xref: /linux/drivers/platform/x86/intel_scu_ipc.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for the Intel SCU IPC mechanism
4  *
5  * (C) Copyright 2008-2010,2015 Intel Corporation
6  * Author: Sreedhara DS (sreedhara.ds@intel.com)
7  *
8  * SCU running in ARC processor communicates with other entity running in IA
9  * core through IPC mechanism which in turn messaging between IA core ad SCU.
10  * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
11  * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
12  * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
13  * along with other APIs.
14  */
15 
16 #include <linux/cleanup.h>
17 #include <linux/delay.h>
18 #include <linux/device.h>
19 #include <linux/errno.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/iopoll.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 
27 #include <linux/platform_data/x86/intel_scu_ipc.h>
28 
29 /* IPC defines the following message types */
30 #define IPCMSG_PCNTRL         0xff /* Power controller unit read/write */
31 
32 /* Command id associated with message IPCMSG_PCNTRL */
33 #define IPC_CMD_PCNTRL_W      0 /* Register write */
34 #define IPC_CMD_PCNTRL_R      1 /* Register read */
35 #define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */
36 
37 /*
38  * IPC register summary
39  *
40  * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
41  * To read or write information to the SCU, driver writes to IPC-1 memory
42  * mapped registers. The following is the IPC mechanism
43  *
44  * 1. IA core cDMI interface claims this transaction and converts it to a
45  *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
46  *
47  * 2. South Complex cDMI block receives this message and writes it to
48  *    the IPC-1 register block, causing an interrupt to the SCU
49  *
50  * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
51  *    message handler is called within firmware.
52  */
53 
54 #define IPC_WWBUF_SIZE    20		/* IPC Write buffer Size */
55 #define IPC_RWBUF_SIZE    20		/* IPC Read buffer Size */
56 #define IPC_IOC	          0x100		/* IPC command register IOC bit */
57 
58 struct intel_scu_ipc_dev {
59 	struct device dev;
60 	struct module *owner;
61 	void __iomem *ipc_base;
62 	struct completion cmd_complete;
63 
64 	struct intel_scu_ipc_data data;
65 };
66 
67 #define IPC_STATUS		0x04
68 #define IPC_STATUS_IRQ		BIT(2)
69 #define IPC_STATUS_ERR		BIT(1)
70 #define IPC_STATUS_BUSY		BIT(0)
71 
72 /*
73  * IPC Write/Read Buffers:
74  * 16 byte buffer for sending and receiving data to and from SCU.
75  */
76 #define IPC_WRITE_BUFFER	0x80
77 #define IPC_READ_BUFFER		0x90
78 
79 /* Timeout in jiffies */
80 #define IPC_TIMEOUT		(10 * HZ)
81 
82 static struct intel_scu_ipc_dev *ipcdev; /* Only one for now */
83 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
84 
85 static struct class intel_scu_ipc_class = {
86 	.name = "intel_scu_ipc",
87 };
88 
89 /**
90  * intel_scu_ipc_dev_get() - Get SCU IPC instance
91  *
92  * The recommended new API takes SCU IPC instance as parameter and this
93  * function can be called by driver to get the instance. This also makes
94  * sure the driver providing the IPC functionality cannot be unloaded
95  * while the caller has the instance.
96  *
97  * Call intel_scu_ipc_dev_put() to release the instance.
98  *
99  * Returns %NULL if SCU IPC is not currently available.
100  */
101 struct intel_scu_ipc_dev *intel_scu_ipc_dev_get(void)
102 {
103 	guard(mutex)(&ipclock);
104 
105 	if (ipcdev) {
106 		get_device(&ipcdev->dev);
107 		/*
108 		 * Prevent the IPC provider from being unloaded while it
109 		 * is being used.
110 		 */
111 		if (try_module_get(ipcdev->owner))
112 			return ipcdev;
113 
114 		put_device(&ipcdev->dev);
115 	}
116 
117 	return NULL;
118 }
119 EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_get);
120 
121 /**
122  * intel_scu_ipc_dev_put() - Put SCU IPC instance
123  * @scu: SCU IPC instance
124  *
125  * This function releases the SCU IPC instance retrieved from
126  * intel_scu_ipc_dev_get() and allows the driver providing IPC to be
127  * unloaded.
128  */
129 void intel_scu_ipc_dev_put(struct intel_scu_ipc_dev *scu)
130 {
131 	if (scu) {
132 		module_put(scu->owner);
133 		put_device(&scu->dev);
134 	}
135 }
136 EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_put);
137 
138 struct intel_scu_ipc_devres {
139 	struct intel_scu_ipc_dev *scu;
140 };
141 
142 static void devm_intel_scu_ipc_dev_release(struct device *dev, void *res)
143 {
144 	struct intel_scu_ipc_devres *dr = res;
145 	struct intel_scu_ipc_dev *scu = dr->scu;
146 
147 	intel_scu_ipc_dev_put(scu);
148 }
149 
150 /**
151  * devm_intel_scu_ipc_dev_get() - Allocate managed SCU IPC device
152  * @dev: Device requesting the SCU IPC device
153  *
154  * The recommended new API takes SCU IPC instance as parameter and this
155  * function can be called by driver to get the instance. This also makes
156  * sure the driver providing the IPC functionality cannot be unloaded
157  * while the caller has the instance.
158  *
159  * Returns %NULL if SCU IPC is not currently available.
160  */
161 struct intel_scu_ipc_dev *devm_intel_scu_ipc_dev_get(struct device *dev)
162 {
163 	struct intel_scu_ipc_devres *dr;
164 	struct intel_scu_ipc_dev *scu;
165 
166 	dr = devres_alloc(devm_intel_scu_ipc_dev_release, sizeof(*dr), GFP_KERNEL);
167 	if (!dr)
168 		return NULL;
169 
170 	scu = intel_scu_ipc_dev_get();
171 	if (!scu) {
172 		devres_free(dr);
173 		return NULL;
174 	}
175 
176 	dr->scu = scu;
177 	devres_add(dev, dr);
178 
179 	return scu;
180 }
181 EXPORT_SYMBOL_GPL(devm_intel_scu_ipc_dev_get);
182 
183 /*
184  * Send ipc command
185  * Command Register (Write Only):
186  * A write to this register results in an interrupt to the SCU core processor
187  * Format:
188  * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
189  */
190 static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
191 {
192 	reinit_completion(&scu->cmd_complete);
193 	writel(cmd | IPC_IOC, scu->ipc_base);
194 }
195 
196 /*
197  * Write ipc data
198  * IPC Write Buffer (Write Only):
199  * 16-byte buffer for sending data associated with IPC command to
200  * SCU. Size of the data is specified in the IPC_COMMAND_REG register
201  */
202 static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
203 {
204 	writel(data, scu->ipc_base + IPC_WRITE_BUFFER + offset);
205 }
206 
207 /*
208  * Status Register (Read Only):
209  * Driver will read this register to get the ready/busy status of the IPC
210  * block and error status of the IPC command that was just processed by SCU
211  * Format:
212  * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
213  */
214 static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
215 {
216 	return __raw_readl(scu->ipc_base + IPC_STATUS);
217 }
218 
219 /* Read ipc u32 data */
220 static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
221 {
222 	return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
223 }
224 
225 /* Wait till scu status is busy */
226 static inline int busy_loop(struct intel_scu_ipc_dev *scu)
227 {
228 	u8 status;
229 	int err;
230 
231 	err = readx_poll_timeout(ipc_read_status, scu, status, !(status & IPC_STATUS_BUSY),
232 				 100, jiffies_to_usecs(IPC_TIMEOUT));
233 	if (err)
234 		return err;
235 
236 	return (status & IPC_STATUS_ERR) ? -EIO : 0;
237 }
238 
239 /* Wait till ipc ioc interrupt is received or timeout in 10 HZ */
240 static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
241 {
242 	int status;
243 
244 	wait_for_completion_timeout(&scu->cmd_complete, IPC_TIMEOUT);
245 
246 	status = ipc_read_status(scu);
247 	if (status & IPC_STATUS_BUSY)
248 		return -ETIMEDOUT;
249 
250 	if (status & IPC_STATUS_ERR)
251 		return -EIO;
252 
253 	return 0;
254 }
255 
256 static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
257 {
258 	return scu->data.irq > 0 ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
259 }
260 
261 static struct intel_scu_ipc_dev *intel_scu_ipc_get(struct intel_scu_ipc_dev *scu)
262 {
263 	u8 status;
264 
265 	if (!scu)
266 		scu = ipcdev;
267 	if (!scu)
268 		return ERR_PTR(-ENODEV);
269 
270 	status = ipc_read_status(scu);
271 	if (status & IPC_STATUS_BUSY) {
272 		dev_dbg(&scu->dev, "device is busy\n");
273 		return ERR_PTR(-EBUSY);
274 	}
275 
276 	return scu;
277 }
278 
279 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
280 static int pwr_reg_rdwr(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
281 			u32 count, u32 op, u32 id)
282 {
283 	int nc;
284 	u32 offset = 0;
285 	int err;
286 	u8 cbuf[IPC_WWBUF_SIZE];
287 	u32 *wbuf = (u32 *)&cbuf;
288 
289 	memset(cbuf, 0, sizeof(cbuf));
290 
291 	guard(mutex)(&ipclock);
292 
293 	scu = intel_scu_ipc_get(scu);
294 	if (IS_ERR(scu))
295 		return PTR_ERR(scu);
296 
297 	for (nc = 0; nc < count; nc++, offset += 2) {
298 		cbuf[offset] = addr[nc];
299 		cbuf[offset + 1] = addr[nc] >> 8;
300 	}
301 
302 	if (id == IPC_CMD_PCNTRL_R) {
303 		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
304 			ipc_data_writel(scu, wbuf[nc], offset);
305 		ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
306 	} else if (id == IPC_CMD_PCNTRL_W) {
307 		for (nc = 0; nc < count; nc++, offset += 1)
308 			cbuf[offset] = data[nc];
309 		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
310 			ipc_data_writel(scu, wbuf[nc], offset);
311 		ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
312 	} else if (id == IPC_CMD_PCNTRL_M) {
313 		cbuf[offset] = data[0];
314 		cbuf[offset + 1] = data[1];
315 		ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
316 		ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
317 	}
318 
319 	err = intel_scu_ipc_check_status(scu);
320 	if (err)
321 		return err;
322 
323 	/* Read rbuf */
324 	for (nc = 0, offset = 0; nc < 4; nc++, offset += 4)
325 		wbuf[nc] = ipc_data_readl(scu, offset);
326 	memcpy(data, wbuf, count);
327 
328 	return 0;
329 }
330 
331 /**
332  * intel_scu_ipc_dev_ioread8() - Read a byte via the SCU
333  * @scu: Optional SCU IPC instance
334  * @addr: Register on SCU
335  * @data: Return pointer for read byte
336  *
337  * Read a single register. Returns %0 on success or an error code. All
338  * locking between SCU accesses is handled for the caller.
339  *
340  * This function may sleep.
341  */
342 int intel_scu_ipc_dev_ioread8(struct intel_scu_ipc_dev *scu, u16 addr, u8 *data)
343 {
344 	return pwr_reg_rdwr(scu, &addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
345 }
346 EXPORT_SYMBOL(intel_scu_ipc_dev_ioread8);
347 
348 /**
349  * intel_scu_ipc_dev_iowrite8() - Write a byte via the SCU
350  * @scu: Optional SCU IPC instance
351  * @addr: Register on SCU
352  * @data: Byte to write
353  *
354  * Write a single register. Returns %0 on success or an error code. All
355  * locking between SCU accesses is handled for the caller.
356  *
357  * This function may sleep.
358  */
359 int intel_scu_ipc_dev_iowrite8(struct intel_scu_ipc_dev *scu, u16 addr, u8 data)
360 {
361 	return pwr_reg_rdwr(scu, &addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
362 }
363 EXPORT_SYMBOL(intel_scu_ipc_dev_iowrite8);
364 
365 /**
366  * intel_scu_ipc_dev_readv() - Read a set of registers
367  * @scu: Optional SCU IPC instance
368  * @addr: Register list
369  * @data: Bytes to return
370  * @len: Length of array
371  *
372  * Read registers. Returns %0 on success or an error code. All locking
373  * between SCU accesses is handled for the caller.
374  *
375  * The largest array length permitted by the hardware is 5 items.
376  *
377  * This function may sleep.
378  */
379 int intel_scu_ipc_dev_readv(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
380 			    size_t len)
381 {
382 	return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
383 }
384 EXPORT_SYMBOL(intel_scu_ipc_dev_readv);
385 
386 /**
387  * intel_scu_ipc_dev_writev() - Write a set of registers
388  * @scu: Optional SCU IPC instance
389  * @addr: Register list
390  * @data: Bytes to write
391  * @len: Length of array
392  *
393  * Write registers. Returns %0 on success or an error code. All locking
394  * between SCU accesses is handled for the caller.
395  *
396  * The largest array length permitted by the hardware is 5 items.
397  *
398  * This function may sleep.
399  */
400 int intel_scu_ipc_dev_writev(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
401 			     size_t len)
402 {
403 	return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
404 }
405 EXPORT_SYMBOL(intel_scu_ipc_dev_writev);
406 
407 /**
408  * intel_scu_ipc_dev_update() - Update a register
409  * @scu: Optional SCU IPC instance
410  * @addr: Register address
411  * @data: Bits to update
412  * @mask: Mask of bits to update
413  *
414  * Read-modify-write power control unit register. The first data argument
415  * must be register value and second is mask value mask is a bitmap that
416  * indicates which bits to update. %0 = masked. Don't modify this bit, %1 =
417  * modify this bit. returns %0 on success or an error code.
418  *
419  * This function may sleep. Locking between SCU accesses is handled
420  * for the caller.
421  */
422 int intel_scu_ipc_dev_update(struct intel_scu_ipc_dev *scu, u16 addr, u8 data,
423 			     u8 mask)
424 {
425 	u8 tmp[2] = { data, mask };
426 	return pwr_reg_rdwr(scu, &addr, tmp, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
427 }
428 EXPORT_SYMBOL(intel_scu_ipc_dev_update);
429 
430 /**
431  * intel_scu_ipc_dev_simple_command() - Send a simple command
432  * @scu: Optional SCU IPC instance
433  * @cmd: Command
434  * @sub: Sub type
435  *
436  * Issue a simple command to the SCU. Do not use this interface if you must
437  * then access data as any data values may be overwritten by another SCU
438  * access by the time this function returns.
439  *
440  * This function may sleep. Locking for SCU accesses is handled for the
441  * caller.
442  */
443 int intel_scu_ipc_dev_simple_command(struct intel_scu_ipc_dev *scu, int cmd,
444 				     int sub)
445 {
446 	u32 cmdval;
447 	int err;
448 
449 	guard(mutex)(&ipclock);
450 
451 	scu = intel_scu_ipc_get(scu);
452 	if (IS_ERR(scu))
453 		return PTR_ERR(scu);
454 
455 	cmdval = sub << 12 | cmd;
456 	ipc_command(scu, cmdval);
457 	err = intel_scu_ipc_check_status(scu);
458 	if (err)
459 		dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err);
460 	return err;
461 }
462 EXPORT_SYMBOL(intel_scu_ipc_dev_simple_command);
463 
464 /**
465  * intel_scu_ipc_dev_command_with_size() - Command with data
466  * @scu: Optional SCU IPC instance
467  * @cmd: Command
468  * @sub: Sub type
469  * @in: Input data
470  * @inlen: Input length in bytes
471  * @size: Input size written to the IPC command register in whatever
472  *	  units (dword, byte) the particular firmware requires. Normally
473  *	  should be the same as @inlen.
474  * @out: Output data
475  * @outlen: Output length in bytes
476  *
477  * Issue a command to the SCU which involves data transfers. Do the
478  * data copies under the lock but leave it for the caller to interpret.
479  */
480 int intel_scu_ipc_dev_command_with_size(struct intel_scu_ipc_dev *scu, int cmd,
481 					int sub, const void *in, size_t inlen,
482 					size_t size, void *out, size_t outlen)
483 {
484 	size_t outbuflen = DIV_ROUND_UP(outlen, sizeof(u32));
485 	size_t inbuflen = DIV_ROUND_UP(inlen, sizeof(u32));
486 	u32 cmdval, inbuf[4] = {}, outbuf[4] = {};
487 	int i, err;
488 
489 	if (inbuflen > 4 || outbuflen > 4)
490 		return -EINVAL;
491 
492 	guard(mutex)(&ipclock);
493 
494 	scu = intel_scu_ipc_get(scu);
495 	if (IS_ERR(scu))
496 		return PTR_ERR(scu);
497 
498 	memcpy(inbuf, in, inlen);
499 	for (i = 0; i < inbuflen; i++)
500 		ipc_data_writel(scu, inbuf[i], 4 * i);
501 
502 	cmdval = (size << 16) | (sub << 12) | cmd;
503 	ipc_command(scu, cmdval);
504 	err = intel_scu_ipc_check_status(scu);
505 	if (err) {
506 		dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err);
507 		return err;
508 	}
509 
510 	for (i = 0; i < outbuflen; i++)
511 		outbuf[i] = ipc_data_readl(scu, 4 * i);
512 
513 	memcpy(out, outbuf, outlen);
514 
515 	return 0;
516 }
517 EXPORT_SYMBOL(intel_scu_ipc_dev_command_with_size);
518 
519 /*
520  * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
521  * When ioc bit is set to 1, caller api must wait for interrupt handler called
522  * which in turn unlocks the caller api. Currently this is not used
523  *
524  * This is edge triggered so we need take no action to clear anything
525  */
526 static irqreturn_t ioc(int irq, void *dev_id)
527 {
528 	struct intel_scu_ipc_dev *scu = dev_id;
529 	int status = ipc_read_status(scu);
530 
531 	writel(status | IPC_STATUS_IRQ, scu->ipc_base + IPC_STATUS);
532 	complete(&scu->cmd_complete);
533 
534 	return IRQ_HANDLED;
535 }
536 
537 static void intel_scu_ipc_release(struct device *dev)
538 {
539 	struct intel_scu_ipc_dev *scu = container_of(dev, struct intel_scu_ipc_dev, dev);
540 	struct intel_scu_ipc_data *data = &scu->data;
541 
542 	if (data->irq > 0)
543 		free_irq(data->irq, scu);
544 	iounmap(scu->ipc_base);
545 	release_mem_region(data->mem.start, resource_size(&data->mem));
546 	kfree(scu);
547 }
548 
549 /**
550  * __intel_scu_ipc_register() - Register SCU IPC device
551  * @parent: Parent device
552  * @scu_data: Data used to configure SCU IPC
553  * @owner: Module registering the SCU IPC device
554  *
555  * Call this function to register SCU IPC mechanism under @parent.
556  * Returns pointer to the new SCU IPC device or ERR_PTR() in case of
557  * failure. The caller may use the returned instance if it needs to do
558  * SCU IPC calls itself.
559  */
560 struct intel_scu_ipc_dev *
561 __intel_scu_ipc_register(struct device *parent,
562 			 const struct intel_scu_ipc_data *scu_data,
563 			 struct module *owner)
564 {
565 	int err;
566 	struct intel_scu_ipc_data *data;
567 	struct intel_scu_ipc_dev *scu;
568 	void __iomem *ipc_base;
569 
570 	guard(mutex)(&ipclock);
571 
572 	/* We support only one IPC */
573 	if (ipcdev)
574 		return ERR_PTR(-EBUSY);
575 
576 	scu = kzalloc(sizeof(*scu), GFP_KERNEL);
577 	if (!scu)
578 		return ERR_PTR(-ENOMEM);
579 
580 	scu->owner = owner;
581 	scu->dev.parent = parent;
582 	scu->dev.class = &intel_scu_ipc_class;
583 	scu->dev.release = intel_scu_ipc_release;
584 
585 	memcpy(&scu->data, scu_data, sizeof(scu->data));
586 	data = &scu->data;
587 
588 	if (!request_mem_region(data->mem.start, resource_size(&data->mem), "intel_scu_ipc")) {
589 		err = -EBUSY;
590 		goto err_free;
591 	}
592 
593 	ipc_base = ioremap(data->mem.start, resource_size(&data->mem));
594 	if (!ipc_base) {
595 		err = -ENOMEM;
596 		goto err_release;
597 	}
598 
599 	scu->ipc_base = ipc_base;
600 	init_completion(&scu->cmd_complete);
601 
602 	if (data->irq > 0) {
603 		err = request_irq(data->irq, ioc, 0, "intel_scu_ipc", scu);
604 		if (err)
605 			goto err_unmap;
606 	}
607 
608 	/*
609 	 * After this point intel_scu_ipc_release() takes care of
610 	 * releasing the SCU IPC resources once refcount drops to zero.
611 	 */
612 	dev_set_name(&scu->dev, "intel_scu_ipc");
613 	err = device_register(&scu->dev);
614 	if (err) {
615 		put_device(&scu->dev);
616 		return ERR_PTR(err);
617 	}
618 
619 	/* Assign device at last */
620 	ipcdev = scu;
621 	return scu;
622 
623 err_unmap:
624 	iounmap(ipc_base);
625 err_release:
626 	release_mem_region(data->mem.start, resource_size(&data->mem));
627 err_free:
628 	kfree(scu);
629 	return ERR_PTR(err);
630 }
631 EXPORT_SYMBOL_GPL(__intel_scu_ipc_register);
632 
633 /**
634  * intel_scu_ipc_unregister() - Unregister SCU IPC
635  * @scu: SCU IPC handle
636  *
637  * This unregisters the SCU IPC device and releases the acquired
638  * resources once the refcount goes to zero.
639  */
640 void intel_scu_ipc_unregister(struct intel_scu_ipc_dev *scu)
641 {
642 	guard(mutex)(&ipclock);
643 
644 	if (!WARN_ON(!ipcdev)) {
645 		ipcdev = NULL;
646 		device_unregister(&scu->dev);
647 	}
648 }
649 EXPORT_SYMBOL_GPL(intel_scu_ipc_unregister);
650 
651 static void devm_intel_scu_ipc_unregister(struct device *dev, void *res)
652 {
653 	struct intel_scu_ipc_devres *dr = res;
654 	struct intel_scu_ipc_dev *scu = dr->scu;
655 
656 	intel_scu_ipc_unregister(scu);
657 }
658 
659 /**
660  * __devm_intel_scu_ipc_register() - Register managed SCU IPC device
661  * @parent: Parent device
662  * @scu_data: Data used to configure SCU IPC
663  * @owner: Module registering the SCU IPC device
664  *
665  * Call this function to register managed SCU IPC mechanism under
666  * @parent. Returns pointer to the new SCU IPC device or ERR_PTR() in
667  * case of failure. The caller may use the returned instance if it needs
668  * to do SCU IPC calls itself.
669  */
670 struct intel_scu_ipc_dev *
671 __devm_intel_scu_ipc_register(struct device *parent,
672 			      const struct intel_scu_ipc_data *scu_data,
673 			      struct module *owner)
674 {
675 	struct intel_scu_ipc_devres *dr;
676 	struct intel_scu_ipc_dev *scu;
677 
678 	dr = devres_alloc(devm_intel_scu_ipc_unregister, sizeof(*dr), GFP_KERNEL);
679 	if (!dr)
680 		return NULL;
681 
682 	scu = __intel_scu_ipc_register(parent, scu_data, owner);
683 	if (IS_ERR(scu)) {
684 		devres_free(dr);
685 		return scu;
686 	}
687 
688 	dr->scu = scu;
689 	devres_add(parent, dr);
690 
691 	return scu;
692 }
693 EXPORT_SYMBOL_GPL(__devm_intel_scu_ipc_register);
694 
695 static int __init intel_scu_ipc_init(void)
696 {
697 	return class_register(&intel_scu_ipc_class);
698 }
699 subsys_initcall(intel_scu_ipc_init);
700 
701 static void __exit intel_scu_ipc_exit(void)
702 {
703 	class_unregister(&intel_scu_ipc_class);
704 }
705 module_exit(intel_scu_ipc_exit);
706