xref: /linux/drivers/power/supply/bq27xxx_battery.c (revision 802fee26d8afd073c630a74dbe1a996970f3fd90)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BQ27xxx battery driver
4  *
5  * Copyright (C) 2008 Rodolfo Giometti <giometti@linux.it>
6  * Copyright (C) 2008 Eurotech S.p.A. <info@eurotech.it>
7  * Copyright (C) 2010-2011 Lars-Peter Clausen <lars@metafoo.de>
8  * Copyright (C) 2011 Pali Rohár <pali@kernel.org>
9  * Copyright (C) 2017 Liam Breck <kernel@networkimprov.net>
10  *
11  * Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc.
12  *
13  * Datasheets:
14  * https://www.ti.com/product/bq27000
15  * https://www.ti.com/product/bq27200
16  * https://www.ti.com/product/bq27010
17  * https://www.ti.com/product/bq27210
18  * https://www.ti.com/product/bq27500
19  * https://www.ti.com/product/bq27510-g1
20  * https://www.ti.com/product/bq27510-g2
21  * https://www.ti.com/product/bq27510-g3
22  * https://www.ti.com/product/bq27520-g1
23  * https://www.ti.com/product/bq27520-g2
24  * https://www.ti.com/product/bq27520-g3
25  * https://www.ti.com/product/bq27520-g4
26  * https://www.ti.com/product/bq27530-g1
27  * https://www.ti.com/product/bq27531-g1
28  * https://www.ti.com/product/bq27541-g1
29  * https://www.ti.com/product/bq27542-g1
30  * https://www.ti.com/product/bq27546-g1
31  * https://www.ti.com/product/bq27742-g1
32  * https://www.ti.com/product/bq27545-g1
33  * https://www.ti.com/product/bq27421-g1
34  * https://www.ti.com/product/bq27425-g1
35  * https://www.ti.com/product/bq27426
36  * https://www.ti.com/product/bq27411-g1
37  * https://www.ti.com/product/bq27441-g1
38  * https://www.ti.com/product/bq27621-g1
39  * https://www.ti.com/product/bq27z561
40  * https://www.ti.com/product/bq28z610
41  * https://www.ti.com/product/bq34z100-g1
42  */
43 
44 #include <linux/device.h>
45 #include <linux/module.h>
46 #include <linux/mutex.h>
47 #include <linux/param.h>
48 #include <linux/jiffies.h>
49 #include <linux/workqueue.h>
50 #include <linux/delay.h>
51 #include <linux/platform_device.h>
52 #include <linux/power_supply.h>
53 #include <linux/slab.h>
54 #include <linux/of.h>
55 
56 #include <linux/power/bq27xxx_battery.h>
57 
58 #define BQ27XXX_MANUFACTURER	"Texas Instruments"
59 
60 /* BQ27XXX Flags */
61 #define BQ27XXX_FLAG_DSC	BIT(0)
62 #define BQ27XXX_FLAG_SOCF	BIT(1) /* State-of-Charge threshold final */
63 #define BQ27XXX_FLAG_SOC1	BIT(2) /* State-of-Charge threshold 1 */
64 #define BQ27XXX_FLAG_CFGUP	BIT(4)
65 #define BQ27XXX_FLAG_FC		BIT(9)
66 #define BQ27XXX_FLAG_OTD	BIT(14)
67 #define BQ27XXX_FLAG_OTC	BIT(15)
68 #define BQ27XXX_FLAG_UT		BIT(14)
69 #define BQ27XXX_FLAG_OT		BIT(15)
70 
71 /* BQ27000 has different layout for Flags register */
72 #define BQ27000_FLAG_EDVF	BIT(0) /* Final End-of-Discharge-Voltage flag */
73 #define BQ27000_FLAG_EDV1	BIT(1) /* First End-of-Discharge-Voltage flag */
74 #define BQ27000_FLAG_CI		BIT(4) /* Capacity Inaccurate flag */
75 #define BQ27000_FLAG_FC		BIT(5)
76 #define BQ27000_FLAG_CHGS	BIT(7) /* Charge state flag */
77 
78 /* BQ27Z561 has different layout for Flags register */
79 #define BQ27Z561_FLAG_FDC	BIT(4) /* Battery fully discharged */
80 #define BQ27Z561_FLAG_FC	BIT(5) /* Battery fully charged */
81 #define BQ27Z561_FLAG_DIS_CH	BIT(6) /* Battery is discharging */
82 
83 /* control register params */
84 #define BQ27XXX_SEALED			0x20
85 #define BQ27XXX_SET_CFGUPDATE		0x13
86 #define BQ27XXX_SOFT_RESET		0x42
87 #define BQ27XXX_RESET			0x41
88 
89 #define BQ27XXX_RS			(20) /* Resistor sense mOhm */
90 #define BQ27XXX_POWER_CONSTANT		(29200) /* 29.2 µV^2 * 1000 */
91 #define BQ27XXX_CURRENT_CONSTANT	(3570) /* 3.57 µV * 1000 */
92 
93 #define INVALID_REG_ADDR	0xff
94 
95 /*
96  * bq27xxx_reg_index - Register names
97  *
98  * These are indexes into a device's register mapping array.
99  */
100 
101 enum bq27xxx_reg_index {
102 	BQ27XXX_REG_CTRL = 0,	/* Control */
103 	BQ27XXX_REG_TEMP,	/* Temperature */
104 	BQ27XXX_REG_INT_TEMP,	/* Internal Temperature */
105 	BQ27XXX_REG_VOLT,	/* Voltage */
106 	BQ27XXX_REG_AI,		/* Average Current */
107 	BQ27XXX_REG_FLAGS,	/* Flags */
108 	BQ27XXX_REG_TTE,	/* Time-to-Empty */
109 	BQ27XXX_REG_TTF,	/* Time-to-Full */
110 	BQ27XXX_REG_TTES,	/* Time-to-Empty Standby */
111 	BQ27XXX_REG_TTECP,	/* Time-to-Empty at Constant Power */
112 	BQ27XXX_REG_NAC,	/* Nominal Available Capacity */
113 	BQ27XXX_REG_FCC,	/* Full Charge Capacity */
114 	BQ27XXX_REG_CYCT,	/* Cycle Count */
115 	BQ27XXX_REG_AE,		/* Available Energy */
116 	BQ27XXX_REG_SOC,	/* State-of-Charge */
117 	BQ27XXX_REG_DCAP,	/* Design Capacity */
118 	BQ27XXX_REG_AP,		/* Average Power */
119 	BQ27XXX_DM_CTRL,	/* Block Data Control */
120 	BQ27XXX_DM_CLASS,	/* Data Class */
121 	BQ27XXX_DM_BLOCK,	/* Data Block */
122 	BQ27XXX_DM_DATA,	/* Block Data */
123 	BQ27XXX_DM_CKSUM,	/* Block Data Checksum */
124 	BQ27XXX_REG_MAX,	/* sentinel */
125 };
126 
127 #define BQ27XXX_DM_REG_ROWS \
128 	[BQ27XXX_DM_CTRL] = 0x61,  \
129 	[BQ27XXX_DM_CLASS] = 0x3e, \
130 	[BQ27XXX_DM_BLOCK] = 0x3f, \
131 	[BQ27XXX_DM_DATA] = 0x40,  \
132 	[BQ27XXX_DM_CKSUM] = 0x60
133 
134 /* Register mappings */
135 static u8
136 	bq27000_regs[BQ27XXX_REG_MAX] = {
137 		[BQ27XXX_REG_CTRL] = 0x00,
138 		[BQ27XXX_REG_TEMP] = 0x06,
139 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
140 		[BQ27XXX_REG_VOLT] = 0x08,
141 		[BQ27XXX_REG_AI] = 0x14,
142 		[BQ27XXX_REG_FLAGS] = 0x0a,
143 		[BQ27XXX_REG_TTE] = 0x16,
144 		[BQ27XXX_REG_TTF] = 0x18,
145 		[BQ27XXX_REG_TTES] = 0x1c,
146 		[BQ27XXX_REG_TTECP] = 0x26,
147 		[BQ27XXX_REG_NAC] = 0x0c,
148 		[BQ27XXX_REG_FCC] = 0x12,
149 		[BQ27XXX_REG_CYCT] = 0x2a,
150 		[BQ27XXX_REG_AE] = 0x22,
151 		[BQ27XXX_REG_SOC] = 0x0b,
152 		[BQ27XXX_REG_DCAP] = 0x76,
153 		[BQ27XXX_REG_AP] = 0x24,
154 		[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
155 		[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
156 		[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
157 		[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
158 		[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
159 	},
160 	bq27010_regs[BQ27XXX_REG_MAX] = {
161 		[BQ27XXX_REG_CTRL] = 0x00,
162 		[BQ27XXX_REG_TEMP] = 0x06,
163 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
164 		[BQ27XXX_REG_VOLT] = 0x08,
165 		[BQ27XXX_REG_AI] = 0x14,
166 		[BQ27XXX_REG_FLAGS] = 0x0a,
167 		[BQ27XXX_REG_TTE] = 0x16,
168 		[BQ27XXX_REG_TTF] = 0x18,
169 		[BQ27XXX_REG_TTES] = 0x1c,
170 		[BQ27XXX_REG_TTECP] = 0x26,
171 		[BQ27XXX_REG_NAC] = 0x0c,
172 		[BQ27XXX_REG_FCC] = 0x12,
173 		[BQ27XXX_REG_CYCT] = 0x2a,
174 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
175 		[BQ27XXX_REG_SOC] = 0x0b,
176 		[BQ27XXX_REG_DCAP] = 0x76,
177 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
178 		[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
179 		[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
180 		[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
181 		[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
182 		[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
183 	},
184 	bq2750x_regs[BQ27XXX_REG_MAX] = {
185 		[BQ27XXX_REG_CTRL] = 0x00,
186 		[BQ27XXX_REG_TEMP] = 0x06,
187 		[BQ27XXX_REG_INT_TEMP] = 0x28,
188 		[BQ27XXX_REG_VOLT] = 0x08,
189 		[BQ27XXX_REG_AI] = 0x14,
190 		[BQ27XXX_REG_FLAGS] = 0x0a,
191 		[BQ27XXX_REG_TTE] = 0x16,
192 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
193 		[BQ27XXX_REG_TTES] = 0x1a,
194 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
195 		[BQ27XXX_REG_NAC] = 0x0c,
196 		[BQ27XXX_REG_FCC] = 0x12,
197 		[BQ27XXX_REG_CYCT] = 0x2a,
198 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
199 		[BQ27XXX_REG_SOC] = 0x2c,
200 		[BQ27XXX_REG_DCAP] = 0x3c,
201 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
202 		BQ27XXX_DM_REG_ROWS,
203 	},
204 #define bq2751x_regs bq27510g3_regs
205 #define bq2752x_regs bq27510g3_regs
206 	bq27500_regs[BQ27XXX_REG_MAX] = {
207 		[BQ27XXX_REG_CTRL] = 0x00,
208 		[BQ27XXX_REG_TEMP] = 0x06,
209 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
210 		[BQ27XXX_REG_VOLT] = 0x08,
211 		[BQ27XXX_REG_AI] = 0x14,
212 		[BQ27XXX_REG_FLAGS] = 0x0a,
213 		[BQ27XXX_REG_TTE] = 0x16,
214 		[BQ27XXX_REG_TTF] = 0x18,
215 		[BQ27XXX_REG_TTES] = 0x1c,
216 		[BQ27XXX_REG_TTECP] = 0x26,
217 		[BQ27XXX_REG_NAC] = 0x0c,
218 		[BQ27XXX_REG_FCC] = 0x12,
219 		[BQ27XXX_REG_CYCT] = 0x2a,
220 		[BQ27XXX_REG_AE] = 0x22,
221 		[BQ27XXX_REG_SOC] = 0x2c,
222 		[BQ27XXX_REG_DCAP] = 0x3c,
223 		[BQ27XXX_REG_AP] = 0x24,
224 		BQ27XXX_DM_REG_ROWS,
225 	},
226 #define bq27510g1_regs bq27500_regs
227 #define bq27510g2_regs bq27500_regs
228 	bq27510g3_regs[BQ27XXX_REG_MAX] = {
229 		[BQ27XXX_REG_CTRL] = 0x00,
230 		[BQ27XXX_REG_TEMP] = 0x06,
231 		[BQ27XXX_REG_INT_TEMP] = 0x28,
232 		[BQ27XXX_REG_VOLT] = 0x08,
233 		[BQ27XXX_REG_AI] = 0x14,
234 		[BQ27XXX_REG_FLAGS] = 0x0a,
235 		[BQ27XXX_REG_TTE] = 0x16,
236 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
237 		[BQ27XXX_REG_TTES] = 0x1a,
238 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
239 		[BQ27XXX_REG_NAC] = 0x0c,
240 		[BQ27XXX_REG_FCC] = 0x12,
241 		[BQ27XXX_REG_CYCT] = 0x1e,
242 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
243 		[BQ27XXX_REG_SOC] = 0x20,
244 		[BQ27XXX_REG_DCAP] = 0x2e,
245 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
246 		BQ27XXX_DM_REG_ROWS,
247 	},
248 	bq27520g1_regs[BQ27XXX_REG_MAX] = {
249 		[BQ27XXX_REG_CTRL] = 0x00,
250 		[BQ27XXX_REG_TEMP] = 0x06,
251 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
252 		[BQ27XXX_REG_VOLT] = 0x08,
253 		[BQ27XXX_REG_AI] = 0x14,
254 		[BQ27XXX_REG_FLAGS] = 0x0a,
255 		[BQ27XXX_REG_TTE] = 0x16,
256 		[BQ27XXX_REG_TTF] = 0x18,
257 		[BQ27XXX_REG_TTES] = 0x1c,
258 		[BQ27XXX_REG_TTECP] = 0x26,
259 		[BQ27XXX_REG_NAC] = 0x0c,
260 		[BQ27XXX_REG_FCC] = 0x12,
261 		[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
262 		[BQ27XXX_REG_AE] = 0x22,
263 		[BQ27XXX_REG_SOC] = 0x2c,
264 		[BQ27XXX_REG_DCAP] = 0x3c,
265 		[BQ27XXX_REG_AP] = 0x24,
266 		BQ27XXX_DM_REG_ROWS,
267 	},
268 	bq27520g2_regs[BQ27XXX_REG_MAX] = {
269 		[BQ27XXX_REG_CTRL] = 0x00,
270 		[BQ27XXX_REG_TEMP] = 0x06,
271 		[BQ27XXX_REG_INT_TEMP] = 0x36,
272 		[BQ27XXX_REG_VOLT] = 0x08,
273 		[BQ27XXX_REG_AI] = 0x14,
274 		[BQ27XXX_REG_FLAGS] = 0x0a,
275 		[BQ27XXX_REG_TTE] = 0x16,
276 		[BQ27XXX_REG_TTF] = 0x18,
277 		[BQ27XXX_REG_TTES] = 0x1c,
278 		[BQ27XXX_REG_TTECP] = 0x26,
279 		[BQ27XXX_REG_NAC] = 0x0c,
280 		[BQ27XXX_REG_FCC] = 0x12,
281 		[BQ27XXX_REG_CYCT] = 0x2a,
282 		[BQ27XXX_REG_AE] = 0x22,
283 		[BQ27XXX_REG_SOC] = 0x2c,
284 		[BQ27XXX_REG_DCAP] = 0x3c,
285 		[BQ27XXX_REG_AP] = 0x24,
286 		BQ27XXX_DM_REG_ROWS,
287 	},
288 	bq27520g3_regs[BQ27XXX_REG_MAX] = {
289 		[BQ27XXX_REG_CTRL] = 0x00,
290 		[BQ27XXX_REG_TEMP] = 0x06,
291 		[BQ27XXX_REG_INT_TEMP] = 0x36,
292 		[BQ27XXX_REG_VOLT] = 0x08,
293 		[BQ27XXX_REG_AI] = 0x14,
294 		[BQ27XXX_REG_FLAGS] = 0x0a,
295 		[BQ27XXX_REG_TTE] = 0x16,
296 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
297 		[BQ27XXX_REG_TTES] = 0x1c,
298 		[BQ27XXX_REG_TTECP] = 0x26,
299 		[BQ27XXX_REG_NAC] = 0x0c,
300 		[BQ27XXX_REG_FCC] = 0x12,
301 		[BQ27XXX_REG_CYCT] = 0x2a,
302 		[BQ27XXX_REG_AE] = 0x22,
303 		[BQ27XXX_REG_SOC] = 0x2c,
304 		[BQ27XXX_REG_DCAP] = 0x3c,
305 		[BQ27XXX_REG_AP] = 0x24,
306 		BQ27XXX_DM_REG_ROWS,
307 	},
308 	bq27520g4_regs[BQ27XXX_REG_MAX] = {
309 		[BQ27XXX_REG_CTRL] = 0x00,
310 		[BQ27XXX_REG_TEMP] = 0x06,
311 		[BQ27XXX_REG_INT_TEMP] = 0x28,
312 		[BQ27XXX_REG_VOLT] = 0x08,
313 		[BQ27XXX_REG_AI] = 0x14,
314 		[BQ27XXX_REG_FLAGS] = 0x0a,
315 		[BQ27XXX_REG_TTE] = 0x16,
316 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
317 		[BQ27XXX_REG_TTES] = 0x1c,
318 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
319 		[BQ27XXX_REG_NAC] = 0x0c,
320 		[BQ27XXX_REG_FCC] = 0x12,
321 		[BQ27XXX_REG_CYCT] = 0x1e,
322 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
323 		[BQ27XXX_REG_SOC] = 0x20,
324 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
325 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
326 		BQ27XXX_DM_REG_ROWS,
327 	},
328 	bq27521_regs[BQ27XXX_REG_MAX] = {
329 		[BQ27XXX_REG_CTRL] = 0x02,
330 		[BQ27XXX_REG_TEMP] = 0x0a,
331 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
332 		[BQ27XXX_REG_VOLT] = 0x0c,
333 		[BQ27XXX_REG_AI] = 0x0e,
334 		[BQ27XXX_REG_FLAGS] = 0x08,
335 		[BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
336 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
337 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
338 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
339 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
340 		[BQ27XXX_REG_FCC] = INVALID_REG_ADDR,
341 		[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
342 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
343 		[BQ27XXX_REG_SOC] = INVALID_REG_ADDR,
344 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
345 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
346 		[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
347 		[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
348 		[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
349 		[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
350 		[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
351 	},
352 	bq27530_regs[BQ27XXX_REG_MAX] = {
353 		[BQ27XXX_REG_CTRL] = 0x00,
354 		[BQ27XXX_REG_TEMP] = 0x06,
355 		[BQ27XXX_REG_INT_TEMP] = 0x32,
356 		[BQ27XXX_REG_VOLT] = 0x08,
357 		[BQ27XXX_REG_AI] = 0x14,
358 		[BQ27XXX_REG_FLAGS] = 0x0a,
359 		[BQ27XXX_REG_TTE] = 0x16,
360 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
361 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
362 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
363 		[BQ27XXX_REG_NAC] = 0x0c,
364 		[BQ27XXX_REG_FCC] = 0x12,
365 		[BQ27XXX_REG_CYCT] = 0x2a,
366 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
367 		[BQ27XXX_REG_SOC] = 0x2c,
368 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
369 		[BQ27XXX_REG_AP] = 0x24,
370 		BQ27XXX_DM_REG_ROWS,
371 	},
372 #define bq27531_regs bq27530_regs
373 	bq27541_regs[BQ27XXX_REG_MAX] = {
374 		[BQ27XXX_REG_CTRL] = 0x00,
375 		[BQ27XXX_REG_TEMP] = 0x06,
376 		[BQ27XXX_REG_INT_TEMP] = 0x28,
377 		[BQ27XXX_REG_VOLT] = 0x08,
378 		[BQ27XXX_REG_AI] = 0x14,
379 		[BQ27XXX_REG_FLAGS] = 0x0a,
380 		[BQ27XXX_REG_TTE] = 0x16,
381 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
382 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
383 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
384 		[BQ27XXX_REG_NAC] = 0x0c,
385 		[BQ27XXX_REG_FCC] = 0x12,
386 		[BQ27XXX_REG_CYCT] = 0x2a,
387 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
388 		[BQ27XXX_REG_SOC] = 0x2c,
389 		[BQ27XXX_REG_DCAP] = 0x3c,
390 		[BQ27XXX_REG_AP] = 0x24,
391 		BQ27XXX_DM_REG_ROWS,
392 	},
393 #define bq27542_regs bq27541_regs
394 #define bq27546_regs bq27541_regs
395 #define bq27742_regs bq27541_regs
396 	bq27545_regs[BQ27XXX_REG_MAX] = {
397 		[BQ27XXX_REG_CTRL] = 0x00,
398 		[BQ27XXX_REG_TEMP] = 0x06,
399 		[BQ27XXX_REG_INT_TEMP] = 0x28,
400 		[BQ27XXX_REG_VOLT] = 0x08,
401 		[BQ27XXX_REG_AI] = 0x14,
402 		[BQ27XXX_REG_FLAGS] = 0x0a,
403 		[BQ27XXX_REG_TTE] = 0x16,
404 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
405 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
406 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
407 		[BQ27XXX_REG_NAC] = 0x0c,
408 		[BQ27XXX_REG_FCC] = 0x12,
409 		[BQ27XXX_REG_CYCT] = 0x2a,
410 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
411 		[BQ27XXX_REG_SOC] = 0x2c,
412 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
413 		[BQ27XXX_REG_AP] = 0x24,
414 		BQ27XXX_DM_REG_ROWS,
415 	},
416 	bq27421_regs[BQ27XXX_REG_MAX] = {
417 		[BQ27XXX_REG_CTRL] = 0x00,
418 		[BQ27XXX_REG_TEMP] = 0x02,
419 		[BQ27XXX_REG_INT_TEMP] = 0x1e,
420 		[BQ27XXX_REG_VOLT] = 0x04,
421 		[BQ27XXX_REG_AI] = 0x10,
422 		[BQ27XXX_REG_FLAGS] = 0x06,
423 		[BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
424 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
425 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
426 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
427 		[BQ27XXX_REG_NAC] = 0x08,
428 		[BQ27XXX_REG_FCC] = 0x0e,
429 		[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
430 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
431 		[BQ27XXX_REG_SOC] = 0x1c,
432 		[BQ27XXX_REG_DCAP] = 0x3c,
433 		[BQ27XXX_REG_AP] = 0x18,
434 		BQ27XXX_DM_REG_ROWS,
435 	},
436 #define bq27411_regs bq27421_regs
437 #define bq27425_regs bq27421_regs
438 #define bq27426_regs bq27421_regs
439 #define bq27441_regs bq27421_regs
440 #define bq27621_regs bq27421_regs
441 	bq27z561_regs[BQ27XXX_REG_MAX] = {
442 		[BQ27XXX_REG_CTRL] = 0x00,
443 		[BQ27XXX_REG_TEMP] = 0x06,
444 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
445 		[BQ27XXX_REG_VOLT] = 0x08,
446 		[BQ27XXX_REG_AI] = 0x14,
447 		[BQ27XXX_REG_FLAGS] = 0x0a,
448 		[BQ27XXX_REG_TTE] = 0x16,
449 		[BQ27XXX_REG_TTF] = 0x18,
450 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
451 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
452 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
453 		[BQ27XXX_REG_FCC] = 0x12,
454 		[BQ27XXX_REG_CYCT] = 0x2a,
455 		[BQ27XXX_REG_AE] = 0x22,
456 		[BQ27XXX_REG_SOC] = 0x2c,
457 		[BQ27XXX_REG_DCAP] = 0x3c,
458 		[BQ27XXX_REG_AP] = 0x22,
459 		BQ27XXX_DM_REG_ROWS,
460 	},
461 	bq28z610_regs[BQ27XXX_REG_MAX] = {
462 		[BQ27XXX_REG_CTRL] = 0x00,
463 		[BQ27XXX_REG_TEMP] = 0x06,
464 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
465 		[BQ27XXX_REG_VOLT] = 0x08,
466 		[BQ27XXX_REG_AI] = 0x14,
467 		[BQ27XXX_REG_FLAGS] = 0x0a,
468 		[BQ27XXX_REG_TTE] = 0x16,
469 		[BQ27XXX_REG_TTF] = 0x18,
470 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
471 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
472 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
473 		[BQ27XXX_REG_FCC] = 0x12,
474 		[BQ27XXX_REG_CYCT] = 0x2a,
475 		[BQ27XXX_REG_AE] = 0x22,
476 		[BQ27XXX_REG_SOC] = 0x2c,
477 		[BQ27XXX_REG_DCAP] = 0x3c,
478 		[BQ27XXX_REG_AP] = 0x22,
479 		BQ27XXX_DM_REG_ROWS,
480 	},
481 	bq34z100_regs[BQ27XXX_REG_MAX] = {
482 		[BQ27XXX_REG_CTRL] = 0x00,
483 		[BQ27XXX_REG_TEMP] = 0x0c,
484 		[BQ27XXX_REG_INT_TEMP] = 0x2a,
485 		[BQ27XXX_REG_VOLT] = 0x08,
486 		[BQ27XXX_REG_AI] = 0x0a,
487 		[BQ27XXX_REG_FLAGS] = 0x0e,
488 		[BQ27XXX_REG_TTE] = 0x18,
489 		[BQ27XXX_REG_TTF] = 0x1a,
490 		[BQ27XXX_REG_TTES] = 0x1e,
491 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
492 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
493 		[BQ27XXX_REG_FCC] = 0x06,
494 		[BQ27XXX_REG_CYCT] = 0x2c,
495 		[BQ27XXX_REG_AE] = 0x24,
496 		[BQ27XXX_REG_SOC] = 0x02,
497 		[BQ27XXX_REG_DCAP] = 0x3c,
498 		[BQ27XXX_REG_AP] = 0x22,
499 		BQ27XXX_DM_REG_ROWS,
500 	};
501 
502 static enum power_supply_property bq27000_props[] = {
503 	POWER_SUPPLY_PROP_STATUS,
504 	POWER_SUPPLY_PROP_PRESENT,
505 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
506 	POWER_SUPPLY_PROP_CURRENT_NOW,
507 	POWER_SUPPLY_PROP_CAPACITY,
508 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
509 	POWER_SUPPLY_PROP_TEMP,
510 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
511 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
512 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
513 	POWER_SUPPLY_PROP_TECHNOLOGY,
514 	POWER_SUPPLY_PROP_CHARGE_FULL,
515 	POWER_SUPPLY_PROP_CHARGE_NOW,
516 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
517 	POWER_SUPPLY_PROP_CYCLE_COUNT,
518 	POWER_SUPPLY_PROP_ENERGY_NOW,
519 	POWER_SUPPLY_PROP_POWER_AVG,
520 	POWER_SUPPLY_PROP_HEALTH,
521 	POWER_SUPPLY_PROP_MANUFACTURER,
522 };
523 
524 static enum power_supply_property bq27010_props[] = {
525 	POWER_SUPPLY_PROP_STATUS,
526 	POWER_SUPPLY_PROP_PRESENT,
527 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
528 	POWER_SUPPLY_PROP_CURRENT_NOW,
529 	POWER_SUPPLY_PROP_CAPACITY,
530 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
531 	POWER_SUPPLY_PROP_TEMP,
532 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
533 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
534 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
535 	POWER_SUPPLY_PROP_TECHNOLOGY,
536 	POWER_SUPPLY_PROP_CHARGE_FULL,
537 	POWER_SUPPLY_PROP_CHARGE_NOW,
538 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
539 	POWER_SUPPLY_PROP_CYCLE_COUNT,
540 	POWER_SUPPLY_PROP_HEALTH,
541 	POWER_SUPPLY_PROP_MANUFACTURER,
542 };
543 
544 #define bq2750x_props bq27510g3_props
545 #define bq2751x_props bq27510g3_props
546 #define bq2752x_props bq27510g3_props
547 
548 static enum power_supply_property bq27500_props[] = {
549 	POWER_SUPPLY_PROP_STATUS,
550 	POWER_SUPPLY_PROP_PRESENT,
551 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
552 	POWER_SUPPLY_PROP_CURRENT_NOW,
553 	POWER_SUPPLY_PROP_CAPACITY,
554 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
555 	POWER_SUPPLY_PROP_TEMP,
556 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
557 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
558 	POWER_SUPPLY_PROP_TECHNOLOGY,
559 	POWER_SUPPLY_PROP_CHARGE_FULL,
560 	POWER_SUPPLY_PROP_CHARGE_NOW,
561 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
562 	POWER_SUPPLY_PROP_CYCLE_COUNT,
563 	POWER_SUPPLY_PROP_ENERGY_NOW,
564 	POWER_SUPPLY_PROP_POWER_AVG,
565 	POWER_SUPPLY_PROP_HEALTH,
566 	POWER_SUPPLY_PROP_MANUFACTURER,
567 };
568 #define bq27510g1_props bq27500_props
569 #define bq27510g2_props bq27500_props
570 
571 static enum power_supply_property bq27510g3_props[] = {
572 	POWER_SUPPLY_PROP_STATUS,
573 	POWER_SUPPLY_PROP_PRESENT,
574 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
575 	POWER_SUPPLY_PROP_CURRENT_NOW,
576 	POWER_SUPPLY_PROP_CAPACITY,
577 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
578 	POWER_SUPPLY_PROP_TEMP,
579 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
580 	POWER_SUPPLY_PROP_TECHNOLOGY,
581 	POWER_SUPPLY_PROP_CHARGE_FULL,
582 	POWER_SUPPLY_PROP_CHARGE_NOW,
583 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
584 	POWER_SUPPLY_PROP_CYCLE_COUNT,
585 	POWER_SUPPLY_PROP_HEALTH,
586 	POWER_SUPPLY_PROP_MANUFACTURER,
587 };
588 
589 static enum power_supply_property bq27520g1_props[] = {
590 	POWER_SUPPLY_PROP_STATUS,
591 	POWER_SUPPLY_PROP_PRESENT,
592 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
593 	POWER_SUPPLY_PROP_CURRENT_NOW,
594 	POWER_SUPPLY_PROP_CAPACITY,
595 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
596 	POWER_SUPPLY_PROP_TEMP,
597 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
598 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
599 	POWER_SUPPLY_PROP_TECHNOLOGY,
600 	POWER_SUPPLY_PROP_CHARGE_FULL,
601 	POWER_SUPPLY_PROP_CHARGE_NOW,
602 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
603 	POWER_SUPPLY_PROP_ENERGY_NOW,
604 	POWER_SUPPLY_PROP_POWER_AVG,
605 	POWER_SUPPLY_PROP_HEALTH,
606 	POWER_SUPPLY_PROP_MANUFACTURER,
607 };
608 
609 #define bq27520g2_props bq27500_props
610 
611 static enum power_supply_property bq27520g3_props[] = {
612 	POWER_SUPPLY_PROP_STATUS,
613 	POWER_SUPPLY_PROP_PRESENT,
614 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
615 	POWER_SUPPLY_PROP_CURRENT_NOW,
616 	POWER_SUPPLY_PROP_CAPACITY,
617 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
618 	POWER_SUPPLY_PROP_TEMP,
619 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
620 	POWER_SUPPLY_PROP_TECHNOLOGY,
621 	POWER_SUPPLY_PROP_CHARGE_FULL,
622 	POWER_SUPPLY_PROP_CHARGE_NOW,
623 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
624 	POWER_SUPPLY_PROP_CYCLE_COUNT,
625 	POWER_SUPPLY_PROP_ENERGY_NOW,
626 	POWER_SUPPLY_PROP_POWER_AVG,
627 	POWER_SUPPLY_PROP_HEALTH,
628 	POWER_SUPPLY_PROP_MANUFACTURER,
629 };
630 
631 static enum power_supply_property bq27520g4_props[] = {
632 	POWER_SUPPLY_PROP_STATUS,
633 	POWER_SUPPLY_PROP_PRESENT,
634 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
635 	POWER_SUPPLY_PROP_CURRENT_NOW,
636 	POWER_SUPPLY_PROP_CAPACITY,
637 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
638 	POWER_SUPPLY_PROP_TEMP,
639 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
640 	POWER_SUPPLY_PROP_TECHNOLOGY,
641 	POWER_SUPPLY_PROP_CHARGE_FULL,
642 	POWER_SUPPLY_PROP_CHARGE_NOW,
643 	POWER_SUPPLY_PROP_CYCLE_COUNT,
644 	POWER_SUPPLY_PROP_HEALTH,
645 	POWER_SUPPLY_PROP_MANUFACTURER,
646 };
647 
648 static enum power_supply_property bq27521_props[] = {
649 	POWER_SUPPLY_PROP_STATUS,
650 	POWER_SUPPLY_PROP_PRESENT,
651 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
652 	POWER_SUPPLY_PROP_CURRENT_NOW,
653 	POWER_SUPPLY_PROP_TEMP,
654 	POWER_SUPPLY_PROP_TECHNOLOGY,
655 };
656 
657 static enum power_supply_property bq27530_props[] = {
658 	POWER_SUPPLY_PROP_STATUS,
659 	POWER_SUPPLY_PROP_PRESENT,
660 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
661 	POWER_SUPPLY_PROP_CURRENT_NOW,
662 	POWER_SUPPLY_PROP_CAPACITY,
663 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
664 	POWER_SUPPLY_PROP_TEMP,
665 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
666 	POWER_SUPPLY_PROP_TECHNOLOGY,
667 	POWER_SUPPLY_PROP_CHARGE_FULL,
668 	POWER_SUPPLY_PROP_CHARGE_NOW,
669 	POWER_SUPPLY_PROP_POWER_AVG,
670 	POWER_SUPPLY_PROP_HEALTH,
671 	POWER_SUPPLY_PROP_CYCLE_COUNT,
672 	POWER_SUPPLY_PROP_MANUFACTURER,
673 };
674 #define bq27531_props bq27530_props
675 
676 static enum power_supply_property bq27541_props[] = {
677 	POWER_SUPPLY_PROP_STATUS,
678 	POWER_SUPPLY_PROP_PRESENT,
679 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
680 	POWER_SUPPLY_PROP_CURRENT_NOW,
681 	POWER_SUPPLY_PROP_CAPACITY,
682 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
683 	POWER_SUPPLY_PROP_TEMP,
684 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
685 	POWER_SUPPLY_PROP_TECHNOLOGY,
686 	POWER_SUPPLY_PROP_CHARGE_FULL,
687 	POWER_SUPPLY_PROP_CHARGE_NOW,
688 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
689 	POWER_SUPPLY_PROP_CYCLE_COUNT,
690 	POWER_SUPPLY_PROP_POWER_AVG,
691 	POWER_SUPPLY_PROP_HEALTH,
692 	POWER_SUPPLY_PROP_MANUFACTURER,
693 };
694 #define bq27542_props bq27541_props
695 #define bq27546_props bq27541_props
696 #define bq27742_props bq27541_props
697 
698 static enum power_supply_property bq27545_props[] = {
699 	POWER_SUPPLY_PROP_STATUS,
700 	POWER_SUPPLY_PROP_PRESENT,
701 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
702 	POWER_SUPPLY_PROP_CURRENT_NOW,
703 	POWER_SUPPLY_PROP_CAPACITY,
704 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
705 	POWER_SUPPLY_PROP_TEMP,
706 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
707 	POWER_SUPPLY_PROP_TECHNOLOGY,
708 	POWER_SUPPLY_PROP_CHARGE_FULL,
709 	POWER_SUPPLY_PROP_CHARGE_NOW,
710 	POWER_SUPPLY_PROP_HEALTH,
711 	POWER_SUPPLY_PROP_CYCLE_COUNT,
712 	POWER_SUPPLY_PROP_POWER_AVG,
713 	POWER_SUPPLY_PROP_MANUFACTURER,
714 };
715 
716 static enum power_supply_property bq27421_props[] = {
717 	POWER_SUPPLY_PROP_STATUS,
718 	POWER_SUPPLY_PROP_PRESENT,
719 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
720 	POWER_SUPPLY_PROP_CURRENT_NOW,
721 	POWER_SUPPLY_PROP_CAPACITY,
722 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
723 	POWER_SUPPLY_PROP_TEMP,
724 	POWER_SUPPLY_PROP_TECHNOLOGY,
725 	POWER_SUPPLY_PROP_CHARGE_FULL,
726 	POWER_SUPPLY_PROP_CHARGE_NOW,
727 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
728 	POWER_SUPPLY_PROP_MANUFACTURER,
729 };
730 #define bq27411_props bq27421_props
731 #define bq27425_props bq27421_props
732 #define bq27426_props bq27421_props
733 #define bq27441_props bq27421_props
734 #define bq27621_props bq27421_props
735 
736 static enum power_supply_property bq27z561_props[] = {
737 	POWER_SUPPLY_PROP_STATUS,
738 	POWER_SUPPLY_PROP_PRESENT,
739 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
740 	POWER_SUPPLY_PROP_CURRENT_NOW,
741 	POWER_SUPPLY_PROP_CAPACITY,
742 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
743 	POWER_SUPPLY_PROP_TEMP,
744 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
745 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
746 	POWER_SUPPLY_PROP_TECHNOLOGY,
747 	POWER_SUPPLY_PROP_CHARGE_FULL,
748 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
749 	POWER_SUPPLY_PROP_CYCLE_COUNT,
750 	POWER_SUPPLY_PROP_POWER_AVG,
751 	POWER_SUPPLY_PROP_HEALTH,
752 	POWER_SUPPLY_PROP_MANUFACTURER,
753 };
754 
755 static enum power_supply_property bq28z610_props[] = {
756 	POWER_SUPPLY_PROP_STATUS,
757 	POWER_SUPPLY_PROP_PRESENT,
758 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
759 	POWER_SUPPLY_PROP_CURRENT_NOW,
760 	POWER_SUPPLY_PROP_CAPACITY,
761 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
762 	POWER_SUPPLY_PROP_TEMP,
763 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
764 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
765 	POWER_SUPPLY_PROP_TECHNOLOGY,
766 	POWER_SUPPLY_PROP_CHARGE_FULL,
767 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
768 	POWER_SUPPLY_PROP_CYCLE_COUNT,
769 	POWER_SUPPLY_PROP_POWER_AVG,
770 	POWER_SUPPLY_PROP_HEALTH,
771 	POWER_SUPPLY_PROP_MANUFACTURER,
772 };
773 
774 static enum power_supply_property bq34z100_props[] = {
775 	POWER_SUPPLY_PROP_STATUS,
776 	POWER_SUPPLY_PROP_PRESENT,
777 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
778 	POWER_SUPPLY_PROP_CURRENT_NOW,
779 	POWER_SUPPLY_PROP_CAPACITY,
780 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
781 	POWER_SUPPLY_PROP_TEMP,
782 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
783 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
784 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
785 	POWER_SUPPLY_PROP_TECHNOLOGY,
786 	POWER_SUPPLY_PROP_CHARGE_FULL,
787 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
788 	POWER_SUPPLY_PROP_CYCLE_COUNT,
789 	POWER_SUPPLY_PROP_ENERGY_NOW,
790 	POWER_SUPPLY_PROP_POWER_AVG,
791 	POWER_SUPPLY_PROP_HEALTH,
792 	POWER_SUPPLY_PROP_MANUFACTURER,
793 };
794 
795 struct bq27xxx_dm_reg {
796 	u8 subclass_id;
797 	u8 offset;
798 	u8 bytes;
799 	u16 min, max;
800 };
801 
802 enum bq27xxx_dm_reg_id {
803 	BQ27XXX_DM_DESIGN_CAPACITY = 0,
804 	BQ27XXX_DM_DESIGN_ENERGY,
805 	BQ27XXX_DM_TERMINATE_VOLTAGE,
806 };
807 
808 #define bq27000_dm_regs 0
809 #define bq27010_dm_regs 0
810 #define bq2750x_dm_regs 0
811 #define bq2751x_dm_regs 0
812 #define bq2752x_dm_regs 0
813 
814 #if 0 /* not yet tested */
815 static struct bq27xxx_dm_reg bq27500_dm_regs[] = {
816 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 48, 10, 2,    0, 65535 },
817 	[BQ27XXX_DM_DESIGN_ENERGY]     = { }, /* missing on chip */
818 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 48, 2, 1000, 32767 },
819 };
820 #else
821 #define bq27500_dm_regs 0
822 #endif
823 
824 /* todo create data memory definitions from datasheets and test on chips */
825 #define bq27510g1_dm_regs 0
826 #define bq27510g2_dm_regs 0
827 #define bq27510g3_dm_regs 0
828 #define bq27520g1_dm_regs 0
829 #define bq27520g2_dm_regs 0
830 #define bq27520g3_dm_regs 0
831 #define bq27520g4_dm_regs 0
832 #define bq27521_dm_regs 0
833 #define bq27530_dm_regs 0
834 #define bq27531_dm_regs 0
835 #define bq27541_dm_regs 0
836 #define bq27542_dm_regs 0
837 #define bq27546_dm_regs 0
838 #define bq27742_dm_regs 0
839 
840 #if 0 /* not yet tested */
841 static struct bq27xxx_dm_reg bq27545_dm_regs[] = {
842 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 48, 23, 2,    0, 32767 },
843 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 48, 25, 2,    0, 32767 },
844 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 67, 2, 2800,  3700 },
845 };
846 #else
847 #define bq27545_dm_regs 0
848 #endif
849 
850 static struct bq27xxx_dm_reg bq27411_dm_regs[] = {
851 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 10, 2,    0, 32767 },
852 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 12, 2,    0, 32767 },
853 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2800,  3700 },
854 };
855 
856 static struct bq27xxx_dm_reg bq27421_dm_regs[] = {
857 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 10, 2,    0,  8000 },
858 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 12, 2,    0, 32767 },
859 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2500,  3700 },
860 };
861 
862 static struct bq27xxx_dm_reg bq27425_dm_regs[] = {
863 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 12, 2,    0, 32767 },
864 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 14, 2,    0, 32767 },
865 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 18, 2, 2800,  3700 },
866 };
867 
868 static struct bq27xxx_dm_reg bq27426_dm_regs[] = {
869 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82,  6, 2,    0,  8000 },
870 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82,  8, 2,    0, 32767 },
871 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 10, 2, 2500,  3700 },
872 };
873 
874 #if 0 /* not yet tested */
875 #define bq27441_dm_regs bq27421_dm_regs
876 #else
877 #define bq27441_dm_regs 0
878 #endif
879 
880 #if 0 /* not yet tested */
881 static struct bq27xxx_dm_reg bq27621_dm_regs[] = {
882 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 3, 2,    0,  8000 },
883 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 5, 2,    0, 32767 },
884 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 9, 2, 2500,  3700 },
885 };
886 #else
887 #define bq27621_dm_regs 0
888 #endif
889 
890 #define bq27z561_dm_regs 0
891 #define bq28z610_dm_regs 0
892 #define bq34z100_dm_regs 0
893 
894 #define BQ27XXX_O_ZERO		BIT(0)
895 #define BQ27XXX_O_OTDC		BIT(1) /* has OTC/OTD overtemperature flags */
896 #define BQ27XXX_O_UTOT		BIT(2) /* has OT overtemperature flag */
897 #define BQ27XXX_O_CFGUP		BIT(3)
898 #define BQ27XXX_O_RAM		BIT(4)
899 #define BQ27Z561_O_BITS		BIT(5)
900 #define BQ27XXX_O_SOC_SI	BIT(6) /* SoC is single register */
901 #define BQ27XXX_O_HAS_CI	BIT(7) /* has Capacity Inaccurate flag */
902 #define BQ27XXX_O_MUL_CHEM	BIT(8) /* multiple chemistries supported */
903 
904 #define BQ27XXX_DATA(ref, key, opt) {		\
905 	.opts = (opt),				\
906 	.unseal_key = key,			\
907 	.regs  = ref##_regs,			\
908 	.dm_regs = ref##_dm_regs,		\
909 	.props = ref##_props,			\
910 	.props_size = ARRAY_SIZE(ref##_props) }
911 
912 static struct {
913 	u32 opts;
914 	u32 unseal_key;
915 	u8 *regs;
916 	struct bq27xxx_dm_reg *dm_regs;
917 	enum power_supply_property *props;
918 	size_t props_size;
919 } bq27xxx_chip_data[] = {
920 	[BQ27000]   = BQ27XXX_DATA(bq27000,   0         , BQ27XXX_O_ZERO | BQ27XXX_O_SOC_SI | BQ27XXX_O_HAS_CI),
921 	[BQ27010]   = BQ27XXX_DATA(bq27010,   0         , BQ27XXX_O_ZERO | BQ27XXX_O_SOC_SI | BQ27XXX_O_HAS_CI),
922 	[BQ2750X]   = BQ27XXX_DATA(bq2750x,   0         , BQ27XXX_O_OTDC),
923 	[BQ2751X]   = BQ27XXX_DATA(bq2751x,   0         , BQ27XXX_O_OTDC),
924 	[BQ2752X]   = BQ27XXX_DATA(bq2752x,   0         , BQ27XXX_O_OTDC),
925 	[BQ27500]   = BQ27XXX_DATA(bq27500,   0x04143672, BQ27XXX_O_OTDC),
926 	[BQ27510G1] = BQ27XXX_DATA(bq27510g1, 0         , BQ27XXX_O_OTDC),
927 	[BQ27510G2] = BQ27XXX_DATA(bq27510g2, 0         , BQ27XXX_O_OTDC),
928 	[BQ27510G3] = BQ27XXX_DATA(bq27510g3, 0         , BQ27XXX_O_OTDC),
929 	[BQ27520G1] = BQ27XXX_DATA(bq27520g1, 0         , BQ27XXX_O_OTDC),
930 	[BQ27520G2] = BQ27XXX_DATA(bq27520g2, 0         , BQ27XXX_O_OTDC),
931 	[BQ27520G3] = BQ27XXX_DATA(bq27520g3, 0         , BQ27XXX_O_OTDC),
932 	[BQ27520G4] = BQ27XXX_DATA(bq27520g4, 0         , BQ27XXX_O_OTDC),
933 	[BQ27521]   = BQ27XXX_DATA(bq27521,   0         , 0),
934 	[BQ27530]   = BQ27XXX_DATA(bq27530,   0         , BQ27XXX_O_UTOT),
935 	[BQ27531]   = BQ27XXX_DATA(bq27531,   0         , BQ27XXX_O_UTOT),
936 	[BQ27541]   = BQ27XXX_DATA(bq27541,   0         , BQ27XXX_O_OTDC),
937 	[BQ27542]   = BQ27XXX_DATA(bq27542,   0         , BQ27XXX_O_OTDC),
938 	[BQ27546]   = BQ27XXX_DATA(bq27546,   0         , BQ27XXX_O_OTDC),
939 	[BQ27742]   = BQ27XXX_DATA(bq27742,   0         , BQ27XXX_O_OTDC),
940 	[BQ27545]   = BQ27XXX_DATA(bq27545,   0x04143672, BQ27XXX_O_OTDC),
941 	[BQ27411]   = BQ27XXX_DATA(bq27411,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
942 	[BQ27421]   = BQ27XXX_DATA(bq27421,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
943 	[BQ27425]   = BQ27XXX_DATA(bq27425,   0x04143672, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP),
944 	[BQ27426]   = BQ27XXX_DATA(bq27426,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
945 	[BQ27441]   = BQ27XXX_DATA(bq27441,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
946 	[BQ27621]   = BQ27XXX_DATA(bq27621,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
947 	[BQ27Z561]  = BQ27XXX_DATA(bq27z561,  0         , BQ27Z561_O_BITS),
948 	[BQ28Z610]  = BQ27XXX_DATA(bq28z610,  0         , BQ27Z561_O_BITS),
949 	[BQ34Z100]  = BQ27XXX_DATA(bq34z100,  0         , BQ27XXX_O_OTDC | BQ27XXX_O_SOC_SI | \
950 							  BQ27XXX_O_HAS_CI | BQ27XXX_O_MUL_CHEM),
951 };
952 
953 static DEFINE_MUTEX(bq27xxx_list_lock);
954 static LIST_HEAD(bq27xxx_battery_devices);
955 
956 #define BQ27XXX_MSLEEP(i) usleep_range((i)*1000, (i)*1000+500)
957 
958 #define BQ27XXX_DM_SZ	32
959 
960 /**
961  * struct bq27xxx_dm_buf - chip data memory buffer
962  * @class: data memory subclass_id
963  * @block: data memory block number
964  * @data: data from/for the block
965  * @has_data: true if data has been filled by read
966  * @dirty: true if data has changed since last read/write
967  *
968  * Encapsulates info required to manage chip data memory blocks.
969  */
970 struct bq27xxx_dm_buf {
971 	u8 class;
972 	u8 block;
973 	u8 data[BQ27XXX_DM_SZ];
974 	bool has_data, dirty;
975 };
976 
977 #define BQ27XXX_DM_BUF(di, i) { \
978 	.class = (di)->dm_regs[i].subclass_id, \
979 	.block = (di)->dm_regs[i].offset / BQ27XXX_DM_SZ, \
980 }
981 
982 static inline u16 *bq27xxx_dm_reg_ptr(struct bq27xxx_dm_buf *buf,
983 				      struct bq27xxx_dm_reg *reg)
984 {
985 	if (buf->class == reg->subclass_id &&
986 	    buf->block == reg->offset / BQ27XXX_DM_SZ)
987 		return (u16 *) (buf->data + reg->offset % BQ27XXX_DM_SZ);
988 
989 	return NULL;
990 }
991 
992 static const char * const bq27xxx_dm_reg_name[] = {
993 	[BQ27XXX_DM_DESIGN_CAPACITY] = "design-capacity",
994 	[BQ27XXX_DM_DESIGN_ENERGY] = "design-energy",
995 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = "terminate-voltage",
996 };
997 
998 
999 static bool bq27xxx_dt_to_nvm = true;
1000 module_param_named(dt_monitored_battery_updates_nvm, bq27xxx_dt_to_nvm, bool, 0444);
1001 MODULE_PARM_DESC(dt_monitored_battery_updates_nvm,
1002 	"Devicetree monitored-battery config updates data memory on NVM/flash chips.\n"
1003 	"Users must set this =0 when installing a different type of battery!\n"
1004 	"Default is =1."
1005 #ifndef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1006 	"\nSetting this affects future kernel updates, not the current configuration."
1007 #endif
1008 );
1009 
1010 static int poll_interval_param_set(const char *val, const struct kernel_param *kp)
1011 {
1012 	struct bq27xxx_device_info *di;
1013 	unsigned int prev_val = *(unsigned int *) kp->arg;
1014 	int ret;
1015 
1016 	ret = param_set_uint(val, kp);
1017 	if (ret < 0 || prev_val == *(unsigned int *) kp->arg)
1018 		return ret;
1019 
1020 	mutex_lock(&bq27xxx_list_lock);
1021 	list_for_each_entry(di, &bq27xxx_battery_devices, list) {
1022 		cancel_delayed_work_sync(&di->work);
1023 		schedule_delayed_work(&di->work, 0);
1024 	}
1025 	mutex_unlock(&bq27xxx_list_lock);
1026 
1027 	return ret;
1028 }
1029 
1030 static const struct kernel_param_ops param_ops_poll_interval = {
1031 	.get = param_get_uint,
1032 	.set = poll_interval_param_set,
1033 };
1034 
1035 static unsigned int poll_interval = 360;
1036 module_param_cb(poll_interval, &param_ops_poll_interval, &poll_interval, 0644);
1037 MODULE_PARM_DESC(poll_interval,
1038 		 "battery poll interval in seconds - 0 disables polling");
1039 
1040 /*
1041  * Common code for BQ27xxx devices
1042  */
1043 
1044 static inline int bq27xxx_read(struct bq27xxx_device_info *di, int reg_index,
1045 			       bool single)
1046 {
1047 	int ret;
1048 
1049 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1050 		return -EINVAL;
1051 
1052 	ret = di->bus.read(di, di->regs[reg_index], single);
1053 	if (ret < 0)
1054 		dev_dbg(di->dev, "failed to read register 0x%02x (index %d)\n",
1055 			di->regs[reg_index], reg_index);
1056 
1057 	return ret;
1058 }
1059 
1060 static inline int bq27xxx_write(struct bq27xxx_device_info *di, int reg_index,
1061 				u16 value, bool single)
1062 {
1063 	int ret;
1064 
1065 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1066 		return -EINVAL;
1067 
1068 	if (!di->bus.write)
1069 		return -EPERM;
1070 
1071 	ret = di->bus.write(di, di->regs[reg_index], value, single);
1072 	if (ret < 0)
1073 		dev_dbg(di->dev, "failed to write register 0x%02x (index %d)\n",
1074 			di->regs[reg_index], reg_index);
1075 
1076 	return ret;
1077 }
1078 
1079 static inline int bq27xxx_read_block(struct bq27xxx_device_info *di, int reg_index,
1080 				     u8 *data, int len)
1081 {
1082 	int ret;
1083 
1084 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1085 		return -EINVAL;
1086 
1087 	if (!di->bus.read_bulk)
1088 		return -EPERM;
1089 
1090 	ret = di->bus.read_bulk(di, di->regs[reg_index], data, len);
1091 	if (ret < 0)
1092 		dev_dbg(di->dev, "failed to read_bulk register 0x%02x (index %d)\n",
1093 			di->regs[reg_index], reg_index);
1094 
1095 	return ret;
1096 }
1097 
1098 static inline int bq27xxx_write_block(struct bq27xxx_device_info *di, int reg_index,
1099 				      u8 *data, int len)
1100 {
1101 	int ret;
1102 
1103 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1104 		return -EINVAL;
1105 
1106 	if (!di->bus.write_bulk)
1107 		return -EPERM;
1108 
1109 	ret = di->bus.write_bulk(di, di->regs[reg_index], data, len);
1110 	if (ret < 0)
1111 		dev_dbg(di->dev, "failed to write_bulk register 0x%02x (index %d)\n",
1112 			di->regs[reg_index], reg_index);
1113 
1114 	return ret;
1115 }
1116 
1117 static int bq27xxx_battery_seal(struct bq27xxx_device_info *di)
1118 {
1119 	int ret;
1120 
1121 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_SEALED, false);
1122 	if (ret < 0) {
1123 		dev_err(di->dev, "bus error on seal: %d\n", ret);
1124 		return ret;
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 static int bq27xxx_battery_unseal(struct bq27xxx_device_info *di)
1131 {
1132 	int ret;
1133 
1134 	if (di->unseal_key == 0) {
1135 		dev_err(di->dev, "unseal failed due to missing key\n");
1136 		return -EINVAL;
1137 	}
1138 
1139 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)(di->unseal_key >> 16), false);
1140 	if (ret < 0)
1141 		goto out;
1142 
1143 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)di->unseal_key, false);
1144 	if (ret < 0)
1145 		goto out;
1146 
1147 	return 0;
1148 
1149 out:
1150 	dev_err(di->dev, "bus error on unseal: %d\n", ret);
1151 	return ret;
1152 }
1153 
1154 static u8 bq27xxx_battery_checksum_dm_block(struct bq27xxx_dm_buf *buf)
1155 {
1156 	u16 sum = 0;
1157 	int i;
1158 
1159 	for (i = 0; i < BQ27XXX_DM_SZ; i++)
1160 		sum += buf->data[i];
1161 	sum &= 0xff;
1162 
1163 	return 0xff - sum;
1164 }
1165 
1166 static int bq27xxx_battery_read_dm_block(struct bq27xxx_device_info *di,
1167 					 struct bq27xxx_dm_buf *buf)
1168 {
1169 	int ret;
1170 
1171 	buf->has_data = false;
1172 
1173 	ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
1174 	if (ret < 0)
1175 		goto out;
1176 
1177 	ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
1178 	if (ret < 0)
1179 		goto out;
1180 
1181 	BQ27XXX_MSLEEP(1);
1182 
1183 	ret = bq27xxx_read_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
1184 	if (ret < 0)
1185 		goto out;
1186 
1187 	ret = bq27xxx_read(di, BQ27XXX_DM_CKSUM, true);
1188 	if (ret < 0)
1189 		goto out;
1190 
1191 	if ((u8)ret != bq27xxx_battery_checksum_dm_block(buf)) {
1192 		ret = -EINVAL;
1193 		goto out;
1194 	}
1195 
1196 	buf->has_data = true;
1197 	buf->dirty = false;
1198 
1199 	return 0;
1200 
1201 out:
1202 	dev_err(di->dev, "bus error reading chip memory: %d\n", ret);
1203 	return ret;
1204 }
1205 
1206 static void bq27xxx_battery_update_dm_block(struct bq27xxx_device_info *di,
1207 					    struct bq27xxx_dm_buf *buf,
1208 					    enum bq27xxx_dm_reg_id reg_id,
1209 					    unsigned int val)
1210 {
1211 	struct bq27xxx_dm_reg *reg = &di->dm_regs[reg_id];
1212 	const char *str = bq27xxx_dm_reg_name[reg_id];
1213 	u16 *prev = bq27xxx_dm_reg_ptr(buf, reg);
1214 
1215 	if (prev == NULL) {
1216 		dev_warn(di->dev, "buffer does not match %s dm spec\n", str);
1217 		return;
1218 	}
1219 
1220 	if (reg->bytes != 2) {
1221 		dev_warn(di->dev, "%s dm spec has unsupported byte size\n", str);
1222 		return;
1223 	}
1224 
1225 	if (!buf->has_data)
1226 		return;
1227 
1228 	if (be16_to_cpup(prev) == val) {
1229 		dev_info(di->dev, "%s has %u\n", str, val);
1230 		return;
1231 	}
1232 
1233 #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1234 	if (!(di->opts & BQ27XXX_O_RAM) && !bq27xxx_dt_to_nvm) {
1235 #else
1236 	if (!(di->opts & BQ27XXX_O_RAM)) {
1237 #endif
1238 		/* devicetree and NVM differ; defer to NVM */
1239 		dev_warn(di->dev, "%s has %u; update to %u disallowed "
1240 #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1241 			 "by dt_monitored_battery_updates_nvm=0"
1242 #else
1243 			 "for flash/NVM data memory"
1244 #endif
1245 			 "\n", str, be16_to_cpup(prev), val);
1246 		return;
1247 	}
1248 
1249 	dev_info(di->dev, "update %s to %u\n", str, val);
1250 
1251 	*prev = cpu_to_be16(val);
1252 	buf->dirty = true;
1253 }
1254 
1255 static int bq27xxx_battery_cfgupdate_priv(struct bq27xxx_device_info *di, bool active)
1256 {
1257 	const int limit = 100;
1258 	u16 cmd = active ? BQ27XXX_SET_CFGUPDATE : BQ27XXX_SOFT_RESET;
1259 	int ret, try = limit;
1260 
1261 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, cmd, false);
1262 	if (ret < 0)
1263 		return ret;
1264 
1265 	do {
1266 		BQ27XXX_MSLEEP(25);
1267 		ret = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false);
1268 		if (ret < 0)
1269 			return ret;
1270 	} while (!!(ret & BQ27XXX_FLAG_CFGUP) != active && --try);
1271 
1272 	if (!try && di->chip != BQ27425) { // 425 has a bug
1273 		dev_err(di->dev, "timed out waiting for cfgupdate flag %d\n", active);
1274 		return -EINVAL;
1275 	}
1276 
1277 	if (limit - try > 3)
1278 		dev_warn(di->dev, "cfgupdate %d, retries %d\n", active, limit - try);
1279 
1280 	return 0;
1281 }
1282 
1283 static inline int bq27xxx_battery_set_cfgupdate(struct bq27xxx_device_info *di)
1284 {
1285 	int ret = bq27xxx_battery_cfgupdate_priv(di, true);
1286 	if (ret < 0 && ret != -EINVAL)
1287 		dev_err(di->dev, "bus error on set_cfgupdate: %d\n", ret);
1288 
1289 	return ret;
1290 }
1291 
1292 static inline int bq27xxx_battery_soft_reset(struct bq27xxx_device_info *di)
1293 {
1294 	int ret = bq27xxx_battery_cfgupdate_priv(di, false);
1295 	if (ret < 0 && ret != -EINVAL)
1296 		dev_err(di->dev, "bus error on soft_reset: %d\n", ret);
1297 
1298 	return ret;
1299 }
1300 
1301 static int bq27xxx_battery_write_dm_block(struct bq27xxx_device_info *di,
1302 					  struct bq27xxx_dm_buf *buf)
1303 {
1304 	bool cfgup = di->opts & BQ27XXX_O_CFGUP;
1305 	int ret;
1306 
1307 	if (!buf->dirty)
1308 		return 0;
1309 
1310 	if (cfgup) {
1311 		ret = bq27xxx_battery_set_cfgupdate(di);
1312 		if (ret < 0)
1313 			return ret;
1314 	}
1315 
1316 	ret = bq27xxx_write(di, BQ27XXX_DM_CTRL, 0, true);
1317 	if (ret < 0)
1318 		goto out;
1319 
1320 	ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
1321 	if (ret < 0)
1322 		goto out;
1323 
1324 	ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
1325 	if (ret < 0)
1326 		goto out;
1327 
1328 	BQ27XXX_MSLEEP(1);
1329 
1330 	ret = bq27xxx_write_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
1331 	if (ret < 0)
1332 		goto out;
1333 
1334 	ret = bq27xxx_write(di, BQ27XXX_DM_CKSUM,
1335 			    bq27xxx_battery_checksum_dm_block(buf), true);
1336 	if (ret < 0)
1337 		goto out;
1338 
1339 	/* DO NOT read BQ27XXX_DM_CKSUM here to verify it! That may cause NVM
1340 	 * corruption on the '425 chip (and perhaps others), which can damage
1341 	 * the chip.
1342 	 */
1343 
1344 	if (cfgup) {
1345 		BQ27XXX_MSLEEP(1);
1346 		ret = bq27xxx_battery_soft_reset(di);
1347 		if (ret < 0)
1348 			return ret;
1349 	} else {
1350 		BQ27XXX_MSLEEP(100); /* flash DM updates in <100ms */
1351 	}
1352 
1353 	buf->dirty = false;
1354 
1355 	return 0;
1356 
1357 out:
1358 	if (cfgup)
1359 		bq27xxx_battery_soft_reset(di);
1360 
1361 	dev_err(di->dev, "bus error writing chip memory: %d\n", ret);
1362 	return ret;
1363 }
1364 
1365 static void bq27xxx_battery_set_config(struct bq27xxx_device_info *di,
1366 				       struct power_supply_battery_info *info)
1367 {
1368 	struct bq27xxx_dm_buf bd = BQ27XXX_DM_BUF(di, BQ27XXX_DM_DESIGN_CAPACITY);
1369 	struct bq27xxx_dm_buf bt = BQ27XXX_DM_BUF(di, BQ27XXX_DM_TERMINATE_VOLTAGE);
1370 	bool updated;
1371 
1372 	if (bq27xxx_battery_unseal(di) < 0)
1373 		return;
1374 
1375 	if (info->charge_full_design_uah != -EINVAL &&
1376 	    info->energy_full_design_uwh != -EINVAL) {
1377 		bq27xxx_battery_read_dm_block(di, &bd);
1378 		/* assume design energy & capacity are in same block */
1379 		bq27xxx_battery_update_dm_block(di, &bd,
1380 					BQ27XXX_DM_DESIGN_CAPACITY,
1381 					info->charge_full_design_uah / 1000);
1382 		bq27xxx_battery_update_dm_block(di, &bd,
1383 					BQ27XXX_DM_DESIGN_ENERGY,
1384 					info->energy_full_design_uwh / 1000);
1385 	}
1386 
1387 	if (info->voltage_min_design_uv != -EINVAL) {
1388 		bool same = bd.class == bt.class && bd.block == bt.block;
1389 		if (!same)
1390 			bq27xxx_battery_read_dm_block(di, &bt);
1391 		bq27xxx_battery_update_dm_block(di, same ? &bd : &bt,
1392 					BQ27XXX_DM_TERMINATE_VOLTAGE,
1393 					info->voltage_min_design_uv / 1000);
1394 	}
1395 
1396 	updated = bd.dirty || bt.dirty;
1397 
1398 	bq27xxx_battery_write_dm_block(di, &bd);
1399 	bq27xxx_battery_write_dm_block(di, &bt);
1400 
1401 	bq27xxx_battery_seal(di);
1402 
1403 	if (updated && !(di->opts & BQ27XXX_O_CFGUP)) {
1404 		bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_RESET, false);
1405 		BQ27XXX_MSLEEP(300); /* reset time is not documented */
1406 	}
1407 	/* assume bq27xxx_battery_update() is called hereafter */
1408 }
1409 
1410 static void bq27xxx_battery_settings(struct bq27xxx_device_info *di)
1411 {
1412 	struct power_supply_battery_info info = {};
1413 	unsigned int min, max;
1414 
1415 	if (power_supply_get_battery_info(di->bat, &info) < 0)
1416 		return;
1417 
1418 	if (!di->dm_regs) {
1419 		dev_warn(di->dev, "data memory update not supported for chip\n");
1420 		return;
1421 	}
1422 
1423 	if (info.energy_full_design_uwh != info.charge_full_design_uah) {
1424 		if (info.energy_full_design_uwh == -EINVAL)
1425 			dev_warn(di->dev, "missing battery:energy-full-design-microwatt-hours\n");
1426 		else if (info.charge_full_design_uah == -EINVAL)
1427 			dev_warn(di->dev, "missing battery:charge-full-design-microamp-hours\n");
1428 	}
1429 
1430 	/* assume min == 0 */
1431 	max = di->dm_regs[BQ27XXX_DM_DESIGN_ENERGY].max;
1432 	if (info.energy_full_design_uwh > max * 1000) {
1433 		dev_err(di->dev, "invalid battery:energy-full-design-microwatt-hours %d\n",
1434 			info.energy_full_design_uwh);
1435 		info.energy_full_design_uwh = -EINVAL;
1436 	}
1437 
1438 	/* assume min == 0 */
1439 	max = di->dm_regs[BQ27XXX_DM_DESIGN_CAPACITY].max;
1440 	if (info.charge_full_design_uah > max * 1000) {
1441 		dev_err(di->dev, "invalid battery:charge-full-design-microamp-hours %d\n",
1442 			info.charge_full_design_uah);
1443 		info.charge_full_design_uah = -EINVAL;
1444 	}
1445 
1446 	min = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].min;
1447 	max = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].max;
1448 	if ((info.voltage_min_design_uv < min * 1000 ||
1449 	     info.voltage_min_design_uv > max * 1000) &&
1450 	     info.voltage_min_design_uv != -EINVAL) {
1451 		dev_err(di->dev, "invalid battery:voltage-min-design-microvolt %d\n",
1452 			info.voltage_min_design_uv);
1453 		info.voltage_min_design_uv = -EINVAL;
1454 	}
1455 
1456 	if ((info.energy_full_design_uwh != -EINVAL &&
1457 	     info.charge_full_design_uah != -EINVAL) ||
1458 	     info.voltage_min_design_uv  != -EINVAL)
1459 		bq27xxx_battery_set_config(di, &info);
1460 }
1461 
1462 /*
1463  * Return the battery State-of-Charge
1464  * Or < 0 if something fails.
1465  */
1466 static int bq27xxx_battery_read_soc(struct bq27xxx_device_info *di)
1467 {
1468 	int soc;
1469 
1470 	if (di->opts & BQ27XXX_O_SOC_SI)
1471 		soc = bq27xxx_read(di, BQ27XXX_REG_SOC, true);
1472 	else
1473 		soc = bq27xxx_read(di, BQ27XXX_REG_SOC, false);
1474 
1475 	if (soc < 0)
1476 		dev_dbg(di->dev, "error reading State-of-Charge\n");
1477 
1478 	return soc;
1479 }
1480 
1481 /*
1482  * Return a battery charge value in µAh
1483  * Or < 0 if something fails.
1484  */
1485 static int bq27xxx_battery_read_charge(struct bq27xxx_device_info *di, u8 reg)
1486 {
1487 	int charge;
1488 
1489 	charge = bq27xxx_read(di, reg, false);
1490 	if (charge < 0) {
1491 		dev_dbg(di->dev, "error reading charge register %02x: %d\n",
1492 			reg, charge);
1493 		return charge;
1494 	}
1495 
1496 	if (di->opts & BQ27XXX_O_ZERO)
1497 		charge *= BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1498 	else
1499 		charge *= 1000;
1500 
1501 	return charge;
1502 }
1503 
1504 /*
1505  * Return the battery Nominal available capacity in µAh
1506  * Or < 0 if something fails.
1507  */
1508 static inline int bq27xxx_battery_read_nac(struct bq27xxx_device_info *di)
1509 {
1510 	int flags;
1511 
1512 	if (di->opts & BQ27XXX_O_ZERO) {
1513 		flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true);
1514 		if (flags >= 0 && (flags & BQ27000_FLAG_CI))
1515 			return -ENODATA;
1516 	}
1517 
1518 	return bq27xxx_battery_read_charge(di, BQ27XXX_REG_NAC);
1519 }
1520 
1521 /*
1522  * Return the battery Full Charge Capacity in µAh
1523  * Or < 0 if something fails.
1524  */
1525 static inline int bq27xxx_battery_read_fcc(struct bq27xxx_device_info *di)
1526 {
1527 	return bq27xxx_battery_read_charge(di, BQ27XXX_REG_FCC);
1528 }
1529 
1530 /*
1531  * Return the Design Capacity in µAh
1532  * Or < 0 if something fails.
1533  */
1534 static int bq27xxx_battery_read_dcap(struct bq27xxx_device_info *di)
1535 {
1536 	int dcap;
1537 
1538 	if (di->opts & BQ27XXX_O_ZERO)
1539 		dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, true);
1540 	else
1541 		dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, false);
1542 
1543 	if (dcap < 0) {
1544 		dev_dbg(di->dev, "error reading initial last measured discharge\n");
1545 		return dcap;
1546 	}
1547 
1548 	if (di->opts & BQ27XXX_O_ZERO)
1549 		dcap = (dcap << 8) * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1550 	else
1551 		dcap *= 1000;
1552 
1553 	return dcap;
1554 }
1555 
1556 /*
1557  * Return the battery Available energy in µWh
1558  * Or < 0 if something fails.
1559  */
1560 static int bq27xxx_battery_read_energy(struct bq27xxx_device_info *di)
1561 {
1562 	int ae;
1563 
1564 	ae = bq27xxx_read(di, BQ27XXX_REG_AE, false);
1565 	if (ae < 0) {
1566 		dev_dbg(di->dev, "error reading available energy\n");
1567 		return ae;
1568 	}
1569 
1570 	if (di->opts & BQ27XXX_O_ZERO)
1571 		ae *= BQ27XXX_POWER_CONSTANT / BQ27XXX_RS;
1572 	else
1573 		ae *= 1000;
1574 
1575 	return ae;
1576 }
1577 
1578 /*
1579  * Return the battery temperature in tenths of degree Kelvin
1580  * Or < 0 if something fails.
1581  */
1582 static int bq27xxx_battery_read_temperature(struct bq27xxx_device_info *di)
1583 {
1584 	int temp;
1585 
1586 	temp = bq27xxx_read(di, BQ27XXX_REG_TEMP, false);
1587 	if (temp < 0) {
1588 		dev_err(di->dev, "error reading temperature\n");
1589 		return temp;
1590 	}
1591 
1592 	if (di->opts & BQ27XXX_O_ZERO)
1593 		temp = 5 * temp / 2;
1594 
1595 	return temp;
1596 }
1597 
1598 /*
1599  * Return the battery Cycle count total
1600  * Or < 0 if something fails.
1601  */
1602 static int bq27xxx_battery_read_cyct(struct bq27xxx_device_info *di)
1603 {
1604 	int cyct;
1605 
1606 	cyct = bq27xxx_read(di, BQ27XXX_REG_CYCT, false);
1607 	if (cyct < 0)
1608 		dev_err(di->dev, "error reading cycle count total\n");
1609 
1610 	return cyct;
1611 }
1612 
1613 /*
1614  * Read a time register.
1615  * Return < 0 if something fails.
1616  */
1617 static int bq27xxx_battery_read_time(struct bq27xxx_device_info *di, u8 reg)
1618 {
1619 	int tval;
1620 
1621 	tval = bq27xxx_read(di, reg, false);
1622 	if (tval < 0) {
1623 		dev_dbg(di->dev, "error reading time register %02x: %d\n",
1624 			reg, tval);
1625 		return tval;
1626 	}
1627 
1628 	if (tval == 65535)
1629 		return -ENODATA;
1630 
1631 	return tval * 60;
1632 }
1633 
1634 /*
1635  * Read an average power register.
1636  * Return < 0 if something fails.
1637  */
1638 static int bq27xxx_battery_read_pwr_avg(struct bq27xxx_device_info *di)
1639 {
1640 	int tval;
1641 
1642 	tval = bq27xxx_read(di, BQ27XXX_REG_AP, false);
1643 	if (tval < 0) {
1644 		dev_err(di->dev, "error reading average power register  %02x: %d\n",
1645 			BQ27XXX_REG_AP, tval);
1646 		return tval;
1647 	}
1648 
1649 	if (di->opts & BQ27XXX_O_ZERO)
1650 		return (tval * BQ27XXX_POWER_CONSTANT) / BQ27XXX_RS;
1651 	else
1652 		return tval;
1653 }
1654 
1655 /*
1656  * Returns true if a battery over temperature condition is detected
1657  */
1658 static bool bq27xxx_battery_overtemp(struct bq27xxx_device_info *di, u16 flags)
1659 {
1660 	if (di->opts & BQ27XXX_O_OTDC)
1661 		return flags & (BQ27XXX_FLAG_OTC | BQ27XXX_FLAG_OTD);
1662         if (di->opts & BQ27XXX_O_UTOT)
1663 		return flags & BQ27XXX_FLAG_OT;
1664 
1665 	return false;
1666 }
1667 
1668 /*
1669  * Returns true if a battery under temperature condition is detected
1670  */
1671 static bool bq27xxx_battery_undertemp(struct bq27xxx_device_info *di, u16 flags)
1672 {
1673 	if (di->opts & BQ27XXX_O_UTOT)
1674 		return flags & BQ27XXX_FLAG_UT;
1675 
1676 	return false;
1677 }
1678 
1679 /*
1680  * Returns true if a low state of charge condition is detected
1681  */
1682 static bool bq27xxx_battery_dead(struct bq27xxx_device_info *di, u16 flags)
1683 {
1684 	if (di->opts & BQ27XXX_O_ZERO)
1685 		return flags & (BQ27000_FLAG_EDV1 | BQ27000_FLAG_EDVF);
1686 	else if (di->opts & BQ27Z561_O_BITS)
1687 		return flags & BQ27Z561_FLAG_FDC;
1688 	else
1689 		return flags & (BQ27XXX_FLAG_SOC1 | BQ27XXX_FLAG_SOCF);
1690 }
1691 
1692 static int bq27xxx_battery_read_health(struct bq27xxx_device_info *di)
1693 {
1694 	/* Unlikely but important to return first */
1695 	if (unlikely(bq27xxx_battery_overtemp(di, di->cache.flags)))
1696 		return POWER_SUPPLY_HEALTH_OVERHEAT;
1697 	if (unlikely(bq27xxx_battery_undertemp(di, di->cache.flags)))
1698 		return POWER_SUPPLY_HEALTH_COLD;
1699 	if (unlikely(bq27xxx_battery_dead(di, di->cache.flags)))
1700 		return POWER_SUPPLY_HEALTH_DEAD;
1701 
1702 	return POWER_SUPPLY_HEALTH_GOOD;
1703 }
1704 
1705 void bq27xxx_battery_update(struct bq27xxx_device_info *di)
1706 {
1707 	struct bq27xxx_reg_cache cache = {0, };
1708 	bool has_ci_flag = di->opts & BQ27XXX_O_HAS_CI;
1709 	bool has_singe_flag = di->opts & BQ27XXX_O_ZERO;
1710 
1711 	cache.flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, has_singe_flag);
1712 	if ((cache.flags & 0xff) == 0xff)
1713 		cache.flags = -1; /* read error */
1714 	if (cache.flags >= 0) {
1715 		cache.temperature = bq27xxx_battery_read_temperature(di);
1716 		if (has_ci_flag && (cache.flags & BQ27000_FLAG_CI)) {
1717 			dev_info_once(di->dev, "battery is not calibrated! ignoring capacity values\n");
1718 			cache.capacity = -ENODATA;
1719 			cache.energy = -ENODATA;
1720 			cache.time_to_empty = -ENODATA;
1721 			cache.time_to_empty_avg = -ENODATA;
1722 			cache.time_to_full = -ENODATA;
1723 			cache.charge_full = -ENODATA;
1724 			cache.health = -ENODATA;
1725 		} else {
1726 			if (di->regs[BQ27XXX_REG_TTE] != INVALID_REG_ADDR)
1727 				cache.time_to_empty = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTE);
1728 			if (di->regs[BQ27XXX_REG_TTECP] != INVALID_REG_ADDR)
1729 				cache.time_to_empty_avg = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTECP);
1730 			if (di->regs[BQ27XXX_REG_TTF] != INVALID_REG_ADDR)
1731 				cache.time_to_full = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTF);
1732 
1733 			cache.charge_full = bq27xxx_battery_read_fcc(di);
1734 			cache.capacity = bq27xxx_battery_read_soc(di);
1735 			if (di->regs[BQ27XXX_REG_AE] != INVALID_REG_ADDR)
1736 				cache.energy = bq27xxx_battery_read_energy(di);
1737 			di->cache.flags = cache.flags;
1738 			cache.health = bq27xxx_battery_read_health(di);
1739 		}
1740 		if (di->regs[BQ27XXX_REG_CYCT] != INVALID_REG_ADDR)
1741 			cache.cycle_count = bq27xxx_battery_read_cyct(di);
1742 		if (di->regs[BQ27XXX_REG_AP] != INVALID_REG_ADDR)
1743 			cache.power_avg = bq27xxx_battery_read_pwr_avg(di);
1744 
1745 		/* We only have to read charge design full once */
1746 		if (di->charge_design_full <= 0)
1747 			di->charge_design_full = bq27xxx_battery_read_dcap(di);
1748 	}
1749 
1750 	if ((di->cache.capacity != cache.capacity) ||
1751 	    (di->cache.flags != cache.flags))
1752 		power_supply_changed(di->bat);
1753 
1754 	if (memcmp(&di->cache, &cache, sizeof(cache)) != 0)
1755 		di->cache = cache;
1756 
1757 	di->last_update = jiffies;
1758 }
1759 EXPORT_SYMBOL_GPL(bq27xxx_battery_update);
1760 
1761 static void bq27xxx_battery_poll(struct work_struct *work)
1762 {
1763 	struct bq27xxx_device_info *di =
1764 			container_of(work, struct bq27xxx_device_info,
1765 				     work.work);
1766 
1767 	bq27xxx_battery_update(di);
1768 
1769 	if (poll_interval > 0)
1770 		schedule_delayed_work(&di->work, poll_interval * HZ);
1771 }
1772 
1773 /*
1774  * Return the battery average current in µA
1775  * Note that current can be negative signed as well
1776  * Or 0 if something fails.
1777  */
1778 static int bq27xxx_battery_current(struct bq27xxx_device_info *di,
1779 				   union power_supply_propval *val)
1780 {
1781 	int curr;
1782 	int flags;
1783 
1784 	curr = bq27xxx_read(di, BQ27XXX_REG_AI, false);
1785 	if (curr < 0) {
1786 		dev_err(di->dev, "error reading current\n");
1787 		return curr;
1788 	}
1789 
1790 	if (di->opts & BQ27XXX_O_ZERO) {
1791 		flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true);
1792 		if (flags & BQ27000_FLAG_CHGS) {
1793 			dev_dbg(di->dev, "negative current!\n");
1794 			curr = -curr;
1795 		}
1796 
1797 		val->intval = curr * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1798 	} else {
1799 		/* Other gauges return signed value */
1800 		val->intval = (int)((s16)curr) * 1000;
1801 	}
1802 
1803 	return 0;
1804 }
1805 
1806 static int bq27xxx_battery_status(struct bq27xxx_device_info *di,
1807 				  union power_supply_propval *val)
1808 {
1809 	int status;
1810 
1811 	if (di->opts & BQ27XXX_O_ZERO) {
1812 		if (di->cache.flags & BQ27000_FLAG_FC)
1813 			status = POWER_SUPPLY_STATUS_FULL;
1814 		else if (di->cache.flags & BQ27000_FLAG_CHGS)
1815 			status = POWER_SUPPLY_STATUS_CHARGING;
1816 		else
1817 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1818 	} else if (di->opts & BQ27Z561_O_BITS) {
1819 		if (di->cache.flags & BQ27Z561_FLAG_FC)
1820 			status = POWER_SUPPLY_STATUS_FULL;
1821 		else if (di->cache.flags & BQ27Z561_FLAG_DIS_CH)
1822 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1823 		else
1824 			status = POWER_SUPPLY_STATUS_CHARGING;
1825 	} else {
1826 		if (di->cache.flags & BQ27XXX_FLAG_FC)
1827 			status = POWER_SUPPLY_STATUS_FULL;
1828 		else if (di->cache.flags & BQ27XXX_FLAG_DSC)
1829 			status = POWER_SUPPLY_STATUS_DISCHARGING;
1830 		else
1831 			status = POWER_SUPPLY_STATUS_CHARGING;
1832 	}
1833 
1834 	if ((status == POWER_SUPPLY_STATUS_DISCHARGING) &&
1835 	    (power_supply_am_i_supplied(di->bat) > 0))
1836 		status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1837 
1838 	val->intval = status;
1839 
1840 	return 0;
1841 }
1842 
1843 static int bq27xxx_battery_capacity_level(struct bq27xxx_device_info *di,
1844 					  union power_supply_propval *val)
1845 {
1846 	int level;
1847 
1848 	if (di->opts & BQ27XXX_O_ZERO) {
1849 		if (di->cache.flags & BQ27000_FLAG_FC)
1850 			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1851 		else if (di->cache.flags & BQ27000_FLAG_EDV1)
1852 			level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1853 		else if (di->cache.flags & BQ27000_FLAG_EDVF)
1854 			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1855 		else
1856 			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1857 	} else if (di->opts & BQ27Z561_O_BITS) {
1858 		if (di->cache.flags & BQ27Z561_FLAG_FC)
1859 			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1860 		else if (di->cache.flags & BQ27Z561_FLAG_FDC)
1861 			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1862 		else
1863 			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1864 	} else {
1865 		if (di->cache.flags & BQ27XXX_FLAG_FC)
1866 			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1867 		else if (di->cache.flags & BQ27XXX_FLAG_SOC1)
1868 			level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1869 		else if (di->cache.flags & BQ27XXX_FLAG_SOCF)
1870 			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1871 		else
1872 			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1873 	}
1874 
1875 	val->intval = level;
1876 
1877 	return 0;
1878 }
1879 
1880 /*
1881  * Return the battery Voltage in millivolts
1882  * Or < 0 if something fails.
1883  */
1884 static int bq27xxx_battery_voltage(struct bq27xxx_device_info *di,
1885 				   union power_supply_propval *val)
1886 {
1887 	int volt;
1888 
1889 	volt = bq27xxx_read(di, BQ27XXX_REG_VOLT, false);
1890 	if (volt < 0) {
1891 		dev_err(di->dev, "error reading voltage\n");
1892 		return volt;
1893 	}
1894 
1895 	val->intval = volt * 1000;
1896 
1897 	return 0;
1898 }
1899 
1900 static int bq27xxx_simple_value(int value,
1901 				union power_supply_propval *val)
1902 {
1903 	if (value < 0)
1904 		return value;
1905 
1906 	val->intval = value;
1907 
1908 	return 0;
1909 }
1910 
1911 static int bq27xxx_battery_get_property(struct power_supply *psy,
1912 					enum power_supply_property psp,
1913 					union power_supply_propval *val)
1914 {
1915 	int ret = 0;
1916 	struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
1917 
1918 	mutex_lock(&di->lock);
1919 	if (time_is_before_jiffies(di->last_update + 5 * HZ)) {
1920 		cancel_delayed_work_sync(&di->work);
1921 		bq27xxx_battery_poll(&di->work.work);
1922 	}
1923 	mutex_unlock(&di->lock);
1924 
1925 	if (psp != POWER_SUPPLY_PROP_PRESENT && di->cache.flags < 0)
1926 		return -ENODEV;
1927 
1928 	switch (psp) {
1929 	case POWER_SUPPLY_PROP_STATUS:
1930 		ret = bq27xxx_battery_status(di, val);
1931 		break;
1932 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
1933 		ret = bq27xxx_battery_voltage(di, val);
1934 		break;
1935 	case POWER_SUPPLY_PROP_PRESENT:
1936 		val->intval = di->cache.flags < 0 ? 0 : 1;
1937 		break;
1938 	case POWER_SUPPLY_PROP_CURRENT_NOW:
1939 		ret = bq27xxx_battery_current(di, val);
1940 		break;
1941 	case POWER_SUPPLY_PROP_CAPACITY:
1942 		ret = bq27xxx_simple_value(di->cache.capacity, val);
1943 		break;
1944 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1945 		ret = bq27xxx_battery_capacity_level(di, val);
1946 		break;
1947 	case POWER_SUPPLY_PROP_TEMP:
1948 		ret = bq27xxx_simple_value(di->cache.temperature, val);
1949 		if (ret == 0)
1950 			val->intval -= 2731; /* convert decidegree k to c */
1951 		break;
1952 	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW:
1953 		ret = bq27xxx_simple_value(di->cache.time_to_empty, val);
1954 		break;
1955 	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
1956 		ret = bq27xxx_simple_value(di->cache.time_to_empty_avg, val);
1957 		break;
1958 	case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
1959 		ret = bq27xxx_simple_value(di->cache.time_to_full, val);
1960 		break;
1961 	case POWER_SUPPLY_PROP_TECHNOLOGY:
1962 		if (di->opts & BQ27XXX_O_MUL_CHEM)
1963 			val->intval = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
1964 		else
1965 			val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
1966 		break;
1967 	case POWER_SUPPLY_PROP_CHARGE_NOW:
1968 		ret = bq27xxx_simple_value(bq27xxx_battery_read_nac(di), val);
1969 		break;
1970 	case POWER_SUPPLY_PROP_CHARGE_FULL:
1971 		ret = bq27xxx_simple_value(di->cache.charge_full, val);
1972 		break;
1973 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
1974 		ret = bq27xxx_simple_value(di->charge_design_full, val);
1975 		break;
1976 	/*
1977 	 * TODO: Implement these to make registers set from
1978 	 * power_supply_battery_info visible in sysfs.
1979 	 */
1980 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
1981 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
1982 		return -EINVAL;
1983 	case POWER_SUPPLY_PROP_CYCLE_COUNT:
1984 		ret = bq27xxx_simple_value(di->cache.cycle_count, val);
1985 		break;
1986 	case POWER_SUPPLY_PROP_ENERGY_NOW:
1987 		ret = bq27xxx_simple_value(di->cache.energy, val);
1988 		break;
1989 	case POWER_SUPPLY_PROP_POWER_AVG:
1990 		ret = bq27xxx_simple_value(di->cache.power_avg, val);
1991 		break;
1992 	case POWER_SUPPLY_PROP_HEALTH:
1993 		ret = bq27xxx_simple_value(di->cache.health, val);
1994 		break;
1995 	case POWER_SUPPLY_PROP_MANUFACTURER:
1996 		val->strval = BQ27XXX_MANUFACTURER;
1997 		break;
1998 	default:
1999 		return -EINVAL;
2000 	}
2001 
2002 	return ret;
2003 }
2004 
2005 static void bq27xxx_external_power_changed(struct power_supply *psy)
2006 {
2007 	struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
2008 
2009 	cancel_delayed_work_sync(&di->work);
2010 	schedule_delayed_work(&di->work, 0);
2011 }
2012 
2013 int bq27xxx_battery_setup(struct bq27xxx_device_info *di)
2014 {
2015 	struct power_supply_desc *psy_desc;
2016 	struct power_supply_config psy_cfg = {
2017 		.of_node = di->dev->of_node,
2018 		.drv_data = di,
2019 	};
2020 
2021 	INIT_DELAYED_WORK(&di->work, bq27xxx_battery_poll);
2022 	mutex_init(&di->lock);
2023 
2024 	di->regs       = bq27xxx_chip_data[di->chip].regs;
2025 	di->unseal_key = bq27xxx_chip_data[di->chip].unseal_key;
2026 	di->dm_regs    = bq27xxx_chip_data[di->chip].dm_regs;
2027 	di->opts       = bq27xxx_chip_data[di->chip].opts;
2028 
2029 	psy_desc = devm_kzalloc(di->dev, sizeof(*psy_desc), GFP_KERNEL);
2030 	if (!psy_desc)
2031 		return -ENOMEM;
2032 
2033 	psy_desc->name = di->name;
2034 	psy_desc->type = POWER_SUPPLY_TYPE_BATTERY;
2035 	psy_desc->properties = bq27xxx_chip_data[di->chip].props;
2036 	psy_desc->num_properties = bq27xxx_chip_data[di->chip].props_size;
2037 	psy_desc->get_property = bq27xxx_battery_get_property;
2038 	psy_desc->external_power_changed = bq27xxx_external_power_changed;
2039 
2040 	di->bat = power_supply_register_no_ws(di->dev, psy_desc, &psy_cfg);
2041 	if (IS_ERR(di->bat))
2042 		return dev_err_probe(di->dev, PTR_ERR(di->bat),
2043 				     "failed to register battery\n");
2044 
2045 	bq27xxx_battery_settings(di);
2046 	bq27xxx_battery_update(di);
2047 
2048 	mutex_lock(&bq27xxx_list_lock);
2049 	list_add(&di->list, &bq27xxx_battery_devices);
2050 	mutex_unlock(&bq27xxx_list_lock);
2051 
2052 	return 0;
2053 }
2054 EXPORT_SYMBOL_GPL(bq27xxx_battery_setup);
2055 
2056 void bq27xxx_battery_teardown(struct bq27xxx_device_info *di)
2057 {
2058 	/*
2059 	 * power_supply_unregister call bq27xxx_battery_get_property which
2060 	 * call bq27xxx_battery_poll.
2061 	 * Make sure that bq27xxx_battery_poll will not call
2062 	 * schedule_delayed_work again after unregister (which cause OOPS).
2063 	 */
2064 	poll_interval = 0;
2065 
2066 	cancel_delayed_work_sync(&di->work);
2067 
2068 	power_supply_unregister(di->bat);
2069 
2070 	mutex_lock(&bq27xxx_list_lock);
2071 	list_del(&di->list);
2072 	mutex_unlock(&bq27xxx_list_lock);
2073 
2074 	mutex_destroy(&di->lock);
2075 }
2076 EXPORT_SYMBOL_GPL(bq27xxx_battery_teardown);
2077 
2078 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
2079 MODULE_DESCRIPTION("BQ27xxx battery monitor driver");
2080 MODULE_LICENSE("GPL");
2081