xref: /linux/drivers/pmdomain/governor.c (revision b8e85e6f3a09fc56b0ff574887798962ef8a8f80)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/power/domain_governor.c - Governors for device PM domains.
4  *
5  * Copyright (C) 2011 Rafael J. Wysocki <rjw@sisk.pl>, Renesas Electronics Corp.
6  */
7 #include <linux/kernel.h>
8 #include <linux/pm_domain.h>
9 #include <linux/pm_qos.h>
10 #include <linux/hrtimer.h>
11 #include <linux/cpuidle.h>
12 #include <linux/cpumask.h>
13 #include <linux/ktime.h>
14 
15 static int dev_update_qos_constraint(struct device *dev, void *data)
16 {
17 	s64 *constraint_ns_p = data;
18 	s64 constraint_ns;
19 
20 	if (dev->power.subsys_data && dev->power.subsys_data->domain_data) {
21 		struct gpd_timing_data *td = dev_gpd_data(dev)->td;
22 
23 		/*
24 		 * Only take suspend-time QoS constraints of devices into
25 		 * account, because constraints updated after the device has
26 		 * been suspended are not guaranteed to be taken into account
27 		 * anyway.  In order for them to take effect, the device has to
28 		 * be resumed and suspended again.
29 		 */
30 		constraint_ns = td ? td->effective_constraint_ns :
31 				PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS;
32 	} else {
33 		/*
34 		 * The child is not in a domain and there's no info on its
35 		 * suspend/resume latencies, so assume them to be negligible and
36 		 * take its current PM QoS constraint (that's the only thing
37 		 * known at this point anyway).
38 		 */
39 		constraint_ns = dev_pm_qos_read_value(dev, DEV_PM_QOS_RESUME_LATENCY);
40 		constraint_ns *= NSEC_PER_USEC;
41 	}
42 
43 	if (constraint_ns < *constraint_ns_p)
44 		*constraint_ns_p = constraint_ns;
45 
46 	return 0;
47 }
48 
49 /**
50  * default_suspend_ok - Default PM domain governor routine to suspend devices.
51  * @dev: Device to check.
52  *
53  * Returns: true if OK to suspend, false if not OK to suspend
54  */
55 static bool default_suspend_ok(struct device *dev)
56 {
57 	struct gpd_timing_data *td = dev_gpd_data(dev)->td;
58 	unsigned long flags;
59 	s64 constraint_ns;
60 
61 	dev_dbg(dev, "%s()\n", __func__);
62 
63 	spin_lock_irqsave(&dev->power.lock, flags);
64 
65 	if (!td->constraint_changed) {
66 		bool ret = td->cached_suspend_ok;
67 
68 		spin_unlock_irqrestore(&dev->power.lock, flags);
69 		return ret;
70 	}
71 	td->constraint_changed = false;
72 	td->cached_suspend_ok = false;
73 	td->effective_constraint_ns = 0;
74 	constraint_ns = __dev_pm_qos_resume_latency(dev);
75 
76 	spin_unlock_irqrestore(&dev->power.lock, flags);
77 
78 	if (constraint_ns == 0)
79 		return false;
80 
81 	constraint_ns *= NSEC_PER_USEC;
82 	/*
83 	 * We can walk the children without any additional locking, because
84 	 * they all have been suspended at this point and their
85 	 * effective_constraint_ns fields won't be modified in parallel with us.
86 	 */
87 	if (!dev->power.ignore_children)
88 		device_for_each_child(dev, &constraint_ns,
89 				      dev_update_qos_constraint);
90 
91 	if (constraint_ns == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS) {
92 		/* "No restriction", so the device is allowed to suspend. */
93 		td->effective_constraint_ns = PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS;
94 		td->cached_suspend_ok = true;
95 	} else if (constraint_ns == 0) {
96 		/*
97 		 * This triggers if one of the children that don't belong to a
98 		 * domain has a zero PM QoS constraint and it's better not to
99 		 * suspend then.  effective_constraint_ns is zero already and
100 		 * cached_suspend_ok is false, so bail out.
101 		 */
102 		return false;
103 	} else {
104 		constraint_ns -= td->suspend_latency_ns +
105 				td->resume_latency_ns;
106 		/*
107 		 * effective_constraint_ns is zero already and cached_suspend_ok
108 		 * is false, so if the computed value is not positive, return
109 		 * right away.
110 		 */
111 		if (constraint_ns <= 0)
112 			return false;
113 
114 		td->effective_constraint_ns = constraint_ns;
115 		td->cached_suspend_ok = true;
116 	}
117 
118 	/*
119 	 * The children have been suspended already, so we don't need to take
120 	 * their suspend latencies into account here.
121 	 */
122 	return td->cached_suspend_ok;
123 }
124 
125 static void update_domain_next_wakeup(struct generic_pm_domain *genpd, ktime_t now)
126 {
127 	ktime_t domain_wakeup = KTIME_MAX;
128 	ktime_t next_wakeup;
129 	struct pm_domain_data *pdd;
130 	struct gpd_link *link;
131 
132 	if (!(genpd->flags & GENPD_FLAG_MIN_RESIDENCY))
133 		return;
134 
135 	/*
136 	 * Devices that have a predictable wakeup pattern, may specify
137 	 * their next wakeup. Let's find the next wakeup from all the
138 	 * devices attached to this domain and from all the sub-domains.
139 	 * It is possible that component's a next wakeup may have become
140 	 * stale when we read that here. We will ignore to ensure the domain
141 	 * is able to enter its optimal idle state.
142 	 */
143 	list_for_each_entry(pdd, &genpd->dev_list, list_node) {
144 		next_wakeup = to_gpd_data(pdd)->td->next_wakeup;
145 		if (next_wakeup != KTIME_MAX && !ktime_before(next_wakeup, now))
146 			if (ktime_before(next_wakeup, domain_wakeup))
147 				domain_wakeup = next_wakeup;
148 	}
149 
150 	list_for_each_entry(link, &genpd->parent_links, parent_node) {
151 		struct genpd_governor_data *cgd = link->child->gd;
152 
153 		next_wakeup = cgd ? cgd->next_wakeup : KTIME_MAX;
154 		if (next_wakeup != KTIME_MAX && !ktime_before(next_wakeup, now))
155 			if (ktime_before(next_wakeup, domain_wakeup))
156 				domain_wakeup = next_wakeup;
157 	}
158 
159 	genpd->gd->next_wakeup = domain_wakeup;
160 }
161 
162 static bool next_wakeup_allows_state(struct generic_pm_domain *genpd,
163 				     unsigned int state, ktime_t now)
164 {
165 	ktime_t domain_wakeup = genpd->gd->next_wakeup;
166 	s64 idle_time_ns, min_sleep_ns;
167 
168 	min_sleep_ns = genpd->states[state].power_off_latency_ns +
169 		       genpd->states[state].residency_ns;
170 
171 	idle_time_ns = ktime_to_ns(ktime_sub(domain_wakeup, now));
172 
173 	return idle_time_ns >= min_sleep_ns;
174 }
175 
176 static bool __default_power_down_ok(struct dev_pm_domain *pd,
177 				     unsigned int state)
178 {
179 	struct generic_pm_domain *genpd = pd_to_genpd(pd);
180 	struct gpd_link *link;
181 	struct pm_domain_data *pdd;
182 	s64 min_off_time_ns;
183 	s64 off_on_time_ns;
184 
185 	off_on_time_ns = genpd->states[state].power_off_latency_ns +
186 		genpd->states[state].power_on_latency_ns;
187 
188 	min_off_time_ns = -1;
189 	/*
190 	 * Check if subdomains can be off for enough time.
191 	 *
192 	 * All subdomains have been powered off already at this point.
193 	 */
194 	list_for_each_entry(link, &genpd->parent_links, parent_node) {
195 		struct genpd_governor_data *cgd = link->child->gd;
196 
197 		s64 sd_max_off_ns = cgd ? cgd->max_off_time_ns : -1;
198 
199 		if (sd_max_off_ns < 0)
200 			continue;
201 
202 		/*
203 		 * Check if the subdomain is allowed to be off long enough for
204 		 * the current domain to turn off and on (that's how much time
205 		 * it will have to wait worst case).
206 		 */
207 		if (sd_max_off_ns <= off_on_time_ns)
208 			return false;
209 
210 		if (min_off_time_ns > sd_max_off_ns || min_off_time_ns < 0)
211 			min_off_time_ns = sd_max_off_ns;
212 	}
213 
214 	/*
215 	 * Check if the devices in the domain can be off enough time.
216 	 */
217 	list_for_each_entry(pdd, &genpd->dev_list, list_node) {
218 		struct gpd_timing_data *td;
219 		s64 constraint_ns;
220 
221 		/*
222 		 * Check if the device is allowed to be off long enough for the
223 		 * domain to turn off and on (that's how much time it will
224 		 * have to wait worst case).
225 		 */
226 		td = to_gpd_data(pdd)->td;
227 		constraint_ns = td->effective_constraint_ns;
228 		/*
229 		 * Zero means "no suspend at all" and this runs only when all
230 		 * devices in the domain are suspended, so it must be positive.
231 		 */
232 		if (constraint_ns == PM_QOS_RESUME_LATENCY_NO_CONSTRAINT_NS)
233 			continue;
234 
235 		if (constraint_ns <= off_on_time_ns)
236 			return false;
237 
238 		if (min_off_time_ns > constraint_ns || min_off_time_ns < 0)
239 			min_off_time_ns = constraint_ns;
240 	}
241 
242 	/*
243 	 * If the computed minimum device off time is negative, there are no
244 	 * latency constraints, so the domain can spend arbitrary time in the
245 	 * "off" state.
246 	 */
247 	if (min_off_time_ns < 0)
248 		return true;
249 
250 	/*
251 	 * The difference between the computed minimum subdomain or device off
252 	 * time and the time needed to turn the domain on is the maximum
253 	 * theoretical time this domain can spend in the "off" state.
254 	 */
255 	genpd->gd->max_off_time_ns = min_off_time_ns -
256 		genpd->states[state].power_on_latency_ns;
257 	return true;
258 }
259 
260 /**
261  * _default_power_down_ok - Default generic PM domain power off governor routine.
262  * @pd: PM domain to check.
263  * @now: current ktime.
264  *
265  * This routine must be executed under the PM domain's lock.
266  *
267  * Returns: true if OK to power down, false if not OK to power down
268  */
269 static bool _default_power_down_ok(struct dev_pm_domain *pd, ktime_t now)
270 {
271 	struct generic_pm_domain *genpd = pd_to_genpd(pd);
272 	struct genpd_governor_data *gd = genpd->gd;
273 	int state_idx = genpd->state_count - 1;
274 	struct gpd_link *link;
275 
276 	/*
277 	 * Find the next wakeup from devices that can determine their own wakeup
278 	 * to find when the domain would wakeup and do it for every device down
279 	 * the hierarchy. It is not worth while to sleep if the state's residency
280 	 * cannot be met.
281 	 */
282 	update_domain_next_wakeup(genpd, now);
283 	if ((genpd->flags & GENPD_FLAG_MIN_RESIDENCY) && (gd->next_wakeup != KTIME_MAX)) {
284 		/* Let's find out the deepest domain idle state, the devices prefer */
285 		while (state_idx >= 0) {
286 			if (next_wakeup_allows_state(genpd, state_idx, now)) {
287 				gd->max_off_time_changed = true;
288 				break;
289 			}
290 			state_idx--;
291 		}
292 
293 		if (state_idx < 0) {
294 			state_idx = 0;
295 			gd->cached_power_down_ok = false;
296 			goto done;
297 		}
298 	}
299 
300 	if (!gd->max_off_time_changed) {
301 		genpd->state_idx = gd->cached_power_down_state_idx;
302 		return gd->cached_power_down_ok;
303 	}
304 
305 	/*
306 	 * We have to invalidate the cached results for the parents, so
307 	 * use the observation that default_power_down_ok() is not
308 	 * going to be called for any parent until this instance
309 	 * returns.
310 	 */
311 	list_for_each_entry(link, &genpd->child_links, child_node) {
312 		struct genpd_governor_data *pgd = link->parent->gd;
313 
314 		if (pgd)
315 			pgd->max_off_time_changed = true;
316 	}
317 
318 	gd->max_off_time_ns = -1;
319 	gd->max_off_time_changed = false;
320 	gd->cached_power_down_ok = true;
321 
322 	/*
323 	 * Find a state to power down to, starting from the state
324 	 * determined by the next wakeup.
325 	 */
326 	while (!__default_power_down_ok(pd, state_idx)) {
327 		if (state_idx == 0) {
328 			gd->cached_power_down_ok = false;
329 			break;
330 		}
331 		state_idx--;
332 	}
333 
334 done:
335 	genpd->state_idx = state_idx;
336 	gd->cached_power_down_state_idx = genpd->state_idx;
337 	return gd->cached_power_down_ok;
338 }
339 
340 static bool default_power_down_ok(struct dev_pm_domain *pd)
341 {
342 	return _default_power_down_ok(pd, ktime_get());
343 }
344 
345 #ifdef CONFIG_CPU_IDLE
346 static bool cpu_power_down_ok(struct dev_pm_domain *pd)
347 {
348 	struct generic_pm_domain *genpd = pd_to_genpd(pd);
349 	struct cpuidle_device *dev;
350 	ktime_t domain_wakeup, next_hrtimer;
351 	ktime_t now = ktime_get();
352 	s64 idle_duration_ns;
353 	int cpu, i;
354 
355 	/* Validate dev PM QoS constraints. */
356 	if (!_default_power_down_ok(pd, now))
357 		return false;
358 
359 	if (!(genpd->flags & GENPD_FLAG_CPU_DOMAIN))
360 		return true;
361 
362 	/*
363 	 * Find the next wakeup for any of the online CPUs within the PM domain
364 	 * and its subdomains. Note, we only need the genpd->cpus, as it already
365 	 * contains a mask of all CPUs from subdomains.
366 	 */
367 	domain_wakeup = ktime_set(KTIME_SEC_MAX, 0);
368 	for_each_cpu_and(cpu, genpd->cpus, cpu_online_mask) {
369 		dev = per_cpu(cpuidle_devices, cpu);
370 		if (dev) {
371 			next_hrtimer = READ_ONCE(dev->next_hrtimer);
372 			if (ktime_before(next_hrtimer, domain_wakeup))
373 				domain_wakeup = next_hrtimer;
374 		}
375 	}
376 
377 	/* The minimum idle duration is from now - until the next wakeup. */
378 	idle_duration_ns = ktime_to_ns(ktime_sub(domain_wakeup, now));
379 	if (idle_duration_ns <= 0)
380 		return false;
381 
382 	/* Store the next domain_wakeup to allow consumers to use it. */
383 	genpd->gd->next_hrtimer = domain_wakeup;
384 
385 	/*
386 	 * Find the deepest idle state that has its residency value satisfied
387 	 * and by also taking into account the power off latency for the state.
388 	 * Start at the state picked by the dev PM QoS constraint validation.
389 	 */
390 	i = genpd->state_idx;
391 	do {
392 		if (idle_duration_ns >= (genpd->states[i].residency_ns +
393 		    genpd->states[i].power_off_latency_ns)) {
394 			genpd->state_idx = i;
395 			return true;
396 		}
397 	} while (--i >= 0);
398 
399 	return false;
400 }
401 
402 struct dev_power_governor pm_domain_cpu_gov = {
403 	.suspend_ok = default_suspend_ok,
404 	.power_down_ok = cpu_power_down_ok,
405 };
406 #endif
407 
408 struct dev_power_governor simple_qos_governor = {
409 	.suspend_ok = default_suspend_ok,
410 	.power_down_ok = default_power_down_ok,
411 };
412 
413 /*
414  * pm_domain_always_on_gov - A governor implementing an always-on policy
415  */
416 struct dev_power_governor pm_domain_always_on_gov = {
417 	.suspend_ok = default_suspend_ok,
418 };
419