xref: /linux/drivers/power/supply/bq27xxx_battery.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BQ27xxx battery driver
4  *
5  * Copyright (C) 2008 Rodolfo Giometti <giometti@linux.it>
6  * Copyright (C) 2008 Eurotech S.p.A. <info@eurotech.it>
7  * Copyright (C) 2010-2011 Lars-Peter Clausen <lars@metafoo.de>
8  * Copyright (C) 2011 Pali Rohár <pali@kernel.org>
9  * Copyright (C) 2017 Liam Breck <kernel@networkimprov.net>
10  *
11  * Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc.
12  *
13  * Datasheets:
14  * https://www.ti.com/product/bq27000
15  * https://www.ti.com/product/bq27200
16  * https://www.ti.com/product/bq27010
17  * https://www.ti.com/product/bq27210
18  * https://www.ti.com/product/bq27500
19  * https://www.ti.com/product/bq27510-g1
20  * https://www.ti.com/product/bq27510-g2
21  * https://www.ti.com/product/bq27510-g3
22  * https://www.ti.com/product/bq27520-g1
23  * https://www.ti.com/product/bq27520-g2
24  * https://www.ti.com/product/bq27520-g3
25  * https://www.ti.com/product/bq27520-g4
26  * https://www.ti.com/product/bq27530-g1
27  * https://www.ti.com/product/bq27531-g1
28  * https://www.ti.com/product/bq27541-g1
29  * https://www.ti.com/product/bq27542-g1
30  * https://www.ti.com/product/bq27546-g1
31  * https://www.ti.com/product/bq27742-g1
32  * https://www.ti.com/product/bq27545-g1
33  * https://www.ti.com/product/bq27421-g1
34  * https://www.ti.com/product/bq27425-g1
35  * https://www.ti.com/product/bq27426
36  * https://www.ti.com/product/bq27411-g1
37  * https://www.ti.com/product/bq27441-g1
38  * https://www.ti.com/product/bq27621-g1
39  * https://www.ti.com/product/bq27z561
40  * https://www.ti.com/product/bq28z610
41  * https://www.ti.com/product/bq34z100-g1
42  * https://www.ti.com/product/bq78z100
43  */
44 
45 #include <linux/device.h>
46 #include <linux/module.h>
47 #include <linux/mutex.h>
48 #include <linux/param.h>
49 #include <linux/jiffies.h>
50 #include <linux/workqueue.h>
51 #include <linux/delay.h>
52 #include <linux/platform_device.h>
53 #include <linux/power_supply.h>
54 #include <linux/slab.h>
55 #include <linux/of.h>
56 
57 #include <linux/power/bq27xxx_battery.h>
58 
59 #define BQ27XXX_MANUFACTURER	"Texas Instruments"
60 
61 /* BQ27XXX Flags */
62 #define BQ27XXX_FLAG_DSC	BIT(0)
63 #define BQ27XXX_FLAG_SOCF	BIT(1) /* State-of-Charge threshold final */
64 #define BQ27XXX_FLAG_SOC1	BIT(2) /* State-of-Charge threshold 1 */
65 #define BQ27XXX_FLAG_CFGUP	BIT(4)
66 #define BQ27XXX_FLAG_FC		BIT(9)
67 #define BQ27XXX_FLAG_OTD	BIT(14)
68 #define BQ27XXX_FLAG_OTC	BIT(15)
69 #define BQ27XXX_FLAG_UT		BIT(14)
70 #define BQ27XXX_FLAG_OT		BIT(15)
71 
72 /* BQ27000 has different layout for Flags register */
73 #define BQ27000_FLAG_EDVF	BIT(0) /* Final End-of-Discharge-Voltage flag */
74 #define BQ27000_FLAG_EDV1	BIT(1) /* First End-of-Discharge-Voltage flag */
75 #define BQ27000_FLAG_CI		BIT(4) /* Capacity Inaccurate flag */
76 #define BQ27000_FLAG_FC		BIT(5)
77 #define BQ27000_FLAG_CHGS	BIT(7) /* Charge state flag */
78 
79 /* BQ27Z561 has different layout for Flags register */
80 #define BQ27Z561_FLAG_FDC	BIT(4) /* Battery fully discharged */
81 #define BQ27Z561_FLAG_FC	BIT(5) /* Battery fully charged */
82 #define BQ27Z561_FLAG_DIS_CH	BIT(6) /* Battery is discharging */
83 
84 /* control register params */
85 #define BQ27XXX_SEALED			0x20
86 #define BQ27XXX_SET_CFGUPDATE		0x13
87 #define BQ27XXX_SOFT_RESET		0x42
88 #define BQ27XXX_RESET			0x41
89 
90 #define BQ27XXX_RS			(20) /* Resistor sense mOhm */
91 #define BQ27XXX_POWER_CONSTANT		(29200) /* 29.2 µV^2 * 1000 */
92 #define BQ27XXX_CURRENT_CONSTANT	(3570) /* 3.57 µV * 1000 */
93 
94 #define INVALID_REG_ADDR	0xff
95 
96 /*
97  * bq27xxx_reg_index - Register names
98  *
99  * These are indexes into a device's register mapping array.
100  */
101 
102 enum bq27xxx_reg_index {
103 	BQ27XXX_REG_CTRL = 0,	/* Control */
104 	BQ27XXX_REG_TEMP,	/* Temperature */
105 	BQ27XXX_REG_INT_TEMP,	/* Internal Temperature */
106 	BQ27XXX_REG_VOLT,	/* Voltage */
107 	BQ27XXX_REG_AI,		/* Average Current */
108 	BQ27XXX_REG_FLAGS,	/* Flags */
109 	BQ27XXX_REG_TTE,	/* Time-to-Empty */
110 	BQ27XXX_REG_TTF,	/* Time-to-Full */
111 	BQ27XXX_REG_TTES,	/* Time-to-Empty Standby */
112 	BQ27XXX_REG_TTECP,	/* Time-to-Empty at Constant Power */
113 	BQ27XXX_REG_NAC,	/* Nominal Available Capacity */
114 	BQ27XXX_REG_RC,		/* Remaining Capacity */
115 	BQ27XXX_REG_FCC,	/* Full Charge Capacity */
116 	BQ27XXX_REG_CYCT,	/* Cycle Count */
117 	BQ27XXX_REG_AE,		/* Available Energy */
118 	BQ27XXX_REG_SOC,	/* State-of-Charge */
119 	BQ27XXX_REG_DCAP,	/* Design Capacity */
120 	BQ27XXX_REG_AP,		/* Average Power */
121 	BQ27XXX_DM_CTRL,	/* Block Data Control */
122 	BQ27XXX_DM_CLASS,	/* Data Class */
123 	BQ27XXX_DM_BLOCK,	/* Data Block */
124 	BQ27XXX_DM_DATA,	/* Block Data */
125 	BQ27XXX_DM_CKSUM,	/* Block Data Checksum */
126 	BQ27XXX_REG_MAX,	/* sentinel */
127 };
128 
129 #define BQ27XXX_DM_REG_ROWS \
130 	[BQ27XXX_DM_CTRL] = 0x61,  \
131 	[BQ27XXX_DM_CLASS] = 0x3e, \
132 	[BQ27XXX_DM_BLOCK] = 0x3f, \
133 	[BQ27XXX_DM_DATA] = 0x40,  \
134 	[BQ27XXX_DM_CKSUM] = 0x60
135 
136 /* Register mappings */
137 static u8
138 	bq27000_regs[BQ27XXX_REG_MAX] = {
139 		[BQ27XXX_REG_CTRL] = 0x00,
140 		[BQ27XXX_REG_TEMP] = 0x06,
141 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
142 		[BQ27XXX_REG_VOLT] = 0x08,
143 		[BQ27XXX_REG_AI] = 0x14,
144 		[BQ27XXX_REG_FLAGS] = 0x0a,
145 		[BQ27XXX_REG_TTE] = 0x16,
146 		[BQ27XXX_REG_TTF] = 0x18,
147 		[BQ27XXX_REG_TTES] = 0x1c,
148 		[BQ27XXX_REG_TTECP] = 0x26,
149 		[BQ27XXX_REG_NAC] = 0x0c,
150 		[BQ27XXX_REG_RC] = INVALID_REG_ADDR,
151 		[BQ27XXX_REG_FCC] = 0x12,
152 		[BQ27XXX_REG_CYCT] = 0x2a,
153 		[BQ27XXX_REG_AE] = 0x22,
154 		[BQ27XXX_REG_SOC] = 0x0b,
155 		[BQ27XXX_REG_DCAP] = 0x76,
156 		[BQ27XXX_REG_AP] = 0x24,
157 		[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
158 		[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
159 		[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
160 		[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
161 		[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
162 	},
163 	bq27010_regs[BQ27XXX_REG_MAX] = {
164 		[BQ27XXX_REG_CTRL] = 0x00,
165 		[BQ27XXX_REG_TEMP] = 0x06,
166 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
167 		[BQ27XXX_REG_VOLT] = 0x08,
168 		[BQ27XXX_REG_AI] = 0x14,
169 		[BQ27XXX_REG_FLAGS] = 0x0a,
170 		[BQ27XXX_REG_TTE] = 0x16,
171 		[BQ27XXX_REG_TTF] = 0x18,
172 		[BQ27XXX_REG_TTES] = 0x1c,
173 		[BQ27XXX_REG_TTECP] = 0x26,
174 		[BQ27XXX_REG_NAC] = 0x0c,
175 		[BQ27XXX_REG_RC] = INVALID_REG_ADDR,
176 		[BQ27XXX_REG_FCC] = 0x12,
177 		[BQ27XXX_REG_CYCT] = 0x2a,
178 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
179 		[BQ27XXX_REG_SOC] = 0x0b,
180 		[BQ27XXX_REG_DCAP] = 0x76,
181 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
182 		[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
183 		[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
184 		[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
185 		[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
186 		[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
187 	},
188 	bq2750x_regs[BQ27XXX_REG_MAX] = {
189 		[BQ27XXX_REG_CTRL] = 0x00,
190 		[BQ27XXX_REG_TEMP] = 0x06,
191 		[BQ27XXX_REG_INT_TEMP] = 0x28,
192 		[BQ27XXX_REG_VOLT] = 0x08,
193 		[BQ27XXX_REG_AI] = 0x14,
194 		[BQ27XXX_REG_FLAGS] = 0x0a,
195 		[BQ27XXX_REG_TTE] = 0x16,
196 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
197 		[BQ27XXX_REG_TTES] = 0x1a,
198 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
199 		[BQ27XXX_REG_NAC] = 0x0c,
200 		[BQ27XXX_REG_RC] = 0x10,
201 		[BQ27XXX_REG_FCC] = 0x12,
202 		[BQ27XXX_REG_CYCT] = 0x2a,
203 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
204 		[BQ27XXX_REG_SOC] = 0x2c,
205 		[BQ27XXX_REG_DCAP] = 0x3c,
206 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
207 		BQ27XXX_DM_REG_ROWS,
208 	},
209 #define bq2751x_regs bq27510g3_regs
210 #define bq2752x_regs bq27510g3_regs
211 	bq27500_regs[BQ27XXX_REG_MAX] = {
212 		[BQ27XXX_REG_CTRL] = 0x00,
213 		[BQ27XXX_REG_TEMP] = 0x06,
214 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
215 		[BQ27XXX_REG_VOLT] = 0x08,
216 		[BQ27XXX_REG_AI] = 0x14,
217 		[BQ27XXX_REG_FLAGS] = 0x0a,
218 		[BQ27XXX_REG_TTE] = 0x16,
219 		[BQ27XXX_REG_TTF] = 0x18,
220 		[BQ27XXX_REG_TTES] = 0x1c,
221 		[BQ27XXX_REG_TTECP] = 0x26,
222 		[BQ27XXX_REG_NAC] = 0x0c,
223 		[BQ27XXX_REG_RC] = 0x10,
224 		[BQ27XXX_REG_FCC] = 0x12,
225 		[BQ27XXX_REG_CYCT] = 0x2a,
226 		[BQ27XXX_REG_AE] = 0x22,
227 		[BQ27XXX_REG_SOC] = 0x2c,
228 		[BQ27XXX_REG_DCAP] = 0x3c,
229 		[BQ27XXX_REG_AP] = 0x24,
230 		BQ27XXX_DM_REG_ROWS,
231 	},
232 #define bq27510g1_regs bq27500_regs
233 #define bq27510g2_regs bq27500_regs
234 	bq27510g3_regs[BQ27XXX_REG_MAX] = {
235 		[BQ27XXX_REG_CTRL] = 0x00,
236 		[BQ27XXX_REG_TEMP] = 0x06,
237 		[BQ27XXX_REG_INT_TEMP] = 0x28,
238 		[BQ27XXX_REG_VOLT] = 0x08,
239 		[BQ27XXX_REG_AI] = 0x14,
240 		[BQ27XXX_REG_FLAGS] = 0x0a,
241 		[BQ27XXX_REG_TTE] = 0x16,
242 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
243 		[BQ27XXX_REG_TTES] = 0x1a,
244 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
245 		[BQ27XXX_REG_NAC] = 0x0c,
246 		[BQ27XXX_REG_RC] = 0x10,
247 		[BQ27XXX_REG_FCC] = 0x12,
248 		[BQ27XXX_REG_CYCT] = 0x1e,
249 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
250 		[BQ27XXX_REG_SOC] = 0x20,
251 		[BQ27XXX_REG_DCAP] = 0x2e,
252 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
253 		BQ27XXX_DM_REG_ROWS,
254 	},
255 	bq27520g1_regs[BQ27XXX_REG_MAX] = {
256 		[BQ27XXX_REG_CTRL] = 0x00,
257 		[BQ27XXX_REG_TEMP] = 0x06,
258 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
259 		[BQ27XXX_REG_VOLT] = 0x08,
260 		[BQ27XXX_REG_AI] = 0x14,
261 		[BQ27XXX_REG_FLAGS] = 0x0a,
262 		[BQ27XXX_REG_TTE] = 0x16,
263 		[BQ27XXX_REG_TTF] = 0x18,
264 		[BQ27XXX_REG_TTES] = 0x1c,
265 		[BQ27XXX_REG_TTECP] = 0x26,
266 		[BQ27XXX_REG_NAC] = 0x0c,
267 		[BQ27XXX_REG_RC] = 0x10,
268 		[BQ27XXX_REG_FCC] = 0x12,
269 		[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
270 		[BQ27XXX_REG_AE] = 0x22,
271 		[BQ27XXX_REG_SOC] = 0x2c,
272 		[BQ27XXX_REG_DCAP] = 0x3c,
273 		[BQ27XXX_REG_AP] = 0x24,
274 		BQ27XXX_DM_REG_ROWS,
275 	},
276 	bq27520g2_regs[BQ27XXX_REG_MAX] = {
277 		[BQ27XXX_REG_CTRL] = 0x00,
278 		[BQ27XXX_REG_TEMP] = 0x06,
279 		[BQ27XXX_REG_INT_TEMP] = 0x36,
280 		[BQ27XXX_REG_VOLT] = 0x08,
281 		[BQ27XXX_REG_AI] = 0x14,
282 		[BQ27XXX_REG_FLAGS] = 0x0a,
283 		[BQ27XXX_REG_TTE] = 0x16,
284 		[BQ27XXX_REG_TTF] = 0x18,
285 		[BQ27XXX_REG_TTES] = 0x1c,
286 		[BQ27XXX_REG_TTECP] = 0x26,
287 		[BQ27XXX_REG_NAC] = 0x0c,
288 		[BQ27XXX_REG_RC] = 0x10,
289 		[BQ27XXX_REG_FCC] = 0x12,
290 		[BQ27XXX_REG_CYCT] = 0x2a,
291 		[BQ27XXX_REG_AE] = 0x22,
292 		[BQ27XXX_REG_SOC] = 0x2c,
293 		[BQ27XXX_REG_DCAP] = 0x3c,
294 		[BQ27XXX_REG_AP] = 0x24,
295 		BQ27XXX_DM_REG_ROWS,
296 	},
297 	bq27520g3_regs[BQ27XXX_REG_MAX] = {
298 		[BQ27XXX_REG_CTRL] = 0x00,
299 		[BQ27XXX_REG_TEMP] = 0x06,
300 		[BQ27XXX_REG_INT_TEMP] = 0x36,
301 		[BQ27XXX_REG_VOLT] = 0x08,
302 		[BQ27XXX_REG_AI] = 0x14,
303 		[BQ27XXX_REG_FLAGS] = 0x0a,
304 		[BQ27XXX_REG_TTE] = 0x16,
305 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
306 		[BQ27XXX_REG_TTES] = 0x1c,
307 		[BQ27XXX_REG_TTECP] = 0x26,
308 		[BQ27XXX_REG_NAC] = 0x0c,
309 		[BQ27XXX_REG_RC] = 0x10,
310 		[BQ27XXX_REG_FCC] = 0x12,
311 		[BQ27XXX_REG_CYCT] = 0x2a,
312 		[BQ27XXX_REG_AE] = 0x22,
313 		[BQ27XXX_REG_SOC] = 0x2c,
314 		[BQ27XXX_REG_DCAP] = 0x3c,
315 		[BQ27XXX_REG_AP] = 0x24,
316 		BQ27XXX_DM_REG_ROWS,
317 	},
318 	bq27520g4_regs[BQ27XXX_REG_MAX] = {
319 		[BQ27XXX_REG_CTRL] = 0x00,
320 		[BQ27XXX_REG_TEMP] = 0x06,
321 		[BQ27XXX_REG_INT_TEMP] = 0x28,
322 		[BQ27XXX_REG_VOLT] = 0x08,
323 		[BQ27XXX_REG_AI] = 0x14,
324 		[BQ27XXX_REG_FLAGS] = 0x0a,
325 		[BQ27XXX_REG_TTE] = 0x16,
326 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
327 		[BQ27XXX_REG_TTES] = 0x1c,
328 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
329 		[BQ27XXX_REG_NAC] = 0x0c,
330 		[BQ27XXX_REG_RC] = 0x10,
331 		[BQ27XXX_REG_FCC] = 0x12,
332 		[BQ27XXX_REG_CYCT] = 0x1e,
333 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
334 		[BQ27XXX_REG_SOC] = 0x20,
335 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
336 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
337 		BQ27XXX_DM_REG_ROWS,
338 	},
339 	bq27521_regs[BQ27XXX_REG_MAX] = {
340 		[BQ27XXX_REG_CTRL] = 0x02,
341 		[BQ27XXX_REG_TEMP] = 0x0a,
342 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
343 		[BQ27XXX_REG_VOLT] = 0x0c,
344 		[BQ27XXX_REG_AI] = 0x0e,
345 		[BQ27XXX_REG_FLAGS] = 0x08,
346 		[BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
347 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
348 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
349 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
350 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
351 		[BQ27XXX_REG_RC] = INVALID_REG_ADDR,
352 		[BQ27XXX_REG_FCC] = INVALID_REG_ADDR,
353 		[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
354 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
355 		[BQ27XXX_REG_SOC] = INVALID_REG_ADDR,
356 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
357 		[BQ27XXX_REG_AP] = INVALID_REG_ADDR,
358 		[BQ27XXX_DM_CTRL] = INVALID_REG_ADDR,
359 		[BQ27XXX_DM_CLASS] = INVALID_REG_ADDR,
360 		[BQ27XXX_DM_BLOCK] = INVALID_REG_ADDR,
361 		[BQ27XXX_DM_DATA] = INVALID_REG_ADDR,
362 		[BQ27XXX_DM_CKSUM] = INVALID_REG_ADDR,
363 	},
364 	bq27530_regs[BQ27XXX_REG_MAX] = {
365 		[BQ27XXX_REG_CTRL] = 0x00,
366 		[BQ27XXX_REG_TEMP] = 0x06,
367 		[BQ27XXX_REG_INT_TEMP] = 0x32,
368 		[BQ27XXX_REG_VOLT] = 0x08,
369 		[BQ27XXX_REG_AI] = 0x14,
370 		[BQ27XXX_REG_FLAGS] = 0x0a,
371 		[BQ27XXX_REG_TTE] = 0x16,
372 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
373 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
374 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
375 		[BQ27XXX_REG_NAC] = 0x0c,
376 		[BQ27XXX_REG_RC] = 0x10,
377 		[BQ27XXX_REG_FCC] = 0x12,
378 		[BQ27XXX_REG_CYCT] = 0x2a,
379 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
380 		[BQ27XXX_REG_SOC] = 0x2c,
381 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
382 		[BQ27XXX_REG_AP] = 0x24,
383 		BQ27XXX_DM_REG_ROWS,
384 	},
385 #define bq27531_regs bq27530_regs
386 	bq27541_regs[BQ27XXX_REG_MAX] = {
387 		[BQ27XXX_REG_CTRL] = 0x00,
388 		[BQ27XXX_REG_TEMP] = 0x06,
389 		[BQ27XXX_REG_INT_TEMP] = 0x28,
390 		[BQ27XXX_REG_VOLT] = 0x08,
391 		[BQ27XXX_REG_AI] = 0x14,
392 		[BQ27XXX_REG_FLAGS] = 0x0a,
393 		[BQ27XXX_REG_TTE] = 0x16,
394 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
395 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
396 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
397 		[BQ27XXX_REG_NAC] = 0x0c,
398 		[BQ27XXX_REG_RC] = 0x10,
399 		[BQ27XXX_REG_FCC] = 0x12,
400 		[BQ27XXX_REG_CYCT] = 0x2a,
401 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
402 		[BQ27XXX_REG_SOC] = 0x2c,
403 		[BQ27XXX_REG_DCAP] = 0x3c,
404 		[BQ27XXX_REG_AP] = 0x24,
405 		BQ27XXX_DM_REG_ROWS,
406 	},
407 #define bq27542_regs bq27541_regs
408 #define bq27546_regs bq27541_regs
409 #define bq27742_regs bq27541_regs
410 	bq27545_regs[BQ27XXX_REG_MAX] = {
411 		[BQ27XXX_REG_CTRL] = 0x00,
412 		[BQ27XXX_REG_TEMP] = 0x06,
413 		[BQ27XXX_REG_INT_TEMP] = 0x28,
414 		[BQ27XXX_REG_VOLT] = 0x08,
415 		[BQ27XXX_REG_AI] = 0x14,
416 		[BQ27XXX_REG_FLAGS] = 0x0a,
417 		[BQ27XXX_REG_TTE] = 0x16,
418 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
419 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
420 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
421 		[BQ27XXX_REG_NAC] = 0x0c,
422 		[BQ27XXX_REG_RC] = 0x10,
423 		[BQ27XXX_REG_FCC] = 0x12,
424 		[BQ27XXX_REG_CYCT] = 0x2a,
425 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
426 		[BQ27XXX_REG_SOC] = 0x2c,
427 		[BQ27XXX_REG_DCAP] = INVALID_REG_ADDR,
428 		[BQ27XXX_REG_AP] = 0x24,
429 		BQ27XXX_DM_REG_ROWS,
430 	},
431 	bq27421_regs[BQ27XXX_REG_MAX] = {
432 		[BQ27XXX_REG_CTRL] = 0x00,
433 		[BQ27XXX_REG_TEMP] = 0x02,
434 		[BQ27XXX_REG_INT_TEMP] = 0x1e,
435 		[BQ27XXX_REG_VOLT] = 0x04,
436 		[BQ27XXX_REG_AI] = 0x10,
437 		[BQ27XXX_REG_FLAGS] = 0x06,
438 		[BQ27XXX_REG_TTE] = INVALID_REG_ADDR,
439 		[BQ27XXX_REG_TTF] = INVALID_REG_ADDR,
440 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
441 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
442 		[BQ27XXX_REG_NAC] = 0x08,
443 		[BQ27XXX_REG_RC] = 0x0c,
444 		[BQ27XXX_REG_FCC] = 0x0e,
445 		[BQ27XXX_REG_CYCT] = INVALID_REG_ADDR,
446 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
447 		[BQ27XXX_REG_SOC] = 0x1c,
448 		[BQ27XXX_REG_DCAP] = 0x3c,
449 		[BQ27XXX_REG_AP] = 0x18,
450 		BQ27XXX_DM_REG_ROWS,
451 	},
452 #define bq27411_regs bq27421_regs
453 #define bq27425_regs bq27421_regs
454 #define bq27426_regs bq27421_regs
455 #define bq27441_regs bq27421_regs
456 #define bq27621_regs bq27421_regs
457 	bq27z561_regs[BQ27XXX_REG_MAX] = {
458 		[BQ27XXX_REG_CTRL] = 0x00,
459 		[BQ27XXX_REG_TEMP] = 0x06,
460 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
461 		[BQ27XXX_REG_VOLT] = 0x08,
462 		[BQ27XXX_REG_AI] = 0x14,
463 		[BQ27XXX_REG_FLAGS] = 0x0a,
464 		[BQ27XXX_REG_TTE] = 0x16,
465 		[BQ27XXX_REG_TTF] = 0x18,
466 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
467 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
468 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
469 		[BQ27XXX_REG_RC] = 0x10,
470 		[BQ27XXX_REG_FCC] = 0x12,
471 		[BQ27XXX_REG_CYCT] = 0x2a,
472 		[BQ27XXX_REG_AE] = 0x22,
473 		[BQ27XXX_REG_SOC] = 0x2c,
474 		[BQ27XXX_REG_DCAP] = 0x3c,
475 		[BQ27XXX_REG_AP] = 0x22,
476 		BQ27XXX_DM_REG_ROWS,
477 	},
478 	bq28z610_regs[BQ27XXX_REG_MAX] = {
479 		[BQ27XXX_REG_CTRL] = 0x00,
480 		[BQ27XXX_REG_TEMP] = 0x06,
481 		[BQ27XXX_REG_INT_TEMP] = INVALID_REG_ADDR,
482 		[BQ27XXX_REG_VOLT] = 0x08,
483 		[BQ27XXX_REG_AI] = 0x14,
484 		[BQ27XXX_REG_FLAGS] = 0x0a,
485 		[BQ27XXX_REG_TTE] = 0x16,
486 		[BQ27XXX_REG_TTF] = 0x18,
487 		[BQ27XXX_REG_TTES] = INVALID_REG_ADDR,
488 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
489 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
490 		[BQ27XXX_REG_RC] = 0x10,
491 		[BQ27XXX_REG_FCC] = 0x12,
492 		[BQ27XXX_REG_CYCT] = 0x2a,
493 		[BQ27XXX_REG_AE] = 0x22,
494 		[BQ27XXX_REG_SOC] = 0x2c,
495 		[BQ27XXX_REG_DCAP] = 0x3c,
496 		[BQ27XXX_REG_AP] = 0x22,
497 		BQ27XXX_DM_REG_ROWS,
498 	},
499 	bq34z100_regs[BQ27XXX_REG_MAX] = {
500 		[BQ27XXX_REG_CTRL] = 0x00,
501 		[BQ27XXX_REG_TEMP] = 0x0c,
502 		[BQ27XXX_REG_INT_TEMP] = 0x2a,
503 		[BQ27XXX_REG_VOLT] = 0x08,
504 		[BQ27XXX_REG_AI] = 0x0a,
505 		[BQ27XXX_REG_FLAGS] = 0x0e,
506 		[BQ27XXX_REG_TTE] = 0x18,
507 		[BQ27XXX_REG_TTF] = 0x1a,
508 		[BQ27XXX_REG_TTES] = 0x1e,
509 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
510 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
511 		[BQ27XXX_REG_RC] = 0x04,
512 		[BQ27XXX_REG_FCC] = 0x06,
513 		[BQ27XXX_REG_CYCT] = 0x2c,
514 		[BQ27XXX_REG_AE] = 0x24,
515 		[BQ27XXX_REG_SOC] = 0x02,
516 		[BQ27XXX_REG_DCAP] = 0x3c,
517 		[BQ27XXX_REG_AP] = 0x22,
518 		BQ27XXX_DM_REG_ROWS,
519 	},
520 	bq78z100_regs[BQ27XXX_REG_MAX] = {
521 		[BQ27XXX_REG_CTRL] = 0x00,
522 		[BQ27XXX_REG_TEMP] = 0x06,
523 		[BQ27XXX_REG_INT_TEMP] = 0x28,
524 		[BQ27XXX_REG_VOLT] = 0x08,
525 		[BQ27XXX_REG_AI] = 0x14,
526 		[BQ27XXX_REG_FLAGS] = 0x0a,
527 		[BQ27XXX_REG_TTE] = 0x16,
528 		[BQ27XXX_REG_TTF] = 0x18,
529 		[BQ27XXX_REG_TTES] = 0x1c,
530 		[BQ27XXX_REG_TTECP] = INVALID_REG_ADDR,
531 		[BQ27XXX_REG_NAC] = INVALID_REG_ADDR,
532 		[BQ27XXX_REG_RC] = 0x10,
533 		[BQ27XXX_REG_FCC] = 0x12,
534 		[BQ27XXX_REG_CYCT] = 0x2a,
535 		[BQ27XXX_REG_AE] = INVALID_REG_ADDR,
536 		[BQ27XXX_REG_SOC] = 0x2c,
537 		[BQ27XXX_REG_DCAP] = 0x3c,
538 		[BQ27XXX_REG_AP] = 0x22,
539 		BQ27XXX_DM_REG_ROWS,
540 	};
541 
542 static enum power_supply_property bq27000_props[] = {
543 	POWER_SUPPLY_PROP_STATUS,
544 	POWER_SUPPLY_PROP_PRESENT,
545 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
546 	POWER_SUPPLY_PROP_CURRENT_NOW,
547 	POWER_SUPPLY_PROP_CAPACITY,
548 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
549 	POWER_SUPPLY_PROP_TEMP,
550 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
551 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
552 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
553 	POWER_SUPPLY_PROP_TECHNOLOGY,
554 	POWER_SUPPLY_PROP_CHARGE_FULL,
555 	POWER_SUPPLY_PROP_CHARGE_NOW,
556 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
557 	POWER_SUPPLY_PROP_CYCLE_COUNT,
558 	POWER_SUPPLY_PROP_ENERGY_NOW,
559 	POWER_SUPPLY_PROP_POWER_AVG,
560 	POWER_SUPPLY_PROP_HEALTH,
561 	POWER_SUPPLY_PROP_MANUFACTURER,
562 };
563 
564 static enum power_supply_property bq27010_props[] = {
565 	POWER_SUPPLY_PROP_STATUS,
566 	POWER_SUPPLY_PROP_PRESENT,
567 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
568 	POWER_SUPPLY_PROP_CURRENT_NOW,
569 	POWER_SUPPLY_PROP_CAPACITY,
570 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
571 	POWER_SUPPLY_PROP_TEMP,
572 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
573 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
574 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
575 	POWER_SUPPLY_PROP_TECHNOLOGY,
576 	POWER_SUPPLY_PROP_CHARGE_FULL,
577 	POWER_SUPPLY_PROP_CHARGE_NOW,
578 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
579 	POWER_SUPPLY_PROP_CYCLE_COUNT,
580 	POWER_SUPPLY_PROP_HEALTH,
581 	POWER_SUPPLY_PROP_MANUFACTURER,
582 };
583 
584 #define bq2750x_props bq27510g3_props
585 #define bq2751x_props bq27510g3_props
586 #define bq2752x_props bq27510g3_props
587 
588 static enum power_supply_property bq27500_props[] = {
589 	POWER_SUPPLY_PROP_STATUS,
590 	POWER_SUPPLY_PROP_PRESENT,
591 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
592 	POWER_SUPPLY_PROP_CURRENT_NOW,
593 	POWER_SUPPLY_PROP_CAPACITY,
594 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
595 	POWER_SUPPLY_PROP_TEMP,
596 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
597 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
598 	POWER_SUPPLY_PROP_TECHNOLOGY,
599 	POWER_SUPPLY_PROP_CHARGE_FULL,
600 	POWER_SUPPLY_PROP_CHARGE_NOW,
601 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
602 	POWER_SUPPLY_PROP_CYCLE_COUNT,
603 	POWER_SUPPLY_PROP_ENERGY_NOW,
604 	POWER_SUPPLY_PROP_POWER_AVG,
605 	POWER_SUPPLY_PROP_HEALTH,
606 	POWER_SUPPLY_PROP_MANUFACTURER,
607 };
608 #define bq27510g1_props bq27500_props
609 #define bq27510g2_props bq27500_props
610 
611 static enum power_supply_property bq27510g3_props[] = {
612 	POWER_SUPPLY_PROP_STATUS,
613 	POWER_SUPPLY_PROP_PRESENT,
614 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
615 	POWER_SUPPLY_PROP_CURRENT_NOW,
616 	POWER_SUPPLY_PROP_CAPACITY,
617 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
618 	POWER_SUPPLY_PROP_TEMP,
619 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
620 	POWER_SUPPLY_PROP_TECHNOLOGY,
621 	POWER_SUPPLY_PROP_CHARGE_FULL,
622 	POWER_SUPPLY_PROP_CHARGE_NOW,
623 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
624 	POWER_SUPPLY_PROP_CYCLE_COUNT,
625 	POWER_SUPPLY_PROP_HEALTH,
626 	POWER_SUPPLY_PROP_MANUFACTURER,
627 };
628 
629 static enum power_supply_property bq27520g1_props[] = {
630 	POWER_SUPPLY_PROP_STATUS,
631 	POWER_SUPPLY_PROP_PRESENT,
632 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
633 	POWER_SUPPLY_PROP_CURRENT_NOW,
634 	POWER_SUPPLY_PROP_CAPACITY,
635 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
636 	POWER_SUPPLY_PROP_TEMP,
637 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
638 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
639 	POWER_SUPPLY_PROP_TECHNOLOGY,
640 	POWER_SUPPLY_PROP_CHARGE_FULL,
641 	POWER_SUPPLY_PROP_CHARGE_NOW,
642 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
643 	POWER_SUPPLY_PROP_ENERGY_NOW,
644 	POWER_SUPPLY_PROP_POWER_AVG,
645 	POWER_SUPPLY_PROP_HEALTH,
646 	POWER_SUPPLY_PROP_MANUFACTURER,
647 };
648 
649 #define bq27520g2_props bq27500_props
650 
651 static enum power_supply_property bq27520g3_props[] = {
652 	POWER_SUPPLY_PROP_STATUS,
653 	POWER_SUPPLY_PROP_PRESENT,
654 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
655 	POWER_SUPPLY_PROP_CURRENT_NOW,
656 	POWER_SUPPLY_PROP_CAPACITY,
657 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
658 	POWER_SUPPLY_PROP_TEMP,
659 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
660 	POWER_SUPPLY_PROP_TECHNOLOGY,
661 	POWER_SUPPLY_PROP_CHARGE_FULL,
662 	POWER_SUPPLY_PROP_CHARGE_NOW,
663 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
664 	POWER_SUPPLY_PROP_CYCLE_COUNT,
665 	POWER_SUPPLY_PROP_ENERGY_NOW,
666 	POWER_SUPPLY_PROP_POWER_AVG,
667 	POWER_SUPPLY_PROP_HEALTH,
668 	POWER_SUPPLY_PROP_MANUFACTURER,
669 };
670 
671 static enum power_supply_property bq27520g4_props[] = {
672 	POWER_SUPPLY_PROP_STATUS,
673 	POWER_SUPPLY_PROP_PRESENT,
674 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
675 	POWER_SUPPLY_PROP_CURRENT_NOW,
676 	POWER_SUPPLY_PROP_CAPACITY,
677 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
678 	POWER_SUPPLY_PROP_TEMP,
679 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
680 	POWER_SUPPLY_PROP_TECHNOLOGY,
681 	POWER_SUPPLY_PROP_CHARGE_FULL,
682 	POWER_SUPPLY_PROP_CHARGE_NOW,
683 	POWER_SUPPLY_PROP_CYCLE_COUNT,
684 	POWER_SUPPLY_PROP_HEALTH,
685 	POWER_SUPPLY_PROP_MANUFACTURER,
686 };
687 
688 static enum power_supply_property bq27521_props[] = {
689 	POWER_SUPPLY_PROP_STATUS,
690 	POWER_SUPPLY_PROP_PRESENT,
691 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
692 	POWER_SUPPLY_PROP_CURRENT_NOW,
693 	POWER_SUPPLY_PROP_TEMP,
694 	POWER_SUPPLY_PROP_TECHNOLOGY,
695 };
696 
697 static enum power_supply_property bq27530_props[] = {
698 	POWER_SUPPLY_PROP_STATUS,
699 	POWER_SUPPLY_PROP_PRESENT,
700 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
701 	POWER_SUPPLY_PROP_CURRENT_NOW,
702 	POWER_SUPPLY_PROP_CAPACITY,
703 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
704 	POWER_SUPPLY_PROP_TEMP,
705 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
706 	POWER_SUPPLY_PROP_TECHNOLOGY,
707 	POWER_SUPPLY_PROP_CHARGE_FULL,
708 	POWER_SUPPLY_PROP_CHARGE_NOW,
709 	POWER_SUPPLY_PROP_POWER_AVG,
710 	POWER_SUPPLY_PROP_HEALTH,
711 	POWER_SUPPLY_PROP_CYCLE_COUNT,
712 	POWER_SUPPLY_PROP_MANUFACTURER,
713 };
714 #define bq27531_props bq27530_props
715 
716 static enum power_supply_property bq27541_props[] = {
717 	POWER_SUPPLY_PROP_STATUS,
718 	POWER_SUPPLY_PROP_PRESENT,
719 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
720 	POWER_SUPPLY_PROP_CURRENT_NOW,
721 	POWER_SUPPLY_PROP_CAPACITY,
722 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
723 	POWER_SUPPLY_PROP_TEMP,
724 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
725 	POWER_SUPPLY_PROP_TECHNOLOGY,
726 	POWER_SUPPLY_PROP_CHARGE_FULL,
727 	POWER_SUPPLY_PROP_CHARGE_NOW,
728 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
729 	POWER_SUPPLY_PROP_CYCLE_COUNT,
730 	POWER_SUPPLY_PROP_POWER_AVG,
731 	POWER_SUPPLY_PROP_HEALTH,
732 	POWER_SUPPLY_PROP_MANUFACTURER,
733 };
734 #define bq27542_props bq27541_props
735 #define bq27546_props bq27541_props
736 #define bq27742_props bq27541_props
737 
738 static enum power_supply_property bq27545_props[] = {
739 	POWER_SUPPLY_PROP_STATUS,
740 	POWER_SUPPLY_PROP_PRESENT,
741 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
742 	POWER_SUPPLY_PROP_CURRENT_NOW,
743 	POWER_SUPPLY_PROP_CAPACITY,
744 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
745 	POWER_SUPPLY_PROP_TEMP,
746 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
747 	POWER_SUPPLY_PROP_TECHNOLOGY,
748 	POWER_SUPPLY_PROP_CHARGE_FULL,
749 	POWER_SUPPLY_PROP_CHARGE_NOW,
750 	POWER_SUPPLY_PROP_HEALTH,
751 	POWER_SUPPLY_PROP_CYCLE_COUNT,
752 	POWER_SUPPLY_PROP_POWER_AVG,
753 	POWER_SUPPLY_PROP_MANUFACTURER,
754 };
755 
756 static enum power_supply_property bq27421_props[] = {
757 	POWER_SUPPLY_PROP_STATUS,
758 	POWER_SUPPLY_PROP_PRESENT,
759 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
760 	POWER_SUPPLY_PROP_CURRENT_NOW,
761 	POWER_SUPPLY_PROP_CAPACITY,
762 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
763 	POWER_SUPPLY_PROP_TEMP,
764 	POWER_SUPPLY_PROP_TECHNOLOGY,
765 	POWER_SUPPLY_PROP_CHARGE_FULL,
766 	POWER_SUPPLY_PROP_CHARGE_NOW,
767 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
768 	POWER_SUPPLY_PROP_MANUFACTURER,
769 };
770 #define bq27411_props bq27421_props
771 #define bq27425_props bq27421_props
772 #define bq27426_props bq27421_props
773 #define bq27441_props bq27421_props
774 #define bq27621_props bq27421_props
775 
776 static enum power_supply_property bq27z561_props[] = {
777 	POWER_SUPPLY_PROP_STATUS,
778 	POWER_SUPPLY_PROP_PRESENT,
779 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
780 	POWER_SUPPLY_PROP_CURRENT_NOW,
781 	POWER_SUPPLY_PROP_CAPACITY,
782 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
783 	POWER_SUPPLY_PROP_TEMP,
784 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
785 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
786 	POWER_SUPPLY_PROP_TECHNOLOGY,
787 	POWER_SUPPLY_PROP_CHARGE_FULL,
788 	POWER_SUPPLY_PROP_CHARGE_NOW,
789 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
790 	POWER_SUPPLY_PROP_CYCLE_COUNT,
791 	POWER_SUPPLY_PROP_POWER_AVG,
792 	POWER_SUPPLY_PROP_HEALTH,
793 	POWER_SUPPLY_PROP_MANUFACTURER,
794 };
795 
796 static enum power_supply_property bq28z610_props[] = {
797 	POWER_SUPPLY_PROP_STATUS,
798 	POWER_SUPPLY_PROP_PRESENT,
799 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
800 	POWER_SUPPLY_PROP_CURRENT_NOW,
801 	POWER_SUPPLY_PROP_CAPACITY,
802 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
803 	POWER_SUPPLY_PROP_TEMP,
804 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
805 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
806 	POWER_SUPPLY_PROP_TECHNOLOGY,
807 	POWER_SUPPLY_PROP_CHARGE_FULL,
808 	POWER_SUPPLY_PROP_CHARGE_NOW,
809 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
810 	POWER_SUPPLY_PROP_CYCLE_COUNT,
811 	POWER_SUPPLY_PROP_POWER_AVG,
812 	POWER_SUPPLY_PROP_HEALTH,
813 	POWER_SUPPLY_PROP_MANUFACTURER,
814 };
815 
816 static enum power_supply_property bq34z100_props[] = {
817 	POWER_SUPPLY_PROP_STATUS,
818 	POWER_SUPPLY_PROP_PRESENT,
819 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
820 	POWER_SUPPLY_PROP_CURRENT_NOW,
821 	POWER_SUPPLY_PROP_CAPACITY,
822 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
823 	POWER_SUPPLY_PROP_TEMP,
824 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
825 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
826 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
827 	POWER_SUPPLY_PROP_TECHNOLOGY,
828 	POWER_SUPPLY_PROP_CHARGE_FULL,
829 	POWER_SUPPLY_PROP_CHARGE_NOW,
830 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
831 	POWER_SUPPLY_PROP_CYCLE_COUNT,
832 	POWER_SUPPLY_PROP_ENERGY_NOW,
833 	POWER_SUPPLY_PROP_POWER_AVG,
834 	POWER_SUPPLY_PROP_HEALTH,
835 	POWER_SUPPLY_PROP_MANUFACTURER,
836 };
837 
838 static enum power_supply_property bq78z100_props[] = {
839 	POWER_SUPPLY_PROP_STATUS,
840 	POWER_SUPPLY_PROP_PRESENT,
841 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
842 	POWER_SUPPLY_PROP_CURRENT_NOW,
843 	POWER_SUPPLY_PROP_CAPACITY,
844 	POWER_SUPPLY_PROP_CAPACITY_LEVEL,
845 	POWER_SUPPLY_PROP_TEMP,
846 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW,
847 	POWER_SUPPLY_PROP_TIME_TO_FULL_NOW,
848 	POWER_SUPPLY_PROP_TECHNOLOGY,
849 	POWER_SUPPLY_PROP_CHARGE_FULL,
850 	POWER_SUPPLY_PROP_CHARGE_NOW,
851 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
852 	POWER_SUPPLY_PROP_CYCLE_COUNT,
853 	POWER_SUPPLY_PROP_POWER_AVG,
854 	POWER_SUPPLY_PROP_HEALTH,
855 	POWER_SUPPLY_PROP_MANUFACTURER,
856 };
857 
858 struct bq27xxx_dm_reg {
859 	u8 subclass_id;
860 	u8 offset;
861 	u8 bytes;
862 	u16 min, max;
863 };
864 
865 enum bq27xxx_dm_reg_id {
866 	BQ27XXX_DM_DESIGN_CAPACITY = 0,
867 	BQ27XXX_DM_DESIGN_ENERGY,
868 	BQ27XXX_DM_TERMINATE_VOLTAGE,
869 };
870 
871 #define bq27000_dm_regs 0
872 #define bq27010_dm_regs 0
873 #define bq2750x_dm_regs 0
874 #define bq2751x_dm_regs 0
875 #define bq2752x_dm_regs 0
876 
877 #if 0 /* not yet tested */
878 static struct bq27xxx_dm_reg bq27500_dm_regs[] = {
879 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 48, 10, 2,    0, 65535 },
880 	[BQ27XXX_DM_DESIGN_ENERGY]     = { }, /* missing on chip */
881 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 48, 2, 1000, 32767 },
882 };
883 #else
884 #define bq27500_dm_regs 0
885 #endif
886 
887 /* todo create data memory definitions from datasheets and test on chips */
888 #define bq27510g1_dm_regs 0
889 #define bq27510g2_dm_regs 0
890 #define bq27510g3_dm_regs 0
891 #define bq27520g1_dm_regs 0
892 #define bq27520g2_dm_regs 0
893 #define bq27520g3_dm_regs 0
894 #define bq27520g4_dm_regs 0
895 #define bq27521_dm_regs 0
896 #define bq27530_dm_regs 0
897 #define bq27531_dm_regs 0
898 #define bq27541_dm_regs 0
899 #define bq27542_dm_regs 0
900 #define bq27546_dm_regs 0
901 #define bq27742_dm_regs 0
902 
903 #if 0 /* not yet tested */
904 static struct bq27xxx_dm_reg bq27545_dm_regs[] = {
905 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 48, 23, 2,    0, 32767 },
906 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 48, 25, 2,    0, 32767 },
907 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 80, 67, 2, 2800,  3700 },
908 };
909 #else
910 #define bq27545_dm_regs 0
911 #endif
912 
913 static struct bq27xxx_dm_reg bq27411_dm_regs[] = {
914 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 10, 2,    0, 32767 },
915 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 12, 2,    0, 32767 },
916 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2800,  3700 },
917 };
918 
919 static struct bq27xxx_dm_reg bq27421_dm_regs[] = {
920 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 10, 2,    0,  8000 },
921 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 12, 2,    0, 32767 },
922 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 16, 2, 2500,  3700 },
923 };
924 
925 static struct bq27xxx_dm_reg bq27425_dm_regs[] = {
926 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 12, 2,    0, 32767 },
927 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 14, 2,    0, 32767 },
928 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 18, 2, 2800,  3700 },
929 };
930 
931 static struct bq27xxx_dm_reg bq27426_dm_regs[] = {
932 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82,  6, 2,    0,  8000 },
933 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82,  8, 2,    0, 32767 },
934 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 10, 2, 2500,  3700 },
935 };
936 
937 #if 0 /* not yet tested */
938 #define bq27441_dm_regs bq27421_dm_regs
939 #else
940 #define bq27441_dm_regs 0
941 #endif
942 
943 #if 0 /* not yet tested */
944 static struct bq27xxx_dm_reg bq27621_dm_regs[] = {
945 	[BQ27XXX_DM_DESIGN_CAPACITY]   = { 82, 3, 2,    0,  8000 },
946 	[BQ27XXX_DM_DESIGN_ENERGY]     = { 82, 5, 2,    0, 32767 },
947 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = { 82, 9, 2, 2500,  3700 },
948 };
949 #else
950 #define bq27621_dm_regs 0
951 #endif
952 
953 #define bq27z561_dm_regs 0
954 #define bq28z610_dm_regs 0
955 #define bq34z100_dm_regs 0
956 #define bq78z100_dm_regs 0
957 
958 #define BQ27XXX_O_ZERO		BIT(0)
959 #define BQ27XXX_O_OTDC		BIT(1) /* has OTC/OTD overtemperature flags */
960 #define BQ27XXX_O_UTOT		BIT(2) /* has OT overtemperature flag */
961 #define BQ27XXX_O_CFGUP		BIT(3)
962 #define BQ27XXX_O_RAM		BIT(4)
963 #define BQ27Z561_O_BITS		BIT(5)
964 #define BQ27XXX_O_SOC_SI	BIT(6) /* SoC is single register */
965 #define BQ27XXX_O_HAS_CI	BIT(7) /* has Capacity Inaccurate flag */
966 #define BQ27XXX_O_MUL_CHEM	BIT(8) /* multiple chemistries supported */
967 
968 #define BQ27XXX_DATA(ref, key, opt) {		\
969 	.opts = (opt),				\
970 	.unseal_key = key,			\
971 	.regs  = ref##_regs,			\
972 	.dm_regs = ref##_dm_regs,		\
973 	.props = ref##_props,			\
974 	.props_size = ARRAY_SIZE(ref##_props) }
975 
976 static struct {
977 	u32 opts;
978 	u32 unseal_key;
979 	u8 *regs;
980 	struct bq27xxx_dm_reg *dm_regs;
981 	enum power_supply_property *props;
982 	size_t props_size;
983 } bq27xxx_chip_data[] = {
984 	[BQ27000]   = BQ27XXX_DATA(bq27000,   0         , BQ27XXX_O_ZERO | BQ27XXX_O_SOC_SI | BQ27XXX_O_HAS_CI),
985 	[BQ27010]   = BQ27XXX_DATA(bq27010,   0         , BQ27XXX_O_ZERO | BQ27XXX_O_SOC_SI | BQ27XXX_O_HAS_CI),
986 	[BQ2750X]   = BQ27XXX_DATA(bq2750x,   0         , BQ27XXX_O_OTDC),
987 	[BQ2751X]   = BQ27XXX_DATA(bq2751x,   0         , BQ27XXX_O_OTDC),
988 	[BQ2752X]   = BQ27XXX_DATA(bq2752x,   0         , BQ27XXX_O_OTDC),
989 	[BQ27500]   = BQ27XXX_DATA(bq27500,   0x04143672, BQ27XXX_O_OTDC),
990 	[BQ27510G1] = BQ27XXX_DATA(bq27510g1, 0         , BQ27XXX_O_OTDC),
991 	[BQ27510G2] = BQ27XXX_DATA(bq27510g2, 0         , BQ27XXX_O_OTDC),
992 	[BQ27510G3] = BQ27XXX_DATA(bq27510g3, 0         , BQ27XXX_O_OTDC),
993 	[BQ27520G1] = BQ27XXX_DATA(bq27520g1, 0         , BQ27XXX_O_OTDC),
994 	[BQ27520G2] = BQ27XXX_DATA(bq27520g2, 0         , BQ27XXX_O_OTDC),
995 	[BQ27520G3] = BQ27XXX_DATA(bq27520g3, 0         , BQ27XXX_O_OTDC),
996 	[BQ27520G4] = BQ27XXX_DATA(bq27520g4, 0         , BQ27XXX_O_OTDC),
997 	[BQ27521]   = BQ27XXX_DATA(bq27521,   0         , 0),
998 	[BQ27530]   = BQ27XXX_DATA(bq27530,   0         , BQ27XXX_O_UTOT),
999 	[BQ27531]   = BQ27XXX_DATA(bq27531,   0         , BQ27XXX_O_UTOT),
1000 	[BQ27541]   = BQ27XXX_DATA(bq27541,   0         , BQ27XXX_O_OTDC),
1001 	[BQ27542]   = BQ27XXX_DATA(bq27542,   0         , BQ27XXX_O_OTDC),
1002 	[BQ27546]   = BQ27XXX_DATA(bq27546,   0         , BQ27XXX_O_OTDC),
1003 	[BQ27742]   = BQ27XXX_DATA(bq27742,   0         , BQ27XXX_O_OTDC),
1004 	[BQ27545]   = BQ27XXX_DATA(bq27545,   0x04143672, BQ27XXX_O_OTDC),
1005 	[BQ27411]   = BQ27XXX_DATA(bq27411,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
1006 	[BQ27421]   = BQ27XXX_DATA(bq27421,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
1007 	[BQ27425]   = BQ27XXX_DATA(bq27425,   0x04143672, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP),
1008 	[BQ27426]   = BQ27XXX_DATA(bq27426,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
1009 	[BQ27441]   = BQ27XXX_DATA(bq27441,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
1010 	[BQ27621]   = BQ27XXX_DATA(bq27621,   0x80008000, BQ27XXX_O_UTOT | BQ27XXX_O_CFGUP | BQ27XXX_O_RAM),
1011 	[BQ27Z561]  = BQ27XXX_DATA(bq27z561,  0         , BQ27Z561_O_BITS),
1012 	[BQ28Z610]  = BQ27XXX_DATA(bq28z610,  0         , BQ27Z561_O_BITS),
1013 	[BQ34Z100]  = BQ27XXX_DATA(bq34z100,  0         , BQ27XXX_O_OTDC | BQ27XXX_O_SOC_SI | \
1014 							  BQ27XXX_O_HAS_CI | BQ27XXX_O_MUL_CHEM),
1015 	[BQ78Z100]  = BQ27XXX_DATA(bq78z100,  0         , BQ27Z561_O_BITS),
1016 };
1017 
1018 static DEFINE_MUTEX(bq27xxx_list_lock);
1019 static LIST_HEAD(bq27xxx_battery_devices);
1020 
1021 #define BQ27XXX_MSLEEP(i) usleep_range((i)*1000, (i)*1000+500)
1022 
1023 #define BQ27XXX_DM_SZ	32
1024 
1025 /**
1026  * struct bq27xxx_dm_buf - chip data memory buffer
1027  * @class: data memory subclass_id
1028  * @block: data memory block number
1029  * @data: data from/for the block
1030  * @has_data: true if data has been filled by read
1031  * @dirty: true if data has changed since last read/write
1032  *
1033  * Encapsulates info required to manage chip data memory blocks.
1034  */
1035 struct bq27xxx_dm_buf {
1036 	u8 class;
1037 	u8 block;
1038 	u8 data[BQ27XXX_DM_SZ];
1039 	bool has_data, dirty;
1040 };
1041 
1042 #define BQ27XXX_DM_BUF(di, i) { \
1043 	.class = (di)->dm_regs[i].subclass_id, \
1044 	.block = (di)->dm_regs[i].offset / BQ27XXX_DM_SZ, \
1045 }
1046 
1047 static inline u16 *bq27xxx_dm_reg_ptr(struct bq27xxx_dm_buf *buf,
1048 				      struct bq27xxx_dm_reg *reg)
1049 {
1050 	if (buf->class == reg->subclass_id &&
1051 	    buf->block == reg->offset / BQ27XXX_DM_SZ)
1052 		return (u16 *) (buf->data + reg->offset % BQ27XXX_DM_SZ);
1053 
1054 	return NULL;
1055 }
1056 
1057 static const char * const bq27xxx_dm_reg_name[] = {
1058 	[BQ27XXX_DM_DESIGN_CAPACITY] = "design-capacity",
1059 	[BQ27XXX_DM_DESIGN_ENERGY] = "design-energy",
1060 	[BQ27XXX_DM_TERMINATE_VOLTAGE] = "terminate-voltage",
1061 };
1062 
1063 
1064 static bool bq27xxx_dt_to_nvm = true;
1065 module_param_named(dt_monitored_battery_updates_nvm, bq27xxx_dt_to_nvm, bool, 0444);
1066 MODULE_PARM_DESC(dt_monitored_battery_updates_nvm,
1067 	"Devicetree monitored-battery config updates data memory on NVM/flash chips.\n"
1068 	"Users must set this =0 when installing a different type of battery!\n"
1069 	"Default is =1."
1070 #ifndef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1071 	"\nSetting this affects future kernel updates, not the current configuration."
1072 #endif
1073 );
1074 
1075 static int poll_interval_param_set(const char *val, const struct kernel_param *kp)
1076 {
1077 	struct bq27xxx_device_info *di;
1078 	unsigned int prev_val = *(unsigned int *) kp->arg;
1079 	int ret;
1080 
1081 	ret = param_set_uint(val, kp);
1082 	if (ret < 0 || prev_val == *(unsigned int *) kp->arg)
1083 		return ret;
1084 
1085 	mutex_lock(&bq27xxx_list_lock);
1086 	list_for_each_entry(di, &bq27xxx_battery_devices, list) {
1087 		cancel_delayed_work_sync(&di->work);
1088 		schedule_delayed_work(&di->work, 0);
1089 	}
1090 	mutex_unlock(&bq27xxx_list_lock);
1091 
1092 	return ret;
1093 }
1094 
1095 static const struct kernel_param_ops param_ops_poll_interval = {
1096 	.get = param_get_uint,
1097 	.set = poll_interval_param_set,
1098 };
1099 
1100 static unsigned int poll_interval = 360;
1101 module_param_cb(poll_interval, &param_ops_poll_interval, &poll_interval, 0644);
1102 MODULE_PARM_DESC(poll_interval,
1103 		 "battery poll interval in seconds - 0 disables polling");
1104 
1105 /*
1106  * Common code for BQ27xxx devices
1107  */
1108 
1109 static inline int bq27xxx_read(struct bq27xxx_device_info *di, int reg_index,
1110 			       bool single)
1111 {
1112 	int ret;
1113 
1114 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1115 		return -EINVAL;
1116 
1117 	ret = di->bus.read(di, di->regs[reg_index], single);
1118 	if (ret < 0)
1119 		dev_dbg(di->dev, "failed to read register 0x%02x (index %d)\n",
1120 			di->regs[reg_index], reg_index);
1121 
1122 	return ret;
1123 }
1124 
1125 static inline int bq27xxx_write(struct bq27xxx_device_info *di, int reg_index,
1126 				u16 value, bool single)
1127 {
1128 	int ret;
1129 
1130 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1131 		return -EINVAL;
1132 
1133 	if (!di->bus.write)
1134 		return -EPERM;
1135 
1136 	ret = di->bus.write(di, di->regs[reg_index], value, single);
1137 	if (ret < 0)
1138 		dev_dbg(di->dev, "failed to write register 0x%02x (index %d)\n",
1139 			di->regs[reg_index], reg_index);
1140 
1141 	return ret;
1142 }
1143 
1144 static inline int bq27xxx_read_block(struct bq27xxx_device_info *di, int reg_index,
1145 				     u8 *data, int len)
1146 {
1147 	int ret;
1148 
1149 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1150 		return -EINVAL;
1151 
1152 	if (!di->bus.read_bulk)
1153 		return -EPERM;
1154 
1155 	ret = di->bus.read_bulk(di, di->regs[reg_index], data, len);
1156 	if (ret < 0)
1157 		dev_dbg(di->dev, "failed to read_bulk register 0x%02x (index %d)\n",
1158 			di->regs[reg_index], reg_index);
1159 
1160 	return ret;
1161 }
1162 
1163 static inline int bq27xxx_write_block(struct bq27xxx_device_info *di, int reg_index,
1164 				      u8 *data, int len)
1165 {
1166 	int ret;
1167 
1168 	if (!di || di->regs[reg_index] == INVALID_REG_ADDR)
1169 		return -EINVAL;
1170 
1171 	if (!di->bus.write_bulk)
1172 		return -EPERM;
1173 
1174 	ret = di->bus.write_bulk(di, di->regs[reg_index], data, len);
1175 	if (ret < 0)
1176 		dev_dbg(di->dev, "failed to write_bulk register 0x%02x (index %d)\n",
1177 			di->regs[reg_index], reg_index);
1178 
1179 	return ret;
1180 }
1181 
1182 static int bq27xxx_battery_seal(struct bq27xxx_device_info *di)
1183 {
1184 	int ret;
1185 
1186 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_SEALED, false);
1187 	if (ret < 0) {
1188 		dev_err(di->dev, "bus error on seal: %d\n", ret);
1189 		return ret;
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 static int bq27xxx_battery_unseal(struct bq27xxx_device_info *di)
1196 {
1197 	int ret;
1198 
1199 	if (di->unseal_key == 0) {
1200 		dev_err(di->dev, "unseal failed due to missing key\n");
1201 		return -EINVAL;
1202 	}
1203 
1204 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)(di->unseal_key >> 16), false);
1205 	if (ret < 0)
1206 		goto out;
1207 
1208 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, (u16)di->unseal_key, false);
1209 	if (ret < 0)
1210 		goto out;
1211 
1212 	return 0;
1213 
1214 out:
1215 	dev_err(di->dev, "bus error on unseal: %d\n", ret);
1216 	return ret;
1217 }
1218 
1219 static u8 bq27xxx_battery_checksum_dm_block(struct bq27xxx_dm_buf *buf)
1220 {
1221 	u16 sum = 0;
1222 	int i;
1223 
1224 	for (i = 0; i < BQ27XXX_DM_SZ; i++)
1225 		sum += buf->data[i];
1226 	sum &= 0xff;
1227 
1228 	return 0xff - sum;
1229 }
1230 
1231 static int bq27xxx_battery_read_dm_block(struct bq27xxx_device_info *di,
1232 					 struct bq27xxx_dm_buf *buf)
1233 {
1234 	int ret;
1235 
1236 	buf->has_data = false;
1237 
1238 	ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
1239 	if (ret < 0)
1240 		goto out;
1241 
1242 	ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
1243 	if (ret < 0)
1244 		goto out;
1245 
1246 	BQ27XXX_MSLEEP(1);
1247 
1248 	ret = bq27xxx_read_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
1249 	if (ret < 0)
1250 		goto out;
1251 
1252 	ret = bq27xxx_read(di, BQ27XXX_DM_CKSUM, true);
1253 	if (ret < 0)
1254 		goto out;
1255 
1256 	if ((u8)ret != bq27xxx_battery_checksum_dm_block(buf)) {
1257 		ret = -EINVAL;
1258 		goto out;
1259 	}
1260 
1261 	buf->has_data = true;
1262 	buf->dirty = false;
1263 
1264 	return 0;
1265 
1266 out:
1267 	dev_err(di->dev, "bus error reading chip memory: %d\n", ret);
1268 	return ret;
1269 }
1270 
1271 static void bq27xxx_battery_update_dm_block(struct bq27xxx_device_info *di,
1272 					    struct bq27xxx_dm_buf *buf,
1273 					    enum bq27xxx_dm_reg_id reg_id,
1274 					    unsigned int val)
1275 {
1276 	struct bq27xxx_dm_reg *reg = &di->dm_regs[reg_id];
1277 	const char *str = bq27xxx_dm_reg_name[reg_id];
1278 	u16 *prev = bq27xxx_dm_reg_ptr(buf, reg);
1279 
1280 	if (prev == NULL) {
1281 		dev_warn(di->dev, "buffer does not match %s dm spec\n", str);
1282 		return;
1283 	}
1284 
1285 	if (reg->bytes != 2) {
1286 		dev_warn(di->dev, "%s dm spec has unsupported byte size\n", str);
1287 		return;
1288 	}
1289 
1290 	if (!buf->has_data)
1291 		return;
1292 
1293 	if (be16_to_cpup(prev) == val) {
1294 		dev_info(di->dev, "%s has %u\n", str, val);
1295 		return;
1296 	}
1297 
1298 #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1299 	if (!(di->opts & BQ27XXX_O_RAM) && !bq27xxx_dt_to_nvm) {
1300 #else
1301 	if (!(di->opts & BQ27XXX_O_RAM)) {
1302 #endif
1303 		/* devicetree and NVM differ; defer to NVM */
1304 		dev_warn(di->dev, "%s has %u; update to %u disallowed "
1305 #ifdef CONFIG_BATTERY_BQ27XXX_DT_UPDATES_NVM
1306 			 "by dt_monitored_battery_updates_nvm=0"
1307 #else
1308 			 "for flash/NVM data memory"
1309 #endif
1310 			 "\n", str, be16_to_cpup(prev), val);
1311 		return;
1312 	}
1313 
1314 	dev_info(di->dev, "update %s to %u\n", str, val);
1315 
1316 	*prev = cpu_to_be16(val);
1317 	buf->dirty = true;
1318 }
1319 
1320 static int bq27xxx_battery_cfgupdate_priv(struct bq27xxx_device_info *di, bool active)
1321 {
1322 	const int limit = 100;
1323 	u16 cmd = active ? BQ27XXX_SET_CFGUPDATE : BQ27XXX_SOFT_RESET;
1324 	int ret, try = limit;
1325 
1326 	ret = bq27xxx_write(di, BQ27XXX_REG_CTRL, cmd, false);
1327 	if (ret < 0)
1328 		return ret;
1329 
1330 	do {
1331 		BQ27XXX_MSLEEP(25);
1332 		ret = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false);
1333 		if (ret < 0)
1334 			return ret;
1335 	} while (!!(ret & BQ27XXX_FLAG_CFGUP) != active && --try);
1336 
1337 	if (!try && di->chip != BQ27425) { // 425 has a bug
1338 		dev_err(di->dev, "timed out waiting for cfgupdate flag %d\n", active);
1339 		return -EINVAL;
1340 	}
1341 
1342 	if (limit - try > 3)
1343 		dev_warn(di->dev, "cfgupdate %d, retries %d\n", active, limit - try);
1344 
1345 	return 0;
1346 }
1347 
1348 static inline int bq27xxx_battery_set_cfgupdate(struct bq27xxx_device_info *di)
1349 {
1350 	int ret = bq27xxx_battery_cfgupdate_priv(di, true);
1351 	if (ret < 0 && ret != -EINVAL)
1352 		dev_err(di->dev, "bus error on set_cfgupdate: %d\n", ret);
1353 
1354 	return ret;
1355 }
1356 
1357 static inline int bq27xxx_battery_soft_reset(struct bq27xxx_device_info *di)
1358 {
1359 	int ret = bq27xxx_battery_cfgupdate_priv(di, false);
1360 	if (ret < 0 && ret != -EINVAL)
1361 		dev_err(di->dev, "bus error on soft_reset: %d\n", ret);
1362 
1363 	return ret;
1364 }
1365 
1366 static int bq27xxx_battery_write_dm_block(struct bq27xxx_device_info *di,
1367 					  struct bq27xxx_dm_buf *buf)
1368 {
1369 	bool cfgup = di->opts & BQ27XXX_O_CFGUP;
1370 	int ret;
1371 
1372 	if (!buf->dirty)
1373 		return 0;
1374 
1375 	if (cfgup) {
1376 		ret = bq27xxx_battery_set_cfgupdate(di);
1377 		if (ret < 0)
1378 			return ret;
1379 	}
1380 
1381 	ret = bq27xxx_write(di, BQ27XXX_DM_CTRL, 0, true);
1382 	if (ret < 0)
1383 		goto out;
1384 
1385 	ret = bq27xxx_write(di, BQ27XXX_DM_CLASS, buf->class, true);
1386 	if (ret < 0)
1387 		goto out;
1388 
1389 	ret = bq27xxx_write(di, BQ27XXX_DM_BLOCK, buf->block, true);
1390 	if (ret < 0)
1391 		goto out;
1392 
1393 	BQ27XXX_MSLEEP(1);
1394 
1395 	ret = bq27xxx_write_block(di, BQ27XXX_DM_DATA, buf->data, BQ27XXX_DM_SZ);
1396 	if (ret < 0)
1397 		goto out;
1398 
1399 	ret = bq27xxx_write(di, BQ27XXX_DM_CKSUM,
1400 			    bq27xxx_battery_checksum_dm_block(buf), true);
1401 	if (ret < 0)
1402 		goto out;
1403 
1404 	/* DO NOT read BQ27XXX_DM_CKSUM here to verify it! That may cause NVM
1405 	 * corruption on the '425 chip (and perhaps others), which can damage
1406 	 * the chip.
1407 	 */
1408 
1409 	if (cfgup) {
1410 		BQ27XXX_MSLEEP(1);
1411 		ret = bq27xxx_battery_soft_reset(di);
1412 		if (ret < 0)
1413 			return ret;
1414 	} else {
1415 		BQ27XXX_MSLEEP(100); /* flash DM updates in <100ms */
1416 	}
1417 
1418 	buf->dirty = false;
1419 
1420 	return 0;
1421 
1422 out:
1423 	if (cfgup)
1424 		bq27xxx_battery_soft_reset(di);
1425 
1426 	dev_err(di->dev, "bus error writing chip memory: %d\n", ret);
1427 	return ret;
1428 }
1429 
1430 static void bq27xxx_battery_set_config(struct bq27xxx_device_info *di,
1431 				       struct power_supply_battery_info *info)
1432 {
1433 	struct bq27xxx_dm_buf bd = BQ27XXX_DM_BUF(di, BQ27XXX_DM_DESIGN_CAPACITY);
1434 	struct bq27xxx_dm_buf bt = BQ27XXX_DM_BUF(di, BQ27XXX_DM_TERMINATE_VOLTAGE);
1435 	bool updated;
1436 
1437 	if (bq27xxx_battery_unseal(di) < 0)
1438 		return;
1439 
1440 	if (info->charge_full_design_uah != -EINVAL &&
1441 	    info->energy_full_design_uwh != -EINVAL) {
1442 		bq27xxx_battery_read_dm_block(di, &bd);
1443 		/* assume design energy & capacity are in same block */
1444 		bq27xxx_battery_update_dm_block(di, &bd,
1445 					BQ27XXX_DM_DESIGN_CAPACITY,
1446 					info->charge_full_design_uah / 1000);
1447 		bq27xxx_battery_update_dm_block(di, &bd,
1448 					BQ27XXX_DM_DESIGN_ENERGY,
1449 					info->energy_full_design_uwh / 1000);
1450 	}
1451 
1452 	if (info->voltage_min_design_uv != -EINVAL) {
1453 		bool same = bd.class == bt.class && bd.block == bt.block;
1454 		if (!same)
1455 			bq27xxx_battery_read_dm_block(di, &bt);
1456 		bq27xxx_battery_update_dm_block(di, same ? &bd : &bt,
1457 					BQ27XXX_DM_TERMINATE_VOLTAGE,
1458 					info->voltage_min_design_uv / 1000);
1459 	}
1460 
1461 	updated = bd.dirty || bt.dirty;
1462 
1463 	bq27xxx_battery_write_dm_block(di, &bd);
1464 	bq27xxx_battery_write_dm_block(di, &bt);
1465 
1466 	bq27xxx_battery_seal(di);
1467 
1468 	if (updated && !(di->opts & BQ27XXX_O_CFGUP)) {
1469 		bq27xxx_write(di, BQ27XXX_REG_CTRL, BQ27XXX_RESET, false);
1470 		BQ27XXX_MSLEEP(300); /* reset time is not documented */
1471 	}
1472 	/* assume bq27xxx_battery_update() is called hereafter */
1473 }
1474 
1475 static void bq27xxx_battery_settings(struct bq27xxx_device_info *di)
1476 {
1477 	struct power_supply_battery_info info = {};
1478 	unsigned int min, max;
1479 
1480 	if (power_supply_get_battery_info(di->bat, &info) < 0)
1481 		return;
1482 
1483 	if (!di->dm_regs) {
1484 		dev_warn(di->dev, "data memory update not supported for chip\n");
1485 		return;
1486 	}
1487 
1488 	if (info.energy_full_design_uwh != info.charge_full_design_uah) {
1489 		if (info.energy_full_design_uwh == -EINVAL)
1490 			dev_warn(di->dev, "missing battery:energy-full-design-microwatt-hours\n");
1491 		else if (info.charge_full_design_uah == -EINVAL)
1492 			dev_warn(di->dev, "missing battery:charge-full-design-microamp-hours\n");
1493 	}
1494 
1495 	/* assume min == 0 */
1496 	max = di->dm_regs[BQ27XXX_DM_DESIGN_ENERGY].max;
1497 	if (info.energy_full_design_uwh > max * 1000) {
1498 		dev_err(di->dev, "invalid battery:energy-full-design-microwatt-hours %d\n",
1499 			info.energy_full_design_uwh);
1500 		info.energy_full_design_uwh = -EINVAL;
1501 	}
1502 
1503 	/* assume min == 0 */
1504 	max = di->dm_regs[BQ27XXX_DM_DESIGN_CAPACITY].max;
1505 	if (info.charge_full_design_uah > max * 1000) {
1506 		dev_err(di->dev, "invalid battery:charge-full-design-microamp-hours %d\n",
1507 			info.charge_full_design_uah);
1508 		info.charge_full_design_uah = -EINVAL;
1509 	}
1510 
1511 	min = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].min;
1512 	max = di->dm_regs[BQ27XXX_DM_TERMINATE_VOLTAGE].max;
1513 	if ((info.voltage_min_design_uv < min * 1000 ||
1514 	     info.voltage_min_design_uv > max * 1000) &&
1515 	     info.voltage_min_design_uv != -EINVAL) {
1516 		dev_err(di->dev, "invalid battery:voltage-min-design-microvolt %d\n",
1517 			info.voltage_min_design_uv);
1518 		info.voltage_min_design_uv = -EINVAL;
1519 	}
1520 
1521 	if ((info.energy_full_design_uwh != -EINVAL &&
1522 	     info.charge_full_design_uah != -EINVAL) ||
1523 	     info.voltage_min_design_uv  != -EINVAL)
1524 		bq27xxx_battery_set_config(di, &info);
1525 }
1526 
1527 /*
1528  * Return the battery State-of-Charge
1529  * Or < 0 if something fails.
1530  */
1531 static int bq27xxx_battery_read_soc(struct bq27xxx_device_info *di)
1532 {
1533 	int soc;
1534 
1535 	if (di->opts & BQ27XXX_O_SOC_SI)
1536 		soc = bq27xxx_read(di, BQ27XXX_REG_SOC, true);
1537 	else
1538 		soc = bq27xxx_read(di, BQ27XXX_REG_SOC, false);
1539 
1540 	if (soc < 0)
1541 		dev_dbg(di->dev, "error reading State-of-Charge\n");
1542 
1543 	return soc;
1544 }
1545 
1546 /*
1547  * Return a battery charge value in µAh
1548  * Or < 0 if something fails.
1549  */
1550 static int bq27xxx_battery_read_charge(struct bq27xxx_device_info *di, u8 reg)
1551 {
1552 	int charge;
1553 
1554 	charge = bq27xxx_read(di, reg, false);
1555 	if (charge < 0) {
1556 		dev_dbg(di->dev, "error reading charge register %02x: %d\n",
1557 			reg, charge);
1558 		return charge;
1559 	}
1560 
1561 	if (di->opts & BQ27XXX_O_ZERO)
1562 		charge *= BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1563 	else
1564 		charge *= 1000;
1565 
1566 	return charge;
1567 }
1568 
1569 /*
1570  * Return the battery Nominal available capacity in µAh
1571  * Or < 0 if something fails.
1572  */
1573 static inline int bq27xxx_battery_read_nac(struct bq27xxx_device_info *di)
1574 {
1575 	int flags;
1576 
1577 	if (di->opts & BQ27XXX_O_ZERO) {
1578 		flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true);
1579 		if (flags >= 0 && (flags & BQ27000_FLAG_CI))
1580 			return -ENODATA;
1581 	}
1582 
1583 	return bq27xxx_battery_read_charge(di, BQ27XXX_REG_NAC);
1584 }
1585 
1586 /*
1587  * Return the battery Remaining Capacity in µAh
1588  * Or < 0 if something fails.
1589  */
1590 static inline int bq27xxx_battery_read_rc(struct bq27xxx_device_info *di)
1591 {
1592 	return bq27xxx_battery_read_charge(di, BQ27XXX_REG_RC);
1593 }
1594 
1595 /*
1596  * Return the battery Full Charge Capacity in µAh
1597  * Or < 0 if something fails.
1598  */
1599 static inline int bq27xxx_battery_read_fcc(struct bq27xxx_device_info *di)
1600 {
1601 	return bq27xxx_battery_read_charge(di, BQ27XXX_REG_FCC);
1602 }
1603 
1604 /*
1605  * Return the Design Capacity in µAh
1606  * Or < 0 if something fails.
1607  */
1608 static int bq27xxx_battery_read_dcap(struct bq27xxx_device_info *di)
1609 {
1610 	int dcap;
1611 
1612 	if (di->opts & BQ27XXX_O_ZERO)
1613 		dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, true);
1614 	else
1615 		dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, false);
1616 
1617 	if (dcap < 0) {
1618 		dev_dbg(di->dev, "error reading initial last measured discharge\n");
1619 		return dcap;
1620 	}
1621 
1622 	if (di->opts & BQ27XXX_O_ZERO)
1623 		dcap = (dcap << 8) * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1624 	else
1625 		dcap *= 1000;
1626 
1627 	return dcap;
1628 }
1629 
1630 /*
1631  * Return the battery Available energy in µWh
1632  * Or < 0 if something fails.
1633  */
1634 static int bq27xxx_battery_read_energy(struct bq27xxx_device_info *di)
1635 {
1636 	int ae;
1637 
1638 	ae = bq27xxx_read(di, BQ27XXX_REG_AE, false);
1639 	if (ae < 0) {
1640 		dev_dbg(di->dev, "error reading available energy\n");
1641 		return ae;
1642 	}
1643 
1644 	if (di->opts & BQ27XXX_O_ZERO)
1645 		ae *= BQ27XXX_POWER_CONSTANT / BQ27XXX_RS;
1646 	else
1647 		ae *= 1000;
1648 
1649 	return ae;
1650 }
1651 
1652 /*
1653  * Return the battery temperature in tenths of degree Kelvin
1654  * Or < 0 if something fails.
1655  */
1656 static int bq27xxx_battery_read_temperature(struct bq27xxx_device_info *di)
1657 {
1658 	int temp;
1659 
1660 	temp = bq27xxx_read(di, BQ27XXX_REG_TEMP, false);
1661 	if (temp < 0) {
1662 		dev_err(di->dev, "error reading temperature\n");
1663 		return temp;
1664 	}
1665 
1666 	if (di->opts & BQ27XXX_O_ZERO)
1667 		temp = 5 * temp / 2;
1668 
1669 	return temp;
1670 }
1671 
1672 /*
1673  * Return the battery Cycle count total
1674  * Or < 0 if something fails.
1675  */
1676 static int bq27xxx_battery_read_cyct(struct bq27xxx_device_info *di)
1677 {
1678 	int cyct;
1679 
1680 	cyct = bq27xxx_read(di, BQ27XXX_REG_CYCT, false);
1681 	if (cyct < 0)
1682 		dev_err(di->dev, "error reading cycle count total\n");
1683 
1684 	return cyct;
1685 }
1686 
1687 /*
1688  * Read a time register.
1689  * Return < 0 if something fails.
1690  */
1691 static int bq27xxx_battery_read_time(struct bq27xxx_device_info *di, u8 reg)
1692 {
1693 	int tval;
1694 
1695 	tval = bq27xxx_read(di, reg, false);
1696 	if (tval < 0) {
1697 		dev_dbg(di->dev, "error reading time register %02x: %d\n",
1698 			reg, tval);
1699 		return tval;
1700 	}
1701 
1702 	if (tval == 65535)
1703 		return -ENODATA;
1704 
1705 	return tval * 60;
1706 }
1707 
1708 /*
1709  * Returns true if a battery over temperature condition is detected
1710  */
1711 static bool bq27xxx_battery_overtemp(struct bq27xxx_device_info *di, u16 flags)
1712 {
1713 	if (di->opts & BQ27XXX_O_OTDC)
1714 		return flags & (BQ27XXX_FLAG_OTC | BQ27XXX_FLAG_OTD);
1715         if (di->opts & BQ27XXX_O_UTOT)
1716 		return flags & BQ27XXX_FLAG_OT;
1717 
1718 	return false;
1719 }
1720 
1721 /*
1722  * Returns true if a battery under temperature condition is detected
1723  */
1724 static bool bq27xxx_battery_undertemp(struct bq27xxx_device_info *di, u16 flags)
1725 {
1726 	if (di->opts & BQ27XXX_O_UTOT)
1727 		return flags & BQ27XXX_FLAG_UT;
1728 
1729 	return false;
1730 }
1731 
1732 /*
1733  * Returns true if a low state of charge condition is detected
1734  */
1735 static bool bq27xxx_battery_dead(struct bq27xxx_device_info *di, u16 flags)
1736 {
1737 	if (di->opts & BQ27XXX_O_ZERO)
1738 		return flags & (BQ27000_FLAG_EDV1 | BQ27000_FLAG_EDVF);
1739 	else if (di->opts & BQ27Z561_O_BITS)
1740 		return flags & BQ27Z561_FLAG_FDC;
1741 	else
1742 		return flags & (BQ27XXX_FLAG_SOC1 | BQ27XXX_FLAG_SOCF);
1743 }
1744 
1745 static int bq27xxx_battery_read_health(struct bq27xxx_device_info *di)
1746 {
1747 	/* Unlikely but important to return first */
1748 	if (unlikely(bq27xxx_battery_overtemp(di, di->cache.flags)))
1749 		return POWER_SUPPLY_HEALTH_OVERHEAT;
1750 	if (unlikely(bq27xxx_battery_undertemp(di, di->cache.flags)))
1751 		return POWER_SUPPLY_HEALTH_COLD;
1752 	if (unlikely(bq27xxx_battery_dead(di, di->cache.flags)))
1753 		return POWER_SUPPLY_HEALTH_DEAD;
1754 
1755 	return POWER_SUPPLY_HEALTH_GOOD;
1756 }
1757 
1758 void bq27xxx_battery_update(struct bq27xxx_device_info *di)
1759 {
1760 	struct bq27xxx_reg_cache cache = {0, };
1761 	bool has_ci_flag = di->opts & BQ27XXX_O_HAS_CI;
1762 	bool has_singe_flag = di->opts & BQ27XXX_O_ZERO;
1763 
1764 	cache.flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, has_singe_flag);
1765 	if ((cache.flags & 0xff) == 0xff)
1766 		cache.flags = -1; /* read error */
1767 	if (cache.flags >= 0) {
1768 		cache.temperature = bq27xxx_battery_read_temperature(di);
1769 		if (has_ci_flag && (cache.flags & BQ27000_FLAG_CI)) {
1770 			dev_info_once(di->dev, "battery is not calibrated! ignoring capacity values\n");
1771 			cache.capacity = -ENODATA;
1772 			cache.energy = -ENODATA;
1773 			cache.time_to_empty = -ENODATA;
1774 			cache.time_to_empty_avg = -ENODATA;
1775 			cache.time_to_full = -ENODATA;
1776 			cache.charge_full = -ENODATA;
1777 			cache.health = -ENODATA;
1778 		} else {
1779 			if (di->regs[BQ27XXX_REG_TTE] != INVALID_REG_ADDR)
1780 				cache.time_to_empty = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTE);
1781 			if (di->regs[BQ27XXX_REG_TTECP] != INVALID_REG_ADDR)
1782 				cache.time_to_empty_avg = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTECP);
1783 			if (di->regs[BQ27XXX_REG_TTF] != INVALID_REG_ADDR)
1784 				cache.time_to_full = bq27xxx_battery_read_time(di, BQ27XXX_REG_TTF);
1785 
1786 			cache.charge_full = bq27xxx_battery_read_fcc(di);
1787 			cache.capacity = bq27xxx_battery_read_soc(di);
1788 			if (di->regs[BQ27XXX_REG_AE] != INVALID_REG_ADDR)
1789 				cache.energy = bq27xxx_battery_read_energy(di);
1790 			di->cache.flags = cache.flags;
1791 			cache.health = bq27xxx_battery_read_health(di);
1792 		}
1793 		if (di->regs[BQ27XXX_REG_CYCT] != INVALID_REG_ADDR)
1794 			cache.cycle_count = bq27xxx_battery_read_cyct(di);
1795 
1796 		/* We only have to read charge design full once */
1797 		if (di->charge_design_full <= 0)
1798 			di->charge_design_full = bq27xxx_battery_read_dcap(di);
1799 	}
1800 
1801 	if ((di->cache.capacity != cache.capacity) ||
1802 	    (di->cache.flags != cache.flags))
1803 		power_supply_changed(di->bat);
1804 
1805 	if (memcmp(&di->cache, &cache, sizeof(cache)) != 0)
1806 		di->cache = cache;
1807 
1808 	di->last_update = jiffies;
1809 }
1810 EXPORT_SYMBOL_GPL(bq27xxx_battery_update);
1811 
1812 static void bq27xxx_battery_poll(struct work_struct *work)
1813 {
1814 	struct bq27xxx_device_info *di =
1815 			container_of(work, struct bq27xxx_device_info,
1816 				     work.work);
1817 
1818 	bq27xxx_battery_update(di);
1819 
1820 	if (poll_interval > 0)
1821 		schedule_delayed_work(&di->work, poll_interval * HZ);
1822 }
1823 
1824 static bool bq27xxx_battery_is_full(struct bq27xxx_device_info *di, int flags)
1825 {
1826 	if (di->opts & BQ27XXX_O_ZERO)
1827 		return (flags & BQ27000_FLAG_FC);
1828 	else if (di->opts & BQ27Z561_O_BITS)
1829 		return (flags & BQ27Z561_FLAG_FC);
1830 	else
1831 		return (flags & BQ27XXX_FLAG_FC);
1832 }
1833 
1834 /*
1835  * Return the battery average current in µA and the status
1836  * Note that current can be negative signed as well
1837  * Or 0 if something fails.
1838  */
1839 static int bq27xxx_battery_current_and_status(
1840 	struct bq27xxx_device_info *di,
1841 	union power_supply_propval *val_curr,
1842 	union power_supply_propval *val_status)
1843 {
1844 	bool single_flags = (di->opts & BQ27XXX_O_ZERO);
1845 	int curr;
1846 	int flags;
1847 
1848 	curr = bq27xxx_read(di, BQ27XXX_REG_AI, false);
1849 	if (curr < 0) {
1850 		dev_err(di->dev, "error reading current\n");
1851 		return curr;
1852 	}
1853 
1854 	flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, single_flags);
1855 	if (flags < 0) {
1856 		dev_err(di->dev, "error reading flags\n");
1857 		return flags;
1858 	}
1859 
1860 	if (di->opts & BQ27XXX_O_ZERO) {
1861 		if (!(flags & BQ27000_FLAG_CHGS)) {
1862 			dev_dbg(di->dev, "negative current!\n");
1863 			curr = -curr;
1864 		}
1865 
1866 		curr = curr * BQ27XXX_CURRENT_CONSTANT / BQ27XXX_RS;
1867 	} else {
1868 		/* Other gauges return signed value */
1869 		curr = (int)((s16)curr) * 1000;
1870 	}
1871 
1872 	if (val_curr)
1873 		val_curr->intval = curr;
1874 
1875 	if (val_status) {
1876 		if (curr > 0) {
1877 			val_status->intval = POWER_SUPPLY_STATUS_CHARGING;
1878 		} else if (curr < 0) {
1879 			val_status->intval = POWER_SUPPLY_STATUS_DISCHARGING;
1880 		} else {
1881 			if (bq27xxx_battery_is_full(di, flags))
1882 				val_status->intval = POWER_SUPPLY_STATUS_FULL;
1883 			else
1884 				val_status->intval =
1885 					POWER_SUPPLY_STATUS_NOT_CHARGING;
1886 		}
1887 	}
1888 
1889 	return 0;
1890 }
1891 
1892 /*
1893  * Get the average power in µW
1894  * Return < 0 if something fails.
1895  */
1896 static int bq27xxx_battery_pwr_avg(struct bq27xxx_device_info *di,
1897 				   union power_supply_propval *val)
1898 {
1899 	int power;
1900 
1901 	power = bq27xxx_read(di, BQ27XXX_REG_AP, false);
1902 	if (power < 0) {
1903 		dev_err(di->dev,
1904 			"error reading average power register %02x: %d\n",
1905 			BQ27XXX_REG_AP, power);
1906 		return power;
1907 	}
1908 
1909 	if (di->opts & BQ27XXX_O_ZERO)
1910 		val->intval = (power * BQ27XXX_POWER_CONSTANT) / BQ27XXX_RS;
1911 	else
1912 		/* Other gauges return a signed value in units of 10mW */
1913 		val->intval = (int)((s16)power) * 10000;
1914 
1915 	return 0;
1916 }
1917 
1918 static int bq27xxx_battery_capacity_level(struct bq27xxx_device_info *di,
1919 					  union power_supply_propval *val)
1920 {
1921 	int level;
1922 
1923 	if (di->opts & BQ27XXX_O_ZERO) {
1924 		if (di->cache.flags & BQ27000_FLAG_FC)
1925 			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1926 		else if (di->cache.flags & BQ27000_FLAG_EDV1)
1927 			level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1928 		else if (di->cache.flags & BQ27000_FLAG_EDVF)
1929 			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1930 		else
1931 			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1932 	} else if (di->opts & BQ27Z561_O_BITS) {
1933 		if (di->cache.flags & BQ27Z561_FLAG_FC)
1934 			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1935 		else if (di->cache.flags & BQ27Z561_FLAG_FDC)
1936 			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1937 		else
1938 			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1939 	} else {
1940 		if (di->cache.flags & BQ27XXX_FLAG_FC)
1941 			level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1942 		else if (di->cache.flags & BQ27XXX_FLAG_SOC1)
1943 			level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1944 		else if (di->cache.flags & BQ27XXX_FLAG_SOCF)
1945 			level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1946 		else
1947 			level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1948 	}
1949 
1950 	val->intval = level;
1951 
1952 	return 0;
1953 }
1954 
1955 /*
1956  * Return the battery Voltage in millivolts
1957  * Or < 0 if something fails.
1958  */
1959 static int bq27xxx_battery_voltage(struct bq27xxx_device_info *di,
1960 				   union power_supply_propval *val)
1961 {
1962 	int volt;
1963 
1964 	volt = bq27xxx_read(di, BQ27XXX_REG_VOLT, false);
1965 	if (volt < 0) {
1966 		dev_err(di->dev, "error reading voltage\n");
1967 		return volt;
1968 	}
1969 
1970 	val->intval = volt * 1000;
1971 
1972 	return 0;
1973 }
1974 
1975 static int bq27xxx_simple_value(int value,
1976 				union power_supply_propval *val)
1977 {
1978 	if (value < 0)
1979 		return value;
1980 
1981 	val->intval = value;
1982 
1983 	return 0;
1984 }
1985 
1986 static int bq27xxx_battery_get_property(struct power_supply *psy,
1987 					enum power_supply_property psp,
1988 					union power_supply_propval *val)
1989 {
1990 	int ret = 0;
1991 	struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
1992 
1993 	mutex_lock(&di->lock);
1994 	if (time_is_before_jiffies(di->last_update + 5 * HZ)) {
1995 		cancel_delayed_work_sync(&di->work);
1996 		bq27xxx_battery_poll(&di->work.work);
1997 	}
1998 	mutex_unlock(&di->lock);
1999 
2000 	if (psp != POWER_SUPPLY_PROP_PRESENT && di->cache.flags < 0)
2001 		return -ENODEV;
2002 
2003 	switch (psp) {
2004 	case POWER_SUPPLY_PROP_STATUS:
2005 		ret = bq27xxx_battery_current_and_status(di, NULL, val);
2006 		break;
2007 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2008 		ret = bq27xxx_battery_voltage(di, val);
2009 		break;
2010 	case POWER_SUPPLY_PROP_PRESENT:
2011 		val->intval = di->cache.flags < 0 ? 0 : 1;
2012 		break;
2013 	case POWER_SUPPLY_PROP_CURRENT_NOW:
2014 		ret = bq27xxx_battery_current_and_status(di, val, NULL);
2015 		break;
2016 	case POWER_SUPPLY_PROP_CAPACITY:
2017 		ret = bq27xxx_simple_value(di->cache.capacity, val);
2018 		break;
2019 	case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2020 		ret = bq27xxx_battery_capacity_level(di, val);
2021 		break;
2022 	case POWER_SUPPLY_PROP_TEMP:
2023 		ret = bq27xxx_simple_value(di->cache.temperature, val);
2024 		if (ret == 0)
2025 			val->intval -= 2731; /* convert decidegree k to c */
2026 		break;
2027 	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW:
2028 		ret = bq27xxx_simple_value(di->cache.time_to_empty, val);
2029 		break;
2030 	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
2031 		ret = bq27xxx_simple_value(di->cache.time_to_empty_avg, val);
2032 		break;
2033 	case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW:
2034 		ret = bq27xxx_simple_value(di->cache.time_to_full, val);
2035 		break;
2036 	case POWER_SUPPLY_PROP_TECHNOLOGY:
2037 		if (di->opts & BQ27XXX_O_MUL_CHEM)
2038 			val->intval = POWER_SUPPLY_TECHNOLOGY_UNKNOWN;
2039 		else
2040 			val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
2041 		break;
2042 	case POWER_SUPPLY_PROP_CHARGE_NOW:
2043 		if (di->regs[BQ27XXX_REG_NAC] != INVALID_REG_ADDR)
2044 			ret = bq27xxx_simple_value(bq27xxx_battery_read_nac(di), val);
2045 		else
2046 			ret = bq27xxx_simple_value(bq27xxx_battery_read_rc(di), val);
2047 		break;
2048 	case POWER_SUPPLY_PROP_CHARGE_FULL:
2049 		ret = bq27xxx_simple_value(di->cache.charge_full, val);
2050 		break;
2051 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2052 		ret = bq27xxx_simple_value(di->charge_design_full, val);
2053 		break;
2054 	/*
2055 	 * TODO: Implement these to make registers set from
2056 	 * power_supply_battery_info visible in sysfs.
2057 	 */
2058 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2059 	case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
2060 		return -EINVAL;
2061 	case POWER_SUPPLY_PROP_CYCLE_COUNT:
2062 		ret = bq27xxx_simple_value(di->cache.cycle_count, val);
2063 		break;
2064 	case POWER_SUPPLY_PROP_ENERGY_NOW:
2065 		ret = bq27xxx_simple_value(di->cache.energy, val);
2066 		break;
2067 	case POWER_SUPPLY_PROP_POWER_AVG:
2068 		ret = bq27xxx_battery_pwr_avg(di, val);
2069 		break;
2070 	case POWER_SUPPLY_PROP_HEALTH:
2071 		ret = bq27xxx_simple_value(di->cache.health, val);
2072 		break;
2073 	case POWER_SUPPLY_PROP_MANUFACTURER:
2074 		val->strval = BQ27XXX_MANUFACTURER;
2075 		break;
2076 	default:
2077 		return -EINVAL;
2078 	}
2079 
2080 	return ret;
2081 }
2082 
2083 static void bq27xxx_external_power_changed(struct power_supply *psy)
2084 {
2085 	struct bq27xxx_device_info *di = power_supply_get_drvdata(psy);
2086 
2087 	cancel_delayed_work_sync(&di->work);
2088 	schedule_delayed_work(&di->work, 0);
2089 }
2090 
2091 int bq27xxx_battery_setup(struct bq27xxx_device_info *di)
2092 {
2093 	struct power_supply_desc *psy_desc;
2094 	struct power_supply_config psy_cfg = {
2095 		.of_node = di->dev->of_node,
2096 		.drv_data = di,
2097 	};
2098 
2099 	INIT_DELAYED_WORK(&di->work, bq27xxx_battery_poll);
2100 	mutex_init(&di->lock);
2101 
2102 	di->regs       = bq27xxx_chip_data[di->chip].regs;
2103 	di->unseal_key = bq27xxx_chip_data[di->chip].unseal_key;
2104 	di->dm_regs    = bq27xxx_chip_data[di->chip].dm_regs;
2105 	di->opts       = bq27xxx_chip_data[di->chip].opts;
2106 
2107 	psy_desc = devm_kzalloc(di->dev, sizeof(*psy_desc), GFP_KERNEL);
2108 	if (!psy_desc)
2109 		return -ENOMEM;
2110 
2111 	psy_desc->name = di->name;
2112 	psy_desc->type = POWER_SUPPLY_TYPE_BATTERY;
2113 	psy_desc->properties = bq27xxx_chip_data[di->chip].props;
2114 	psy_desc->num_properties = bq27xxx_chip_data[di->chip].props_size;
2115 	psy_desc->get_property = bq27xxx_battery_get_property;
2116 	psy_desc->external_power_changed = bq27xxx_external_power_changed;
2117 
2118 	di->bat = power_supply_register_no_ws(di->dev, psy_desc, &psy_cfg);
2119 	if (IS_ERR(di->bat))
2120 		return dev_err_probe(di->dev, PTR_ERR(di->bat),
2121 				     "failed to register battery\n");
2122 
2123 	bq27xxx_battery_settings(di);
2124 	bq27xxx_battery_update(di);
2125 
2126 	mutex_lock(&bq27xxx_list_lock);
2127 	list_add(&di->list, &bq27xxx_battery_devices);
2128 	mutex_unlock(&bq27xxx_list_lock);
2129 
2130 	return 0;
2131 }
2132 EXPORT_SYMBOL_GPL(bq27xxx_battery_setup);
2133 
2134 void bq27xxx_battery_teardown(struct bq27xxx_device_info *di)
2135 {
2136 	/*
2137 	 * power_supply_unregister call bq27xxx_battery_get_property which
2138 	 * call bq27xxx_battery_poll.
2139 	 * Make sure that bq27xxx_battery_poll will not call
2140 	 * schedule_delayed_work again after unregister (which cause OOPS).
2141 	 */
2142 	poll_interval = 0;
2143 
2144 	cancel_delayed_work_sync(&di->work);
2145 
2146 	power_supply_unregister(di->bat);
2147 
2148 	mutex_lock(&bq27xxx_list_lock);
2149 	list_del(&di->list);
2150 	mutex_unlock(&bq27xxx_list_lock);
2151 
2152 	mutex_destroy(&di->lock);
2153 }
2154 EXPORT_SYMBOL_GPL(bq27xxx_battery_teardown);
2155 
2156 MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>");
2157 MODULE_DESCRIPTION("BQ27xxx battery monitor driver");
2158 MODULE_LICENSE("GPL");
2159