1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) ST-Ericsson AB 2012 4 * 5 * Main and Back-up battery management driver. 6 * 7 * Note: Backup battery management is required in case of Li-Ion battery and not 8 * for capacitive battery. HREF boards have capacitive battery and hence backup 9 * battery management is not used and the supported code is available in this 10 * driver. 11 * 12 * Author: 13 * Johan Palsson <johan.palsson@stericsson.com> 14 * Karl Komierowski <karl.komierowski@stericsson.com> 15 * Arun R Murthy <arun.murthy@stericsson.com> 16 */ 17 18 #include <linux/init.h> 19 #include <linux/module.h> 20 #include <linux/component.h> 21 #include <linux/device.h> 22 #include <linux/interrupt.h> 23 #include <linux/platform_device.h> 24 #include <linux/power_supply.h> 25 #include <linux/kobject.h> 26 #include <linux/slab.h> 27 #include <linux/delay.h> 28 #include <linux/time.h> 29 #include <linux/time64.h> 30 #include <linux/of.h> 31 #include <linux/completion.h> 32 #include <linux/mfd/core.h> 33 #include <linux/mfd/abx500.h> 34 #include <linux/mfd/abx500/ab8500.h> 35 #include <linux/iio/consumer.h> 36 #include <linux/kernel.h> 37 #include <linux/fixp-arith.h> 38 39 #include "ab8500-bm.h" 40 41 #define FG_LSB_IN_MA 1627 42 #define QLSB_NANO_AMP_HOURS_X10 1071 43 #define INS_CURR_TIMEOUT (3 * HZ) 44 45 #define SEC_TO_SAMPLE(S) (S * 4) 46 47 #define NBR_AVG_SAMPLES 20 48 #define WAIT_FOR_INST_CURRENT_MAX 70 49 /* Currents higher than -500mA (dissipating) will make compensation unstable */ 50 #define IGNORE_VBAT_HIGHCUR -500000 51 52 #define LOW_BAT_CHECK_INTERVAL (HZ / 16) /* 62.5 ms */ 53 54 #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */ 55 #define BATT_OK_MIN 2360 /* mV */ 56 #define BATT_OK_INCREMENT 50 /* mV */ 57 #define BATT_OK_MAX_NR_INCREMENTS 0xE 58 59 /* FG constants */ 60 #define BATT_OVV 0x01 61 62 /** 63 * struct ab8500_fg_interrupts - ab8500 fg interrupts 64 * @name: name of the interrupt 65 * @isr function pointer to the isr 66 */ 67 struct ab8500_fg_interrupts { 68 char *name; 69 irqreturn_t (*isr)(int irq, void *data); 70 }; 71 72 enum ab8500_fg_discharge_state { 73 AB8500_FG_DISCHARGE_INIT, 74 AB8500_FG_DISCHARGE_INITMEASURING, 75 AB8500_FG_DISCHARGE_INIT_RECOVERY, 76 AB8500_FG_DISCHARGE_RECOVERY, 77 AB8500_FG_DISCHARGE_READOUT_INIT, 78 AB8500_FG_DISCHARGE_READOUT, 79 AB8500_FG_DISCHARGE_WAKEUP, 80 }; 81 82 static char *discharge_state[] = { 83 "DISCHARGE_INIT", 84 "DISCHARGE_INITMEASURING", 85 "DISCHARGE_INIT_RECOVERY", 86 "DISCHARGE_RECOVERY", 87 "DISCHARGE_READOUT_INIT", 88 "DISCHARGE_READOUT", 89 "DISCHARGE_WAKEUP", 90 }; 91 92 enum ab8500_fg_charge_state { 93 AB8500_FG_CHARGE_INIT, 94 AB8500_FG_CHARGE_READOUT, 95 }; 96 97 static char *charge_state[] = { 98 "CHARGE_INIT", 99 "CHARGE_READOUT", 100 }; 101 102 enum ab8500_fg_calibration_state { 103 AB8500_FG_CALIB_INIT, 104 AB8500_FG_CALIB_WAIT, 105 AB8500_FG_CALIB_END, 106 }; 107 108 struct ab8500_fg_avg_cap { 109 int avg; 110 int samples[NBR_AVG_SAMPLES]; 111 time64_t time_stamps[NBR_AVG_SAMPLES]; 112 int pos; 113 int nbr_samples; 114 int sum; 115 }; 116 117 struct ab8500_fg_cap_scaling { 118 bool enable; 119 int cap_to_scale[2]; 120 int disable_cap_level; 121 int scaled_cap; 122 }; 123 124 struct ab8500_fg_battery_capacity { 125 int max_mah_design; 126 int max_mah; 127 int mah; 128 int permille; 129 int level; 130 int prev_mah; 131 int prev_percent; 132 int prev_level; 133 int user_mah; 134 struct ab8500_fg_cap_scaling cap_scale; 135 }; 136 137 struct ab8500_fg_flags { 138 bool fg_enabled; 139 bool conv_done; 140 bool charging; 141 bool fully_charged; 142 bool force_full; 143 bool low_bat_delay; 144 bool low_bat; 145 bool bat_ovv; 146 bool batt_unknown; 147 bool calibrate; 148 bool user_cap; 149 bool batt_id_received; 150 }; 151 152 /** 153 * struct ab8500_fg - ab8500 FG device information 154 * @dev: Pointer to the structure device 155 * @node: a list of AB8500 FGs, hence prepared for reentrance 156 * @irq holds the CCEOC interrupt number 157 * @vbat_uv: Battery voltage in uV 158 * @vbat_nom_uv: Nominal battery voltage in uV 159 * @inst_curr_ua: Instantenous battery current in uA 160 * @avg_curr_ua: Average battery current in uA 161 * @bat_temp battery temperature 162 * @fg_samples: Number of samples used in the FG accumulation 163 * @accu_charge: Accumulated charge from the last conversion 164 * @recovery_cnt: Counter for recovery mode 165 * @high_curr_cnt: Counter for high current mode 166 * @init_cnt: Counter for init mode 167 * @low_bat_cnt Counter for number of consecutive low battery measures 168 * @nbr_cceoc_irq_cnt Counter for number of CCEOC irqs received since enabled 169 * @recovery_needed: Indicate if recovery is needed 170 * @high_curr_mode: Indicate if we're in high current mode 171 * @init_capacity: Indicate if initial capacity measuring should be done 172 * @turn_off_fg: True if fg was off before current measurement 173 * @calib_state State during offset calibration 174 * @discharge_state: Current discharge state 175 * @charge_state: Current charge state 176 * @ab8500_fg_started Completion struct used for the instant current start 177 * @ab8500_fg_complete Completion struct used for the instant current reading 178 * @flags: Structure for information about events triggered 179 * @bat_cap: Structure for battery capacity specific parameters 180 * @avg_cap: Average capacity filter 181 * @parent: Pointer to the struct ab8500 182 * @main_bat_v: ADC channel for the main battery voltage 183 * @bm: Platform specific battery management information 184 * @fg_psy: Structure that holds the FG specific battery properties 185 * @fg_wq: Work queue for running the FG algorithm 186 * @fg_periodic_work: Work to run the FG algorithm periodically 187 * @fg_low_bat_work: Work to check low bat condition 188 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm 189 * @fg_work: Work to run the FG algorithm instantly 190 * @fg_acc_cur_work: Work to read the FG accumulator 191 * @fg_check_hw_failure_work: Work for checking HW state 192 * @cc_lock: Mutex for locking the CC 193 * @fg_kobject: Structure of type kobject 194 */ 195 struct ab8500_fg { 196 struct device *dev; 197 struct list_head node; 198 int irq; 199 int vbat_uv; 200 int vbat_nom_uv; 201 int inst_curr_ua; 202 int avg_curr_ua; 203 int bat_temp; 204 int fg_samples; 205 int accu_charge; 206 int recovery_cnt; 207 int high_curr_cnt; 208 int init_cnt; 209 int low_bat_cnt; 210 int nbr_cceoc_irq_cnt; 211 u32 line_impedance_uohm; 212 bool recovery_needed; 213 bool high_curr_mode; 214 bool init_capacity; 215 bool turn_off_fg; 216 enum ab8500_fg_calibration_state calib_state; 217 enum ab8500_fg_discharge_state discharge_state; 218 enum ab8500_fg_charge_state charge_state; 219 struct completion ab8500_fg_started; 220 struct completion ab8500_fg_complete; 221 struct ab8500_fg_flags flags; 222 struct ab8500_fg_battery_capacity bat_cap; 223 struct ab8500_fg_avg_cap avg_cap; 224 struct ab8500 *parent; 225 struct iio_channel *main_bat_v; 226 struct ab8500_bm_data *bm; 227 struct power_supply *fg_psy; 228 struct workqueue_struct *fg_wq; 229 struct delayed_work fg_periodic_work; 230 struct delayed_work fg_low_bat_work; 231 struct delayed_work fg_reinit_work; 232 struct work_struct fg_work; 233 struct work_struct fg_acc_cur_work; 234 struct delayed_work fg_check_hw_failure_work; 235 struct mutex cc_lock; 236 struct kobject fg_kobject; 237 }; 238 static LIST_HEAD(ab8500_fg_list); 239 240 /** 241 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge 242 * (i.e. the first fuel gauge in the instance list) 243 */ 244 struct ab8500_fg *ab8500_fg_get(void) 245 { 246 return list_first_entry_or_null(&ab8500_fg_list, struct ab8500_fg, 247 node); 248 } 249 250 /* Main battery properties */ 251 static enum power_supply_property ab8500_fg_props[] = { 252 POWER_SUPPLY_PROP_VOLTAGE_NOW, 253 POWER_SUPPLY_PROP_CURRENT_NOW, 254 POWER_SUPPLY_PROP_CURRENT_AVG, 255 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 256 POWER_SUPPLY_PROP_ENERGY_FULL, 257 POWER_SUPPLY_PROP_ENERGY_NOW, 258 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 259 POWER_SUPPLY_PROP_CHARGE_FULL, 260 POWER_SUPPLY_PROP_CHARGE_NOW, 261 POWER_SUPPLY_PROP_CAPACITY, 262 POWER_SUPPLY_PROP_CAPACITY_LEVEL, 263 }; 264 265 /* 266 * This array maps the raw hex value to lowbat voltage used by the AB8500 267 * Values taken from the UM0836, in microvolts. 268 */ 269 static int ab8500_fg_lowbat_voltage_map[] = { 270 2300000, 271 2325000, 272 2350000, 273 2375000, 274 2400000, 275 2425000, 276 2450000, 277 2475000, 278 2500000, 279 2525000, 280 2550000, 281 2575000, 282 2600000, 283 2625000, 284 2650000, 285 2675000, 286 2700000, 287 2725000, 288 2750000, 289 2775000, 290 2800000, 291 2825000, 292 2850000, 293 2875000, 294 2900000, 295 2925000, 296 2950000, 297 2975000, 298 3000000, 299 3025000, 300 3050000, 301 3075000, 302 3100000, 303 3125000, 304 3150000, 305 3175000, 306 3200000, 307 3225000, 308 3250000, 309 3275000, 310 3300000, 311 3325000, 312 3350000, 313 3375000, 314 3400000, 315 3425000, 316 3450000, 317 3475000, 318 3500000, 319 3525000, 320 3550000, 321 3575000, 322 3600000, 323 3625000, 324 3650000, 325 3675000, 326 3700000, 327 3725000, 328 3750000, 329 3775000, 330 3800000, 331 3825000, 332 3850000, 333 3850000, 334 }; 335 336 static u8 ab8500_volt_to_regval(int voltage_uv) 337 { 338 int i; 339 340 if (voltage_uv < ab8500_fg_lowbat_voltage_map[0]) 341 return 0; 342 343 for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) { 344 if (voltage_uv < ab8500_fg_lowbat_voltage_map[i]) 345 return (u8) i - 1; 346 } 347 348 /* If not captured above, return index of last element */ 349 return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1; 350 } 351 352 /** 353 * ab8500_fg_is_low_curr() - Low or high current mode 354 * @di: pointer to the ab8500_fg structure 355 * @curr_ua: the current to base or our decision on in microampere 356 * 357 * Low current mode if the current consumption is below a certain threshold 358 */ 359 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr_ua) 360 { 361 /* 362 * We want to know if we're in low current mode 363 */ 364 if (curr_ua > -di->bm->fg_params->high_curr_threshold_ua) 365 return true; 366 else 367 return false; 368 } 369 370 /** 371 * ab8500_fg_add_cap_sample() - Add capacity to average filter 372 * @di: pointer to the ab8500_fg structure 373 * @sample: the capacity in mAh to add to the filter 374 * 375 * A capacity is added to the filter and a new mean capacity is calculated and 376 * returned 377 */ 378 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample) 379 { 380 time64_t now = ktime_get_boottime_seconds(); 381 struct ab8500_fg_avg_cap *avg = &di->avg_cap; 382 383 do { 384 avg->sum += sample - avg->samples[avg->pos]; 385 avg->samples[avg->pos] = sample; 386 avg->time_stamps[avg->pos] = now; 387 avg->pos++; 388 389 if (avg->pos == NBR_AVG_SAMPLES) 390 avg->pos = 0; 391 392 if (avg->nbr_samples < NBR_AVG_SAMPLES) 393 avg->nbr_samples++; 394 395 /* 396 * Check the time stamp for each sample. If too old, 397 * replace with latest sample 398 */ 399 } while (now - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]); 400 401 avg->avg = avg->sum / avg->nbr_samples; 402 403 return avg->avg; 404 } 405 406 /** 407 * ab8500_fg_clear_cap_samples() - Clear average filter 408 * @di: pointer to the ab8500_fg structure 409 * 410 * The capacity filter is reset to zero. 411 */ 412 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di) 413 { 414 int i; 415 struct ab8500_fg_avg_cap *avg = &di->avg_cap; 416 417 avg->pos = 0; 418 avg->nbr_samples = 0; 419 avg->sum = 0; 420 avg->avg = 0; 421 422 for (i = 0; i < NBR_AVG_SAMPLES; i++) { 423 avg->samples[i] = 0; 424 avg->time_stamps[i] = 0; 425 } 426 } 427 428 /** 429 * ab8500_fg_fill_cap_sample() - Fill average filter 430 * @di: pointer to the ab8500_fg structure 431 * @sample: the capacity in mAh to fill the filter with 432 * 433 * The capacity filter is filled with a capacity in mAh 434 */ 435 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample) 436 { 437 int i; 438 time64_t now; 439 struct ab8500_fg_avg_cap *avg = &di->avg_cap; 440 441 now = ktime_get_boottime_seconds(); 442 443 for (i = 0; i < NBR_AVG_SAMPLES; i++) { 444 avg->samples[i] = sample; 445 avg->time_stamps[i] = now; 446 } 447 448 avg->pos = 0; 449 avg->nbr_samples = NBR_AVG_SAMPLES; 450 avg->sum = sample * NBR_AVG_SAMPLES; 451 avg->avg = sample; 452 } 453 454 /** 455 * ab8500_fg_coulomb_counter() - enable coulomb counter 456 * @di: pointer to the ab8500_fg structure 457 * @enable: enable/disable 458 * 459 * Enable/Disable coulomb counter. 460 * On failure returns negative value. 461 */ 462 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable) 463 { 464 int ret = 0; 465 mutex_lock(&di->cc_lock); 466 if (enable) { 467 /* To be able to reprogram the number of samples, we have to 468 * first stop the CC and then enable it again */ 469 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, 470 AB8500_RTC_CC_CONF_REG, 0x00); 471 if (ret) 472 goto cc_err; 473 474 /* Program the samples */ 475 ret = abx500_set_register_interruptible(di->dev, 476 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU, 477 di->fg_samples); 478 if (ret) 479 goto cc_err; 480 481 /* Start the CC */ 482 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, 483 AB8500_RTC_CC_CONF_REG, 484 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA)); 485 if (ret) 486 goto cc_err; 487 488 di->flags.fg_enabled = true; 489 } else { 490 /* Clear any pending read requests */ 491 ret = abx500_mask_and_set_register_interruptible(di->dev, 492 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 493 (RESET_ACCU | READ_REQ), 0); 494 if (ret) 495 goto cc_err; 496 497 ret = abx500_set_register_interruptible(di->dev, 498 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0); 499 if (ret) 500 goto cc_err; 501 502 /* Stop the CC */ 503 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, 504 AB8500_RTC_CC_CONF_REG, 0); 505 if (ret) 506 goto cc_err; 507 508 di->flags.fg_enabled = false; 509 510 } 511 dev_dbg(di->dev, " CC enabled: %d Samples: %d\n", 512 enable, di->fg_samples); 513 514 mutex_unlock(&di->cc_lock); 515 516 return ret; 517 cc_err: 518 dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__); 519 mutex_unlock(&di->cc_lock); 520 return ret; 521 } 522 523 /** 524 * ab8500_fg_inst_curr_start() - start battery instantaneous current 525 * @di: pointer to the ab8500_fg structure 526 * 527 * Returns 0 or error code 528 * Note: This is part "one" and has to be called before 529 * ab8500_fg_inst_curr_finalize() 530 */ 531 int ab8500_fg_inst_curr_start(struct ab8500_fg *di) 532 { 533 u8 reg_val; 534 int ret; 535 536 mutex_lock(&di->cc_lock); 537 538 di->nbr_cceoc_irq_cnt = 0; 539 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, 540 AB8500_RTC_CC_CONF_REG, ®_val); 541 if (ret < 0) 542 goto fail; 543 544 if (!(reg_val & CC_PWR_UP_ENA)) { 545 dev_dbg(di->dev, "%s Enable FG\n", __func__); 546 di->turn_off_fg = true; 547 548 /* Program the samples */ 549 ret = abx500_set_register_interruptible(di->dev, 550 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU, 551 SEC_TO_SAMPLE(10)); 552 if (ret) 553 goto fail; 554 555 /* Start the CC */ 556 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, 557 AB8500_RTC_CC_CONF_REG, 558 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA)); 559 if (ret) 560 goto fail; 561 } else { 562 di->turn_off_fg = false; 563 } 564 565 /* Return and WFI */ 566 reinit_completion(&di->ab8500_fg_started); 567 reinit_completion(&di->ab8500_fg_complete); 568 enable_irq(di->irq); 569 570 /* Note: cc_lock is still locked */ 571 return 0; 572 fail: 573 mutex_unlock(&di->cc_lock); 574 return ret; 575 } 576 577 /** 578 * ab8500_fg_inst_curr_started() - check if fg conversion has started 579 * @di: pointer to the ab8500_fg structure 580 * 581 * Returns 1 if conversion started, 0 if still waiting 582 */ 583 int ab8500_fg_inst_curr_started(struct ab8500_fg *di) 584 { 585 return completion_done(&di->ab8500_fg_started); 586 } 587 588 /** 589 * ab8500_fg_inst_curr_done() - check if fg conversion is done 590 * @di: pointer to the ab8500_fg structure 591 * 592 * Returns 1 if conversion done, 0 if still waiting 593 */ 594 int ab8500_fg_inst_curr_done(struct ab8500_fg *di) 595 { 596 return completion_done(&di->ab8500_fg_complete); 597 } 598 599 /** 600 * ab8500_fg_inst_curr_finalize() - battery instantaneous current 601 * @di: pointer to the ab8500_fg structure 602 * @curr_ua: battery instantenous current in microampere (on success) 603 * 604 * Returns 0 or an error code 605 * Note: This is part "two" and has to be called at earliest 250 ms 606 * after ab8500_fg_inst_curr_start() 607 */ 608 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *curr_ua) 609 { 610 u8 low, high; 611 int val; 612 int ret; 613 unsigned long timeout; 614 615 if (!completion_done(&di->ab8500_fg_complete)) { 616 timeout = wait_for_completion_timeout( 617 &di->ab8500_fg_complete, 618 INS_CURR_TIMEOUT); 619 dev_dbg(di->dev, "Finalize time: %d ms\n", 620 jiffies_to_msecs(INS_CURR_TIMEOUT - timeout)); 621 if (!timeout) { 622 ret = -ETIME; 623 disable_irq(di->irq); 624 di->nbr_cceoc_irq_cnt = 0; 625 dev_err(di->dev, "completion timed out [%d]\n", 626 __LINE__); 627 goto fail; 628 } 629 } 630 631 disable_irq(di->irq); 632 di->nbr_cceoc_irq_cnt = 0; 633 634 ret = abx500_mask_and_set_register_interruptible(di->dev, 635 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 636 READ_REQ, READ_REQ); 637 638 /* 100uS between read request and read is needed */ 639 usleep_range(100, 100); 640 641 /* Read CC Sample conversion value Low and high */ 642 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, 643 AB8500_GASG_CC_SMPL_CNVL_REG, &low); 644 if (ret < 0) 645 goto fail; 646 647 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, 648 AB8500_GASG_CC_SMPL_CNVH_REG, &high); 649 if (ret < 0) 650 goto fail; 651 652 /* 653 * negative value for Discharging 654 * convert 2's complement into decimal 655 */ 656 if (high & 0x10) 657 val = (low | (high << 8) | 0xFFFFE000); 658 else 659 val = (low | (high << 8)); 660 661 /* 662 * Convert to unit value in mA 663 * Full scale input voltage is 664 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542.000 uA 665 * Given a 250ms conversion cycle time the LSB corresponds 666 * to 107.1 nAh. Convert to current by dividing by the conversion 667 * time in hours (250ms = 1 / (3600 * 4)h) 668 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm 669 */ 670 val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) / di->bm->fg_res; 671 672 if (di->turn_off_fg) { 673 dev_dbg(di->dev, "%s Disable FG\n", __func__); 674 675 /* Clear any pending read requests */ 676 ret = abx500_set_register_interruptible(di->dev, 677 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0); 678 if (ret) 679 goto fail; 680 681 /* Stop the CC */ 682 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, 683 AB8500_RTC_CC_CONF_REG, 0); 684 if (ret) 685 goto fail; 686 } 687 mutex_unlock(&di->cc_lock); 688 *curr_ua = val; 689 690 return 0; 691 fail: 692 mutex_unlock(&di->cc_lock); 693 return ret; 694 } 695 696 /** 697 * ab8500_fg_inst_curr_blocking() - battery instantaneous current 698 * @di: pointer to the ab8500_fg structure 699 * 700 * Returns battery instantenous current in microampere (on success) 701 * else error code 702 */ 703 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di) 704 { 705 int ret; 706 unsigned long timeout; 707 int curr_ua = 0; 708 709 ret = ab8500_fg_inst_curr_start(di); 710 if (ret) { 711 dev_err(di->dev, "Failed to initialize fg_inst\n"); 712 return 0; 713 } 714 715 /* Wait for CC to actually start */ 716 if (!completion_done(&di->ab8500_fg_started)) { 717 timeout = wait_for_completion_timeout( 718 &di->ab8500_fg_started, 719 INS_CURR_TIMEOUT); 720 dev_dbg(di->dev, "Start time: %d ms\n", 721 jiffies_to_msecs(INS_CURR_TIMEOUT - timeout)); 722 if (!timeout) { 723 ret = -ETIME; 724 dev_err(di->dev, "completion timed out [%d]\n", 725 __LINE__); 726 goto fail; 727 } 728 } 729 730 ret = ab8500_fg_inst_curr_finalize(di, &curr_ua); 731 if (ret) { 732 dev_err(di->dev, "Failed to finalize fg_inst\n"); 733 return 0; 734 } 735 736 dev_dbg(di->dev, "%s instant current: %d uA", __func__, curr_ua); 737 return curr_ua; 738 fail: 739 disable_irq(di->irq); 740 mutex_unlock(&di->cc_lock); 741 return ret; 742 } 743 744 /** 745 * ab8500_fg_acc_cur_work() - average battery current 746 * @work: pointer to the work_struct structure 747 * 748 * Updated the average battery current obtained from the 749 * coulomb counter. 750 */ 751 static void ab8500_fg_acc_cur_work(struct work_struct *work) 752 { 753 int val; 754 int ret; 755 u8 low, med, high; 756 757 struct ab8500_fg *di = container_of(work, 758 struct ab8500_fg, fg_acc_cur_work); 759 760 mutex_lock(&di->cc_lock); 761 ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE, 762 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ); 763 if (ret) 764 goto exit; 765 766 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, 767 AB8500_GASG_CC_NCOV_ACCU_LOW, &low); 768 if (ret < 0) 769 goto exit; 770 771 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, 772 AB8500_GASG_CC_NCOV_ACCU_MED, &med); 773 if (ret < 0) 774 goto exit; 775 776 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE, 777 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high); 778 if (ret < 0) 779 goto exit; 780 781 /* Check for sign bit in case of negative value, 2's complement */ 782 if (high & 0x10) 783 val = (low | (med << 8) | (high << 16) | 0xFFE00000); 784 else 785 val = (low | (med << 8) | (high << 16)); 786 787 /* 788 * Convert to uAh 789 * Given a 250ms conversion cycle time the LSB corresponds 790 * to 112.9 nAh. 791 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm 792 */ 793 di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) / 794 (100 * di->bm->fg_res); 795 796 /* 797 * Convert to unit value in uA 798 * by dividing by the conversion 799 * time in hours (= samples / (3600 * 4)h) 800 */ 801 di->avg_curr_ua = (val * QLSB_NANO_AMP_HOURS_X10 * 36) / 802 (di->bm->fg_res * (di->fg_samples / 4)); 803 804 di->flags.conv_done = true; 805 806 mutex_unlock(&di->cc_lock); 807 808 queue_work(di->fg_wq, &di->fg_work); 809 810 dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n", 811 di->bm->fg_res, di->fg_samples, val, di->accu_charge); 812 return; 813 exit: 814 dev_err(di->dev, 815 "Failed to read or write gas gauge registers\n"); 816 mutex_unlock(&di->cc_lock); 817 queue_work(di->fg_wq, &di->fg_work); 818 } 819 820 /** 821 * ab8500_fg_bat_voltage() - get battery voltage 822 * @di: pointer to the ab8500_fg structure 823 * 824 * Returns battery voltage in microvolts (on success) else error code 825 */ 826 static int ab8500_fg_bat_voltage(struct ab8500_fg *di) 827 { 828 int vbat, ret; 829 static int prev; 830 831 ret = iio_read_channel_processed(di->main_bat_v, &vbat); 832 if (ret < 0) { 833 dev_err(di->dev, 834 "%s ADC conversion failed, using previous value\n", 835 __func__); 836 return prev; 837 } 838 839 /* IIO returns millivolts but we want microvolts */ 840 vbat *= 1000; 841 prev = vbat; 842 return vbat; 843 } 844 845 /** 846 * ab8500_fg_volt_to_capacity() - Voltage based capacity 847 * @di: pointer to the ab8500_fg structure 848 * @voltage_uv: The voltage to convert to a capacity in microvolt 849 * 850 * Returns battery capacity in per mille based on voltage 851 */ 852 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage_uv) 853 { 854 struct power_supply_battery_info *bi = di->bm->bi; 855 856 /* Multiply by 10 because the capacity is tracked in per mille */ 857 return power_supply_batinfo_ocv2cap(bi, voltage_uv, di->bat_temp) * 10; 858 } 859 860 /** 861 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity 862 * @di: pointer to the ab8500_fg structure 863 * 864 * Returns battery capacity based on battery voltage that is not compensated 865 * for the voltage drop due to the load 866 */ 867 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di) 868 { 869 di->vbat_uv = ab8500_fg_bat_voltage(di); 870 return ab8500_fg_volt_to_capacity(di, di->vbat_uv); 871 } 872 873 /** 874 * ab8500_fg_battery_resistance() - Returns the battery inner resistance 875 * @di: pointer to the ab8500_fg structure 876 * @vbat_uncomp_uv: Uncompensated VBAT voltage 877 * 878 * Returns battery inner resistance added with the fuel gauge resistor value 879 * to get the total resistance in the whole link from gnd to bat+ node 880 * in milliohm. 881 */ 882 static int ab8500_fg_battery_resistance(struct ab8500_fg *di, int vbat_uncomp_uv) 883 { 884 struct power_supply_battery_info *bi = di->bm->bi; 885 int resistance_percent = 0; 886 int resistance; 887 888 /* 889 * Determine the resistance at this voltage. First try VBAT-to-Ri else 890 * just infer it from the surrounding temperature, if nothing works just 891 * use the internal resistance. 892 */ 893 if (power_supply_supports_vbat2ri(bi)) { 894 resistance = power_supply_vbat2ri(bi, vbat_uncomp_uv, di->flags.charging); 895 /* Convert to milliohm */ 896 resistance = resistance / 1000; 897 } else if (power_supply_supports_temp2ri(bi)) { 898 resistance_percent = power_supply_temp2resist_simple(bi->resist_table, 899 bi->resist_table_size, 900 di->bat_temp / 10); 901 /* Convert to milliohm */ 902 resistance = bi->factory_internal_resistance_uohm / 1000; 903 resistance = resistance * resistance_percent / 100; 904 } else { 905 /* Last fallback */ 906 resistance = bi->factory_internal_resistance_uohm / 1000; 907 } 908 909 /* Compensate for line impedance */ 910 resistance += (di->line_impedance_uohm / 1000); 911 912 dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d" 913 " fg resistance %d, total: %d (mOhm)\n", 914 __func__, di->bat_temp, resistance, di->bm->fg_res / 10, 915 (di->bm->fg_res / 10) + resistance); 916 917 /* fg_res variable is in 0.1mOhm */ 918 resistance += di->bm->fg_res / 10; 919 920 return resistance; 921 } 922 923 /** 924 * ab8500_load_comp_fg_bat_voltage() - get load compensated battery voltage 925 * @di: pointer to the ab8500_fg structure 926 * @always: always return a voltage, also uncompensated 927 * 928 * Returns compensated battery voltage (on success) else error code. 929 * If always is specified, we always return a voltage but it may be 930 * uncompensated. 931 */ 932 static int ab8500_load_comp_fg_bat_voltage(struct ab8500_fg *di, bool always) 933 { 934 int i = 0; 935 int vbat_uv = 0; 936 int rcomp; 937 938 /* Average the instant current to get a stable current measurement */ 939 ab8500_fg_inst_curr_start(di); 940 941 do { 942 vbat_uv += ab8500_fg_bat_voltage(di); 943 i++; 944 usleep_range(5000, 6000); 945 } while (!ab8500_fg_inst_curr_done(di) && 946 i <= WAIT_FOR_INST_CURRENT_MAX); 947 948 if (i > WAIT_FOR_INST_CURRENT_MAX) { 949 dev_err(di->dev, 950 "TIMEOUT: return uncompensated measurement of VBAT\n"); 951 di->vbat_uv = vbat_uv / i; 952 return di->vbat_uv; 953 } 954 955 ab8500_fg_inst_curr_finalize(di, &di->inst_curr_ua); 956 957 /* 958 * If there is too high current dissipation, the compensation cannot be 959 * trusted so return an error unless we must return something here, as 960 * enforced by the "always" parameter. 961 */ 962 if (!always && di->inst_curr_ua < IGNORE_VBAT_HIGHCUR) 963 return -EINVAL; 964 965 vbat_uv = vbat_uv / i; 966 967 /* Next we apply voltage compensation from internal resistance */ 968 rcomp = ab8500_fg_battery_resistance(di, vbat_uv); 969 vbat_uv = vbat_uv - (di->inst_curr_ua * rcomp) / 1000; 970 971 /* Always keep this state at latest measurement */ 972 di->vbat_uv = vbat_uv; 973 974 return vbat_uv; 975 } 976 977 /** 978 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity 979 * @di: pointer to the ab8500_fg structure 980 * 981 * Returns battery capacity based on battery voltage that is load compensated 982 * for the voltage drop 983 */ 984 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di) 985 { 986 int vbat_comp_uv; 987 988 vbat_comp_uv = ab8500_load_comp_fg_bat_voltage(di, true); 989 990 return ab8500_fg_volt_to_capacity(di, vbat_comp_uv); 991 } 992 993 /** 994 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille 995 * @di: pointer to the ab8500_fg structure 996 * @cap_mah: capacity in mAh 997 * 998 * Converts capacity in mAh to capacity in permille 999 */ 1000 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah) 1001 { 1002 return (cap_mah * 1000) / di->bat_cap.max_mah_design; 1003 } 1004 1005 /** 1006 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh 1007 * @di: pointer to the ab8500_fg structure 1008 * @cap_pm: capacity in permille 1009 * 1010 * Converts capacity in permille to capacity in mAh 1011 */ 1012 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm) 1013 { 1014 return cap_pm * di->bat_cap.max_mah_design / 1000; 1015 } 1016 1017 /** 1018 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh 1019 * @di: pointer to the ab8500_fg structure 1020 * @cap_mah: capacity in mAh 1021 * 1022 * Converts capacity in mAh to capacity in uWh 1023 */ 1024 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah) 1025 { 1026 u64 div_res; 1027 u32 div_rem; 1028 1029 /* 1030 * Capacity is in milli ampere hours (10^-3)Ah 1031 * Nominal voltage is in microvolts (10^-6)V 1032 * divide by 1000000 after multiplication to get to mWh 1033 */ 1034 div_res = ((u64) cap_mah) * ((u64) di->vbat_nom_uv); 1035 div_rem = do_div(div_res, 1000000); 1036 1037 /* Make sure to round upwards if necessary */ 1038 if (div_rem >= 1000000 / 2) 1039 div_res++; 1040 1041 return (int) div_res; 1042 } 1043 1044 /** 1045 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging 1046 * @di: pointer to the ab8500_fg structure 1047 * 1048 * Return the capacity in mAh based on previous calculated capcity and the FG 1049 * accumulator register value. The filter is filled with this capacity 1050 */ 1051 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di) 1052 { 1053 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n", 1054 __func__, 1055 di->bat_cap.mah, 1056 di->accu_charge); 1057 1058 /* Capacity should not be less than 0 */ 1059 if (di->bat_cap.mah + di->accu_charge > 0) 1060 di->bat_cap.mah += di->accu_charge; 1061 else 1062 di->bat_cap.mah = 0; 1063 /* 1064 * We force capacity to 100% once when the algorithm 1065 * reports that it's full. 1066 */ 1067 if (di->bat_cap.mah >= di->bat_cap.max_mah_design || 1068 di->flags.force_full) { 1069 di->bat_cap.mah = di->bat_cap.max_mah_design; 1070 } 1071 1072 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); 1073 di->bat_cap.permille = 1074 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); 1075 1076 /* We need to update battery voltage and inst current when charging */ 1077 di->vbat_uv = ab8500_fg_bat_voltage(di); 1078 di->inst_curr_ua = ab8500_fg_inst_curr_blocking(di); 1079 1080 return di->bat_cap.mah; 1081 } 1082 1083 /** 1084 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage 1085 * @di: pointer to the ab8500_fg structure 1086 * 1087 * Return the capacity in mAh based on the load compensated battery voltage. 1088 * This value is added to the filter and a new mean value is calculated and 1089 * returned. 1090 */ 1091 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di) 1092 { 1093 int permille, mah; 1094 1095 permille = ab8500_fg_load_comp_volt_to_capacity(di); 1096 1097 mah = ab8500_fg_convert_permille_to_mah(di, permille); 1098 1099 di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah); 1100 di->bat_cap.permille = 1101 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); 1102 1103 return di->bat_cap.mah; 1104 } 1105 1106 /** 1107 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG 1108 * @di: pointer to the ab8500_fg structure 1109 * 1110 * Return the capacity in mAh based on previous calculated capcity and the FG 1111 * accumulator register value. This value is added to the filter and a 1112 * new mean value is calculated and returned. 1113 */ 1114 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di) 1115 { 1116 int permille_volt, permille; 1117 1118 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n", 1119 __func__, 1120 di->bat_cap.mah, 1121 di->accu_charge); 1122 1123 /* Capacity should not be less than 0 */ 1124 if (di->bat_cap.mah + di->accu_charge > 0) 1125 di->bat_cap.mah += di->accu_charge; 1126 else 1127 di->bat_cap.mah = 0; 1128 1129 if (di->bat_cap.mah >= di->bat_cap.max_mah_design) 1130 di->bat_cap.mah = di->bat_cap.max_mah_design; 1131 1132 /* 1133 * Check against voltage based capacity. It can not be lower 1134 * than what the uncompensated voltage says 1135 */ 1136 permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); 1137 permille_volt = ab8500_fg_uncomp_volt_to_capacity(di); 1138 1139 if (permille < permille_volt) { 1140 di->bat_cap.permille = permille_volt; 1141 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di, 1142 di->bat_cap.permille); 1143 1144 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n", 1145 __func__, 1146 permille, 1147 permille_volt); 1148 1149 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); 1150 } else { 1151 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah); 1152 di->bat_cap.permille = 1153 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah); 1154 } 1155 1156 return di->bat_cap.mah; 1157 } 1158 1159 /** 1160 * ab8500_fg_capacity_level() - Get the battery capacity level 1161 * @di: pointer to the ab8500_fg structure 1162 * 1163 * Get the battery capacity level based on the capacity in percent 1164 */ 1165 static int ab8500_fg_capacity_level(struct ab8500_fg *di) 1166 { 1167 int ret, percent; 1168 1169 percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10); 1170 1171 if (percent <= di->bm->cap_levels->critical || 1172 di->flags.low_bat) 1173 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; 1174 else if (percent <= di->bm->cap_levels->low) 1175 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW; 1176 else if (percent <= di->bm->cap_levels->normal) 1177 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; 1178 else if (percent <= di->bm->cap_levels->high) 1179 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH; 1180 else 1181 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL; 1182 1183 return ret; 1184 } 1185 1186 /** 1187 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling 1188 * @di: pointer to the ab8500_fg structure 1189 * 1190 * Calculates the capacity to be shown to upper layers. Scales the capacity 1191 * to have 100% as a reference from the actual capacity upon removal of charger 1192 * when charging is in maintenance mode. 1193 */ 1194 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di) 1195 { 1196 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale; 1197 int capacity = di->bat_cap.prev_percent; 1198 1199 if (!cs->enable) 1200 return capacity; 1201 1202 /* 1203 * As long as we are in fully charge mode scale the capacity 1204 * to show 100%. 1205 */ 1206 if (di->flags.fully_charged) { 1207 cs->cap_to_scale[0] = 100; 1208 cs->cap_to_scale[1] = 1209 max(capacity, di->bm->fg_params->maint_thres); 1210 dev_dbg(di->dev, "Scale cap with %d/%d\n", 1211 cs->cap_to_scale[0], cs->cap_to_scale[1]); 1212 } 1213 1214 /* Calculates the scaled capacity. */ 1215 if ((cs->cap_to_scale[0] != cs->cap_to_scale[1]) 1216 && (cs->cap_to_scale[1] > 0)) 1217 capacity = min(100, 1218 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent * 1219 cs->cap_to_scale[0], 1220 cs->cap_to_scale[1])); 1221 1222 if (di->flags.charging) { 1223 if (capacity < cs->disable_cap_level) { 1224 cs->disable_cap_level = capacity; 1225 dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n", 1226 cs->disable_cap_level); 1227 } else if (!di->flags.fully_charged) { 1228 if (di->bat_cap.prev_percent >= 1229 cs->disable_cap_level) { 1230 dev_dbg(di->dev, "Disabling scaled capacity\n"); 1231 cs->enable = false; 1232 capacity = di->bat_cap.prev_percent; 1233 } else { 1234 dev_dbg(di->dev, 1235 "Waiting in cap to level %d%%\n", 1236 cs->disable_cap_level); 1237 capacity = cs->disable_cap_level; 1238 } 1239 } 1240 } 1241 1242 return capacity; 1243 } 1244 1245 /** 1246 * ab8500_fg_update_cap_scalers() - Capacity scaling 1247 * @di: pointer to the ab8500_fg structure 1248 * 1249 * To be called when state change from charge<->discharge to update 1250 * the capacity scalers. 1251 */ 1252 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di) 1253 { 1254 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale; 1255 1256 if (!cs->enable) 1257 return; 1258 if (di->flags.charging) { 1259 di->bat_cap.cap_scale.disable_cap_level = 1260 di->bat_cap.cap_scale.scaled_cap; 1261 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n", 1262 di->bat_cap.cap_scale.disable_cap_level); 1263 } else { 1264 if (cs->scaled_cap != 100) { 1265 cs->cap_to_scale[0] = cs->scaled_cap; 1266 cs->cap_to_scale[1] = di->bat_cap.prev_percent; 1267 } else { 1268 cs->cap_to_scale[0] = 100; 1269 cs->cap_to_scale[1] = 1270 max(di->bat_cap.prev_percent, 1271 di->bm->fg_params->maint_thres); 1272 } 1273 1274 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n", 1275 cs->cap_to_scale[0], cs->cap_to_scale[1]); 1276 } 1277 } 1278 1279 /** 1280 * ab8500_fg_check_capacity_limits() - Check if capacity has changed 1281 * @di: pointer to the ab8500_fg structure 1282 * @init: capacity is allowed to go up in init mode 1283 * 1284 * Check if capacity or capacity limit has changed and notify the system 1285 * about it using the power_supply framework 1286 */ 1287 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init) 1288 { 1289 bool changed = false; 1290 int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10); 1291 1292 di->bat_cap.level = ab8500_fg_capacity_level(di); 1293 1294 if (di->bat_cap.level != di->bat_cap.prev_level) { 1295 /* 1296 * We do not allow reported capacity level to go up 1297 * unless we're charging or if we're in init 1298 */ 1299 if (!(!di->flags.charging && di->bat_cap.level > 1300 di->bat_cap.prev_level) || init) { 1301 dev_dbg(di->dev, "level changed from %d to %d\n", 1302 di->bat_cap.prev_level, 1303 di->bat_cap.level); 1304 di->bat_cap.prev_level = di->bat_cap.level; 1305 changed = true; 1306 } else { 1307 dev_dbg(di->dev, "level not allowed to go up " 1308 "since no charger is connected: %d to %d\n", 1309 di->bat_cap.prev_level, 1310 di->bat_cap.level); 1311 } 1312 } 1313 1314 /* 1315 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate 1316 * shutdown 1317 */ 1318 if (di->flags.low_bat) { 1319 dev_dbg(di->dev, "Battery low, set capacity to 0\n"); 1320 di->bat_cap.prev_percent = 0; 1321 di->bat_cap.permille = 0; 1322 percent = 0; 1323 di->bat_cap.prev_mah = 0; 1324 di->bat_cap.mah = 0; 1325 changed = true; 1326 } else if (di->flags.fully_charged) { 1327 /* 1328 * We report 100% if algorithm reported fully charged 1329 * and show 100% during maintenance charging (scaling). 1330 */ 1331 if (di->flags.force_full) { 1332 di->bat_cap.prev_percent = percent; 1333 di->bat_cap.prev_mah = di->bat_cap.mah; 1334 1335 changed = true; 1336 1337 if (!di->bat_cap.cap_scale.enable && 1338 di->bm->capacity_scaling) { 1339 di->bat_cap.cap_scale.enable = true; 1340 di->bat_cap.cap_scale.cap_to_scale[0] = 100; 1341 di->bat_cap.cap_scale.cap_to_scale[1] = 1342 di->bat_cap.prev_percent; 1343 di->bat_cap.cap_scale.disable_cap_level = 100; 1344 } 1345 } else if (di->bat_cap.prev_percent != percent) { 1346 dev_dbg(di->dev, 1347 "battery reported full " 1348 "but capacity dropping: %d\n", 1349 percent); 1350 di->bat_cap.prev_percent = percent; 1351 di->bat_cap.prev_mah = di->bat_cap.mah; 1352 1353 changed = true; 1354 } 1355 } else if (di->bat_cap.prev_percent != percent) { 1356 if (percent == 0) { 1357 /* 1358 * We will not report 0% unless we've got 1359 * the LOW_BAT IRQ, no matter what the FG 1360 * algorithm says. 1361 */ 1362 di->bat_cap.prev_percent = 1; 1363 percent = 1; 1364 1365 changed = true; 1366 } else if (!(!di->flags.charging && 1367 percent > di->bat_cap.prev_percent) || init) { 1368 /* 1369 * We do not allow reported capacity to go up 1370 * unless we're charging or if we're in init 1371 */ 1372 dev_dbg(di->dev, 1373 "capacity changed from %d to %d (%d)\n", 1374 di->bat_cap.prev_percent, 1375 percent, 1376 di->bat_cap.permille); 1377 di->bat_cap.prev_percent = percent; 1378 di->bat_cap.prev_mah = di->bat_cap.mah; 1379 1380 changed = true; 1381 } else { 1382 dev_dbg(di->dev, "capacity not allowed to go up since " 1383 "no charger is connected: %d to %d (%d)\n", 1384 di->bat_cap.prev_percent, 1385 percent, 1386 di->bat_cap.permille); 1387 } 1388 } 1389 1390 if (changed) { 1391 if (di->bm->capacity_scaling) { 1392 di->bat_cap.cap_scale.scaled_cap = 1393 ab8500_fg_calculate_scaled_capacity(di); 1394 1395 dev_info(di->dev, "capacity=%d (%d)\n", 1396 di->bat_cap.prev_percent, 1397 di->bat_cap.cap_scale.scaled_cap); 1398 } 1399 power_supply_changed(di->fg_psy); 1400 if (di->flags.fully_charged && di->flags.force_full) { 1401 dev_dbg(di->dev, "Battery full, notifying.\n"); 1402 di->flags.force_full = false; 1403 sysfs_notify(&di->fg_kobject, NULL, "charge_full"); 1404 } 1405 sysfs_notify(&di->fg_kobject, NULL, "charge_now"); 1406 } 1407 } 1408 1409 static void ab8500_fg_charge_state_to(struct ab8500_fg *di, 1410 enum ab8500_fg_charge_state new_state) 1411 { 1412 dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n", 1413 di->charge_state, 1414 charge_state[di->charge_state], 1415 new_state, 1416 charge_state[new_state]); 1417 1418 di->charge_state = new_state; 1419 } 1420 1421 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di, 1422 enum ab8500_fg_discharge_state new_state) 1423 { 1424 dev_dbg(di->dev, "Discharge state from %d [%s] to %d [%s]\n", 1425 di->discharge_state, 1426 discharge_state[di->discharge_state], 1427 new_state, 1428 discharge_state[new_state]); 1429 1430 di->discharge_state = new_state; 1431 } 1432 1433 /** 1434 * ab8500_fg_algorithm_charging() - FG algorithm for when charging 1435 * @di: pointer to the ab8500_fg structure 1436 * 1437 * Battery capacity calculation state machine for when we're charging 1438 */ 1439 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di) 1440 { 1441 /* 1442 * If we change to discharge mode 1443 * we should start with recovery 1444 */ 1445 if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY) 1446 ab8500_fg_discharge_state_to(di, 1447 AB8500_FG_DISCHARGE_INIT_RECOVERY); 1448 1449 switch (di->charge_state) { 1450 case AB8500_FG_CHARGE_INIT: 1451 di->fg_samples = SEC_TO_SAMPLE( 1452 di->bm->fg_params->accu_charging); 1453 1454 ab8500_fg_coulomb_counter(di, true); 1455 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT); 1456 1457 break; 1458 1459 case AB8500_FG_CHARGE_READOUT: 1460 /* 1461 * Read the FG and calculate the new capacity 1462 */ 1463 mutex_lock(&di->cc_lock); 1464 if (!di->flags.conv_done && !di->flags.force_full) { 1465 /* Wasn't the CC IRQ that got us here */ 1466 mutex_unlock(&di->cc_lock); 1467 dev_dbg(di->dev, "%s CC conv not done\n", 1468 __func__); 1469 1470 break; 1471 } 1472 di->flags.conv_done = false; 1473 mutex_unlock(&di->cc_lock); 1474 1475 ab8500_fg_calc_cap_charging(di); 1476 1477 break; 1478 1479 default: 1480 break; 1481 } 1482 1483 /* Check capacity limits */ 1484 ab8500_fg_check_capacity_limits(di, false); 1485 } 1486 1487 static void force_capacity(struct ab8500_fg *di) 1488 { 1489 int cap; 1490 1491 ab8500_fg_clear_cap_samples(di); 1492 cap = di->bat_cap.user_mah; 1493 if (cap > di->bat_cap.max_mah_design) { 1494 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total" 1495 " %d\n", cap, di->bat_cap.max_mah_design); 1496 cap = di->bat_cap.max_mah_design; 1497 } 1498 ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah); 1499 di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap); 1500 di->bat_cap.mah = cap; 1501 ab8500_fg_check_capacity_limits(di, true); 1502 } 1503 1504 static bool check_sysfs_capacity(struct ab8500_fg *di) 1505 { 1506 int cap, lower, upper; 1507 int cap_permille; 1508 1509 cap = di->bat_cap.user_mah; 1510 1511 cap_permille = ab8500_fg_convert_mah_to_permille(di, 1512 di->bat_cap.user_mah); 1513 1514 lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10; 1515 upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10; 1516 1517 if (lower < 0) 1518 lower = 0; 1519 /* 1000 is permille, -> 100 percent */ 1520 if (upper > 1000) 1521 upper = 1000; 1522 1523 dev_dbg(di->dev, "Capacity limits:" 1524 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n", 1525 lower, cap_permille, upper, cap, di->bat_cap.mah); 1526 1527 /* If within limits, use the saved capacity and exit estimation...*/ 1528 if (cap_permille > lower && cap_permille < upper) { 1529 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap); 1530 force_capacity(di); 1531 return true; 1532 } 1533 dev_dbg(di->dev, "Capacity from user out of limits, ignoring"); 1534 return false; 1535 } 1536 1537 /** 1538 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging 1539 * @di: pointer to the ab8500_fg structure 1540 * 1541 * Battery capacity calculation state machine for when we're discharging 1542 */ 1543 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di) 1544 { 1545 int sleep_time; 1546 1547 /* If we change to charge mode we should start with init */ 1548 if (di->charge_state != AB8500_FG_CHARGE_INIT) 1549 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); 1550 1551 switch (di->discharge_state) { 1552 case AB8500_FG_DISCHARGE_INIT: 1553 /* We use the FG IRQ to work on */ 1554 di->init_cnt = 0; 1555 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer); 1556 ab8500_fg_coulomb_counter(di, true); 1557 ab8500_fg_discharge_state_to(di, 1558 AB8500_FG_DISCHARGE_INITMEASURING); 1559 1560 fallthrough; 1561 case AB8500_FG_DISCHARGE_INITMEASURING: 1562 /* 1563 * Discard a number of samples during startup. 1564 * After that, use compensated voltage for a few 1565 * samples to get an initial capacity. 1566 * Then go to READOUT 1567 */ 1568 sleep_time = di->bm->fg_params->init_timer; 1569 1570 /* Discard the first [x] seconds */ 1571 if (di->init_cnt > di->bm->fg_params->init_discard_time) { 1572 ab8500_fg_calc_cap_discharge_voltage(di); 1573 1574 ab8500_fg_check_capacity_limits(di, true); 1575 } 1576 1577 di->init_cnt += sleep_time; 1578 if (di->init_cnt > di->bm->fg_params->init_total_time) 1579 ab8500_fg_discharge_state_to(di, 1580 AB8500_FG_DISCHARGE_READOUT_INIT); 1581 1582 break; 1583 1584 case AB8500_FG_DISCHARGE_INIT_RECOVERY: 1585 di->recovery_cnt = 0; 1586 di->recovery_needed = true; 1587 ab8500_fg_discharge_state_to(di, 1588 AB8500_FG_DISCHARGE_RECOVERY); 1589 1590 fallthrough; 1591 1592 case AB8500_FG_DISCHARGE_RECOVERY: 1593 sleep_time = di->bm->fg_params->recovery_sleep_timer; 1594 1595 /* 1596 * We should check the power consumption 1597 * If low, go to READOUT (after x min) or 1598 * RECOVERY_SLEEP if time left. 1599 * If high, go to READOUT 1600 */ 1601 di->inst_curr_ua = ab8500_fg_inst_curr_blocking(di); 1602 1603 if (ab8500_fg_is_low_curr(di, di->inst_curr_ua)) { 1604 if (di->recovery_cnt > 1605 di->bm->fg_params->recovery_total_time) { 1606 di->fg_samples = SEC_TO_SAMPLE( 1607 di->bm->fg_params->accu_high_curr); 1608 ab8500_fg_coulomb_counter(di, true); 1609 ab8500_fg_discharge_state_to(di, 1610 AB8500_FG_DISCHARGE_READOUT); 1611 di->recovery_needed = false; 1612 } else { 1613 queue_delayed_work(di->fg_wq, 1614 &di->fg_periodic_work, 1615 sleep_time * HZ); 1616 } 1617 di->recovery_cnt += sleep_time; 1618 } else { 1619 di->fg_samples = SEC_TO_SAMPLE( 1620 di->bm->fg_params->accu_high_curr); 1621 ab8500_fg_coulomb_counter(di, true); 1622 ab8500_fg_discharge_state_to(di, 1623 AB8500_FG_DISCHARGE_READOUT); 1624 } 1625 break; 1626 1627 case AB8500_FG_DISCHARGE_READOUT_INIT: 1628 di->fg_samples = SEC_TO_SAMPLE( 1629 di->bm->fg_params->accu_high_curr); 1630 ab8500_fg_coulomb_counter(di, true); 1631 ab8500_fg_discharge_state_to(di, 1632 AB8500_FG_DISCHARGE_READOUT); 1633 break; 1634 1635 case AB8500_FG_DISCHARGE_READOUT: 1636 di->inst_curr_ua = ab8500_fg_inst_curr_blocking(di); 1637 1638 if (ab8500_fg_is_low_curr(di, di->inst_curr_ua)) { 1639 /* Detect mode change */ 1640 if (di->high_curr_mode) { 1641 di->high_curr_mode = false; 1642 di->high_curr_cnt = 0; 1643 } 1644 1645 if (di->recovery_needed) { 1646 ab8500_fg_discharge_state_to(di, 1647 AB8500_FG_DISCHARGE_INIT_RECOVERY); 1648 1649 queue_delayed_work(di->fg_wq, 1650 &di->fg_periodic_work, 0); 1651 1652 break; 1653 } 1654 1655 ab8500_fg_calc_cap_discharge_voltage(di); 1656 } else { 1657 mutex_lock(&di->cc_lock); 1658 if (!di->flags.conv_done) { 1659 /* Wasn't the CC IRQ that got us here */ 1660 mutex_unlock(&di->cc_lock); 1661 dev_dbg(di->dev, "%s CC conv not done\n", 1662 __func__); 1663 1664 break; 1665 } 1666 di->flags.conv_done = false; 1667 mutex_unlock(&di->cc_lock); 1668 1669 /* Detect mode change */ 1670 if (!di->high_curr_mode) { 1671 di->high_curr_mode = true; 1672 di->high_curr_cnt = 0; 1673 } 1674 1675 di->high_curr_cnt += 1676 di->bm->fg_params->accu_high_curr; 1677 if (di->high_curr_cnt > 1678 di->bm->fg_params->high_curr_time) 1679 di->recovery_needed = true; 1680 1681 ab8500_fg_calc_cap_discharge_fg(di); 1682 } 1683 1684 ab8500_fg_check_capacity_limits(di, false); 1685 1686 break; 1687 1688 case AB8500_FG_DISCHARGE_WAKEUP: 1689 ab8500_fg_calc_cap_discharge_voltage(di); 1690 1691 di->fg_samples = SEC_TO_SAMPLE( 1692 di->bm->fg_params->accu_high_curr); 1693 ab8500_fg_coulomb_counter(di, true); 1694 ab8500_fg_discharge_state_to(di, 1695 AB8500_FG_DISCHARGE_READOUT); 1696 1697 ab8500_fg_check_capacity_limits(di, false); 1698 1699 break; 1700 1701 default: 1702 break; 1703 } 1704 } 1705 1706 /** 1707 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration 1708 * @di: pointer to the ab8500_fg structure 1709 * 1710 */ 1711 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di) 1712 { 1713 int ret; 1714 1715 switch (di->calib_state) { 1716 case AB8500_FG_CALIB_INIT: 1717 dev_dbg(di->dev, "Calibration ongoing...\n"); 1718 1719 ret = abx500_mask_and_set_register_interruptible(di->dev, 1720 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 1721 CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8); 1722 if (ret < 0) 1723 goto err; 1724 1725 ret = abx500_mask_and_set_register_interruptible(di->dev, 1726 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 1727 CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA); 1728 if (ret < 0) 1729 goto err; 1730 di->calib_state = AB8500_FG_CALIB_WAIT; 1731 break; 1732 case AB8500_FG_CALIB_END: 1733 ret = abx500_mask_and_set_register_interruptible(di->dev, 1734 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 1735 CC_MUXOFFSET, CC_MUXOFFSET); 1736 if (ret < 0) 1737 goto err; 1738 di->flags.calibrate = false; 1739 dev_dbg(di->dev, "Calibration done...\n"); 1740 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); 1741 break; 1742 case AB8500_FG_CALIB_WAIT: 1743 dev_dbg(di->dev, "Calibration WFI\n"); 1744 break; 1745 default: 1746 break; 1747 } 1748 return; 1749 err: 1750 /* Something went wrong, don't calibrate then */ 1751 dev_err(di->dev, "failed to calibrate the CC\n"); 1752 di->flags.calibrate = false; 1753 di->calib_state = AB8500_FG_CALIB_INIT; 1754 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); 1755 } 1756 1757 /** 1758 * ab8500_fg_algorithm() - Entry point for the FG algorithm 1759 * @di: pointer to the ab8500_fg structure 1760 * 1761 * Entry point for the battery capacity calculation state machine 1762 */ 1763 static void ab8500_fg_algorithm(struct ab8500_fg *di) 1764 { 1765 if (di->flags.calibrate) 1766 ab8500_fg_algorithm_calibrate(di); 1767 else { 1768 if (di->flags.charging) 1769 ab8500_fg_algorithm_charging(di); 1770 else 1771 ab8500_fg_algorithm_discharging(di); 1772 } 1773 1774 dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d " 1775 "%d %d %d %d %d %d %d\n", 1776 di->bat_cap.max_mah_design, 1777 di->bat_cap.max_mah, 1778 di->bat_cap.mah, 1779 di->bat_cap.permille, 1780 di->bat_cap.level, 1781 di->bat_cap.prev_mah, 1782 di->bat_cap.prev_percent, 1783 di->bat_cap.prev_level, 1784 di->vbat_uv, 1785 di->inst_curr_ua, 1786 di->avg_curr_ua, 1787 di->accu_charge, 1788 di->flags.charging, 1789 di->charge_state, 1790 di->discharge_state, 1791 di->high_curr_mode, 1792 di->recovery_needed); 1793 } 1794 1795 /** 1796 * ab8500_fg_periodic_work() - Run the FG state machine periodically 1797 * @work: pointer to the work_struct structure 1798 * 1799 * Work queue function for periodic work 1800 */ 1801 static void ab8500_fg_periodic_work(struct work_struct *work) 1802 { 1803 struct ab8500_fg *di = container_of(work, struct ab8500_fg, 1804 fg_periodic_work.work); 1805 1806 if (di->init_capacity) { 1807 /* Get an initial capacity calculation */ 1808 ab8500_fg_calc_cap_discharge_voltage(di); 1809 ab8500_fg_check_capacity_limits(di, true); 1810 di->init_capacity = false; 1811 1812 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); 1813 } else if (di->flags.user_cap) { 1814 if (check_sysfs_capacity(di)) { 1815 ab8500_fg_check_capacity_limits(di, true); 1816 if (di->flags.charging) 1817 ab8500_fg_charge_state_to(di, 1818 AB8500_FG_CHARGE_INIT); 1819 else 1820 ab8500_fg_discharge_state_to(di, 1821 AB8500_FG_DISCHARGE_READOUT_INIT); 1822 } 1823 di->flags.user_cap = false; 1824 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); 1825 } else 1826 ab8500_fg_algorithm(di); 1827 1828 } 1829 1830 /** 1831 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition 1832 * @work: pointer to the work_struct structure 1833 * 1834 * Work queue function for checking the OVV_BAT condition 1835 */ 1836 static void ab8500_fg_check_hw_failure_work(struct work_struct *work) 1837 { 1838 int ret; 1839 u8 reg_value; 1840 1841 struct ab8500_fg *di = container_of(work, struct ab8500_fg, 1842 fg_check_hw_failure_work.work); 1843 1844 /* 1845 * If we have had a battery over-voltage situation, 1846 * check ovv-bit to see if it should be reset. 1847 */ 1848 ret = abx500_get_register_interruptible(di->dev, 1849 AB8500_CHARGER, AB8500_CH_STAT_REG, 1850 ®_value); 1851 if (ret < 0) { 1852 dev_err(di->dev, "%s ab8500 read failed\n", __func__); 1853 return; 1854 } 1855 if ((reg_value & BATT_OVV) == BATT_OVV) { 1856 if (!di->flags.bat_ovv) { 1857 dev_dbg(di->dev, "Battery OVV\n"); 1858 di->flags.bat_ovv = true; 1859 power_supply_changed(di->fg_psy); 1860 } 1861 /* Not yet recovered from ovv, reschedule this test */ 1862 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 1863 HZ); 1864 } else { 1865 dev_dbg(di->dev, "Battery recovered from OVV\n"); 1866 di->flags.bat_ovv = false; 1867 power_supply_changed(di->fg_psy); 1868 } 1869 } 1870 1871 /** 1872 * ab8500_fg_low_bat_work() - Check LOW_BAT condition 1873 * @work: pointer to the work_struct structure 1874 * 1875 * Work queue function for checking the LOW_BAT condition 1876 */ 1877 static void ab8500_fg_low_bat_work(struct work_struct *work) 1878 { 1879 int vbat_uv; 1880 1881 struct ab8500_fg *di = container_of(work, struct ab8500_fg, 1882 fg_low_bat_work.work); 1883 1884 vbat_uv = ab8500_fg_bat_voltage(di); 1885 1886 /* Check if LOW_BAT still fulfilled */ 1887 if (vbat_uv < di->bm->fg_params->lowbat_threshold_uv) { 1888 /* Is it time to shut down? */ 1889 if (di->low_bat_cnt < 1) { 1890 di->flags.low_bat = true; 1891 dev_warn(di->dev, "Shut down pending...\n"); 1892 } else { 1893 /* 1894 * Else we need to re-schedule this check to be able to detect 1895 * if the voltage increases again during charging or 1896 * due to decreasing load. 1897 */ 1898 di->low_bat_cnt--; 1899 dev_warn(di->dev, "Battery voltage still LOW\n"); 1900 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work, 1901 round_jiffies(LOW_BAT_CHECK_INTERVAL)); 1902 } 1903 } else { 1904 di->flags.low_bat_delay = false; 1905 di->low_bat_cnt = 10; 1906 dev_warn(di->dev, "Battery voltage OK again\n"); 1907 } 1908 1909 /* This is needed to dispatch LOW_BAT */ 1910 ab8500_fg_check_capacity_limits(di, false); 1911 } 1912 1913 /** 1914 * ab8500_fg_battok_calc - calculate the bit pattern corresponding 1915 * to the target voltage. 1916 * @di: pointer to the ab8500_fg structure 1917 * @target: target voltage 1918 * 1919 * Returns bit pattern closest to the target voltage 1920 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS) 1921 */ 1922 1923 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target) 1924 { 1925 if (target > BATT_OK_MIN + 1926 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS)) 1927 return BATT_OK_MAX_NR_INCREMENTS; 1928 if (target < BATT_OK_MIN) 1929 return 0; 1930 return (target - BATT_OK_MIN) / BATT_OK_INCREMENT; 1931 } 1932 1933 /** 1934 * ab8500_fg_battok_init_hw_register - init battok levels 1935 * @di: pointer to the ab8500_fg structure 1936 * 1937 */ 1938 1939 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di) 1940 { 1941 int selected; 1942 int sel0; 1943 int sel1; 1944 int cbp_sel0; 1945 int cbp_sel1; 1946 int ret; 1947 int new_val; 1948 1949 sel0 = di->bm->fg_params->battok_falling_th_sel0; 1950 sel1 = di->bm->fg_params->battok_raising_th_sel1; 1951 1952 cbp_sel0 = ab8500_fg_battok_calc(di, sel0); 1953 cbp_sel1 = ab8500_fg_battok_calc(di, sel1); 1954 1955 selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT; 1956 1957 if (selected != sel0) 1958 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n", 1959 sel0, selected, cbp_sel0); 1960 1961 selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT; 1962 1963 if (selected != sel1) 1964 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n", 1965 sel1, selected, cbp_sel1); 1966 1967 new_val = cbp_sel0 | (cbp_sel1 << 4); 1968 1969 dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1); 1970 ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK, 1971 AB8500_BATT_OK_REG, new_val); 1972 return ret; 1973 } 1974 1975 /** 1976 * ab8500_fg_instant_work() - Run the FG state machine instantly 1977 * @work: pointer to the work_struct structure 1978 * 1979 * Work queue function for instant work 1980 */ 1981 static void ab8500_fg_instant_work(struct work_struct *work) 1982 { 1983 struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work); 1984 1985 ab8500_fg_algorithm(di); 1986 } 1987 1988 /** 1989 * ab8500_fg_cc_data_end_handler() - end of data conversion isr. 1990 * @irq: interrupt number 1991 * @_di: pointer to the ab8500_fg structure 1992 * 1993 * Returns IRQ status(IRQ_HANDLED) 1994 */ 1995 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di) 1996 { 1997 struct ab8500_fg *di = _di; 1998 if (!di->nbr_cceoc_irq_cnt) { 1999 di->nbr_cceoc_irq_cnt++; 2000 complete(&di->ab8500_fg_started); 2001 } else { 2002 di->nbr_cceoc_irq_cnt = 0; 2003 complete(&di->ab8500_fg_complete); 2004 } 2005 return IRQ_HANDLED; 2006 } 2007 2008 /** 2009 * ab8500_fg_cc_int_calib_handler () - end of calibration isr. 2010 * @irq: interrupt number 2011 * @_di: pointer to the ab8500_fg structure 2012 * 2013 * Returns IRQ status(IRQ_HANDLED) 2014 */ 2015 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di) 2016 { 2017 struct ab8500_fg *di = _di; 2018 di->calib_state = AB8500_FG_CALIB_END; 2019 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); 2020 return IRQ_HANDLED; 2021 } 2022 2023 /** 2024 * ab8500_fg_cc_convend_handler() - isr to get battery avg current. 2025 * @irq: interrupt number 2026 * @_di: pointer to the ab8500_fg structure 2027 * 2028 * Returns IRQ status(IRQ_HANDLED) 2029 */ 2030 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di) 2031 { 2032 struct ab8500_fg *di = _di; 2033 2034 queue_work(di->fg_wq, &di->fg_acc_cur_work); 2035 2036 return IRQ_HANDLED; 2037 } 2038 2039 /** 2040 * ab8500_fg_batt_ovv_handler() - Battery OVV occured 2041 * @irq: interrupt number 2042 * @_di: pointer to the ab8500_fg structure 2043 * 2044 * Returns IRQ status(IRQ_HANDLED) 2045 */ 2046 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di) 2047 { 2048 struct ab8500_fg *di = _di; 2049 2050 dev_dbg(di->dev, "Battery OVV\n"); 2051 2052 /* Schedule a new HW failure check */ 2053 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0); 2054 2055 return IRQ_HANDLED; 2056 } 2057 2058 /** 2059 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold 2060 * @irq: interrupt number 2061 * @_di: pointer to the ab8500_fg structure 2062 * 2063 * Returns IRQ status(IRQ_HANDLED) 2064 */ 2065 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di) 2066 { 2067 struct ab8500_fg *di = _di; 2068 2069 /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */ 2070 if (!di->flags.low_bat_delay) { 2071 dev_warn(di->dev, "Battery voltage is below LOW threshold\n"); 2072 di->flags.low_bat_delay = true; 2073 /* 2074 * Start a timer to check LOW_BAT again after some time 2075 * This is done to avoid shutdown on single voltage dips 2076 */ 2077 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work, 2078 round_jiffies(LOW_BAT_CHECK_INTERVAL)); 2079 } 2080 return IRQ_HANDLED; 2081 } 2082 2083 /** 2084 * ab8500_fg_get_property() - get the fg properties 2085 * @psy: pointer to the power_supply structure 2086 * @psp: pointer to the power_supply_property structure 2087 * @val: pointer to the power_supply_propval union 2088 * 2089 * This function gets called when an application tries to get the 2090 * fg properties by reading the sysfs files. 2091 * voltage_now: battery voltage 2092 * current_now: battery instant current 2093 * current_avg: battery average current 2094 * charge_full_design: capacity where battery is considered full 2095 * charge_now: battery capacity in nAh 2096 * capacity: capacity in percent 2097 * capacity_level: capacity level 2098 * 2099 * Returns error code in case of failure else 0 on success 2100 */ 2101 static int ab8500_fg_get_property(struct power_supply *psy, 2102 enum power_supply_property psp, 2103 union power_supply_propval *val) 2104 { 2105 struct ab8500_fg *di = power_supply_get_drvdata(psy); 2106 2107 /* 2108 * If battery is identified as unknown and charging of unknown 2109 * batteries is disabled, we always report 100% capacity and 2110 * capacity level UNKNOWN, since we can't calculate 2111 * remaining capacity 2112 */ 2113 2114 switch (psp) { 2115 case POWER_SUPPLY_PROP_VOLTAGE_NOW: 2116 if (di->flags.bat_ovv) 2117 val->intval = BATT_OVV_VALUE; 2118 else 2119 val->intval = di->vbat_uv; 2120 break; 2121 case POWER_SUPPLY_PROP_CURRENT_NOW: 2122 val->intval = di->inst_curr_ua; 2123 break; 2124 case POWER_SUPPLY_PROP_CURRENT_AVG: 2125 val->intval = di->avg_curr_ua; 2126 break; 2127 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN: 2128 val->intval = ab8500_fg_convert_mah_to_uwh(di, 2129 di->bat_cap.max_mah_design); 2130 break; 2131 case POWER_SUPPLY_PROP_ENERGY_FULL: 2132 val->intval = ab8500_fg_convert_mah_to_uwh(di, 2133 di->bat_cap.max_mah); 2134 break; 2135 case POWER_SUPPLY_PROP_ENERGY_NOW: 2136 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat && 2137 di->flags.batt_id_received) 2138 val->intval = ab8500_fg_convert_mah_to_uwh(di, 2139 di->bat_cap.max_mah); 2140 else 2141 val->intval = ab8500_fg_convert_mah_to_uwh(di, 2142 di->bat_cap.prev_mah); 2143 break; 2144 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: 2145 val->intval = di->bat_cap.max_mah_design; 2146 break; 2147 case POWER_SUPPLY_PROP_CHARGE_FULL: 2148 val->intval = di->bat_cap.max_mah; 2149 break; 2150 case POWER_SUPPLY_PROP_CHARGE_NOW: 2151 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat && 2152 di->flags.batt_id_received) 2153 val->intval = di->bat_cap.max_mah; 2154 else 2155 val->intval = di->bat_cap.prev_mah; 2156 break; 2157 case POWER_SUPPLY_PROP_CAPACITY: 2158 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat && 2159 di->flags.batt_id_received) 2160 val->intval = 100; 2161 else 2162 val->intval = di->bat_cap.prev_percent; 2163 break; 2164 case POWER_SUPPLY_PROP_CAPACITY_LEVEL: 2165 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat && 2166 di->flags.batt_id_received) 2167 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN; 2168 else 2169 val->intval = di->bat_cap.prev_level; 2170 break; 2171 default: 2172 return -EINVAL; 2173 } 2174 return 0; 2175 } 2176 2177 static int ab8500_fg_get_ext_psy_data(struct power_supply *ext, void *data) 2178 { 2179 struct power_supply *psy; 2180 const char **supplicants = (const char **)ext->supplied_to; 2181 struct ab8500_fg *di; 2182 struct power_supply_battery_info *bi; 2183 union power_supply_propval ret; 2184 int j; 2185 2186 psy = (struct power_supply *)data; 2187 di = power_supply_get_drvdata(psy); 2188 bi = di->bm->bi; 2189 2190 /* 2191 * For all psy where the name of your driver 2192 * appears in any supplied_to 2193 */ 2194 j = match_string(supplicants, ext->num_supplicants, psy->desc->name); 2195 if (j < 0) 2196 return 0; 2197 2198 /* Go through all properties for the psy */ 2199 for (j = 0; j < ext->desc->num_properties; j++) { 2200 enum power_supply_property prop; 2201 prop = ext->desc->properties[j]; 2202 2203 if (power_supply_get_property(ext, prop, &ret)) 2204 continue; 2205 2206 switch (prop) { 2207 case POWER_SUPPLY_PROP_STATUS: 2208 switch (ext->desc->type) { 2209 case POWER_SUPPLY_TYPE_BATTERY: 2210 switch (ret.intval) { 2211 case POWER_SUPPLY_STATUS_UNKNOWN: 2212 case POWER_SUPPLY_STATUS_DISCHARGING: 2213 case POWER_SUPPLY_STATUS_NOT_CHARGING: 2214 if (!di->flags.charging) 2215 break; 2216 di->flags.charging = false; 2217 di->flags.fully_charged = false; 2218 if (di->bm->capacity_scaling) 2219 ab8500_fg_update_cap_scalers(di); 2220 queue_work(di->fg_wq, &di->fg_work); 2221 break; 2222 case POWER_SUPPLY_STATUS_FULL: 2223 if (di->flags.fully_charged) 2224 break; 2225 di->flags.fully_charged = true; 2226 di->flags.force_full = true; 2227 /* Save current capacity as maximum */ 2228 di->bat_cap.max_mah = di->bat_cap.mah; 2229 queue_work(di->fg_wq, &di->fg_work); 2230 break; 2231 case POWER_SUPPLY_STATUS_CHARGING: 2232 if (di->flags.charging && 2233 !di->flags.fully_charged) 2234 break; 2235 di->flags.charging = true; 2236 di->flags.fully_charged = false; 2237 if (di->bm->capacity_scaling) 2238 ab8500_fg_update_cap_scalers(di); 2239 queue_work(di->fg_wq, &di->fg_work); 2240 break; 2241 } 2242 break; 2243 default: 2244 break; 2245 } 2246 break; 2247 case POWER_SUPPLY_PROP_TECHNOLOGY: 2248 switch (ext->desc->type) { 2249 case POWER_SUPPLY_TYPE_BATTERY: 2250 if (!di->flags.batt_id_received && 2251 (bi && (bi->technology != 2252 POWER_SUPPLY_TECHNOLOGY_UNKNOWN))) { 2253 di->flags.batt_id_received = true; 2254 2255 di->bat_cap.max_mah_design = 2256 di->bm->bi->charge_full_design_uah; 2257 2258 di->bat_cap.max_mah = 2259 di->bat_cap.max_mah_design; 2260 2261 di->vbat_nom_uv = 2262 di->bm->bi->voltage_max_design_uv; 2263 } 2264 2265 if (ret.intval) 2266 di->flags.batt_unknown = false; 2267 else 2268 di->flags.batt_unknown = true; 2269 break; 2270 default: 2271 break; 2272 } 2273 break; 2274 case POWER_SUPPLY_PROP_TEMP: 2275 switch (ext->desc->type) { 2276 case POWER_SUPPLY_TYPE_BATTERY: 2277 if (di->flags.batt_id_received) 2278 di->bat_temp = ret.intval; 2279 break; 2280 default: 2281 break; 2282 } 2283 break; 2284 default: 2285 break; 2286 } 2287 } 2288 return 0; 2289 } 2290 2291 /** 2292 * ab8500_fg_init_hw_registers() - Set up FG related registers 2293 * @di: pointer to the ab8500_fg structure 2294 * 2295 * Set up battery OVV, low battery voltage registers 2296 */ 2297 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di) 2298 { 2299 int ret; 2300 2301 /* 2302 * Set VBAT OVV (overvoltage) threshold to 4.75V (typ) this is what 2303 * the hardware supports, nothing else can be configured in hardware. 2304 * See this as an "outer limit" where the charger will certainly 2305 * shut down. Other (lower) overvoltage levels need to be implemented 2306 * in software. 2307 */ 2308 ret = abx500_mask_and_set_register_interruptible(di->dev, 2309 AB8500_CHARGER, 2310 AB8500_BATT_OVV, 2311 BATT_OVV_TH_4P75, 2312 BATT_OVV_TH_4P75); 2313 if (ret) { 2314 dev_err(di->dev, "failed to set BATT_OVV\n"); 2315 goto out; 2316 } 2317 2318 /* Enable VBAT OVV detection */ 2319 ret = abx500_mask_and_set_register_interruptible(di->dev, 2320 AB8500_CHARGER, 2321 AB8500_BATT_OVV, 2322 BATT_OVV_ENA, 2323 BATT_OVV_ENA); 2324 if (ret) { 2325 dev_err(di->dev, "failed to enable BATT_OVV\n"); 2326 goto out; 2327 } 2328 2329 /* Low Battery Voltage */ 2330 ret = abx500_set_register_interruptible(di->dev, 2331 AB8500_SYS_CTRL2_BLOCK, 2332 AB8500_LOW_BAT_REG, 2333 ab8500_volt_to_regval( 2334 di->bm->fg_params->lowbat_threshold_uv) << 1 | 2335 LOW_BAT_ENABLE); 2336 if (ret) { 2337 dev_err(di->dev, "%s write failed\n", __func__); 2338 goto out; 2339 } 2340 2341 /* Battery OK threshold */ 2342 ret = ab8500_fg_battok_init_hw_register(di); 2343 if (ret) { 2344 dev_err(di->dev, "BattOk init write failed.\n"); 2345 goto out; 2346 } 2347 2348 if (is_ab8505(di->parent)) { 2349 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, 2350 AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time); 2351 2352 if (ret) { 2353 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__); 2354 goto out; 2355 } 2356 2357 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, 2358 AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time); 2359 2360 if (ret) { 2361 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__); 2362 goto out; 2363 } 2364 2365 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, 2366 AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart); 2367 2368 if (ret) { 2369 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__); 2370 goto out; 2371 } 2372 2373 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, 2374 AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time); 2375 2376 if (ret) { 2377 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__); 2378 goto out; 2379 } 2380 2381 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, 2382 AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable); 2383 2384 if (ret) { 2385 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__); 2386 goto out; 2387 } 2388 } 2389 out: 2390 return ret; 2391 } 2392 2393 /** 2394 * ab8500_fg_external_power_changed() - callback for power supply changes 2395 * @psy: pointer to the structure power_supply 2396 * 2397 * This function is the entry point of the pointer external_power_changed 2398 * of the structure power_supply. 2399 * This function gets executed when there is a change in any external power 2400 * supply that this driver needs to be notified of. 2401 */ 2402 static void ab8500_fg_external_power_changed(struct power_supply *psy) 2403 { 2404 power_supply_for_each_psy(psy, ab8500_fg_get_ext_psy_data); 2405 } 2406 2407 /** 2408 * ab8500_fg_reinit_work() - work to reset the FG algorithm 2409 * @work: pointer to the work_struct structure 2410 * 2411 * Used to reset the current battery capacity to be able to 2412 * retrigger a new voltage base capacity calculation. For 2413 * test and verification purpose. 2414 */ 2415 static void ab8500_fg_reinit_work(struct work_struct *work) 2416 { 2417 struct ab8500_fg *di = container_of(work, struct ab8500_fg, 2418 fg_reinit_work.work); 2419 2420 if (!di->flags.calibrate) { 2421 dev_dbg(di->dev, "Resetting FG state machine to init.\n"); 2422 ab8500_fg_clear_cap_samples(di); 2423 ab8500_fg_calc_cap_discharge_voltage(di); 2424 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); 2425 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT); 2426 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); 2427 2428 } else { 2429 dev_err(di->dev, "Residual offset calibration ongoing " 2430 "retrying..\n"); 2431 /* Wait one second until next try*/ 2432 queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 2433 round_jiffies(1)); 2434 } 2435 } 2436 2437 /* Exposure to the sysfs interface */ 2438 2439 struct ab8500_fg_sysfs_entry { 2440 struct attribute attr; 2441 ssize_t (*show)(struct ab8500_fg *, char *); 2442 ssize_t (*store)(struct ab8500_fg *, const char *, size_t); 2443 }; 2444 2445 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf) 2446 { 2447 return sysfs_emit(buf, "%d\n", di->bat_cap.max_mah); 2448 } 2449 2450 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf, 2451 size_t count) 2452 { 2453 unsigned long charge_full; 2454 int ret; 2455 2456 ret = kstrtoul(buf, 10, &charge_full); 2457 if (ret) 2458 return ret; 2459 2460 di->bat_cap.max_mah = (int) charge_full; 2461 return count; 2462 } 2463 2464 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf) 2465 { 2466 return sysfs_emit(buf, "%d\n", di->bat_cap.prev_mah); 2467 } 2468 2469 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf, 2470 size_t count) 2471 { 2472 unsigned long charge_now; 2473 int ret; 2474 2475 ret = kstrtoul(buf, 10, &charge_now); 2476 if (ret) 2477 return ret; 2478 2479 di->bat_cap.user_mah = (int) charge_now; 2480 di->flags.user_cap = true; 2481 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); 2482 return count; 2483 } 2484 2485 static struct ab8500_fg_sysfs_entry charge_full_attr = 2486 __ATTR(charge_full, 0644, charge_full_show, charge_full_store); 2487 2488 static struct ab8500_fg_sysfs_entry charge_now_attr = 2489 __ATTR(charge_now, 0644, charge_now_show, charge_now_store); 2490 2491 static ssize_t 2492 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf) 2493 { 2494 struct ab8500_fg_sysfs_entry *entry; 2495 struct ab8500_fg *di; 2496 2497 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr); 2498 di = container_of(kobj, struct ab8500_fg, fg_kobject); 2499 2500 if (!entry->show) 2501 return -EIO; 2502 2503 return entry->show(di, buf); 2504 } 2505 static ssize_t 2506 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf, 2507 size_t count) 2508 { 2509 struct ab8500_fg_sysfs_entry *entry; 2510 struct ab8500_fg *di; 2511 2512 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr); 2513 di = container_of(kobj, struct ab8500_fg, fg_kobject); 2514 2515 if (!entry->store) 2516 return -EIO; 2517 2518 return entry->store(di, buf, count); 2519 } 2520 2521 static const struct sysfs_ops ab8500_fg_sysfs_ops = { 2522 .show = ab8500_fg_show, 2523 .store = ab8500_fg_store, 2524 }; 2525 2526 static struct attribute *ab8500_fg_attrs[] = { 2527 &charge_full_attr.attr, 2528 &charge_now_attr.attr, 2529 NULL, 2530 }; 2531 ATTRIBUTE_GROUPS(ab8500_fg); 2532 2533 static const struct kobj_type ab8500_fg_ktype = { 2534 .sysfs_ops = &ab8500_fg_sysfs_ops, 2535 .default_groups = ab8500_fg_groups, 2536 }; 2537 2538 /** 2539 * ab8500_fg_sysfs_exit() - de-init of sysfs entry 2540 * @di: pointer to the struct ab8500_chargalg 2541 * 2542 * This function removes the entry in sysfs. 2543 */ 2544 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di) 2545 { 2546 kobject_del(&di->fg_kobject); 2547 } 2548 2549 /** 2550 * ab8500_fg_sysfs_init() - init of sysfs entry 2551 * @di: pointer to the struct ab8500_chargalg 2552 * 2553 * This function adds an entry in sysfs. 2554 * Returns error code in case of failure else 0(on success) 2555 */ 2556 static int ab8500_fg_sysfs_init(struct ab8500_fg *di) 2557 { 2558 int ret = 0; 2559 2560 ret = kobject_init_and_add(&di->fg_kobject, 2561 &ab8500_fg_ktype, 2562 NULL, "battery"); 2563 if (ret < 0) { 2564 kobject_put(&di->fg_kobject); 2565 dev_err(di->dev, "failed to create sysfs entry\n"); 2566 } 2567 2568 return ret; 2569 } 2570 2571 static ssize_t ab8505_powercut_flagtime_read(struct device *dev, 2572 struct device_attribute *attr, 2573 char *buf) 2574 { 2575 int ret; 2576 u8 reg_value; 2577 struct power_supply *psy = dev_to_psy(dev); 2578 struct ab8500_fg *di = power_supply_get_drvdata(psy); 2579 2580 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, 2581 AB8505_RTC_PCUT_FLAG_TIME_REG, ®_value); 2582 2583 if (ret < 0) { 2584 dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n"); 2585 goto fail; 2586 } 2587 2588 return sysfs_emit(buf, "%d\n", (reg_value & 0x7F)); 2589 2590 fail: 2591 return ret; 2592 } 2593 2594 static ssize_t ab8505_powercut_flagtime_write(struct device *dev, 2595 struct device_attribute *attr, 2596 const char *buf, size_t count) 2597 { 2598 int ret; 2599 int reg_value; 2600 struct power_supply *psy = dev_to_psy(dev); 2601 struct ab8500_fg *di = power_supply_get_drvdata(psy); 2602 2603 if (kstrtoint(buf, 10, ®_value)) 2604 goto fail; 2605 2606 if (reg_value > 0x7F) { 2607 dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n"); 2608 goto fail; 2609 } 2610 2611 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, 2612 AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value); 2613 2614 if (ret < 0) 2615 dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n"); 2616 2617 fail: 2618 return count; 2619 } 2620 2621 static ssize_t ab8505_powercut_maxtime_read(struct device *dev, 2622 struct device_attribute *attr, 2623 char *buf) 2624 { 2625 int ret; 2626 u8 reg_value; 2627 struct power_supply *psy = dev_to_psy(dev); 2628 struct ab8500_fg *di = power_supply_get_drvdata(psy); 2629 2630 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, 2631 AB8505_RTC_PCUT_MAX_TIME_REG, ®_value); 2632 2633 if (ret < 0) { 2634 dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n"); 2635 goto fail; 2636 } 2637 2638 return sysfs_emit(buf, "%d\n", (reg_value & 0x7F)); 2639 2640 fail: 2641 return ret; 2642 2643 } 2644 2645 static ssize_t ab8505_powercut_maxtime_write(struct device *dev, 2646 struct device_attribute *attr, 2647 const char *buf, size_t count) 2648 { 2649 int ret; 2650 int reg_value; 2651 struct power_supply *psy = dev_to_psy(dev); 2652 struct ab8500_fg *di = power_supply_get_drvdata(psy); 2653 2654 if (kstrtoint(buf, 10, ®_value)) 2655 goto fail; 2656 2657 if (reg_value > 0x7F) { 2658 dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n"); 2659 goto fail; 2660 } 2661 2662 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, 2663 AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value); 2664 2665 if (ret < 0) 2666 dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n"); 2667 2668 fail: 2669 return count; 2670 } 2671 2672 static ssize_t ab8505_powercut_restart_read(struct device *dev, 2673 struct device_attribute *attr, 2674 char *buf) 2675 { 2676 int ret; 2677 u8 reg_value; 2678 struct power_supply *psy = dev_to_psy(dev); 2679 struct ab8500_fg *di = power_supply_get_drvdata(psy); 2680 2681 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, 2682 AB8505_RTC_PCUT_RESTART_REG, ®_value); 2683 2684 if (ret < 0) { 2685 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n"); 2686 goto fail; 2687 } 2688 2689 return sysfs_emit(buf, "%d\n", (reg_value & 0xF)); 2690 2691 fail: 2692 return ret; 2693 } 2694 2695 static ssize_t ab8505_powercut_restart_write(struct device *dev, 2696 struct device_attribute *attr, 2697 const char *buf, size_t count) 2698 { 2699 int ret; 2700 int reg_value; 2701 struct power_supply *psy = dev_to_psy(dev); 2702 struct ab8500_fg *di = power_supply_get_drvdata(psy); 2703 2704 if (kstrtoint(buf, 10, ®_value)) 2705 goto fail; 2706 2707 if (reg_value > 0xF) { 2708 dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n"); 2709 goto fail; 2710 } 2711 2712 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, 2713 AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value); 2714 2715 if (ret < 0) 2716 dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n"); 2717 2718 fail: 2719 return count; 2720 2721 } 2722 2723 static ssize_t ab8505_powercut_timer_read(struct device *dev, 2724 struct device_attribute *attr, 2725 char *buf) 2726 { 2727 int ret; 2728 u8 reg_value; 2729 struct power_supply *psy = dev_to_psy(dev); 2730 struct ab8500_fg *di = power_supply_get_drvdata(psy); 2731 2732 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, 2733 AB8505_RTC_PCUT_TIME_REG, ®_value); 2734 2735 if (ret < 0) { 2736 dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n"); 2737 goto fail; 2738 } 2739 2740 return sysfs_emit(buf, "%d\n", (reg_value & 0x7F)); 2741 2742 fail: 2743 return ret; 2744 } 2745 2746 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev, 2747 struct device_attribute *attr, 2748 char *buf) 2749 { 2750 int ret; 2751 u8 reg_value; 2752 struct power_supply *psy = dev_to_psy(dev); 2753 struct ab8500_fg *di = power_supply_get_drvdata(psy); 2754 2755 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, 2756 AB8505_RTC_PCUT_RESTART_REG, ®_value); 2757 2758 if (ret < 0) { 2759 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n"); 2760 goto fail; 2761 } 2762 2763 return sysfs_emit(buf, "%d\n", (reg_value & 0xF0) >> 4); 2764 2765 fail: 2766 return ret; 2767 } 2768 2769 static ssize_t ab8505_powercut_read(struct device *dev, 2770 struct device_attribute *attr, 2771 char *buf) 2772 { 2773 int ret; 2774 u8 reg_value; 2775 struct power_supply *psy = dev_to_psy(dev); 2776 struct ab8500_fg *di = power_supply_get_drvdata(psy); 2777 2778 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, 2779 AB8505_RTC_PCUT_CTL_STATUS_REG, ®_value); 2780 2781 if (ret < 0) 2782 goto fail; 2783 2784 return sysfs_emit(buf, "%d\n", (reg_value & 0x1)); 2785 2786 fail: 2787 return ret; 2788 } 2789 2790 static ssize_t ab8505_powercut_write(struct device *dev, 2791 struct device_attribute *attr, 2792 const char *buf, size_t count) 2793 { 2794 int ret; 2795 int reg_value; 2796 struct power_supply *psy = dev_to_psy(dev); 2797 struct ab8500_fg *di = power_supply_get_drvdata(psy); 2798 2799 if (kstrtoint(buf, 10, ®_value)) 2800 goto fail; 2801 2802 if (reg_value > 0x1) { 2803 dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n"); 2804 goto fail; 2805 } 2806 2807 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, 2808 AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value); 2809 2810 if (ret < 0) 2811 dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n"); 2812 2813 fail: 2814 return count; 2815 } 2816 2817 static ssize_t ab8505_powercut_flag_read(struct device *dev, 2818 struct device_attribute *attr, 2819 char *buf) 2820 { 2821 2822 int ret; 2823 u8 reg_value; 2824 struct power_supply *psy = dev_to_psy(dev); 2825 struct ab8500_fg *di = power_supply_get_drvdata(psy); 2826 2827 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, 2828 AB8505_RTC_PCUT_CTL_STATUS_REG, ®_value); 2829 2830 if (ret < 0) { 2831 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n"); 2832 goto fail; 2833 } 2834 2835 return sysfs_emit(buf, "%d\n", ((reg_value & 0x10) >> 4)); 2836 2837 fail: 2838 return ret; 2839 } 2840 2841 static ssize_t ab8505_powercut_debounce_read(struct device *dev, 2842 struct device_attribute *attr, 2843 char *buf) 2844 { 2845 int ret; 2846 u8 reg_value; 2847 struct power_supply *psy = dev_to_psy(dev); 2848 struct ab8500_fg *di = power_supply_get_drvdata(psy); 2849 2850 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, 2851 AB8505_RTC_PCUT_DEBOUNCE_REG, ®_value); 2852 2853 if (ret < 0) { 2854 dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n"); 2855 goto fail; 2856 } 2857 2858 return sysfs_emit(buf, "%d\n", (reg_value & 0x7)); 2859 2860 fail: 2861 return ret; 2862 } 2863 2864 static ssize_t ab8505_powercut_debounce_write(struct device *dev, 2865 struct device_attribute *attr, 2866 const char *buf, size_t count) 2867 { 2868 int ret; 2869 int reg_value; 2870 struct power_supply *psy = dev_to_psy(dev); 2871 struct ab8500_fg *di = power_supply_get_drvdata(psy); 2872 2873 if (kstrtoint(buf, 10, ®_value)) 2874 goto fail; 2875 2876 if (reg_value > 0x7) { 2877 dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n"); 2878 goto fail; 2879 } 2880 2881 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC, 2882 AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value); 2883 2884 if (ret < 0) 2885 dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n"); 2886 2887 fail: 2888 return count; 2889 } 2890 2891 static ssize_t ab8505_powercut_enable_status_read(struct device *dev, 2892 struct device_attribute *attr, 2893 char *buf) 2894 { 2895 int ret; 2896 u8 reg_value; 2897 struct power_supply *psy = dev_to_psy(dev); 2898 struct ab8500_fg *di = power_supply_get_drvdata(psy); 2899 2900 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC, 2901 AB8505_RTC_PCUT_CTL_STATUS_REG, ®_value); 2902 2903 if (ret < 0) { 2904 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n"); 2905 goto fail; 2906 } 2907 2908 return sysfs_emit(buf, "%d\n", ((reg_value & 0x20) >> 5)); 2909 2910 fail: 2911 return ret; 2912 } 2913 2914 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = { 2915 __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP), 2916 ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write), 2917 __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP), 2918 ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write), 2919 __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP), 2920 ab8505_powercut_restart_read, ab8505_powercut_restart_write), 2921 __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL), 2922 __ATTR(powercut_restart_counter, S_IRUGO, 2923 ab8505_powercut_restart_counter_read, NULL), 2924 __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP), 2925 ab8505_powercut_read, ab8505_powercut_write), 2926 __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL), 2927 __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP), 2928 ab8505_powercut_debounce_read, ab8505_powercut_debounce_write), 2929 __ATTR(powercut_enable_status, S_IRUGO, 2930 ab8505_powercut_enable_status_read, NULL), 2931 }; 2932 2933 static int ab8500_fg_sysfs_psy_create_attrs(struct ab8500_fg *di) 2934 { 2935 unsigned int i; 2936 2937 if (is_ab8505(di->parent)) { 2938 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++) 2939 if (device_create_file(&di->fg_psy->dev, 2940 &ab8505_fg_sysfs_psy_attrs[i])) 2941 goto sysfs_psy_create_attrs_failed_ab8505; 2942 } 2943 return 0; 2944 sysfs_psy_create_attrs_failed_ab8505: 2945 dev_err(&di->fg_psy->dev, "Failed creating sysfs psy attrs for ab8505.\n"); 2946 while (i--) 2947 device_remove_file(&di->fg_psy->dev, 2948 &ab8505_fg_sysfs_psy_attrs[i]); 2949 2950 return -EIO; 2951 } 2952 2953 static void ab8500_fg_sysfs_psy_remove_attrs(struct ab8500_fg *di) 2954 { 2955 unsigned int i; 2956 2957 if (is_ab8505(di->parent)) { 2958 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++) 2959 (void)device_remove_file(&di->fg_psy->dev, 2960 &ab8505_fg_sysfs_psy_attrs[i]); 2961 } 2962 } 2963 2964 /* Exposure to the sysfs interface <<END>> */ 2965 2966 static int __maybe_unused ab8500_fg_resume(struct device *dev) 2967 { 2968 struct ab8500_fg *di = dev_get_drvdata(dev); 2969 2970 /* 2971 * Change state if we're not charging. If we're charging we will wake 2972 * up on the FG IRQ 2973 */ 2974 if (!di->flags.charging) { 2975 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP); 2976 queue_work(di->fg_wq, &di->fg_work); 2977 } 2978 2979 return 0; 2980 } 2981 2982 static int __maybe_unused ab8500_fg_suspend(struct device *dev) 2983 { 2984 struct ab8500_fg *di = dev_get_drvdata(dev); 2985 2986 flush_delayed_work(&di->fg_periodic_work); 2987 flush_work(&di->fg_work); 2988 flush_work(&di->fg_acc_cur_work); 2989 flush_delayed_work(&di->fg_reinit_work); 2990 flush_delayed_work(&di->fg_low_bat_work); 2991 flush_delayed_work(&di->fg_check_hw_failure_work); 2992 2993 /* 2994 * If the FG is enabled we will disable it before going to suspend 2995 * only if we're not charging 2996 */ 2997 if (di->flags.fg_enabled && !di->flags.charging) 2998 ab8500_fg_coulomb_counter(di, false); 2999 3000 return 0; 3001 } 3002 3003 /* ab8500 fg driver interrupts and their respective isr */ 3004 static struct ab8500_fg_interrupts ab8500_fg_irq[] = { 3005 {"NCONV_ACCU", ab8500_fg_cc_convend_handler}, 3006 {"BATT_OVV", ab8500_fg_batt_ovv_handler}, 3007 {"LOW_BAT_F", ab8500_fg_lowbatf_handler}, 3008 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler}, 3009 {"CCEOC", ab8500_fg_cc_data_end_handler}, 3010 }; 3011 3012 static char *supply_interface[] = { 3013 "ab8500_chargalg", 3014 "ab8500_usb", 3015 }; 3016 3017 static const struct power_supply_desc ab8500_fg_desc = { 3018 .name = "ab8500_fg", 3019 .type = POWER_SUPPLY_TYPE_BATTERY, 3020 .properties = ab8500_fg_props, 3021 .num_properties = ARRAY_SIZE(ab8500_fg_props), 3022 .get_property = ab8500_fg_get_property, 3023 .external_power_changed = ab8500_fg_external_power_changed, 3024 }; 3025 3026 static int ab8500_fg_bind(struct device *dev, struct device *master, 3027 void *data) 3028 { 3029 struct ab8500_fg *di = dev_get_drvdata(dev); 3030 3031 di->bat_cap.max_mah_design = di->bm->bi->charge_full_design_uah; 3032 di->bat_cap.max_mah = di->bat_cap.max_mah_design; 3033 di->vbat_nom_uv = di->bm->bi->voltage_max_design_uv; 3034 3035 /* Start the coulomb counter */ 3036 ab8500_fg_coulomb_counter(di, true); 3037 /* Run the FG algorithm */ 3038 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0); 3039 3040 return 0; 3041 } 3042 3043 static void ab8500_fg_unbind(struct device *dev, struct device *master, 3044 void *data) 3045 { 3046 struct ab8500_fg *di = dev_get_drvdata(dev); 3047 int ret; 3048 3049 /* Disable coulomb counter */ 3050 ret = ab8500_fg_coulomb_counter(di, false); 3051 if (ret) 3052 dev_err(dev, "failed to disable coulomb counter\n"); 3053 3054 flush_workqueue(di->fg_wq); 3055 } 3056 3057 static const struct component_ops ab8500_fg_component_ops = { 3058 .bind = ab8500_fg_bind, 3059 .unbind = ab8500_fg_unbind, 3060 }; 3061 3062 static int ab8500_fg_probe(struct platform_device *pdev) 3063 { 3064 struct device *dev = &pdev->dev; 3065 struct power_supply_config psy_cfg = {}; 3066 struct ab8500_fg *di; 3067 int i, irq; 3068 int ret = 0; 3069 3070 di = devm_kzalloc(dev, sizeof(*di), GFP_KERNEL); 3071 if (!di) 3072 return -ENOMEM; 3073 3074 di->bm = &ab8500_bm_data; 3075 3076 mutex_init(&di->cc_lock); 3077 3078 /* get parent data */ 3079 di->dev = dev; 3080 di->parent = dev_get_drvdata(pdev->dev.parent); 3081 3082 di->main_bat_v = devm_iio_channel_get(dev, "main_bat_v"); 3083 if (IS_ERR(di->main_bat_v)) { 3084 ret = dev_err_probe(dev, PTR_ERR(di->main_bat_v), 3085 "failed to get main battery ADC channel\n"); 3086 return ret; 3087 } 3088 3089 if (!of_property_read_u32(dev->of_node, "line-impedance-micro-ohms", 3090 &di->line_impedance_uohm)) 3091 dev_info(dev, "line impedance: %u uOhm\n", 3092 di->line_impedance_uohm); 3093 3094 psy_cfg.supplied_to = supply_interface; 3095 psy_cfg.num_supplicants = ARRAY_SIZE(supply_interface); 3096 psy_cfg.drv_data = di; 3097 3098 di->init_capacity = true; 3099 3100 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT); 3101 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT); 3102 3103 /* Create a work queue for running the FG algorithm */ 3104 di->fg_wq = alloc_ordered_workqueue("ab8500_fg_wq", WQ_MEM_RECLAIM); 3105 if (di->fg_wq == NULL) { 3106 dev_err(dev, "failed to create work queue\n"); 3107 return -ENOMEM; 3108 } 3109 3110 /* Init work for running the fg algorithm instantly */ 3111 INIT_WORK(&di->fg_work, ab8500_fg_instant_work); 3112 3113 /* Init work for getting the battery accumulated current */ 3114 INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work); 3115 3116 /* Init work for reinitialising the fg algorithm */ 3117 INIT_DEFERRABLE_WORK(&di->fg_reinit_work, 3118 ab8500_fg_reinit_work); 3119 3120 /* Work delayed Queue to run the state machine */ 3121 INIT_DEFERRABLE_WORK(&di->fg_periodic_work, 3122 ab8500_fg_periodic_work); 3123 3124 /* Work to check low battery condition */ 3125 INIT_DEFERRABLE_WORK(&di->fg_low_bat_work, 3126 ab8500_fg_low_bat_work); 3127 3128 /* Init work for HW failure check */ 3129 INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work, 3130 ab8500_fg_check_hw_failure_work); 3131 3132 /* Reset battery low voltage flag */ 3133 di->flags.low_bat = false; 3134 3135 /* Initialize low battery counter */ 3136 di->low_bat_cnt = 10; 3137 3138 /* Initialize OVV, and other registers */ 3139 ret = ab8500_fg_init_hw_registers(di); 3140 if (ret) { 3141 dev_err(dev, "failed to initialize registers\n"); 3142 destroy_workqueue(di->fg_wq); 3143 return ret; 3144 } 3145 3146 /* Consider battery unknown until we're informed otherwise */ 3147 di->flags.batt_unknown = true; 3148 di->flags.batt_id_received = false; 3149 3150 /* Register FG power supply class */ 3151 di->fg_psy = devm_power_supply_register(dev, &ab8500_fg_desc, &psy_cfg); 3152 if (IS_ERR(di->fg_psy)) { 3153 dev_err(dev, "failed to register FG psy\n"); 3154 destroy_workqueue(di->fg_wq); 3155 return PTR_ERR(di->fg_psy); 3156 } 3157 3158 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer); 3159 3160 /* 3161 * Initialize completion used to notify completion and start 3162 * of inst current 3163 */ 3164 init_completion(&di->ab8500_fg_started); 3165 init_completion(&di->ab8500_fg_complete); 3166 3167 /* Register primary interrupt handlers */ 3168 for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) { 3169 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name); 3170 if (irq < 0) { 3171 destroy_workqueue(di->fg_wq); 3172 return irq; 3173 } 3174 3175 ret = devm_request_threaded_irq(dev, irq, NULL, 3176 ab8500_fg_irq[i].isr, 3177 IRQF_SHARED | IRQF_NO_SUSPEND | IRQF_ONESHOT, 3178 ab8500_fg_irq[i].name, di); 3179 3180 if (ret != 0) { 3181 dev_err(dev, "failed to request %s IRQ %d: %d\n", 3182 ab8500_fg_irq[i].name, irq, ret); 3183 destroy_workqueue(di->fg_wq); 3184 return ret; 3185 } 3186 dev_dbg(dev, "Requested %s IRQ %d: %d\n", 3187 ab8500_fg_irq[i].name, irq, ret); 3188 } 3189 3190 di->irq = platform_get_irq_byname(pdev, "CCEOC"); 3191 disable_irq(di->irq); 3192 di->nbr_cceoc_irq_cnt = 0; 3193 3194 platform_set_drvdata(pdev, di); 3195 3196 ret = ab8500_fg_sysfs_init(di); 3197 if (ret) { 3198 dev_err(dev, "failed to create sysfs entry\n"); 3199 destroy_workqueue(di->fg_wq); 3200 return ret; 3201 } 3202 3203 ret = ab8500_fg_sysfs_psy_create_attrs(di); 3204 if (ret) { 3205 dev_err(dev, "failed to create FG psy\n"); 3206 ab8500_fg_sysfs_exit(di); 3207 destroy_workqueue(di->fg_wq); 3208 return ret; 3209 } 3210 3211 /* Calibrate the fg first time */ 3212 di->flags.calibrate = true; 3213 di->calib_state = AB8500_FG_CALIB_INIT; 3214 3215 /* Use room temp as default value until we get an update from driver. */ 3216 di->bat_temp = 210; 3217 3218 list_add_tail(&di->node, &ab8500_fg_list); 3219 3220 return component_add(dev, &ab8500_fg_component_ops); 3221 } 3222 3223 static void ab8500_fg_remove(struct platform_device *pdev) 3224 { 3225 struct ab8500_fg *di = platform_get_drvdata(pdev); 3226 3227 destroy_workqueue(di->fg_wq); 3228 component_del(&pdev->dev, &ab8500_fg_component_ops); 3229 list_del(&di->node); 3230 ab8500_fg_sysfs_exit(di); 3231 ab8500_fg_sysfs_psy_remove_attrs(di); 3232 } 3233 3234 static SIMPLE_DEV_PM_OPS(ab8500_fg_pm_ops, ab8500_fg_suspend, ab8500_fg_resume); 3235 3236 static const struct of_device_id ab8500_fg_match[] = { 3237 { .compatible = "stericsson,ab8500-fg", }, 3238 { }, 3239 }; 3240 MODULE_DEVICE_TABLE(of, ab8500_fg_match); 3241 3242 struct platform_driver ab8500_fg_driver = { 3243 .probe = ab8500_fg_probe, 3244 .remove = ab8500_fg_remove, 3245 .driver = { 3246 .name = "ab8500-fg", 3247 .of_match_table = ab8500_fg_match, 3248 .pm = &ab8500_fg_pm_ops, 3249 }, 3250 }; 3251 MODULE_LICENSE("GPL v2"); 3252 MODULE_AUTHOR("Johan Palsson, Karl Komierowski"); 3253 MODULE_ALIAS("platform:ab8500-fg"); 3254 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver"); 3255