xref: /linux/drivers/platform/x86/intel_scu_ipc.c (revision 6331b8765cd0634a4e4cdcc1a6f1a74196616b94)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Driver for the Intel SCU IPC mechanism
4  *
5  * (C) Copyright 2008-2010,2015 Intel Corporation
6  * Author: Sreedhara DS (sreedhara.ds@intel.com)
7  *
8  * SCU running in ARC processor communicates with other entity running in IA
9  * core through IPC mechanism which in turn messaging between IA core ad SCU.
10  * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
11  * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
12  * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
13  * along with other APIs.
14  */
15 
16 #include <linux/delay.h>
17 #include <linux/device.h>
18 #include <linux/errno.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 
25 #include <asm/intel_scu_ipc.h>
26 
27 /* IPC defines the following message types */
28 #define IPCMSG_PCNTRL         0xff /* Power controller unit read/write */
29 
30 /* Command id associated with message IPCMSG_PCNTRL */
31 #define IPC_CMD_PCNTRL_W      0 /* Register write */
32 #define IPC_CMD_PCNTRL_R      1 /* Register read */
33 #define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */
34 
35 /*
36  * IPC register summary
37  *
38  * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
39  * To read or write information to the SCU, driver writes to IPC-1 memory
40  * mapped registers. The following is the IPC mechanism
41  *
42  * 1. IA core cDMI interface claims this transaction and converts it to a
43  *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
44  *
45  * 2. South Complex cDMI block receives this message and writes it to
46  *    the IPC-1 register block, causing an interrupt to the SCU
47  *
48  * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
49  *    message handler is called within firmware.
50  */
51 
52 #define IPC_WWBUF_SIZE    20		/* IPC Write buffer Size */
53 #define IPC_RWBUF_SIZE    20		/* IPC Read buffer Size */
54 #define IPC_IOC	          0x100		/* IPC command register IOC bit */
55 
56 struct intel_scu_ipc_dev {
57 	struct device dev;
58 	struct resource mem;
59 	struct module *owner;
60 	int irq;
61 	void __iomem *ipc_base;
62 	struct completion cmd_complete;
63 };
64 
65 #define IPC_STATUS		0x04
66 #define IPC_STATUS_IRQ		BIT(2)
67 #define IPC_STATUS_ERR		BIT(1)
68 #define IPC_STATUS_BUSY		BIT(0)
69 
70 /*
71  * IPC Write/Read Buffers:
72  * 16 byte buffer for sending and receiving data to and from SCU.
73  */
74 #define IPC_WRITE_BUFFER	0x80
75 #define IPC_READ_BUFFER		0x90
76 
77 /* Timeout in jiffies */
78 #define IPC_TIMEOUT		(10 * HZ)
79 
80 static struct intel_scu_ipc_dev *ipcdev; /* Only one for now */
81 static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
82 
83 static struct class intel_scu_ipc_class = {
84 	.name = "intel_scu_ipc",
85 	.owner = THIS_MODULE,
86 };
87 
88 /**
89  * intel_scu_ipc_dev_get() - Get SCU IPC instance
90  *
91  * The recommended new API takes SCU IPC instance as parameter and this
92  * function can be called by driver to get the instance. This also makes
93  * sure the driver providing the IPC functionality cannot be unloaded
94  * while the caller has the instance.
95  *
96  * Call intel_scu_ipc_dev_put() to release the instance.
97  *
98  * Returns %NULL if SCU IPC is not currently available.
99  */
100 struct intel_scu_ipc_dev *intel_scu_ipc_dev_get(void)
101 {
102 	struct intel_scu_ipc_dev *scu = NULL;
103 
104 	mutex_lock(&ipclock);
105 	if (ipcdev) {
106 		get_device(&ipcdev->dev);
107 		/*
108 		 * Prevent the IPC provider from being unloaded while it
109 		 * is being used.
110 		 */
111 		if (!try_module_get(ipcdev->owner))
112 			put_device(&ipcdev->dev);
113 		else
114 			scu = ipcdev;
115 	}
116 
117 	mutex_unlock(&ipclock);
118 	return scu;
119 }
120 EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_get);
121 
122 /**
123  * intel_scu_ipc_dev_put() - Put SCU IPC instance
124  * @scu: SCU IPC instance
125  *
126  * This function releases the SCU IPC instance retrieved from
127  * intel_scu_ipc_dev_get() and allows the driver providing IPC to be
128  * unloaded.
129  */
130 void intel_scu_ipc_dev_put(struct intel_scu_ipc_dev *scu)
131 {
132 	if (scu) {
133 		module_put(scu->owner);
134 		put_device(&scu->dev);
135 	}
136 }
137 EXPORT_SYMBOL_GPL(intel_scu_ipc_dev_put);
138 
139 struct intel_scu_ipc_devres {
140 	struct intel_scu_ipc_dev *scu;
141 };
142 
143 static void devm_intel_scu_ipc_dev_release(struct device *dev, void *res)
144 {
145 	struct intel_scu_ipc_devres *dr = res;
146 	struct intel_scu_ipc_dev *scu = dr->scu;
147 
148 	intel_scu_ipc_dev_put(scu);
149 }
150 
151 /**
152  * devm_intel_scu_ipc_dev_get() - Allocate managed SCU IPC device
153  * @dev: Device requesting the SCU IPC device
154  *
155  * The recommended new API takes SCU IPC instance as parameter and this
156  * function can be called by driver to get the instance. This also makes
157  * sure the driver providing the IPC functionality cannot be unloaded
158  * while the caller has the instance.
159  *
160  * Returns %NULL if SCU IPC is not currently available.
161  */
162 struct intel_scu_ipc_dev *devm_intel_scu_ipc_dev_get(struct device *dev)
163 {
164 	struct intel_scu_ipc_devres *dr;
165 	struct intel_scu_ipc_dev *scu;
166 
167 	dr = devres_alloc(devm_intel_scu_ipc_dev_release, sizeof(*dr), GFP_KERNEL);
168 	if (!dr)
169 		return NULL;
170 
171 	scu = intel_scu_ipc_dev_get();
172 	if (!scu) {
173 		devres_free(dr);
174 		return NULL;
175 	}
176 
177 	dr->scu = scu;
178 	devres_add(dev, dr);
179 
180 	return scu;
181 }
182 EXPORT_SYMBOL_GPL(devm_intel_scu_ipc_dev_get);
183 
184 /*
185  * Send ipc command
186  * Command Register (Write Only):
187  * A write to this register results in an interrupt to the SCU core processor
188  * Format:
189  * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
190  */
191 static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
192 {
193 	reinit_completion(&scu->cmd_complete);
194 	writel(cmd | IPC_IOC, scu->ipc_base);
195 }
196 
197 /*
198  * Write ipc data
199  * IPC Write Buffer (Write Only):
200  * 16-byte buffer for sending data associated with IPC command to
201  * SCU. Size of the data is specified in the IPC_COMMAND_REG register
202  */
203 static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
204 {
205 	writel(data, scu->ipc_base + IPC_WRITE_BUFFER + offset);
206 }
207 
208 /*
209  * Status Register (Read Only):
210  * Driver will read this register to get the ready/busy status of the IPC
211  * block and error status of the IPC command that was just processed by SCU
212  * Format:
213  * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
214  */
215 static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
216 {
217 	return __raw_readl(scu->ipc_base + IPC_STATUS);
218 }
219 
220 /* Read ipc byte data */
221 static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
222 {
223 	return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
224 }
225 
226 /* Read ipc u32 data */
227 static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
228 {
229 	return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
230 }
231 
232 /* Wait till scu status is busy */
233 static inline int busy_loop(struct intel_scu_ipc_dev *scu)
234 {
235 	unsigned long end = jiffies + IPC_TIMEOUT;
236 
237 	do {
238 		u32 status;
239 
240 		status = ipc_read_status(scu);
241 		if (!(status & IPC_STATUS_BUSY))
242 			return (status & IPC_STATUS_ERR) ? -EIO : 0;
243 
244 		usleep_range(50, 100);
245 	} while (time_before(jiffies, end));
246 
247 	return -ETIMEDOUT;
248 }
249 
250 /* Wait till ipc ioc interrupt is received or timeout in 10 HZ */
251 static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
252 {
253 	int status;
254 
255 	if (!wait_for_completion_timeout(&scu->cmd_complete, IPC_TIMEOUT))
256 		return -ETIMEDOUT;
257 
258 	status = ipc_read_status(scu);
259 	if (status & IPC_STATUS_ERR)
260 		return -EIO;
261 
262 	return 0;
263 }
264 
265 static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
266 {
267 	return scu->irq > 0 ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
268 }
269 
270 /* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
271 static int pwr_reg_rdwr(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
272 			u32 count, u32 op, u32 id)
273 {
274 	int nc;
275 	u32 offset = 0;
276 	int err;
277 	u8 cbuf[IPC_WWBUF_SIZE];
278 	u32 *wbuf = (u32 *)&cbuf;
279 
280 	memset(cbuf, 0, sizeof(cbuf));
281 
282 	mutex_lock(&ipclock);
283 	if (!scu)
284 		scu = ipcdev;
285 	if (!scu) {
286 		mutex_unlock(&ipclock);
287 		return -ENODEV;
288 	}
289 
290 	for (nc = 0; nc < count; nc++, offset += 2) {
291 		cbuf[offset] = addr[nc];
292 		cbuf[offset + 1] = addr[nc] >> 8;
293 	}
294 
295 	if (id == IPC_CMD_PCNTRL_R) {
296 		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
297 			ipc_data_writel(scu, wbuf[nc], offset);
298 		ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
299 	} else if (id == IPC_CMD_PCNTRL_W) {
300 		for (nc = 0; nc < count; nc++, offset += 1)
301 			cbuf[offset] = data[nc];
302 		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
303 			ipc_data_writel(scu, wbuf[nc], offset);
304 		ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
305 	} else if (id == IPC_CMD_PCNTRL_M) {
306 		cbuf[offset] = data[0];
307 		cbuf[offset + 1] = data[1];
308 		ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
309 		ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
310 	}
311 
312 	err = intel_scu_ipc_check_status(scu);
313 	if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
314 		/* Workaround: values are read as 0 without memcpy_fromio */
315 		memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
316 		for (nc = 0; nc < count; nc++)
317 			data[nc] = ipc_data_readb(scu, nc);
318 	}
319 	mutex_unlock(&ipclock);
320 	return err;
321 }
322 
323 /**
324  * intel_scu_ipc_dev_ioread8() - Read a byte via the SCU
325  * @scu: Optional SCU IPC instance
326  * @addr: Register on SCU
327  * @data: Return pointer for read byte
328  *
329  * Read a single register. Returns %0 on success or an error code. All
330  * locking between SCU accesses is handled for the caller.
331  *
332  * This function may sleep.
333  */
334 int intel_scu_ipc_dev_ioread8(struct intel_scu_ipc_dev *scu, u16 addr, u8 *data)
335 {
336 	return pwr_reg_rdwr(scu, &addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
337 }
338 EXPORT_SYMBOL(intel_scu_ipc_dev_ioread8);
339 
340 /**
341  * intel_scu_ipc_dev_iowrite8() - Write a byte via the SCU
342  * @scu: Optional SCU IPC instance
343  * @addr: Register on SCU
344  * @data: Byte to write
345  *
346  * Write a single register. Returns %0 on success or an error code. All
347  * locking between SCU accesses is handled for the caller.
348  *
349  * This function may sleep.
350  */
351 int intel_scu_ipc_dev_iowrite8(struct intel_scu_ipc_dev *scu, u16 addr, u8 data)
352 {
353 	return pwr_reg_rdwr(scu, &addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
354 }
355 EXPORT_SYMBOL(intel_scu_ipc_dev_iowrite8);
356 
357 /**
358  * intel_scu_ipc_dev_readv() - Read a set of registers
359  * @scu: Optional SCU IPC instance
360  * @addr: Register list
361  * @data: Bytes to return
362  * @len: Length of array
363  *
364  * Read registers. Returns %0 on success or an error code. All locking
365  * between SCU accesses is handled for the caller.
366  *
367  * The largest array length permitted by the hardware is 5 items.
368  *
369  * This function may sleep.
370  */
371 int intel_scu_ipc_dev_readv(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
372 			    size_t len)
373 {
374 	return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
375 }
376 EXPORT_SYMBOL(intel_scu_ipc_dev_readv);
377 
378 /**
379  * intel_scu_ipc_dev_writev() - Write a set of registers
380  * @scu: Optional SCU IPC instance
381  * @addr: Register list
382  * @data: Bytes to write
383  * @len: Length of array
384  *
385  * Write registers. Returns %0 on success or an error code. All locking
386  * between SCU accesses is handled for the caller.
387  *
388  * The largest array length permitted by the hardware is 5 items.
389  *
390  * This function may sleep.
391  */
392 int intel_scu_ipc_dev_writev(struct intel_scu_ipc_dev *scu, u16 *addr, u8 *data,
393 			     size_t len)
394 {
395 	return pwr_reg_rdwr(scu, addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
396 }
397 EXPORT_SYMBOL(intel_scu_ipc_dev_writev);
398 
399 /**
400  * intel_scu_ipc_dev_update() - Update a register
401  * @scu: Optional SCU IPC instance
402  * @addr: Register address
403  * @data: Bits to update
404  * @mask: Mask of bits to update
405  *
406  * Read-modify-write power control unit register. The first data argument
407  * must be register value and second is mask value mask is a bitmap that
408  * indicates which bits to update. %0 = masked. Don't modify this bit, %1 =
409  * modify this bit. returns %0 on success or an error code.
410  *
411  * This function may sleep. Locking between SCU accesses is handled
412  * for the caller.
413  */
414 int intel_scu_ipc_dev_update(struct intel_scu_ipc_dev *scu, u16 addr, u8 data,
415 			     u8 mask)
416 {
417 	u8 tmp[2] = { data, mask };
418 	return pwr_reg_rdwr(scu, &addr, tmp, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
419 }
420 EXPORT_SYMBOL(intel_scu_ipc_dev_update);
421 
422 /**
423  * intel_scu_ipc_dev_simple_command() - Send a simple command
424  * @scu: Optional SCU IPC instance
425  * @cmd: Command
426  * @sub: Sub type
427  *
428  * Issue a simple command to the SCU. Do not use this interface if you must
429  * then access data as any data values may be overwritten by another SCU
430  * access by the time this function returns.
431  *
432  * This function may sleep. Locking for SCU accesses is handled for the
433  * caller.
434  */
435 int intel_scu_ipc_dev_simple_command(struct intel_scu_ipc_dev *scu, int cmd,
436 				     int sub)
437 {
438 	u32 cmdval;
439 	int err;
440 
441 	mutex_lock(&ipclock);
442 	if (!scu)
443 		scu = ipcdev;
444 	if (!scu) {
445 		mutex_unlock(&ipclock);
446 		return -ENODEV;
447 	}
448 	scu = ipcdev;
449 	cmdval = sub << 12 | cmd;
450 	ipc_command(scu, cmdval);
451 	err = intel_scu_ipc_check_status(scu);
452 	mutex_unlock(&ipclock);
453 	if (err)
454 		dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err);
455 	return err;
456 }
457 EXPORT_SYMBOL(intel_scu_ipc_dev_simple_command);
458 
459 /**
460  * intel_scu_ipc_dev_command_with_size() - Command with data
461  * @scu: Optional SCU IPC instance
462  * @cmd: Command
463  * @sub: Sub type
464  * @in: Input data
465  * @inlen: Input length in bytes
466  * @size: Input size written to the IPC command register in whatever
467  *	  units (dword, byte) the particular firmware requires. Normally
468  *	  should be the same as @inlen.
469  * @out: Output data
470  * @outlen: Output length in bytes
471  *
472  * Issue a command to the SCU which involves data transfers. Do the
473  * data copies under the lock but leave it for the caller to interpret.
474  */
475 int intel_scu_ipc_dev_command_with_size(struct intel_scu_ipc_dev *scu, int cmd,
476 					int sub, const void *in, size_t inlen,
477 					size_t size, void *out, size_t outlen)
478 {
479 	size_t outbuflen = DIV_ROUND_UP(outlen, sizeof(u32));
480 	size_t inbuflen = DIV_ROUND_UP(inlen, sizeof(u32));
481 	u32 cmdval, inbuf[4] = {};
482 	int i, err;
483 
484 	if (inbuflen > 4 || outbuflen > 4)
485 		return -EINVAL;
486 
487 	mutex_lock(&ipclock);
488 	if (!scu)
489 		scu = ipcdev;
490 	if (!scu) {
491 		mutex_unlock(&ipclock);
492 		return -ENODEV;
493 	}
494 
495 	memcpy(inbuf, in, inlen);
496 	for (i = 0; i < inbuflen; i++)
497 		ipc_data_writel(scu, inbuf[i], 4 * i);
498 
499 	cmdval = (size << 16) | (sub << 12) | cmd;
500 	ipc_command(scu, cmdval);
501 	err = intel_scu_ipc_check_status(scu);
502 
503 	if (!err) {
504 		u32 outbuf[4] = {};
505 
506 		for (i = 0; i < outbuflen; i++)
507 			outbuf[i] = ipc_data_readl(scu, 4 * i);
508 
509 		memcpy(out, outbuf, outlen);
510 	}
511 
512 	mutex_unlock(&ipclock);
513 	if (err)
514 		dev_err(&scu->dev, "IPC command %#x failed with %d\n", cmdval, err);
515 	return err;
516 }
517 EXPORT_SYMBOL(intel_scu_ipc_dev_command_with_size);
518 
519 /*
520  * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
521  * When ioc bit is set to 1, caller api must wait for interrupt handler called
522  * which in turn unlocks the caller api. Currently this is not used
523  *
524  * This is edge triggered so we need take no action to clear anything
525  */
526 static irqreturn_t ioc(int irq, void *dev_id)
527 {
528 	struct intel_scu_ipc_dev *scu = dev_id;
529 	int status = ipc_read_status(scu);
530 
531 	writel(status | IPC_STATUS_IRQ, scu->ipc_base + IPC_STATUS);
532 	complete(&scu->cmd_complete);
533 
534 	return IRQ_HANDLED;
535 }
536 
537 static void intel_scu_ipc_release(struct device *dev)
538 {
539 	struct intel_scu_ipc_dev *scu;
540 
541 	scu = container_of(dev, struct intel_scu_ipc_dev, dev);
542 	if (scu->irq > 0)
543 		free_irq(scu->irq, scu);
544 	iounmap(scu->ipc_base);
545 	release_mem_region(scu->mem.start, resource_size(&scu->mem));
546 	kfree(scu);
547 }
548 
549 /**
550  * __intel_scu_ipc_register() - Register SCU IPC device
551  * @parent: Parent device
552  * @scu_data: Data used to configure SCU IPC
553  * @owner: Module registering the SCU IPC device
554  *
555  * Call this function to register SCU IPC mechanism under @parent.
556  * Returns pointer to the new SCU IPC device or ERR_PTR() in case of
557  * failure. The caller may use the returned instance if it needs to do
558  * SCU IPC calls itself.
559  */
560 struct intel_scu_ipc_dev *
561 __intel_scu_ipc_register(struct device *parent,
562 			 const struct intel_scu_ipc_data *scu_data,
563 			 struct module *owner)
564 {
565 	int err;
566 	struct intel_scu_ipc_dev *scu;
567 	void __iomem *ipc_base;
568 
569 	mutex_lock(&ipclock);
570 	/* We support only one IPC */
571 	if (ipcdev) {
572 		err = -EBUSY;
573 		goto err_unlock;
574 	}
575 
576 	scu = kzalloc(sizeof(*scu), GFP_KERNEL);
577 	if (!scu) {
578 		err = -ENOMEM;
579 		goto err_unlock;
580 	}
581 
582 	scu->owner = owner;
583 	scu->dev.parent = parent;
584 	scu->dev.class = &intel_scu_ipc_class;
585 	scu->dev.release = intel_scu_ipc_release;
586 	dev_set_name(&scu->dev, "intel_scu_ipc");
587 
588 	if (!request_mem_region(scu_data->mem.start, resource_size(&scu_data->mem),
589 				"intel_scu_ipc")) {
590 		err = -EBUSY;
591 		goto err_free;
592 	}
593 
594 	ipc_base = ioremap(scu_data->mem.start, resource_size(&scu_data->mem));
595 	if (!ipc_base) {
596 		err = -ENOMEM;
597 		goto err_release;
598 	}
599 
600 	scu->ipc_base = ipc_base;
601 	scu->mem = scu_data->mem;
602 	scu->irq = scu_data->irq;
603 	init_completion(&scu->cmd_complete);
604 
605 	if (scu->irq > 0) {
606 		err = request_irq(scu->irq, ioc, 0, "intel_scu_ipc", scu);
607 		if (err)
608 			goto err_unmap;
609 	}
610 
611 	/*
612 	 * After this point intel_scu_ipc_release() takes care of
613 	 * releasing the SCU IPC resources once refcount drops to zero.
614 	 */
615 	err = device_register(&scu->dev);
616 	if (err) {
617 		put_device(&scu->dev);
618 		goto err_unlock;
619 	}
620 
621 	/* Assign device at last */
622 	ipcdev = scu;
623 	mutex_unlock(&ipclock);
624 
625 	return scu;
626 
627 err_unmap:
628 	iounmap(ipc_base);
629 err_release:
630 	release_mem_region(scu_data->mem.start, resource_size(&scu_data->mem));
631 err_free:
632 	kfree(scu);
633 err_unlock:
634 	mutex_unlock(&ipclock);
635 
636 	return ERR_PTR(err);
637 }
638 EXPORT_SYMBOL_GPL(__intel_scu_ipc_register);
639 
640 /**
641  * intel_scu_ipc_unregister() - Unregister SCU IPC
642  * @scu: SCU IPC handle
643  *
644  * This unregisters the SCU IPC device and releases the acquired
645  * resources once the refcount goes to zero.
646  */
647 void intel_scu_ipc_unregister(struct intel_scu_ipc_dev *scu)
648 {
649 	mutex_lock(&ipclock);
650 	if (!WARN_ON(!ipcdev)) {
651 		ipcdev = NULL;
652 		device_unregister(&scu->dev);
653 	}
654 	mutex_unlock(&ipclock);
655 }
656 EXPORT_SYMBOL_GPL(intel_scu_ipc_unregister);
657 
658 static void devm_intel_scu_ipc_unregister(struct device *dev, void *res)
659 {
660 	struct intel_scu_ipc_devres *dr = res;
661 	struct intel_scu_ipc_dev *scu = dr->scu;
662 
663 	intel_scu_ipc_unregister(scu);
664 }
665 
666 /**
667  * __devm_intel_scu_ipc_register() - Register managed SCU IPC device
668  * @parent: Parent device
669  * @scu_data: Data used to configure SCU IPC
670  * @owner: Module registering the SCU IPC device
671  *
672  * Call this function to register managed SCU IPC mechanism under
673  * @parent. Returns pointer to the new SCU IPC device or ERR_PTR() in
674  * case of failure. The caller may use the returned instance if it needs
675  * to do SCU IPC calls itself.
676  */
677 struct intel_scu_ipc_dev *
678 __devm_intel_scu_ipc_register(struct device *parent,
679 			      const struct intel_scu_ipc_data *scu_data,
680 			      struct module *owner)
681 {
682 	struct intel_scu_ipc_devres *dr;
683 	struct intel_scu_ipc_dev *scu;
684 
685 	dr = devres_alloc(devm_intel_scu_ipc_unregister, sizeof(*dr), GFP_KERNEL);
686 	if (!dr)
687 		return NULL;
688 
689 	scu = __intel_scu_ipc_register(parent, scu_data, owner);
690 	if (IS_ERR(scu)) {
691 		devres_free(dr);
692 		return scu;
693 	}
694 
695 	dr->scu = scu;
696 	devres_add(parent, dr);
697 
698 	return scu;
699 }
700 EXPORT_SYMBOL_GPL(__devm_intel_scu_ipc_register);
701 
702 static int __init intel_scu_ipc_init(void)
703 {
704 	return class_register(&intel_scu_ipc_class);
705 }
706 subsys_initcall(intel_scu_ipc_init);
707 
708 static void __exit intel_scu_ipc_exit(void)
709 {
710 	class_unregister(&intel_scu_ipc_class);
711 }
712 module_exit(intel_scu_ipc_exit);
713