acer.com/us-en/support/product-support/A1-840/downloads
26  */
27 
28 #include <linux/acpi.h>
29 #include <linux/bits.h>
30 #include <linux/bitfield.h>
31 #include <linux/cleanup.h>
32 #include <linux/err.h>
33 #include <linux/gpio/consumer.h>
34 #include <linux/iio/consumer.h>
35 #include <linux/mfd/intel_soc_pmic.h>
36 #include <linux/module.h>
37 #include <linux/platform_device.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/power_supply.h>
40 #include <linux/property.h>
41 #include <linux/regmap.h>
42 #include <linux/timekeeping.h>
43 
44 #include "adc-battery-helper.h"
45 
46 #define DC_TI_PMIC_VERSION_REG		0x00
47 #define PMIC_VERSION_A0			0xC0
48 #define PMIC_VERSION_A1			0xC1
49 
50 #define DC_TI_CC_CNTL_REG		0x60
51 #define CC_CNTL_CC_CTR_EN		BIT(0)
52 #define CC_CNTL_CC_CLR_EN		BIT(1)
53 #define CC_CNTL_CC_CAL_EN		BIT(2)
54 #define CC_CNTL_CC_OFFSET_EN		BIT(3)
55 #define CC_CNTL_SMPL_INTVL		GENMASK(5, 4)
56 #define CC_CNTL_SMPL_INTVL_15MS		FIELD_PREP(CC_CNTL_SMPL_INTVL, 0)
57 #define CC_CNTL_SMPL_INTVL_62MS		FIELD_PREP(CC_CNTL_SMPL_INTVL, 1)
58 #define CC_CNTL_SMPL_INTVL_125MS	FIELD_PREP(CC_CNTL_SMPL_INTVL, 2)
59 #define CC_CNTL_SMPL_INTVL_250MS	FIELD_PREP(CC_CNTL_SMPL_INTVL, 3)
60 
61 #define DC_TI_SMPL_CTR0_REG		0x69
62 #define DC_TI_SMPL_CTR1_REG		0x68
63 #define DC_TI_SMPL_CTR2_REG		0x67
64 
65 #define DC_TI_CC_OFFSET_HI_REG		0x61
66 #define CC_OFFSET_HI_MASK		0x3F
67 #define DC_TI_CC_OFFSET_LO_REG		0x62
68 
69 #define DC_TI_SW_OFFSET_REG		0x6C
70 
71 #define DC_TI_CC_ACC3_REG		0x63
72 #define DC_TI_CC_ACC2_REG		0x64
73 #define DC_TI_CC_ACC1_REG		0x65
74 #define DC_TI_CC_ACC0_REG		0x66
75 
76 #define DC_TI_CC_INTG1_REG		0x6A
77 #define DC_TI_CC_INTG1_MASK		0x3F
78 #define DC_TI_CC_INTG0_REG		0x6B
79 
80 #define DC_TI_EEPROM_ACCESS_CONTROL	0x88
81 #define EEPROM_UNLOCK			0xDA
82 #define EEPROM_LOCK			0x00
83 
84 #define DC_TI_EEPROM_CC_GAIN_REG	0xF4
85 #define CC_TRIM_REVISION		GENMASK(3, 0)
86 #define CC_GAIN_CORRECTION		GENMASK(7, 4)
87 
88 #define PMIC_VERSION_A0_TRIM_REV	3
89 #define PMIC_VERSION_A1_MIN_TRIM_REV	1
90 
91 #define DC_TI_EEPROM_CC_OFFSET_REG	0xFD
92 
93 #define DC_TI_EEPROM_CTRL		0xFE
94 #define EEPROM_BANK0_SEL		0x01
95 #define EEPROM_BANK1_SEL		0x02
96 
97 #define SMPL_INTVL_US			15000
98 #define SMPL_INTVL_MS			(SMPL_INTVL_US / USEC_PER_MSEC)
99 #define CALIBRATION_TIME_US		(10 * SMPL_INTVL_US)
100 #define SLEEP_SLACK_US			2500
101 
102 /* CC gain correction is in 0.0025 increments */
103 #define CC_GAIN_STEP			25
104 #define CC_GAIN_DIV			10000
105 
106 /* CC offset is in 0.5 units per 250ms (default sample interval) */
107 #define CC_OFFSET_DIV			2
108 #define CC_OFFSET_SMPL_INTVL_MS		250
109 
110 /* CC accumulator scale is 366.2 ųCoulumb / unit */
111 #define CC_ACC_TO_UA(acc, smpl_ctr)	\
112 	((acc) * (3662 * MSEC_PER_SEC / 10) / ((smpl_ctr) * SMPL_INTVL_MS))
113 
114 #define DEV_NAME			"chtdc_ti_battery"
115 
116 struct dc_ti_battery_chip {
117 	/* Must be the first member see adc-battery-helper documentation */
118 	struct adc_battery_helper helper;
119 	struct device *dev;
120 	struct regmap *regmap;
121 	struct iio_channel *vbat_channel;
122 	struct power_supply *psy;
123 	int cc_gain;
124 	int cc_offset;
125 };
126 
127 static int dc_ti_battery_get_voltage_and_current_now(struct power_supply *psy, int *volt, int *curr)
128 {
129 	struct dc_ti_battery_chip *chip = power_supply_get_drvdata(psy);
130 	ktime_t ktime;
131 	s64 sleep_usec;
132 	unsigned int reg_val;
133 	s32 acc, smpl_ctr;
134 	int ret;
135 
136 	/*
137 	 * Enable coulomb-counter before reading Vbat from ADC, so that the CC
138 	 * samples are from the same time period as the Vbat reading.
139 	 */
140 	ret = regmap_write(chip->regmap, DC_TI_CC_CNTL_REG,
141 			   CC_CNTL_SMPL_INTVL_15MS | CC_CNTL_CC_OFFSET_EN | CC_CNTL_CC_CTR_EN);
142 	if (ret)
143 		goto out_err;
144 
145 	ktime = ktime_get();
146 
147 	/* Read Vbat, convert IIO mV to power-supply ųV */
148 	ret = iio_read_channel_processed_scale(chip->vbat_channel, volt, 1000);
149 	if (ret < 0)
150 		goto out_err;
151 
152 	ktime = ktime_sub(ktime_get(), ktime);
153 
154 	/* Sleep at least 3 sample-times + slack to get 3+ CC samples */
155 	sleep_usec = 3 * SMPL_INTVL_US + SLEEP_SLACK_US - ktime_to_us(ktime);
156 	if (sleep_usec > 0 && sleep_usec < 1000000)
157 		usleep_range(sleep_usec, sleep_usec + SLEEP_SLACK_US);
158 
159 	/*
160 	 * The PMIC latches the coulomb- and sample-counters upon reading the
161 	 * CC_ACC0 register. Reading multiple registers at once is not supported.
162 	 *
163 	 * Step 1: Read CC_ACC0 - CC_ACC3
164 	 */
165 	ret = regmap_read(chip->regmap, DC_TI_CC_ACC0_REG, &reg_val);
166 	if (ret)
167 		goto out_err;
168 
169 	acc = reg_val;
170 
171 	ret = regmap_read(chip->regmap, DC_TI_CC_ACC1_REG, &reg_val);
172 	if (ret)
173 		goto out_err;
174 
175 	acc |= reg_val << 8;
176 
177 	ret = regmap_read(chip->regmap, DC_TI_CC_ACC2_REG, &reg_val);
178 	if (ret)
179 		goto out_err;
180 
181 	acc |= reg_val << 16;
182 
183 	ret = regmap_read(chip->regmap, DC_TI_CC_ACC3_REG, &reg_val);
184 	if (ret)
185 		goto out_err;
186 
187 	acc |= reg_val << 24;
188 
189 	/* Step 2: Read SMPL_CTR0 - SMPL_CTR2 */
190 	ret = regmap_read(chip->regmap, DC_TI_SMPL_CTR0_REG, &reg_val);
191 	if (ret)
192 		goto out_err;
193 
194 	smpl_ctr = reg_val;
195 
196 	ret = regmap_read(chip->regmap, DC_TI_SMPL_CTR1_REG, &reg_val);
197 	if (ret)
198 		goto out_err;
199 
200 	smpl_ctr |= reg_val << 8;
201 
202 	ret = regmap_read(chip->regmap, DC_TI_SMPL_CTR2_REG, &reg_val);
203 	if (ret)
204 		goto out_err;
205 
206 	smpl_ctr |= reg_val << 16;
207 
208 	/* Disable the coulumb-counter again */
209 	ret = regmap_write(chip->regmap, DC_TI_CC_CNTL_REG,
210 			   CC_CNTL_SMPL_INTVL_15MS | CC_CNTL_CC_OFFSET_EN);
211 	if (ret)
212 		goto out_err;
213 
214 	/* Apply calibration */
215 	acc -= chip->cc_offset * smpl_ctr * SMPL_INTVL_MS /
216 	       (CC_OFFSET_SMPL_INTVL_MS * CC_OFFSET_DIV);
217 	acc = acc * (CC_GAIN_DIV - chip->cc_gain * CC_GAIN_STEP) / CC_GAIN_DIV;
218 	*curr = CC_ACC_TO_UA(acc, smpl_ctr);
219 
220 	return 0;
221 
222 out_err:
223 	dev_err(chip->dev, "IO-error %d communicating with PMIC\n", ret);
224 	return ret;
225 }
226 
227 static const struct power_supply_desc dc_ti_battery_psy_desc = {
228 	.name		= "intel_dc_ti_battery",
229 	.type		= POWER_SUPPLY_TYPE_BATTERY,
230 	.get_property	= adc_battery_helper_get_property,
231 	.external_power_changed	= adc_battery_helper_external_power_changed,
232 	.properties	= adc_battery_helper_properties,
233 	.num_properties	= ADC_HELPER_NUM_PROPERTIES,
234 };
235 
236 static int dc_ti_battery_hw_init(struct dc_ti_battery_chip *chip)
237 {
238 	u8 pmic_version, cc_trim_rev;
239 	unsigned int reg_val;
240 	int ret;
241 
242 	/* Set sample rate to 15 ms and calibrate the coulomb-counter */
243 	ret = regmap_write(chip->regmap, DC_TI_CC_CNTL_REG,
244 			   CC_CNTL_SMPL_INTVL_15MS | CC_CNTL_CC_OFFSET_EN |
245 			   CC_CNTL_CC_CAL_EN | CC_CNTL_CC_CTR_EN);
246 	if (ret)
247 		goto out;
248 
249 	fsleep(CALIBRATION_TIME_US);
250 
251 	/* Disable coulomb-counter it is only used while getting the current */
252 	ret = regmap_write(chip->regmap, DC_TI_CC_CNTL_REG,
253 			   CC_CNTL_SMPL_INTVL_15MS | CC_CNTL_CC_OFFSET_EN);
254 	if (ret)
255 		goto out;
256 
257 	ret = regmap_read(chip->regmap, DC_TI_PMIC_VERSION_REG, &reg_val);
258 	if (ret)
259 		goto out;
260 
261 	pmic_version = reg_val;
262 
263 	/*
264 	 * As per the PMIC vendor (TI), the calibration offset and gain err
265 	 * values are stored in EEPROM Bank 0 and Bank 1 of the PMIC.
266 	 * We need to read the stored offset and gain margins and need
267 	 * to apply the corrections to the raw coulomb counter value.
268 	 */
269 
270 	/* Unlock the EEPROM Access */
271 	ret = regmap_write(chip->regmap, DC_TI_EEPROM_ACCESS_CONTROL, EEPROM_UNLOCK);
272 	if (ret)
273 		goto out;
274 
275 	/* Select Bank 1 to read CC GAIN Err correction */
276 	ret = regmap_write(chip->regmap, DC_TI_EEPROM_CTRL, EEPROM_BANK1_SEL);
277 	if (ret)
278 		goto out;
279 
280 	ret = regmap_read(chip->regmap, DC_TI_EEPROM_CC_GAIN_REG, &reg_val);
281 	if (ret)
282 		goto out;
283 
284 	cc_trim_rev = FIELD_GET(CC_TRIM_REVISION, reg_val);
285 
286 	dev_dbg(chip->dev, "pmic-ver 0x%02x trim-rev %d\n", pmic_version, cc_trim_rev);
287 
288 	if (!(pmic_version == PMIC_VERSION_A0 && cc_trim_rev == PMIC_VERSION_A0_TRIM_REV) &&
289 	    !(pmic_version == PMIC_VERSION_A1 && cc_trim_rev >= PMIC_VERSION_A1_MIN_TRIM_REV)) {
290 		dev_dbg(chip->dev, "unsupported trim-revision, using uncalibrated CC values\n");
291 		goto out_relock;
292 	}
293 
294 	chip->cc_gain = 1 - (int)FIELD_GET(CC_GAIN_CORRECTION, reg_val);
295 
296 	/* Select Bank 0 to read CC OFFSET Correction */
297 	ret = regmap_write(chip->regmap, DC_TI_EEPROM_CTRL, EEPROM_BANK0_SEL);
298 	if (ret)
299 		goto out_relock;
300 
301 	ret = regmap_read(chip->regmap, DC_TI_EEPROM_CC_OFFSET_REG, &reg_val);
302 	if (ret)
303 		goto out_relock;
304 
305 	chip->cc_offset = (s8)reg_val;
306 
307 	dev_dbg(chip->dev, "cc-offset %d cc-gain %d\n", chip->cc_offset, chip->cc_gain);
308 
309 out_relock:
310 	/* Re-lock the EEPROM Access */
311 	regmap_write(chip->regmap, DC_TI_EEPROM_ACCESS_CONTROL, EEPROM_LOCK);
312 out:
313 	if (ret)
314 		dev_err(chip->dev, "IO-error %d initializing PMIC\n", ret);
315 
316 	return ret;
317 }
318 
319 static int dc_ti_battery_probe(struct platform_device *pdev)
320 {
321 	struct device *dev = &pdev->dev;
322 	struct intel_soc_pmic *pmic = dev_get_drvdata(dev->parent);
323 	struct power_supply_config psy_cfg = {};
324 	struct fwnode_reference_args args;
325 	struct gpio_desc *charge_finished;
326 	struct dc_ti_battery_chip *chip;
327 	int ret;
328 
329 	/* On most devices with a Dollar Cove TI the battery is handled by ACPI */
330 	if (!acpi_quirk_skip_acpi_ac_and_battery())
331 		return -ENODEV;
332 
333 	/* ACPI glue code adds a "monitored-battery" fwnode, wait for this */
334 	ret = fwnode_property_get_reference_args(dev_fwnode(dev), "monitored-battery",
335 						 NULL, 0, 0, &args);
336 	if (ret) {
337 		dev_dbg(dev, "fwnode_property_get_ref() ret %d\n", ret);
338 		return dev_err_probe(dev, -EPROBE_DEFER, "Waiting for monitored-battery fwnode\n");
339 	}
340 
341 	fwnode_handle_put(args.fwnode);
342 
343 	chip = devm_kzalloc(dev, sizeof(*chip), GFP_KERNEL);
344 	if (!chip)
345 		return -ENOMEM;
346 
347 	chip->dev = dev;
348 	chip->regmap = pmic->regmap;
349 
350 	chip->vbat_channel = devm_iio_channel_get(dev, "VBAT");
351 	if (IS_ERR(chip->vbat_channel)) {
352 		dev_dbg(dev, "devm_iio_channel_get() ret %ld\n", PTR_ERR(chip->vbat_channel));
353 		return dev_err_probe(dev, -EPROBE_DEFER, "Waiting for VBAT IIO channel\n");
354 	}
355 
356 	charge_finished = devm_gpiod_get_optional(dev, "charged", GPIOD_IN);
357 	if (IS_ERR(charge_finished))
358 		return dev_err_probe(dev, PTR_ERR(charge_finished), "Getting charged GPIO\n");
359 
360 	ret = dc_ti_battery_hw_init(chip);
361 	if (ret)
362 		return ret;
363 
364 	platform_set_drvdata(pdev, chip);
365 
366 	psy_cfg.drv_data = chip;
367 	chip->psy = devm_power_supply_register(dev, &dc_ti_battery_psy_desc, &psy_cfg);
368 	if (IS_ERR(chip->psy))
369 		return PTR_ERR(chip->psy);
370 
371 	return adc_battery_helper_init(&chip->helper, chip->psy,
372 				       dc_ti_battery_get_voltage_and_current_now,
373 				       charge_finished);
374 }
375 
376 static DEFINE_RUNTIME_DEV_PM_OPS(dc_ti_battery_pm_ops, adc_battery_helper_suspend,
377 				 adc_battery_helper_resume, NULL);
378 
379 static struct platform_driver dc_ti_battery_driver = {
380 	.driver = {
381 		.name = DEV_NAME,
382 		.pm = pm_sleep_ptr(&dc_ti_battery_pm_ops),
383 	},
384 	.probe = dc_ti_battery_probe,
385 };
386 module_platform_driver(dc_ti_battery_driver);
387 
388 MODULE_ALIAS("platform:" DEV_NAME);
389 MODULE_AUTHOR("Hans de Goede <hansg@kernel.org>");
390 MODULE_DESCRIPTION("Intel Dollar Cove (TI) battery driver");
391 MODULE_LICENSE("GPL");
392