xref: /linux/drivers/platform/x86/intel_ips.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  * Copyright (c) 2009-2010 Intel Corporation
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc.,
15  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16  *
17  * The full GNU General Public License is included in this distribution in
18  * the file called "COPYING".
19  *
20  * Authors:
21  *	Jesse Barnes <jbarnes@virtuousgeek.org>
22  */
23 
24 /*
25  * Some Intel Ibex Peak based platforms support so-called "intelligent
26  * power sharing", which allows the CPU and GPU to cooperate to maximize
27  * performance within a given TDP (thermal design point).  This driver
28  * performs the coordination between the CPU and GPU, monitors thermal and
29  * power statistics in the platform, and initializes power monitoring
30  * hardware.  It also provides a few tunables to control behavior.  Its
31  * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32  * by tracking power and thermal budget; secondarily it can boost turbo
33  * performance by allocating more power or thermal budget to the CPU or GPU
34  * based on available headroom and activity.
35  *
36  * The basic algorithm is driven by a 5s moving average of tempurature.  If
37  * thermal headroom is available, the CPU and/or GPU power clamps may be
38  * adjusted upwards.  If we hit the thermal ceiling or a thermal trigger,
39  * we scale back the clamp.  Aside from trigger events (when we're critically
40  * close or over our TDP) we don't adjust the clamps more than once every
41  * five seconds.
42  *
43  * The thermal device (device 31, function 6) has a set of registers that
44  * are updated by the ME firmware.  The ME should also take the clamp values
45  * written to those registers and write them to the CPU, but we currently
46  * bypass that functionality and write the CPU MSR directly.
47  *
48  * UNSUPPORTED:
49  *   - dual MCP configs
50  *
51  * TODO:
52  *   - handle CPU hotplug
53  *   - provide turbo enable/disable api
54  *   - make sure we can write turbo enable/disable reg based on MISC_EN
55  *
56  * Related documents:
57  *   - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
58  *   - CDI 401376 - Ibex Peak EDS
59  *   - ref 26037, 26641 - IPS BIOS spec
60  *   - ref 26489 - Nehalem BIOS writer's guide
61  *   - ref 26921 - Ibex Peak BIOS Specification
62  */
63 
64 #include <linux/debugfs.h>
65 #include <linux/delay.h>
66 #include <linux/interrupt.h>
67 #include <linux/kernel.h>
68 #include <linux/kthread.h>
69 #include <linux/module.h>
70 #include <linux/pci.h>
71 #include <linux/sched.h>
72 #include <linux/seq_file.h>
73 #include <linux/string.h>
74 #include <linux/tick.h>
75 #include <linux/timer.h>
76 #include <drm/i915_drm.h>
77 #include <asm/msr.h>
78 #include <asm/processor.h>
79 
80 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
81 
82 /*
83  * Package level MSRs for monitor/control
84  */
85 #define PLATFORM_INFO	0xce
86 #define   PLATFORM_TDP		(1<<29)
87 #define   PLATFORM_RATIO	(1<<28)
88 
89 #define IA32_MISC_ENABLE	0x1a0
90 #define   IA32_MISC_TURBO_EN	(1ULL<<38)
91 
92 #define TURBO_POWER_CURRENT_LIMIT	0x1ac
93 #define   TURBO_TDC_OVR_EN	(1UL<<31)
94 #define   TURBO_TDC_MASK	(0x000000007fff0000UL)
95 #define   TURBO_TDC_SHIFT	(16)
96 #define   TURBO_TDP_OVR_EN	(1UL<<15)
97 #define   TURBO_TDP_MASK	(0x0000000000003fffUL)
98 
99 /*
100  * Core/thread MSRs for monitoring
101  */
102 #define IA32_PERF_CTL		0x199
103 #define   IA32_PERF_TURBO_DIS	(1ULL<<32)
104 
105 /*
106  * Thermal PCI device regs
107  */
108 #define THM_CFG_TBAR	0x10
109 #define THM_CFG_TBAR_HI	0x14
110 
111 #define THM_TSIU	0x00
112 #define THM_TSE		0x01
113 #define   TSE_EN	0xb8
114 #define THM_TSS		0x02
115 #define THM_TSTR	0x03
116 #define THM_TSTTP	0x04
117 #define THM_TSCO	0x08
118 #define THM_TSES	0x0c
119 #define THM_TSGPEN	0x0d
120 #define   TSGPEN_HOT_LOHI	(1<<1)
121 #define   TSGPEN_CRIT_LOHI	(1<<2)
122 #define THM_TSPC	0x0e
123 #define THM_PPEC	0x10
124 #define THM_CTA		0x12
125 #define THM_PTA		0x14
126 #define   PTA_SLOPE_MASK	(0xff00)
127 #define   PTA_SLOPE_SHIFT	8
128 #define   PTA_OFFSET_MASK	(0x00ff)
129 #define THM_MGTA	0x16
130 #define   MGTA_SLOPE_MASK	(0xff00)
131 #define   MGTA_SLOPE_SHIFT	8
132 #define   MGTA_OFFSET_MASK	(0x00ff)
133 #define THM_TRC		0x1a
134 #define   TRC_CORE2_EN	(1<<15)
135 #define   TRC_THM_EN	(1<<12)
136 #define   TRC_C6_WAR	(1<<8)
137 #define   TRC_CORE1_EN	(1<<7)
138 #define   TRC_CORE_PWR	(1<<6)
139 #define   TRC_PCH_EN	(1<<5)
140 #define   TRC_MCH_EN	(1<<4)
141 #define   TRC_DIMM4	(1<<3)
142 #define   TRC_DIMM3	(1<<2)
143 #define   TRC_DIMM2	(1<<1)
144 #define   TRC_DIMM1	(1<<0)
145 #define THM_TES		0x20
146 #define THM_TEN		0x21
147 #define   TEN_UPDATE_EN	1
148 #define THM_PSC		0x24
149 #define   PSC_NTG	(1<<0) /* No GFX turbo support */
150 #define   PSC_NTPC	(1<<1) /* No CPU turbo support */
151 #define   PSC_PP_DEF	(0<<2) /* Perf policy up to driver */
152 #define   PSP_PP_PC	(1<<2) /* BIOS prefers CPU perf */
153 #define   PSP_PP_BAL	(2<<2) /* BIOS wants balanced perf */
154 #define   PSP_PP_GFX	(3<<2) /* BIOS prefers GFX perf */
155 #define   PSP_PBRT	(1<<4) /* BIOS run time support */
156 #define THM_CTV1	0x30
157 #define   CTV_TEMP_ERROR (1<<15)
158 #define   CTV_TEMP_MASK	0x3f
159 #define   CTV_
160 #define THM_CTV2	0x32
161 #define THM_CEC		0x34 /* undocumented power accumulator in joules */
162 #define THM_AE		0x3f
163 #define THM_HTS		0x50 /* 32 bits */
164 #define   HTS_PCPL_MASK	(0x7fe00000)
165 #define   HTS_PCPL_SHIFT 21
166 #define   HTS_GPL_MASK  (0x001ff000)
167 #define   HTS_GPL_SHIFT 12
168 #define   HTS_PP_MASK	(0x00000c00)
169 #define   HTS_PP_SHIFT  10
170 #define   HTS_PP_DEF	0
171 #define   HTS_PP_PROC	1
172 #define   HTS_PP_BAL	2
173 #define   HTS_PP_GFX	3
174 #define   HTS_PCTD_DIS	(1<<9)
175 #define   HTS_GTD_DIS	(1<<8)
176 #define   HTS_PTL_MASK  (0x000000fe)
177 #define   HTS_PTL_SHIFT 1
178 #define   HTS_NVV	(1<<0)
179 #define THM_HTSHI	0x54 /* 16 bits */
180 #define   HTS2_PPL_MASK		(0x03ff)
181 #define   HTS2_PRST_MASK	(0x3c00)
182 #define   HTS2_PRST_SHIFT	10
183 #define   HTS2_PRST_UNLOADED	0
184 #define   HTS2_PRST_RUNNING	1
185 #define   HTS2_PRST_TDISOP	2 /* turbo disabled due to power */
186 #define   HTS2_PRST_TDISHT	3 /* turbo disabled due to high temp */
187 #define   HTS2_PRST_TDISUSR	4 /* user disabled turbo */
188 #define   HTS2_PRST_TDISPLAT	5 /* platform disabled turbo */
189 #define   HTS2_PRST_TDISPM	6 /* power management disabled turbo */
190 #define   HTS2_PRST_TDISERR	7 /* some kind of error disabled turbo */
191 #define THM_PTL		0x56
192 #define THM_MGTV	0x58
193 #define   TV_MASK	0x000000000000ff00
194 #define   TV_SHIFT	8
195 #define THM_PTV		0x60
196 #define   PTV_MASK	0x00ff
197 #define THM_MMGPC	0x64
198 #define THM_MPPC	0x66
199 #define THM_MPCPC	0x68
200 #define THM_TSPIEN	0x82
201 #define   TSPIEN_AUX_LOHI	(1<<0)
202 #define   TSPIEN_HOT_LOHI	(1<<1)
203 #define   TSPIEN_CRIT_LOHI	(1<<2)
204 #define   TSPIEN_AUX2_LOHI	(1<<3)
205 #define THM_TSLOCK	0x83
206 #define THM_ATR		0x84
207 #define THM_TOF		0x87
208 #define THM_STS		0x98
209 #define   STS_PCPL_MASK		(0x7fe00000)
210 #define   STS_PCPL_SHIFT	21
211 #define   STS_GPL_MASK		(0x001ff000)
212 #define   STS_GPL_SHIFT		12
213 #define   STS_PP_MASK		(0x00000c00)
214 #define   STS_PP_SHIFT		10
215 #define   STS_PP_DEF		0
216 #define   STS_PP_PROC		1
217 #define   STS_PP_BAL		2
218 #define   STS_PP_GFX		3
219 #define   STS_PCTD_DIS		(1<<9)
220 #define   STS_GTD_DIS		(1<<8)
221 #define   STS_PTL_MASK		(0x000000fe)
222 #define   STS_PTL_SHIFT		1
223 #define   STS_NVV		(1<<0)
224 #define THM_SEC		0x9c
225 #define   SEC_ACK	(1<<0)
226 #define THM_TC3		0xa4
227 #define THM_TC1		0xa8
228 #define   STS_PPL_MASK		(0x0003ff00)
229 #define   STS_PPL_SHIFT		16
230 #define THM_TC2		0xac
231 #define THM_DTV		0xb0
232 #define THM_ITV		0xd8
233 #define   ITV_ME_SEQNO_MASK 0x000f0000 /* ME should update every ~200ms */
234 #define   ITV_ME_SEQNO_SHIFT (16)
235 #define   ITV_MCH_TEMP_MASK 0x0000ff00
236 #define   ITV_MCH_TEMP_SHIFT (8)
237 #define   ITV_PCH_TEMP_MASK 0x000000ff
238 
239 #define thm_readb(off) readb(ips->regmap + (off))
240 #define thm_readw(off) readw(ips->regmap + (off))
241 #define thm_readl(off) readl(ips->regmap + (off))
242 #define thm_readq(off) readq(ips->regmap + (off))
243 
244 #define thm_writeb(off, val) writeb((val), ips->regmap + (off))
245 #define thm_writew(off, val) writew((val), ips->regmap + (off))
246 #define thm_writel(off, val) writel((val), ips->regmap + (off))
247 
248 static const int IPS_ADJUST_PERIOD = 5000; /* ms */
249 
250 /* For initial average collection */
251 static const int IPS_SAMPLE_PERIOD = 200; /* ms */
252 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
253 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
254 
255 /* Per-SKU limits */
256 struct ips_mcp_limits {
257 	int cpu_family;
258 	int cpu_model; /* includes extended model... */
259 	int mcp_power_limit; /* mW units */
260 	int core_power_limit;
261 	int mch_power_limit;
262 	int core_temp_limit; /* degrees C */
263 	int mch_temp_limit;
264 };
265 
266 /* Max temps are -10 degrees C to avoid PROCHOT# */
267 
268 struct ips_mcp_limits ips_sv_limits = {
269 	.mcp_power_limit = 35000,
270 	.core_power_limit = 29000,
271 	.mch_power_limit = 20000,
272 	.core_temp_limit = 95,
273 	.mch_temp_limit = 90
274 };
275 
276 struct ips_mcp_limits ips_lv_limits = {
277 	.mcp_power_limit = 25000,
278 	.core_power_limit = 21000,
279 	.mch_power_limit = 13000,
280 	.core_temp_limit = 95,
281 	.mch_temp_limit = 90
282 };
283 
284 struct ips_mcp_limits ips_ulv_limits = {
285 	.mcp_power_limit = 18000,
286 	.core_power_limit = 14000,
287 	.mch_power_limit = 11000,
288 	.core_temp_limit = 95,
289 	.mch_temp_limit = 90
290 };
291 
292 struct ips_driver {
293 	struct pci_dev *dev;
294 	void *regmap;
295 	struct task_struct *monitor;
296 	struct task_struct *adjust;
297 	struct dentry *debug_root;
298 
299 	/* Average CPU core temps (all averages in .01 degrees C for precision) */
300 	u16 ctv1_avg_temp;
301 	u16 ctv2_avg_temp;
302 	/* GMCH average */
303 	u16 mch_avg_temp;
304 	/* Average for the CPU (both cores?) */
305 	u16 mcp_avg_temp;
306 	/* Average power consumption (in mW) */
307 	u32 cpu_avg_power;
308 	u32 mch_avg_power;
309 
310 	/* Offset values */
311 	u16 cta_val;
312 	u16 pta_val;
313 	u16 mgta_val;
314 
315 	/* Maximums & prefs, protected by turbo status lock */
316 	spinlock_t turbo_status_lock;
317 	u16 mcp_temp_limit;
318 	u16 mcp_power_limit;
319 	u16 core_power_limit;
320 	u16 mch_power_limit;
321 	bool cpu_turbo_enabled;
322 	bool __cpu_turbo_on;
323 	bool gpu_turbo_enabled;
324 	bool __gpu_turbo_on;
325 	bool gpu_preferred;
326 	bool poll_turbo_status;
327 	bool second_cpu;
328 	struct ips_mcp_limits *limits;
329 
330 	/* Optional MCH interfaces for if i915 is in use */
331 	unsigned long (*read_mch_val)(void);
332 	bool (*gpu_raise)(void);
333 	bool (*gpu_lower)(void);
334 	bool (*gpu_busy)(void);
335 	bool (*gpu_turbo_disable)(void);
336 
337 	/* For restoration at unload */
338 	u64 orig_turbo_limit;
339 	u64 orig_turbo_ratios;
340 };
341 
342 /**
343  * ips_cpu_busy - is CPU busy?
344  * @ips: IPS driver struct
345  *
346  * Check CPU for load to see whether we should increase its thermal budget.
347  *
348  * RETURNS:
349  * True if the CPU could use more power, false otherwise.
350  */
351 static bool ips_cpu_busy(struct ips_driver *ips)
352 {
353 	if ((avenrun[0] >> FSHIFT) > 1)
354 		return true;
355 
356 	return false;
357 }
358 
359 /**
360  * ips_cpu_raise - raise CPU power clamp
361  * @ips: IPS driver struct
362  *
363  * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
364  * this platform.
365  *
366  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
367  * long as we haven't hit the TDP limit for the SKU).
368  */
369 static void ips_cpu_raise(struct ips_driver *ips)
370 {
371 	u64 turbo_override;
372 	u16 cur_tdp_limit, new_tdp_limit;
373 
374 	if (!ips->cpu_turbo_enabled)
375 		return;
376 
377 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
378 
379 	cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
380 	new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
381 
382 	/* Clamp to SKU TDP limit */
383 	if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
384 		new_tdp_limit = cur_tdp_limit;
385 
386 	thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
387 
388 	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN;
389 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
390 
391 	turbo_override &= ~TURBO_TDP_MASK;
392 	turbo_override |= new_tdp_limit;
393 
394 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
395 }
396 
397 /**
398  * ips_cpu_lower - lower CPU power clamp
399  * @ips: IPS driver struct
400  *
401  * Lower CPU power clamp b %IPS_CPU_STEP if possible.
402  *
403  * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
404  * as low as the platform limits will allow (though we could go lower there
405  * wouldn't be much point).
406  */
407 static void ips_cpu_lower(struct ips_driver *ips)
408 {
409 	u64 turbo_override;
410 	u16 cur_limit, new_limit;
411 
412 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
413 
414 	cur_limit = turbo_override & TURBO_TDP_MASK;
415 	new_limit = cur_limit - 8; /* 1W decrease */
416 
417 	/* Clamp to SKU TDP limit */
418 	if (((new_limit * 10) / 8) < (ips->orig_turbo_limit & TURBO_TDP_MASK))
419 		new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
420 
421 	thm_writew(THM_MPCPC, (new_limit * 10) / 8);
422 
423 	turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDC_OVR_EN;
424 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
425 
426 	turbo_override &= ~TURBO_TDP_MASK;
427 	turbo_override |= new_limit;
428 
429 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
430 }
431 
432 /**
433  * do_enable_cpu_turbo - internal turbo enable function
434  * @data: unused
435  *
436  * Internal function for actually updating MSRs.  When we enable/disable
437  * turbo, we need to do it on each CPU; this function is the one called
438  * by on_each_cpu() when needed.
439  */
440 static void do_enable_cpu_turbo(void *data)
441 {
442 	u64 perf_ctl;
443 
444 	rdmsrl(IA32_PERF_CTL, perf_ctl);
445 	if (perf_ctl & IA32_PERF_TURBO_DIS) {
446 		perf_ctl &= ~IA32_PERF_TURBO_DIS;
447 		wrmsrl(IA32_PERF_CTL, perf_ctl);
448 	}
449 }
450 
451 /**
452  * ips_enable_cpu_turbo - enable turbo mode on all CPUs
453  * @ips: IPS driver struct
454  *
455  * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
456  * all logical threads.
457  */
458 static void ips_enable_cpu_turbo(struct ips_driver *ips)
459 {
460 	/* Already on, no need to mess with MSRs */
461 	if (ips->__cpu_turbo_on)
462 		return;
463 
464 	on_each_cpu(do_enable_cpu_turbo, ips, 1);
465 
466 	ips->__cpu_turbo_on = true;
467 }
468 
469 /**
470  * do_disable_cpu_turbo - internal turbo disable function
471  * @data: unused
472  *
473  * Internal function for actually updating MSRs.  When we enable/disable
474  * turbo, we need to do it on each CPU; this function is the one called
475  * by on_each_cpu() when needed.
476  */
477 static void do_disable_cpu_turbo(void *data)
478 {
479 	u64 perf_ctl;
480 
481 	rdmsrl(IA32_PERF_CTL, perf_ctl);
482 	if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
483 		perf_ctl |= IA32_PERF_TURBO_DIS;
484 		wrmsrl(IA32_PERF_CTL, perf_ctl);
485 	}
486 }
487 
488 /**
489  * ips_disable_cpu_turbo - disable turbo mode on all CPUs
490  * @ips: IPS driver struct
491  *
492  * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
493  * all logical threads.
494  */
495 static void ips_disable_cpu_turbo(struct ips_driver *ips)
496 {
497 	/* Already off, leave it */
498 	if (!ips->__cpu_turbo_on)
499 		return;
500 
501 	on_each_cpu(do_disable_cpu_turbo, ips, 1);
502 
503 	ips->__cpu_turbo_on = false;
504 }
505 
506 /**
507  * ips_gpu_busy - is GPU busy?
508  * @ips: IPS driver struct
509  *
510  * Check GPU for load to see whether we should increase its thermal budget.
511  * We need to call into the i915 driver in this case.
512  *
513  * RETURNS:
514  * True if the GPU could use more power, false otherwise.
515  */
516 static bool ips_gpu_busy(struct ips_driver *ips)
517 {
518 	if (!ips->gpu_turbo_enabled)
519 		return false;
520 
521 	return ips->gpu_busy();
522 }
523 
524 /**
525  * ips_gpu_raise - raise GPU power clamp
526  * @ips: IPS driver struct
527  *
528  * Raise the GPU frequency/power if possible.  We need to call into the
529  * i915 driver in this case.
530  */
531 static void ips_gpu_raise(struct ips_driver *ips)
532 {
533 	if (!ips->gpu_turbo_enabled)
534 		return;
535 
536 	if (!ips->gpu_raise())
537 		ips->gpu_turbo_enabled = false;
538 
539 	return;
540 }
541 
542 /**
543  * ips_gpu_lower - lower GPU power clamp
544  * @ips: IPS driver struct
545  *
546  * Lower GPU frequency/power if possible.  Need to call i915.
547  */
548 static void ips_gpu_lower(struct ips_driver *ips)
549 {
550 	if (!ips->gpu_turbo_enabled)
551 		return;
552 
553 	if (!ips->gpu_lower())
554 		ips->gpu_turbo_enabled = false;
555 
556 	return;
557 }
558 
559 /**
560  * ips_enable_gpu_turbo - notify the gfx driver turbo is available
561  * @ips: IPS driver struct
562  *
563  * Call into the graphics driver indicating that it can safely use
564  * turbo mode.
565  */
566 static void ips_enable_gpu_turbo(struct ips_driver *ips)
567 {
568 	if (ips->__gpu_turbo_on)
569 		return;
570 	ips->__gpu_turbo_on = true;
571 }
572 
573 /**
574  * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
575  * @ips: IPS driver struct
576  *
577  * Request that the graphics driver disable turbo mode.
578  */
579 static void ips_disable_gpu_turbo(struct ips_driver *ips)
580 {
581 	/* Avoid calling i915 if turbo is already disabled */
582 	if (!ips->__gpu_turbo_on)
583 		return;
584 
585 	if (!ips->gpu_turbo_disable())
586 		dev_err(&ips->dev->dev, "failed to disable graphis turbo\n");
587 	else
588 		ips->__gpu_turbo_on = false;
589 }
590 
591 /**
592  * mcp_exceeded - check whether we're outside our thermal & power limits
593  * @ips: IPS driver struct
594  *
595  * Check whether the MCP is over its thermal or power budget.
596  */
597 static bool mcp_exceeded(struct ips_driver *ips)
598 {
599 	unsigned long flags;
600 	bool ret = false;
601 
602 	spin_lock_irqsave(&ips->turbo_status_lock, flags);
603 	if (ips->mcp_avg_temp > (ips->mcp_temp_limit * 100))
604 		ret = true;
605 	if (ips->cpu_avg_power + ips->mch_avg_power > ips->mcp_power_limit)
606 		ret = true;
607 	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
608 
609 	if (ret)
610 		dev_info(&ips->dev->dev,
611 			 "MCP power or thermal limit exceeded\n");
612 
613 	return ret;
614 }
615 
616 /**
617  * cpu_exceeded - check whether a CPU core is outside its limits
618  * @ips: IPS driver struct
619  * @cpu: CPU number to check
620  *
621  * Check a given CPU's average temp or power is over its limit.
622  */
623 static bool cpu_exceeded(struct ips_driver *ips, int cpu)
624 {
625 	unsigned long flags;
626 	int avg;
627 	bool ret = false;
628 
629 	spin_lock_irqsave(&ips->turbo_status_lock, flags);
630 	avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
631 	if (avg > (ips->limits->core_temp_limit * 100))
632 		ret = true;
633 	if (ips->cpu_avg_power > ips->core_power_limit * 100)
634 		ret = true;
635 	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
636 
637 	if (ret)
638 		dev_info(&ips->dev->dev,
639 			 "CPU power or thermal limit exceeded\n");
640 
641 	return ret;
642 }
643 
644 /**
645  * mch_exceeded - check whether the GPU is over budget
646  * @ips: IPS driver struct
647  *
648  * Check the MCH temp & power against their maximums.
649  */
650 static bool mch_exceeded(struct ips_driver *ips)
651 {
652 	unsigned long flags;
653 	bool ret = false;
654 
655 	spin_lock_irqsave(&ips->turbo_status_lock, flags);
656 	if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
657 		ret = true;
658 	if (ips->mch_avg_power > ips->mch_power_limit)
659 		ret = true;
660 	spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
661 
662 	return ret;
663 }
664 
665 /**
666  * update_turbo_limits - get various limits & settings from regs
667  * @ips: IPS driver struct
668  *
669  * Update the IPS power & temp limits, along with turbo enable flags,
670  * based on latest register contents.
671  *
672  * Used at init time and for runtime BIOS support, which requires polling
673  * the regs for updates (as a result of AC->DC transition for example).
674  *
675  * LOCKING:
676  * Caller must hold turbo_status_lock (outside of init)
677  */
678 static void update_turbo_limits(struct ips_driver *ips)
679 {
680 	u32 hts = thm_readl(THM_HTS);
681 
682 	ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
683 	ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
684 	ips->core_power_limit = thm_readw(THM_MPCPC);
685 	ips->mch_power_limit = thm_readw(THM_MMGPC);
686 	ips->mcp_temp_limit = thm_readw(THM_PTL);
687 	ips->mcp_power_limit = thm_readw(THM_MPPC);
688 
689 	/* Ignore BIOS CPU vs GPU pref */
690 }
691 
692 /**
693  * ips_adjust - adjust power clamp based on thermal state
694  * @data: ips driver structure
695  *
696  * Wake up every 5s or so and check whether we should adjust the power clamp.
697  * Check CPU and GPU load to determine which needs adjustment.  There are
698  * several things to consider here:
699  *   - do we need to adjust up or down?
700  *   - is CPU busy?
701  *   - is GPU busy?
702  *   - is CPU in turbo?
703  *   - is GPU in turbo?
704  *   - is CPU or GPU preferred? (CPU is default)
705  *
706  * So, given the above, we do the following:
707  *   - up (TDP available)
708  *     - CPU not busy, GPU not busy - nothing
709  *     - CPU busy, GPU not busy - adjust CPU up
710  *     - CPU not busy, GPU busy - adjust GPU up
711  *     - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
712  *       non-preferred unit if necessary
713  *   - down (at TDP limit)
714  *     - adjust both CPU and GPU down if possible
715  *
716 		cpu+ gpu+	cpu+gpu-	cpu-gpu+	cpu-gpu-
717 cpu < gpu <	cpu+gpu+	cpu+		gpu+		nothing
718 cpu < gpu >=	cpu+gpu-(mcp<)	cpu+gpu-(mcp<)	gpu-		gpu-
719 cpu >= gpu <	cpu-gpu+(mcp<)	cpu-		cpu-gpu+(mcp<)	cpu-
720 cpu >= gpu >=	cpu-gpu-	cpu-gpu-	cpu-gpu-	cpu-gpu-
721  *
722  */
723 static int ips_adjust(void *data)
724 {
725 	struct ips_driver *ips = data;
726 	unsigned long flags;
727 
728 	dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
729 
730 	/*
731 	 * Adjust CPU and GPU clamps every 5s if needed.  Doing it more
732 	 * often isn't recommended due to ME interaction.
733 	 */
734 	do {
735 		bool cpu_busy = ips_cpu_busy(ips);
736 		bool gpu_busy = ips_gpu_busy(ips);
737 
738 		spin_lock_irqsave(&ips->turbo_status_lock, flags);
739 		if (ips->poll_turbo_status)
740 			update_turbo_limits(ips);
741 		spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
742 
743 		/* Update turbo status if necessary */
744 		if (ips->cpu_turbo_enabled)
745 			ips_enable_cpu_turbo(ips);
746 		else
747 			ips_disable_cpu_turbo(ips);
748 
749 		if (ips->gpu_turbo_enabled)
750 			ips_enable_gpu_turbo(ips);
751 		else
752 			ips_disable_gpu_turbo(ips);
753 
754 		/* We're outside our comfort zone, crank them down */
755 		if (mcp_exceeded(ips)) {
756 			ips_cpu_lower(ips);
757 			ips_gpu_lower(ips);
758 			goto sleep;
759 		}
760 
761 		if (!cpu_exceeded(ips, 0) && cpu_busy)
762 			ips_cpu_raise(ips);
763 		else
764 			ips_cpu_lower(ips);
765 
766 		if (!mch_exceeded(ips) && gpu_busy)
767 			ips_gpu_raise(ips);
768 		else
769 			ips_gpu_lower(ips);
770 
771 sleep:
772 		schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
773 	} while (!kthread_should_stop());
774 
775 	dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
776 
777 	return 0;
778 }
779 
780 /*
781  * Helpers for reading out temp/power values and calculating their
782  * averages for the decision making and monitoring functions.
783  */
784 
785 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
786 {
787 	u64 total = 0;
788 	int i;
789 	u16 avg;
790 
791 	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
792 		total += (u64)(array[i] * 100);
793 
794 	do_div(total, IPS_SAMPLE_COUNT);
795 
796 	avg = (u16)total;
797 
798 	return avg;
799 }
800 
801 static u16 read_mgtv(struct ips_driver *ips)
802 {
803 	u16 ret;
804 	u64 slope, offset;
805 	u64 val;
806 
807 	val = thm_readq(THM_MGTV);
808 	val = (val & TV_MASK) >> TV_SHIFT;
809 
810 	slope = offset = thm_readw(THM_MGTA);
811 	slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
812 	offset = offset & MGTA_OFFSET_MASK;
813 
814 	ret = ((val * slope + 0x40) >> 7) + offset;
815 
816 	return 0; /* MCH temp reporting buggy */
817 }
818 
819 static u16 read_ptv(struct ips_driver *ips)
820 {
821 	u16 val, slope, offset;
822 
823 	slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
824 	offset = ips->pta_val & PTA_OFFSET_MASK;
825 
826 	val = thm_readw(THM_PTV) & PTV_MASK;
827 
828 	return val;
829 }
830 
831 static u16 read_ctv(struct ips_driver *ips, int cpu)
832 {
833 	int reg = cpu ? THM_CTV2 : THM_CTV1;
834 	u16 val;
835 
836 	val = thm_readw(reg);
837 	if (!(val & CTV_TEMP_ERROR))
838 		val = (val) >> 6; /* discard fractional component */
839 	else
840 		val = 0;
841 
842 	return val;
843 }
844 
845 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
846 {
847 	u32 val;
848 	u32 ret;
849 
850 	/*
851 	 * CEC is in joules/65535.  Take difference over time to
852 	 * get watts.
853 	 */
854 	val = thm_readl(THM_CEC);
855 
856 	/* period is in ms and we want mW */
857 	ret = (((val - *last) * 1000) / period);
858 	ret = (ret * 1000) / 65535;
859 	*last = val;
860 
861 	return ret;
862 }
863 
864 static const u16 temp_decay_factor = 2;
865 static u16 update_average_temp(u16 avg, u16 val)
866 {
867 	u16 ret;
868 
869 	/* Multiply by 100 for extra precision */
870 	ret = (val * 100 / temp_decay_factor) +
871 		(((temp_decay_factor - 1) * avg) / temp_decay_factor);
872 	return ret;
873 }
874 
875 static const u16 power_decay_factor = 2;
876 static u16 update_average_power(u32 avg, u32 val)
877 {
878 	u32 ret;
879 
880 	ret = (val / power_decay_factor) +
881 		(((power_decay_factor - 1) * avg) / power_decay_factor);
882 
883 	return ret;
884 }
885 
886 static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
887 {
888 	u64 total = 0;
889 	u32 avg;
890 	int i;
891 
892 	for (i = 0; i < IPS_SAMPLE_COUNT; i++)
893 		total += array[i];
894 
895 	do_div(total, IPS_SAMPLE_COUNT);
896 	avg = (u32)total;
897 
898 	return avg;
899 }
900 
901 static void monitor_timeout(unsigned long arg)
902 {
903 	wake_up_process((struct task_struct *)arg);
904 }
905 
906 /**
907  * ips_monitor - temp/power monitoring thread
908  * @data: ips driver structure
909  *
910  * This is the main function for the IPS driver.  It monitors power and
911  * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
912  *
913  * We keep a 5s moving average of power consumption and tempurature.  Using
914  * that data, along with CPU vs GPU preference, we adjust the power clamps
915  * up or down.
916  */
917 static int ips_monitor(void *data)
918 {
919 	struct ips_driver *ips = data;
920 	struct timer_list timer;
921 	unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
922 	int i;
923 	u32 *cpu_samples, *mchp_samples, old_cpu_power;
924 	u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
925 	u8 cur_seqno, last_seqno;
926 
927 	mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
928 	ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
929 	ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
930 	mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
931 	cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
932 	mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
933 	if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
934 			!cpu_samples || !mchp_samples) {
935 		dev_err(&ips->dev->dev,
936 			"failed to allocate sample array, ips disabled\n");
937 		kfree(mcp_samples);
938 		kfree(ctv1_samples);
939 		kfree(ctv2_samples);
940 		kfree(mch_samples);
941 		kfree(cpu_samples);
942 		kfree(mchp_samples);
943 		kthread_stop(ips->adjust);
944 		return -ENOMEM;
945 	}
946 
947 	last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
948 		ITV_ME_SEQNO_SHIFT;
949 	seqno_timestamp = get_jiffies_64();
950 
951 	old_cpu_power = thm_readl(THM_CEC) / 65535;
952 	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
953 
954 	/* Collect an initial average */
955 	for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
956 		u32 mchp, cpu_power;
957 		u16 val;
958 
959 		mcp_samples[i] = read_ptv(ips);
960 
961 		val = read_ctv(ips, 0);
962 		ctv1_samples[i] = val;
963 
964 		val = read_ctv(ips, 1);
965 		ctv2_samples[i] = val;
966 
967 		val = read_mgtv(ips);
968 		mch_samples[i] = val;
969 
970 		cpu_power = get_cpu_power(ips, &old_cpu_power,
971 					  IPS_SAMPLE_PERIOD);
972 		cpu_samples[i] = cpu_power;
973 
974 		if (ips->read_mch_val) {
975 			mchp = ips->read_mch_val();
976 			mchp_samples[i] = mchp;
977 		}
978 
979 		schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
980 		if (kthread_should_stop())
981 			break;
982 	}
983 
984 	ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
985 	ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
986 	ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
987 	ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
988 	ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
989 	ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
990 	kfree(mcp_samples);
991 	kfree(ctv1_samples);
992 	kfree(ctv2_samples);
993 	kfree(mch_samples);
994 	kfree(cpu_samples);
995 	kfree(mchp_samples);
996 
997 	/* Start the adjustment thread now that we have data */
998 	wake_up_process(ips->adjust);
999 
1000 	/*
1001 	 * Ok, now we have an initial avg.  From here on out, we track the
1002 	 * running avg using a decaying average calculation.  This allows
1003 	 * us to reduce the sample frequency if the CPU and GPU are idle.
1004 	 */
1005 	old_cpu_power = thm_readl(THM_CEC);
1006 	schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1007 	last_sample_period = IPS_SAMPLE_PERIOD;
1008 
1009 	setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1010 					(unsigned long)current);
1011 	do {
1012 		u32 cpu_val, mch_val;
1013 		u16 val;
1014 
1015 		/* MCP itself */
1016 		val = read_ptv(ips);
1017 		ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1018 
1019 		/* Processor 0 */
1020 		val = read_ctv(ips, 0);
1021 		ips->ctv1_avg_temp =
1022 			update_average_temp(ips->ctv1_avg_temp, val);
1023 		/* Power */
1024 		cpu_val = get_cpu_power(ips, &old_cpu_power,
1025 					last_sample_period);
1026 		ips->cpu_avg_power =
1027 			update_average_power(ips->cpu_avg_power, cpu_val);
1028 
1029 		if (ips->second_cpu) {
1030 			/* Processor 1 */
1031 			val = read_ctv(ips, 1);
1032 			ips->ctv2_avg_temp =
1033 				update_average_temp(ips->ctv2_avg_temp, val);
1034 		}
1035 
1036 		/* MCH */
1037 		val = read_mgtv(ips);
1038 		ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1039 		/* Power */
1040 		if (ips->read_mch_val) {
1041 			mch_val = ips->read_mch_val();
1042 			ips->mch_avg_power =
1043 				update_average_power(ips->mch_avg_power,
1044 						     mch_val);
1045 		}
1046 
1047 		/*
1048 		 * Make sure ME is updating thermal regs.
1049 		 * Note:
1050 		 * If it's been more than a second since the last update,
1051 		 * the ME is probably hung.
1052 		 */
1053 		cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1054 			ITV_ME_SEQNO_SHIFT;
1055 		if (cur_seqno == last_seqno &&
1056 		    time_after(jiffies, seqno_timestamp + HZ)) {
1057 			dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1058 		} else {
1059 			seqno_timestamp = get_jiffies_64();
1060 			last_seqno = cur_seqno;
1061 		}
1062 
1063 		last_msecs = jiffies_to_msecs(jiffies);
1064 		expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1065 
1066 		__set_current_state(TASK_UNINTERRUPTIBLE);
1067 		mod_timer(&timer, expire);
1068 		schedule();
1069 
1070 		/* Calculate actual sample period for power averaging */
1071 		last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1072 		if (!last_sample_period)
1073 			last_sample_period = 1;
1074 	} while (!kthread_should_stop());
1075 
1076 	del_timer_sync(&timer);
1077 	destroy_timer_on_stack(&timer);
1078 
1079 	dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1080 
1081 	return 0;
1082 }
1083 
1084 #if 0
1085 #define THM_DUMPW(reg) \
1086 	{ \
1087 	u16 val = thm_readw(reg); \
1088 	dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1089 	}
1090 #define THM_DUMPL(reg) \
1091 	{ \
1092 	u32 val = thm_readl(reg); \
1093 	dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1094 	}
1095 #define THM_DUMPQ(reg) \
1096 	{ \
1097 	u64 val = thm_readq(reg); \
1098 	dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1099 	}
1100 
1101 static void dump_thermal_info(struct ips_driver *ips)
1102 {
1103 	u16 ptl;
1104 
1105 	ptl = thm_readw(THM_PTL);
1106 	dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1107 
1108 	THM_DUMPW(THM_CTA);
1109 	THM_DUMPW(THM_TRC);
1110 	THM_DUMPW(THM_CTV1);
1111 	THM_DUMPL(THM_STS);
1112 	THM_DUMPW(THM_PTV);
1113 	THM_DUMPQ(THM_MGTV);
1114 }
1115 #endif
1116 
1117 /**
1118  * ips_irq_handler - handle temperature triggers and other IPS events
1119  * @irq: irq number
1120  * @arg: unused
1121  *
1122  * Handle temperature limit trigger events, generally by lowering the clamps.
1123  * If we're at a critical limit, we clamp back to the lowest possible value
1124  * to prevent emergency shutdown.
1125  */
1126 static irqreturn_t ips_irq_handler(int irq, void *arg)
1127 {
1128 	struct ips_driver *ips = arg;
1129 	u8 tses = thm_readb(THM_TSES);
1130 	u8 tes = thm_readb(THM_TES);
1131 
1132 	if (!tses && !tes)
1133 		return IRQ_NONE;
1134 
1135 	dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1136 	dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1137 
1138 	/* STS update from EC? */
1139 	if (tes & 1) {
1140 		u32 sts, tc1;
1141 
1142 		sts = thm_readl(THM_STS);
1143 		tc1 = thm_readl(THM_TC1);
1144 
1145 		if (sts & STS_NVV) {
1146 			spin_lock(&ips->turbo_status_lock);
1147 			ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1148 				STS_PCPL_SHIFT;
1149 			ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1150 				STS_GPL_SHIFT;
1151 			/* ignore EC CPU vs GPU pref */
1152 			ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1153 			ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1154 			ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1155 				STS_PTL_SHIFT;
1156 			ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1157 				STS_PPL_SHIFT;
1158 			spin_unlock(&ips->turbo_status_lock);
1159 
1160 			thm_writeb(THM_SEC, SEC_ACK);
1161 		}
1162 		thm_writeb(THM_TES, tes);
1163 	}
1164 
1165 	/* Thermal trip */
1166 	if (tses) {
1167 		dev_warn(&ips->dev->dev,
1168 			 "thermal trip occurred, tses: 0x%04x\n", tses);
1169 		thm_writeb(THM_TSES, tses);
1170 	}
1171 
1172 	return IRQ_HANDLED;
1173 }
1174 
1175 #ifndef CONFIG_DEBUG_FS
1176 static void ips_debugfs_init(struct ips_driver *ips) { return; }
1177 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1178 #else
1179 
1180 /* Expose current state and limits in debugfs if possible */
1181 
1182 struct ips_debugfs_node {
1183 	struct ips_driver *ips;
1184 	char *name;
1185 	int (*show)(struct seq_file *m, void *data);
1186 };
1187 
1188 static int show_cpu_temp(struct seq_file *m, void *data)
1189 {
1190 	struct ips_driver *ips = m->private;
1191 
1192 	seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1193 		   ips->ctv1_avg_temp % 100);
1194 
1195 	return 0;
1196 }
1197 
1198 static int show_cpu_power(struct seq_file *m, void *data)
1199 {
1200 	struct ips_driver *ips = m->private;
1201 
1202 	seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1203 
1204 	return 0;
1205 }
1206 
1207 static int show_cpu_clamp(struct seq_file *m, void *data)
1208 {
1209 	u64 turbo_override;
1210 	int tdp, tdc;
1211 
1212 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1213 
1214 	tdp = (int)(turbo_override & TURBO_TDP_MASK);
1215 	tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1216 
1217 	/* Convert to .1W/A units */
1218 	tdp = tdp * 10 / 8;
1219 	tdc = tdc * 10 / 8;
1220 
1221 	/* Watts Amperes */
1222 	seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1223 		   tdc / 10, tdc % 10);
1224 
1225 	return 0;
1226 }
1227 
1228 static int show_mch_temp(struct seq_file *m, void *data)
1229 {
1230 	struct ips_driver *ips = m->private;
1231 
1232 	seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1233 		   ips->mch_avg_temp % 100);
1234 
1235 	return 0;
1236 }
1237 
1238 static int show_mch_power(struct seq_file *m, void *data)
1239 {
1240 	struct ips_driver *ips = m->private;
1241 
1242 	seq_printf(m, "%dmW\n", ips->mch_avg_power);
1243 
1244 	return 0;
1245 }
1246 
1247 static struct ips_debugfs_node ips_debug_files[] = {
1248 	{ NULL, "cpu_temp", show_cpu_temp },
1249 	{ NULL, "cpu_power", show_cpu_power },
1250 	{ NULL, "cpu_clamp", show_cpu_clamp },
1251 	{ NULL, "mch_temp", show_mch_temp },
1252 	{ NULL, "mch_power", show_mch_power },
1253 };
1254 
1255 static int ips_debugfs_open(struct inode *inode, struct file *file)
1256 {
1257 	struct ips_debugfs_node *node = inode->i_private;
1258 
1259 	return single_open(file, node->show, node->ips);
1260 }
1261 
1262 static const struct file_operations ips_debugfs_ops = {
1263 	.owner = THIS_MODULE,
1264 	.open = ips_debugfs_open,
1265 	.read = seq_read,
1266 	.llseek = seq_lseek,
1267 	.release = single_release,
1268 };
1269 
1270 static void ips_debugfs_cleanup(struct ips_driver *ips)
1271 {
1272 	if (ips->debug_root)
1273 		debugfs_remove_recursive(ips->debug_root);
1274 	return;
1275 }
1276 
1277 static void ips_debugfs_init(struct ips_driver *ips)
1278 {
1279 	int i;
1280 
1281 	ips->debug_root = debugfs_create_dir("ips", NULL);
1282 	if (!ips->debug_root) {
1283 		dev_err(&ips->dev->dev,
1284 			"failed to create debugfs entries: %ld\n",
1285 			PTR_ERR(ips->debug_root));
1286 		return;
1287 	}
1288 
1289 	for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1290 		struct dentry *ent;
1291 		struct ips_debugfs_node *node = &ips_debug_files[i];
1292 
1293 		node->ips = ips;
1294 		ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1295 					  ips->debug_root, node,
1296 					  &ips_debugfs_ops);
1297 		if (!ent) {
1298 			dev_err(&ips->dev->dev,
1299 				"failed to create debug file: %ld\n",
1300 				PTR_ERR(ent));
1301 			goto err_cleanup;
1302 		}
1303 	}
1304 
1305 	return;
1306 
1307 err_cleanup:
1308 	ips_debugfs_cleanup(ips);
1309 	return;
1310 }
1311 #endif /* CONFIG_DEBUG_FS */
1312 
1313 /**
1314  * ips_detect_cpu - detect whether CPU supports IPS
1315  *
1316  * Walk our list and see if we're on a supported CPU.  If we find one,
1317  * return the limits for it.
1318  */
1319 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1320 {
1321 	u64 turbo_power, misc_en;
1322 	struct ips_mcp_limits *limits = NULL;
1323 	u16 tdp;
1324 
1325 	if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1326 		dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1327 		goto out;
1328 	}
1329 
1330 	rdmsrl(IA32_MISC_ENABLE, misc_en);
1331 	/*
1332 	 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1333 	 * turbo manually or we'll get an illegal MSR access, even though
1334 	 * turbo will still be available.
1335 	 */
1336 	if (!(misc_en & IA32_MISC_TURBO_EN))
1337 		; /* add turbo MSR write allowed flag if necessary */
1338 
1339 	if (strstr(boot_cpu_data.x86_model_id, "CPU       M"))
1340 		limits = &ips_sv_limits;
1341 	else if (strstr(boot_cpu_data.x86_model_id, "CPU       L"))
1342 		limits = &ips_lv_limits;
1343 	else if (strstr(boot_cpu_data.x86_model_id, "CPU       U"))
1344 		limits = &ips_ulv_limits;
1345 	else
1346 		dev_info(&ips->dev->dev, "No CPUID match found.\n");
1347 
1348 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1349 	tdp = turbo_power & TURBO_TDP_MASK;
1350 
1351 	/* Sanity check TDP against CPU */
1352 	if (limits->mcp_power_limit != (tdp / 8) * 1000) {
1353 		dev_warn(&ips->dev->dev, "Warning: CPU TDP doesn't match expected value (found %d, expected %d)\n",
1354 			 tdp / 8, limits->mcp_power_limit / 1000);
1355 	}
1356 
1357 out:
1358 	return limits;
1359 }
1360 
1361 /**
1362  * ips_get_i915_syms - try to get GPU control methods from i915 driver
1363  * @ips: IPS driver
1364  *
1365  * The i915 driver exports several interfaces to allow the IPS driver to
1366  * monitor and control graphics turbo mode.  If we can find them, we can
1367  * enable graphics turbo, otherwise we must disable it to avoid exceeding
1368  * thermal and power limits in the MCP.
1369  */
1370 static bool ips_get_i915_syms(struct ips_driver *ips)
1371 {
1372 	ips->read_mch_val = symbol_get(i915_read_mch_val);
1373 	if (!ips->read_mch_val)
1374 		goto out_err;
1375 	ips->gpu_raise = symbol_get(i915_gpu_raise);
1376 	if (!ips->gpu_raise)
1377 		goto out_put_mch;
1378 	ips->gpu_lower = symbol_get(i915_gpu_lower);
1379 	if (!ips->gpu_lower)
1380 		goto out_put_raise;
1381 	ips->gpu_busy = symbol_get(i915_gpu_busy);
1382 	if (!ips->gpu_busy)
1383 		goto out_put_lower;
1384 	ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1385 	if (!ips->gpu_turbo_disable)
1386 		goto out_put_busy;
1387 
1388 	return true;
1389 
1390 out_put_busy:
1391 	symbol_put(i915_gpu_turbo_disable);
1392 out_put_lower:
1393 	symbol_put(i915_gpu_lower);
1394 out_put_raise:
1395 	symbol_put(i915_gpu_raise);
1396 out_put_mch:
1397 	symbol_put(i915_read_mch_val);
1398 out_err:
1399 	return false;
1400 }
1401 
1402 static DEFINE_PCI_DEVICE_TABLE(ips_id_table) = {
1403 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1404 		     PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1405 	{ 0, }
1406 };
1407 
1408 MODULE_DEVICE_TABLE(pci, ips_id_table);
1409 
1410 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1411 {
1412 	u64 platform_info;
1413 	struct ips_driver *ips;
1414 	u32 hts;
1415 	int ret = 0;
1416 	u16 htshi, trc, trc_required_mask;
1417 	u8 tse;
1418 
1419 	ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1420 	if (!ips)
1421 		return -ENOMEM;
1422 
1423 	pci_set_drvdata(dev, ips);
1424 	ips->dev = dev;
1425 
1426 	ips->limits = ips_detect_cpu(ips);
1427 	if (!ips->limits) {
1428 		dev_info(&dev->dev, "IPS not supported on this CPU\n");
1429 		ret = -ENXIO;
1430 		goto error_free;
1431 	}
1432 
1433 	spin_lock_init(&ips->turbo_status_lock);
1434 
1435 	if (!pci_resource_start(dev, 0)) {
1436 		dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1437 		ret = -ENXIO;
1438 		goto error_free;
1439 	}
1440 
1441 	ret = pci_request_regions(dev, "ips thermal sensor");
1442 	if (ret) {
1443 		dev_err(&dev->dev, "thermal resource busy, aborting\n");
1444 		goto error_free;
1445 	}
1446 
1447 	ret = pci_enable_device(dev);
1448 	if (ret) {
1449 		dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1450 		goto error_free;
1451 	}
1452 
1453 	ips->regmap = ioremap(pci_resource_start(dev, 0),
1454 			      pci_resource_len(dev, 0));
1455 	if (!ips->regmap) {
1456 		dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1457 		ret = -EBUSY;
1458 		goto error_release;
1459 	}
1460 
1461 	tse = thm_readb(THM_TSE);
1462 	if (tse != TSE_EN) {
1463 		dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1464 		ret = -ENXIO;
1465 		goto error_unmap;
1466 	}
1467 
1468 	trc = thm_readw(THM_TRC);
1469 	trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1470 	if ((trc & trc_required_mask) != trc_required_mask) {
1471 		dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1472 		ret = -ENXIO;
1473 		goto error_unmap;
1474 	}
1475 
1476 	if (trc & TRC_CORE2_EN)
1477 		ips->second_cpu = true;
1478 
1479 	update_turbo_limits(ips);
1480 	dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1481 		ips->mcp_power_limit / 10);
1482 	dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1483 		ips->core_power_limit / 10);
1484 	/* BIOS may update limits at runtime */
1485 	if (thm_readl(THM_PSC) & PSP_PBRT)
1486 		ips->poll_turbo_status = true;
1487 
1488 	if (!ips_get_i915_syms(ips)) {
1489 		dev_err(&dev->dev, "failed to get i915 symbols, graphics turbo disabled\n");
1490 		ips->gpu_turbo_enabled = false;
1491 	} else {
1492 		dev_dbg(&dev->dev, "graphics turbo enabled\n");
1493 		ips->gpu_turbo_enabled = true;
1494 	}
1495 
1496 	/*
1497 	 * Check PLATFORM_INFO MSR to make sure this chip is
1498 	 * turbo capable.
1499 	 */
1500 	rdmsrl(PLATFORM_INFO, platform_info);
1501 	if (!(platform_info & PLATFORM_TDP)) {
1502 		dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1503 		ret = -ENODEV;
1504 		goto error_unmap;
1505 	}
1506 
1507 	/*
1508 	 * IRQ handler for ME interaction
1509 	 * Note: don't use MSI here as the PCH has bugs.
1510 	 */
1511 	pci_disable_msi(dev);
1512 	ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1513 			  ips);
1514 	if (ret) {
1515 		dev_err(&dev->dev, "request irq failed, aborting\n");
1516 		goto error_unmap;
1517 	}
1518 
1519 	/* Enable aux, hot & critical interrupts */
1520 	thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1521 		   TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1522 	thm_writeb(THM_TEN, TEN_UPDATE_EN);
1523 
1524 	/* Collect adjustment values */
1525 	ips->cta_val = thm_readw(THM_CTA);
1526 	ips->pta_val = thm_readw(THM_PTA);
1527 	ips->mgta_val = thm_readw(THM_MGTA);
1528 
1529 	/* Save turbo limits & ratios */
1530 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1531 
1532 	ips_enable_cpu_turbo(ips);
1533 	ips->cpu_turbo_enabled = true;
1534 
1535 	/* Set up the work queue and monitor/adjust threads */
1536 	ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1537 	if (IS_ERR(ips->monitor)) {
1538 		dev_err(&dev->dev,
1539 			"failed to create thermal monitor thread, aborting\n");
1540 		ret = -ENOMEM;
1541 		goto error_free_irq;
1542 	}
1543 
1544 	ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1545 	if (IS_ERR(ips->adjust)) {
1546 		dev_err(&dev->dev,
1547 			"failed to create thermal adjust thread, aborting\n");
1548 		ret = -ENOMEM;
1549 		goto error_thread_cleanup;
1550 	}
1551 
1552 	hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1553 		(ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1554 	htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1555 
1556 	thm_writew(THM_HTSHI, htshi);
1557 	thm_writel(THM_HTS, hts);
1558 
1559 	ips_debugfs_init(ips);
1560 
1561 	dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1562 		 ips->mcp_temp_limit);
1563 	return ret;
1564 
1565 error_thread_cleanup:
1566 	kthread_stop(ips->monitor);
1567 error_free_irq:
1568 	free_irq(ips->dev->irq, ips);
1569 error_unmap:
1570 	iounmap(ips->regmap);
1571 error_release:
1572 	pci_release_regions(dev);
1573 error_free:
1574 	kfree(ips);
1575 	return ret;
1576 }
1577 
1578 static void ips_remove(struct pci_dev *dev)
1579 {
1580 	struct ips_driver *ips = pci_get_drvdata(dev);
1581 	u64 turbo_override;
1582 
1583 	if (!ips)
1584 		return;
1585 
1586 	ips_debugfs_cleanup(ips);
1587 
1588 	/* Release i915 driver */
1589 	if (ips->read_mch_val)
1590 		symbol_put(i915_read_mch_val);
1591 	if (ips->gpu_raise)
1592 		symbol_put(i915_gpu_raise);
1593 	if (ips->gpu_lower)
1594 		symbol_put(i915_gpu_lower);
1595 	if (ips->gpu_busy)
1596 		symbol_put(i915_gpu_busy);
1597 	if (ips->gpu_turbo_disable)
1598 		symbol_put(i915_gpu_turbo_disable);
1599 
1600 	rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1601 	turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1602 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1603 	wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1604 
1605 	free_irq(ips->dev->irq, ips);
1606 	if (ips->adjust)
1607 		kthread_stop(ips->adjust);
1608 	if (ips->monitor)
1609 		kthread_stop(ips->monitor);
1610 	iounmap(ips->regmap);
1611 	pci_release_regions(dev);
1612 	kfree(ips);
1613 	dev_dbg(&dev->dev, "IPS driver removed\n");
1614 }
1615 
1616 #ifdef CONFIG_PM
1617 static int ips_suspend(struct pci_dev *dev, pm_message_t state)
1618 {
1619 	return 0;
1620 }
1621 
1622 static int ips_resume(struct pci_dev *dev)
1623 {
1624 	return 0;
1625 }
1626 #else
1627 #define ips_suspend NULL
1628 #define ips_resume NULL
1629 #endif /* CONFIG_PM */
1630 
1631 static void ips_shutdown(struct pci_dev *dev)
1632 {
1633 }
1634 
1635 static struct pci_driver ips_pci_driver = {
1636 	.name = "intel ips",
1637 	.id_table = ips_id_table,
1638 	.probe = ips_probe,
1639 	.remove = ips_remove,
1640 	.suspend = ips_suspend,
1641 	.resume = ips_resume,
1642 	.shutdown = ips_shutdown,
1643 };
1644 
1645 static int __init ips_init(void)
1646 {
1647 	return pci_register_driver(&ips_pci_driver);
1648 }
1649 module_init(ips_init);
1650 
1651 static void ips_exit(void)
1652 {
1653 	pci_unregister_driver(&ips_pci_driver);
1654 	return;
1655 }
1656 module_exit(ips_exit);
1657 
1658 MODULE_LICENSE("GPL");
1659 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1660 MODULE_DESCRIPTION("Intelligent Power Sharing Driver");
1661