1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2009-2010 Intel Corporation 4 * 5 * Authors: 6 * Jesse Barnes <jbarnes@virtuousgeek.org> 7 */ 8 9 /* 10 * Some Intel Ibex Peak based platforms support so-called "intelligent 11 * power sharing", which allows the CPU and GPU to cooperate to maximize 12 * performance within a given TDP (thermal design point). This driver 13 * performs the coordination between the CPU and GPU, monitors thermal and 14 * power statistics in the platform, and initializes power monitoring 15 * hardware. It also provides a few tunables to control behavior. Its 16 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled 17 * by tracking power and thermal budget; secondarily it can boost turbo 18 * performance by allocating more power or thermal budget to the CPU or GPU 19 * based on available headroom and activity. 20 * 21 * The basic algorithm is driven by a 5s moving average of temperature. If 22 * thermal headroom is available, the CPU and/or GPU power clamps may be 23 * adjusted upwards. If we hit the thermal ceiling or a thermal trigger, 24 * we scale back the clamp. Aside from trigger events (when we're critically 25 * close or over our TDP) we don't adjust the clamps more than once every 26 * five seconds. 27 * 28 * The thermal device (device 31, function 6) has a set of registers that 29 * are updated by the ME firmware. The ME should also take the clamp values 30 * written to those registers and write them to the CPU, but we currently 31 * bypass that functionality and write the CPU MSR directly. 32 * 33 * UNSUPPORTED: 34 * - dual MCP configs 35 * 36 * TODO: 37 * - handle CPU hotplug 38 * - provide turbo enable/disable api 39 * 40 * Related documents: 41 * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2 42 * - CDI 401376 - Ibex Peak EDS 43 * - ref 26037, 26641 - IPS BIOS spec 44 * - ref 26489 - Nehalem BIOS writer's guide 45 * - ref 26921 - Ibex Peak BIOS Specification 46 */ 47 48 #include <linux/debugfs.h> 49 #include <linux/delay.h> 50 #include <linux/interrupt.h> 51 #include <linux/kernel.h> 52 #include <linux/kthread.h> 53 #include <linux/module.h> 54 #include <linux/pci.h> 55 #include <linux/sched.h> 56 #include <linux/sched/loadavg.h> 57 #include <linux/seq_file.h> 58 #include <linux/string.h> 59 #include <linux/tick.h> 60 #include <linux/timer.h> 61 #include <linux/dmi.h> 62 #include <drm/i915_drm.h> 63 #include <asm/msr.h> 64 #include <asm/processor.h> 65 #include "intel_ips.h" 66 67 #include <linux/io-64-nonatomic-lo-hi.h> 68 69 #define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32 70 71 /* 72 * Package level MSRs for monitor/control 73 */ 74 #define PLATFORM_INFO 0xce 75 #define PLATFORM_TDP (1<<29) 76 #define PLATFORM_RATIO (1<<28) 77 78 #define IA32_MISC_ENABLE 0x1a0 79 #define IA32_MISC_TURBO_EN (1ULL<<38) 80 81 #define TURBO_POWER_CURRENT_LIMIT 0x1ac 82 #define TURBO_TDC_OVR_EN (1UL<<31) 83 #define TURBO_TDC_MASK (0x000000007fff0000UL) 84 #define TURBO_TDC_SHIFT (16) 85 #define TURBO_TDP_OVR_EN (1UL<<15) 86 #define TURBO_TDP_MASK (0x0000000000003fffUL) 87 88 /* 89 * Core/thread MSRs for monitoring 90 */ 91 #define IA32_PERF_CTL 0x199 92 #define IA32_PERF_TURBO_DIS (1ULL<<32) 93 94 /* 95 * Thermal PCI device regs 96 */ 97 #define THM_CFG_TBAR 0x10 98 #define THM_CFG_TBAR_HI 0x14 99 100 #define THM_TSIU 0x00 101 #define THM_TSE 0x01 102 #define TSE_EN 0xb8 103 #define THM_TSS 0x02 104 #define THM_TSTR 0x03 105 #define THM_TSTTP 0x04 106 #define THM_TSCO 0x08 107 #define THM_TSES 0x0c 108 #define THM_TSGPEN 0x0d 109 #define TSGPEN_HOT_LOHI (1<<1) 110 #define TSGPEN_CRIT_LOHI (1<<2) 111 #define THM_TSPC 0x0e 112 #define THM_PPEC 0x10 113 #define THM_CTA 0x12 114 #define THM_PTA 0x14 115 #define PTA_SLOPE_MASK (0xff00) 116 #define PTA_SLOPE_SHIFT 8 117 #define PTA_OFFSET_MASK (0x00ff) 118 #define THM_MGTA 0x16 119 #define MGTA_SLOPE_MASK (0xff00) 120 #define MGTA_SLOPE_SHIFT 8 121 #define MGTA_OFFSET_MASK (0x00ff) 122 #define THM_TRC 0x1a 123 #define TRC_CORE2_EN (1<<15) 124 #define TRC_THM_EN (1<<12) 125 #define TRC_C6_WAR (1<<8) 126 #define TRC_CORE1_EN (1<<7) 127 #define TRC_CORE_PWR (1<<6) 128 #define TRC_PCH_EN (1<<5) 129 #define TRC_MCH_EN (1<<4) 130 #define TRC_DIMM4 (1<<3) 131 #define TRC_DIMM3 (1<<2) 132 #define TRC_DIMM2 (1<<1) 133 #define TRC_DIMM1 (1<<0) 134 #define THM_TES 0x20 135 #define THM_TEN 0x21 136 #define TEN_UPDATE_EN 1 137 #define THM_PSC 0x24 138 #define PSC_NTG (1<<0) /* No GFX turbo support */ 139 #define PSC_NTPC (1<<1) /* No CPU turbo support */ 140 #define PSC_PP_DEF (0<<2) /* Perf policy up to driver */ 141 #define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */ 142 #define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */ 143 #define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */ 144 #define PSP_PBRT (1<<4) /* BIOS run time support */ 145 #define THM_CTV1 0x30 146 #define CTV_TEMP_ERROR (1<<15) 147 #define CTV_TEMP_MASK 0x3f 148 #define CTV_ 149 #define THM_CTV2 0x32 150 #define THM_CEC 0x34 /* undocumented power accumulator in joules */ 151 #define THM_AE 0x3f 152 #define THM_HTS 0x50 /* 32 bits */ 153 #define HTS_PCPL_MASK (0x7fe00000) 154 #define HTS_PCPL_SHIFT 21 155 #define HTS_GPL_MASK (0x001ff000) 156 #define HTS_GPL_SHIFT 12 157 #define HTS_PP_MASK (0x00000c00) 158 #define HTS_PP_SHIFT 10 159 #define HTS_PP_DEF 0 160 #define HTS_PP_PROC 1 161 #define HTS_PP_BAL 2 162 #define HTS_PP_GFX 3 163 #define HTS_PCTD_DIS (1<<9) 164 #define HTS_GTD_DIS (1<<8) 165 #define HTS_PTL_MASK (0x000000fe) 166 #define HTS_PTL_SHIFT 1 167 #define HTS_NVV (1<<0) 168 #define THM_HTSHI 0x54 /* 16 bits */ 169 #define HTS2_PPL_MASK (0x03ff) 170 #define HTS2_PRST_MASK (0x3c00) 171 #define HTS2_PRST_SHIFT 10 172 #define HTS2_PRST_UNLOADED 0 173 #define HTS2_PRST_RUNNING 1 174 #define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */ 175 #define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */ 176 #define HTS2_PRST_TDISUSR 4 /* user disabled turbo */ 177 #define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */ 178 #define HTS2_PRST_TDISPM 6 /* power management disabled turbo */ 179 #define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */ 180 #define THM_PTL 0x56 181 #define THM_MGTV 0x58 182 #define TV_MASK 0x000000000000ff00 183 #define TV_SHIFT 8 184 #define THM_PTV 0x60 185 #define PTV_MASK 0x00ff 186 #define THM_MMGPC 0x64 187 #define THM_MPPC 0x66 188 #define THM_MPCPC 0x68 189 #define THM_TSPIEN 0x82 190 #define TSPIEN_AUX_LOHI (1<<0) 191 #define TSPIEN_HOT_LOHI (1<<1) 192 #define TSPIEN_CRIT_LOHI (1<<2) 193 #define TSPIEN_AUX2_LOHI (1<<3) 194 #define THM_TSLOCK 0x83 195 #define THM_ATR 0x84 196 #define THM_TOF 0x87 197 #define THM_STS 0x98 198 #define STS_PCPL_MASK (0x7fe00000) 199 #define STS_PCPL_SHIFT 21 200 #define STS_GPL_MASK (0x001ff000) 201 #define STS_GPL_SHIFT 12 202 #define STS_PP_MASK (0x00000c00) 203 #define STS_PP_SHIFT 10 204 #define STS_PP_DEF 0 205 #define STS_PP_PROC 1 206 #define STS_PP_BAL 2 207 #define STS_PP_GFX 3 208 #define STS_PCTD_DIS (1<<9) 209 #define STS_GTD_DIS (1<<8) 210 #define STS_PTL_MASK (0x000000fe) 211 #define STS_PTL_SHIFT 1 212 #define STS_NVV (1<<0) 213 #define THM_SEC 0x9c 214 #define SEC_ACK (1<<0) 215 #define THM_TC3 0xa4 216 #define THM_TC1 0xa8 217 #define STS_PPL_MASK (0x0003ff00) 218 #define STS_PPL_SHIFT 16 219 #define THM_TC2 0xac 220 #define THM_DTV 0xb0 221 #define THM_ITV 0xd8 222 #define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */ 223 #define ITV_ME_SEQNO_SHIFT (16) 224 #define ITV_MCH_TEMP_MASK 0x0000ff00 225 #define ITV_MCH_TEMP_SHIFT (8) 226 #define ITV_PCH_TEMP_MASK 0x000000ff 227 228 #define thm_readb(off) readb(ips->regmap + (off)) 229 #define thm_readw(off) readw(ips->regmap + (off)) 230 #define thm_readl(off) readl(ips->regmap + (off)) 231 #define thm_readq(off) readq(ips->regmap + (off)) 232 233 #define thm_writeb(off, val) writeb((val), ips->regmap + (off)) 234 #define thm_writew(off, val) writew((val), ips->regmap + (off)) 235 #define thm_writel(off, val) writel((val), ips->regmap + (off)) 236 237 static const int IPS_ADJUST_PERIOD = 5000; /* ms */ 238 static bool late_i915_load = false; 239 240 /* For initial average collection */ 241 static const int IPS_SAMPLE_PERIOD = 200; /* ms */ 242 static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */ 243 #define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD) 244 245 /* Per-SKU limits */ 246 struct ips_mcp_limits { 247 int mcp_power_limit; /* mW units */ 248 int core_power_limit; 249 int mch_power_limit; 250 int core_temp_limit; /* degrees C */ 251 int mch_temp_limit; 252 }; 253 254 /* Max temps are -10 degrees C to avoid PROCHOT# */ 255 256 static struct ips_mcp_limits ips_sv_limits = { 257 .mcp_power_limit = 35000, 258 .core_power_limit = 29000, 259 .mch_power_limit = 20000, 260 .core_temp_limit = 95, 261 .mch_temp_limit = 90 262 }; 263 264 static struct ips_mcp_limits ips_lv_limits = { 265 .mcp_power_limit = 25000, 266 .core_power_limit = 21000, 267 .mch_power_limit = 13000, 268 .core_temp_limit = 95, 269 .mch_temp_limit = 90 270 }; 271 272 static struct ips_mcp_limits ips_ulv_limits = { 273 .mcp_power_limit = 18000, 274 .core_power_limit = 14000, 275 .mch_power_limit = 11000, 276 .core_temp_limit = 95, 277 .mch_temp_limit = 90 278 }; 279 280 struct ips_driver { 281 struct device *dev; 282 void __iomem *regmap; 283 int irq; 284 285 struct task_struct *monitor; 286 struct task_struct *adjust; 287 struct dentry *debug_root; 288 struct timer_list timer; 289 290 /* Average CPU core temps (all averages in .01 degrees C for precision) */ 291 u16 ctv1_avg_temp; 292 u16 ctv2_avg_temp; 293 /* GMCH average */ 294 u16 mch_avg_temp; 295 /* Average for the CPU (both cores?) */ 296 u16 mcp_avg_temp; 297 /* Average power consumption (in mW) */ 298 u32 cpu_avg_power; 299 u32 mch_avg_power; 300 301 /* Offset values */ 302 u16 cta_val; 303 u16 pta_val; 304 u16 mgta_val; 305 306 /* Maximums & prefs, protected by turbo status lock */ 307 spinlock_t turbo_status_lock; 308 u16 mcp_temp_limit; 309 u16 mcp_power_limit; 310 u16 core_power_limit; 311 u16 mch_power_limit; 312 bool cpu_turbo_enabled; 313 bool __cpu_turbo_on; 314 bool gpu_turbo_enabled; 315 bool __gpu_turbo_on; 316 bool gpu_preferred; 317 bool poll_turbo_status; 318 bool second_cpu; 319 bool turbo_toggle_allowed; 320 struct ips_mcp_limits *limits; 321 322 /* Optional MCH interfaces for if i915 is in use */ 323 unsigned long (*read_mch_val)(void); 324 bool (*gpu_raise)(void); 325 bool (*gpu_lower)(void); 326 bool (*gpu_busy)(void); 327 bool (*gpu_turbo_disable)(void); 328 329 /* For restoration at unload */ 330 u64 orig_turbo_limit; 331 u64 orig_turbo_ratios; 332 }; 333 334 static bool 335 ips_gpu_turbo_enabled(struct ips_driver *ips); 336 337 /** 338 * ips_cpu_busy - is CPU busy? 339 * @ips: IPS driver struct 340 * 341 * Check CPU for load to see whether we should increase its thermal budget. 342 * 343 * RETURNS: 344 * True if the CPU could use more power, false otherwise. 345 */ 346 static bool ips_cpu_busy(struct ips_driver *ips) 347 { 348 if ((avenrun[0] >> FSHIFT) > 1) 349 return true; 350 351 return false; 352 } 353 354 /** 355 * ips_cpu_raise - raise CPU power clamp 356 * @ips: IPS driver struct 357 * 358 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for 359 * this platform. 360 * 361 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as 362 * long as we haven't hit the TDP limit for the SKU). 363 */ 364 static void ips_cpu_raise(struct ips_driver *ips) 365 { 366 u64 turbo_override; 367 u16 cur_tdp_limit, new_tdp_limit; 368 369 if (!ips->cpu_turbo_enabled) 370 return; 371 372 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 373 374 cur_tdp_limit = turbo_override & TURBO_TDP_MASK; 375 new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */ 376 377 /* Clamp to SKU TDP limit */ 378 if (((new_tdp_limit * 10) / 8) > ips->core_power_limit) 379 new_tdp_limit = cur_tdp_limit; 380 381 thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8); 382 383 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN; 384 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 385 386 turbo_override &= ~TURBO_TDP_MASK; 387 turbo_override |= new_tdp_limit; 388 389 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 390 } 391 392 /** 393 * ips_cpu_lower - lower CPU power clamp 394 * @ips: IPS driver struct 395 * 396 * Lower CPU power clamp b %IPS_CPU_STEP if possible. 397 * 398 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going 399 * as low as the platform limits will allow (though we could go lower there 400 * wouldn't be much point). 401 */ 402 static void ips_cpu_lower(struct ips_driver *ips) 403 { 404 u64 turbo_override; 405 u16 cur_limit, new_limit; 406 407 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 408 409 cur_limit = turbo_override & TURBO_TDP_MASK; 410 new_limit = cur_limit - 8; /* 1W decrease */ 411 412 /* Clamp to SKU TDP limit */ 413 if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK)) 414 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK; 415 416 thm_writew(THM_MPCPC, (new_limit * 10) / 8); 417 418 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN; 419 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 420 421 turbo_override &= ~TURBO_TDP_MASK; 422 turbo_override |= new_limit; 423 424 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 425 } 426 427 /** 428 * do_enable_cpu_turbo - internal turbo enable function 429 * @data: unused 430 * 431 * Internal function for actually updating MSRs. When we enable/disable 432 * turbo, we need to do it on each CPU; this function is the one called 433 * by on_each_cpu() when needed. 434 */ 435 static void do_enable_cpu_turbo(void *data) 436 { 437 u64 perf_ctl; 438 439 rdmsrl(IA32_PERF_CTL, perf_ctl); 440 if (perf_ctl & IA32_PERF_TURBO_DIS) { 441 perf_ctl &= ~IA32_PERF_TURBO_DIS; 442 wrmsrl(IA32_PERF_CTL, perf_ctl); 443 } 444 } 445 446 /** 447 * ips_enable_cpu_turbo - enable turbo mode on all CPUs 448 * @ips: IPS driver struct 449 * 450 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on 451 * all logical threads. 452 */ 453 static void ips_enable_cpu_turbo(struct ips_driver *ips) 454 { 455 /* Already on, no need to mess with MSRs */ 456 if (ips->__cpu_turbo_on) 457 return; 458 459 if (ips->turbo_toggle_allowed) 460 on_each_cpu(do_enable_cpu_turbo, ips, 1); 461 462 ips->__cpu_turbo_on = true; 463 } 464 465 /** 466 * do_disable_cpu_turbo - internal turbo disable function 467 * @data: unused 468 * 469 * Internal function for actually updating MSRs. When we enable/disable 470 * turbo, we need to do it on each CPU; this function is the one called 471 * by on_each_cpu() when needed. 472 */ 473 static void do_disable_cpu_turbo(void *data) 474 { 475 u64 perf_ctl; 476 477 rdmsrl(IA32_PERF_CTL, perf_ctl); 478 if (!(perf_ctl & IA32_PERF_TURBO_DIS)) { 479 perf_ctl |= IA32_PERF_TURBO_DIS; 480 wrmsrl(IA32_PERF_CTL, perf_ctl); 481 } 482 } 483 484 /** 485 * ips_disable_cpu_turbo - disable turbo mode on all CPUs 486 * @ips: IPS driver struct 487 * 488 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on 489 * all logical threads. 490 */ 491 static void ips_disable_cpu_turbo(struct ips_driver *ips) 492 { 493 /* Already off, leave it */ 494 if (!ips->__cpu_turbo_on) 495 return; 496 497 if (ips->turbo_toggle_allowed) 498 on_each_cpu(do_disable_cpu_turbo, ips, 1); 499 500 ips->__cpu_turbo_on = false; 501 } 502 503 /** 504 * ips_gpu_busy - is GPU busy? 505 * @ips: IPS driver struct 506 * 507 * Check GPU for load to see whether we should increase its thermal budget. 508 * We need to call into the i915 driver in this case. 509 * 510 * RETURNS: 511 * True if the GPU could use more power, false otherwise. 512 */ 513 static bool ips_gpu_busy(struct ips_driver *ips) 514 { 515 if (!ips_gpu_turbo_enabled(ips)) 516 return false; 517 518 return ips->gpu_busy(); 519 } 520 521 /** 522 * ips_gpu_raise - raise GPU power clamp 523 * @ips: IPS driver struct 524 * 525 * Raise the GPU frequency/power if possible. We need to call into the 526 * i915 driver in this case. 527 */ 528 static void ips_gpu_raise(struct ips_driver *ips) 529 { 530 if (!ips_gpu_turbo_enabled(ips)) 531 return; 532 533 if (!ips->gpu_raise()) 534 ips->gpu_turbo_enabled = false; 535 536 return; 537 } 538 539 /** 540 * ips_gpu_lower - lower GPU power clamp 541 * @ips: IPS driver struct 542 * 543 * Lower GPU frequency/power if possible. Need to call i915. 544 */ 545 static void ips_gpu_lower(struct ips_driver *ips) 546 { 547 if (!ips_gpu_turbo_enabled(ips)) 548 return; 549 550 if (!ips->gpu_lower()) 551 ips->gpu_turbo_enabled = false; 552 553 return; 554 } 555 556 /** 557 * ips_enable_gpu_turbo - notify the gfx driver turbo is available 558 * @ips: IPS driver struct 559 * 560 * Call into the graphics driver indicating that it can safely use 561 * turbo mode. 562 */ 563 static void ips_enable_gpu_turbo(struct ips_driver *ips) 564 { 565 if (ips->__gpu_turbo_on) 566 return; 567 ips->__gpu_turbo_on = true; 568 } 569 570 /** 571 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode 572 * @ips: IPS driver struct 573 * 574 * Request that the graphics driver disable turbo mode. 575 */ 576 static void ips_disable_gpu_turbo(struct ips_driver *ips) 577 { 578 /* Avoid calling i915 if turbo is already disabled */ 579 if (!ips->__gpu_turbo_on) 580 return; 581 582 if (!ips->gpu_turbo_disable()) 583 dev_err(ips->dev, "failed to disable graphics turbo\n"); 584 else 585 ips->__gpu_turbo_on = false; 586 } 587 588 /** 589 * mcp_exceeded - check whether we're outside our thermal & power limits 590 * @ips: IPS driver struct 591 * 592 * Check whether the MCP is over its thermal or power budget. 593 * 594 * Returns: %true if the temp or power has exceeded its maximum, else %false 595 */ 596 static bool mcp_exceeded(struct ips_driver *ips) 597 { 598 unsigned long flags; 599 bool ret = false; 600 u32 temp_limit; 601 u32 avg_power; 602 603 spin_lock_irqsave(&ips->turbo_status_lock, flags); 604 605 temp_limit = ips->mcp_temp_limit * 100; 606 if (ips->mcp_avg_temp > temp_limit) 607 ret = true; 608 609 avg_power = ips->cpu_avg_power + ips->mch_avg_power; 610 if (avg_power > ips->mcp_power_limit) 611 ret = true; 612 613 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 614 615 return ret; 616 } 617 618 /** 619 * cpu_exceeded - check whether a CPU core is outside its limits 620 * @ips: IPS driver struct 621 * @cpu: CPU number to check 622 * 623 * Check a given CPU's average temp or power is over its limit. 624 * 625 * Returns: %true if the temp or power has exceeded its maximum, else %false 626 */ 627 static bool cpu_exceeded(struct ips_driver *ips, int cpu) 628 { 629 unsigned long flags; 630 int avg; 631 bool ret = false; 632 633 spin_lock_irqsave(&ips->turbo_status_lock, flags); 634 avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp; 635 if (avg > (ips->limits->core_temp_limit * 100)) 636 ret = true; 637 if (ips->cpu_avg_power > ips->core_power_limit * 100) 638 ret = true; 639 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 640 641 if (ret) 642 dev_info(ips->dev, "CPU power or thermal limit exceeded\n"); 643 644 return ret; 645 } 646 647 /** 648 * mch_exceeded - check whether the GPU is over budget 649 * @ips: IPS driver struct 650 * 651 * Check the MCH temp & power against their maximums. 652 * 653 * Returns: %true if the temp or power has exceeded its maximum, else %false 654 */ 655 static bool mch_exceeded(struct ips_driver *ips) 656 { 657 unsigned long flags; 658 bool ret = false; 659 660 spin_lock_irqsave(&ips->turbo_status_lock, flags); 661 if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100)) 662 ret = true; 663 if (ips->mch_avg_power > ips->mch_power_limit) 664 ret = true; 665 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 666 667 return ret; 668 } 669 670 /** 671 * verify_limits - verify BIOS provided limits 672 * @ips: IPS structure 673 * 674 * BIOS can optionally provide non-default limits for power and temp. Check 675 * them here and use the defaults if the BIOS values are not provided or 676 * are otherwise unusable. 677 */ 678 static void verify_limits(struct ips_driver *ips) 679 { 680 if (ips->mcp_power_limit < ips->limits->mcp_power_limit || 681 ips->mcp_power_limit > 35000) 682 ips->mcp_power_limit = ips->limits->mcp_power_limit; 683 684 if (ips->mcp_temp_limit < ips->limits->core_temp_limit || 685 ips->mcp_temp_limit < ips->limits->mch_temp_limit || 686 ips->mcp_temp_limit > 150) 687 ips->mcp_temp_limit = min(ips->limits->core_temp_limit, 688 ips->limits->mch_temp_limit); 689 } 690 691 /** 692 * update_turbo_limits - get various limits & settings from regs 693 * @ips: IPS driver struct 694 * 695 * Update the IPS power & temp limits, along with turbo enable flags, 696 * based on latest register contents. 697 * 698 * Used at init time and for runtime BIOS support, which requires polling 699 * the regs for updates (as a result of AC->DC transition for example). 700 * 701 * LOCKING: 702 * Caller must hold turbo_status_lock (outside of init) 703 */ 704 static void update_turbo_limits(struct ips_driver *ips) 705 { 706 u32 hts = thm_readl(THM_HTS); 707 708 ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS); 709 /* 710 * Disable turbo for now, until we can figure out why the power figures 711 * are wrong 712 */ 713 ips->cpu_turbo_enabled = false; 714 715 if (ips->gpu_busy) 716 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS); 717 718 ips->core_power_limit = thm_readw(THM_MPCPC); 719 ips->mch_power_limit = thm_readw(THM_MMGPC); 720 ips->mcp_temp_limit = thm_readw(THM_PTL); 721 ips->mcp_power_limit = thm_readw(THM_MPPC); 722 723 verify_limits(ips); 724 /* Ignore BIOS CPU vs GPU pref */ 725 } 726 727 /** 728 * ips_adjust - adjust power clamp based on thermal state 729 * @data: ips driver structure 730 * 731 * Wake up every 5s or so and check whether we should adjust the power clamp. 732 * Check CPU and GPU load to determine which needs adjustment. There are 733 * several things to consider here: 734 * - do we need to adjust up or down? 735 * - is CPU busy? 736 * - is GPU busy? 737 * - is CPU in turbo? 738 * - is GPU in turbo? 739 * - is CPU or GPU preferred? (CPU is default) 740 * 741 * So, given the above, we do the following: 742 * - up (TDP available) 743 * - CPU not busy, GPU not busy - nothing 744 * - CPU busy, GPU not busy - adjust CPU up 745 * - CPU not busy, GPU busy - adjust GPU up 746 * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from 747 * non-preferred unit if necessary 748 * - down (at TDP limit) 749 * - adjust both CPU and GPU down if possible 750 * 751 * |cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu- 752 * cpu < gpu < |cpu+gpu+ cpu+ gpu+ nothing 753 * cpu < gpu >= |cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu- 754 * cpu >= gpu < |cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu- 755 * cpu >= gpu >=|cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu- 756 * 757 * Returns: %0 758 */ 759 static int ips_adjust(void *data) 760 { 761 struct ips_driver *ips = data; 762 unsigned long flags; 763 764 dev_dbg(ips->dev, "starting ips-adjust thread\n"); 765 766 /* 767 * Adjust CPU and GPU clamps every 5s if needed. Doing it more 768 * often isn't recommended due to ME interaction. 769 */ 770 do { 771 bool cpu_busy = ips_cpu_busy(ips); 772 bool gpu_busy = ips_gpu_busy(ips); 773 774 spin_lock_irqsave(&ips->turbo_status_lock, flags); 775 if (ips->poll_turbo_status) 776 update_turbo_limits(ips); 777 spin_unlock_irqrestore(&ips->turbo_status_lock, flags); 778 779 /* Update turbo status if necessary */ 780 if (ips->cpu_turbo_enabled) 781 ips_enable_cpu_turbo(ips); 782 else 783 ips_disable_cpu_turbo(ips); 784 785 if (ips->gpu_turbo_enabled) 786 ips_enable_gpu_turbo(ips); 787 else 788 ips_disable_gpu_turbo(ips); 789 790 /* We're outside our comfort zone, crank them down */ 791 if (mcp_exceeded(ips)) { 792 ips_cpu_lower(ips); 793 ips_gpu_lower(ips); 794 goto sleep; 795 } 796 797 if (!cpu_exceeded(ips, 0) && cpu_busy) 798 ips_cpu_raise(ips); 799 else 800 ips_cpu_lower(ips); 801 802 if (!mch_exceeded(ips) && gpu_busy) 803 ips_gpu_raise(ips); 804 else 805 ips_gpu_lower(ips); 806 807 sleep: 808 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD)); 809 } while (!kthread_should_stop()); 810 811 dev_dbg(ips->dev, "ips-adjust thread stopped\n"); 812 813 return 0; 814 } 815 816 /* 817 * Helpers for reading out temp/power values and calculating their 818 * averages for the decision making and monitoring functions. 819 */ 820 821 static u16 calc_avg_temp(struct ips_driver *ips, u16 *array) 822 { 823 u64 total = 0; 824 int i; 825 u16 avg; 826 827 for (i = 0; i < IPS_SAMPLE_COUNT; i++) 828 total += (u64)(array[i] * 100); 829 830 do_div(total, IPS_SAMPLE_COUNT); 831 832 avg = (u16)total; 833 834 return avg; 835 } 836 837 static u16 read_mgtv(struct ips_driver *ips) 838 { 839 u16 __maybe_unused ret; 840 u64 slope, offset; 841 u64 val; 842 843 val = thm_readq(THM_MGTV); 844 val = (val & TV_MASK) >> TV_SHIFT; 845 846 slope = offset = thm_readw(THM_MGTA); 847 slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT; 848 offset = offset & MGTA_OFFSET_MASK; 849 850 ret = ((val * slope + 0x40) >> 7) + offset; 851 852 return 0; /* MCH temp reporting buggy */ 853 } 854 855 static u16 read_ptv(struct ips_driver *ips) 856 { 857 u16 val; 858 859 val = thm_readw(THM_PTV) & PTV_MASK; 860 861 return val; 862 } 863 864 static u16 read_ctv(struct ips_driver *ips, int cpu) 865 { 866 int reg = cpu ? THM_CTV2 : THM_CTV1; 867 u16 val; 868 869 val = thm_readw(reg); 870 if (!(val & CTV_TEMP_ERROR)) 871 val = (val) >> 6; /* discard fractional component */ 872 else 873 val = 0; 874 875 return val; 876 } 877 878 static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period) 879 { 880 u32 val; 881 u32 ret; 882 883 /* 884 * CEC is in joules/65535. Take difference over time to 885 * get watts. 886 */ 887 val = thm_readl(THM_CEC); 888 889 /* period is in ms and we want mW */ 890 ret = (((val - *last) * 1000) / period); 891 ret = (ret * 1000) / 65535; 892 *last = val; 893 894 return 0; 895 } 896 897 static const u16 temp_decay_factor = 2; 898 static u16 update_average_temp(u16 avg, u16 val) 899 { 900 u16 ret; 901 902 /* Multiply by 100 for extra precision */ 903 ret = (val * 100 / temp_decay_factor) + 904 (((temp_decay_factor - 1) * avg) / temp_decay_factor); 905 return ret; 906 } 907 908 static const u16 power_decay_factor = 2; 909 static u16 update_average_power(u32 avg, u32 val) 910 { 911 u32 ret; 912 913 ret = (val / power_decay_factor) + 914 (((power_decay_factor - 1) * avg) / power_decay_factor); 915 916 return ret; 917 } 918 919 static u32 calc_avg_power(struct ips_driver *ips, u32 *array) 920 { 921 u64 total = 0; 922 u32 avg; 923 int i; 924 925 for (i = 0; i < IPS_SAMPLE_COUNT; i++) 926 total += array[i]; 927 928 do_div(total, IPS_SAMPLE_COUNT); 929 avg = (u32)total; 930 931 return avg; 932 } 933 934 static void monitor_timeout(struct timer_list *t) 935 { 936 struct ips_driver *ips = from_timer(ips, t, timer); 937 wake_up_process(ips->monitor); 938 } 939 940 /** 941 * ips_monitor - temp/power monitoring thread 942 * @data: ips driver structure 943 * 944 * This is the main function for the IPS driver. It monitors power and 945 * temperature in the MCP and adjusts CPU and GPU power clamps accordingly. 946 * 947 * We keep a 5s moving average of power consumption and temperature. Using 948 * that data, along with CPU vs GPU preference, we adjust the power clamps 949 * up or down. 950 * 951 * Returns: %0 on success or -errno on error 952 */ 953 static int ips_monitor(void *data) 954 { 955 struct ips_driver *ips = data; 956 unsigned long seqno_timestamp, expire, last_msecs, last_sample_period; 957 int i; 958 u32 *cpu_samples, *mchp_samples, old_cpu_power; 959 u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples; 960 u8 cur_seqno, last_seqno; 961 962 mcp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL); 963 ctv1_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL); 964 ctv2_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL); 965 mch_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL); 966 cpu_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL); 967 mchp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL); 968 if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples || 969 !cpu_samples || !mchp_samples) { 970 dev_err(ips->dev, 971 "failed to allocate sample array, ips disabled\n"); 972 kfree(mcp_samples); 973 kfree(ctv1_samples); 974 kfree(ctv2_samples); 975 kfree(mch_samples); 976 kfree(cpu_samples); 977 kfree(mchp_samples); 978 return -ENOMEM; 979 } 980 981 last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> 982 ITV_ME_SEQNO_SHIFT; 983 seqno_timestamp = get_jiffies_64(); 984 985 old_cpu_power = thm_readl(THM_CEC); 986 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 987 988 /* Collect an initial average */ 989 for (i = 0; i < IPS_SAMPLE_COUNT; i++) { 990 u32 mchp, cpu_power; 991 u16 val; 992 993 mcp_samples[i] = read_ptv(ips); 994 995 val = read_ctv(ips, 0); 996 ctv1_samples[i] = val; 997 998 val = read_ctv(ips, 1); 999 ctv2_samples[i] = val; 1000 1001 val = read_mgtv(ips); 1002 mch_samples[i] = val; 1003 1004 cpu_power = get_cpu_power(ips, &old_cpu_power, 1005 IPS_SAMPLE_PERIOD); 1006 cpu_samples[i] = cpu_power; 1007 1008 if (ips->read_mch_val) { 1009 mchp = ips->read_mch_val(); 1010 mchp_samples[i] = mchp; 1011 } 1012 1013 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 1014 if (kthread_should_stop()) 1015 break; 1016 } 1017 1018 ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples); 1019 ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples); 1020 ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples); 1021 ips->mch_avg_temp = calc_avg_temp(ips, mch_samples); 1022 ips->cpu_avg_power = calc_avg_power(ips, cpu_samples); 1023 ips->mch_avg_power = calc_avg_power(ips, mchp_samples); 1024 kfree(mcp_samples); 1025 kfree(ctv1_samples); 1026 kfree(ctv2_samples); 1027 kfree(mch_samples); 1028 kfree(cpu_samples); 1029 kfree(mchp_samples); 1030 1031 /* Start the adjustment thread now that we have data */ 1032 wake_up_process(ips->adjust); 1033 1034 /* 1035 * Ok, now we have an initial avg. From here on out, we track the 1036 * running avg using a decaying average calculation. This allows 1037 * us to reduce the sample frequency if the CPU and GPU are idle. 1038 */ 1039 old_cpu_power = thm_readl(THM_CEC); 1040 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD)); 1041 last_sample_period = IPS_SAMPLE_PERIOD; 1042 1043 timer_setup(&ips->timer, monitor_timeout, TIMER_DEFERRABLE); 1044 do { 1045 u32 cpu_val, mch_val; 1046 u16 val; 1047 1048 /* MCP itself */ 1049 val = read_ptv(ips); 1050 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val); 1051 1052 /* Processor 0 */ 1053 val = read_ctv(ips, 0); 1054 ips->ctv1_avg_temp = 1055 update_average_temp(ips->ctv1_avg_temp, val); 1056 /* Power */ 1057 cpu_val = get_cpu_power(ips, &old_cpu_power, 1058 last_sample_period); 1059 ips->cpu_avg_power = 1060 update_average_power(ips->cpu_avg_power, cpu_val); 1061 1062 if (ips->second_cpu) { 1063 /* Processor 1 */ 1064 val = read_ctv(ips, 1); 1065 ips->ctv2_avg_temp = 1066 update_average_temp(ips->ctv2_avg_temp, val); 1067 } 1068 1069 /* MCH */ 1070 val = read_mgtv(ips); 1071 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val); 1072 /* Power */ 1073 if (ips->read_mch_val) { 1074 mch_val = ips->read_mch_val(); 1075 ips->mch_avg_power = 1076 update_average_power(ips->mch_avg_power, 1077 mch_val); 1078 } 1079 1080 /* 1081 * Make sure ME is updating thermal regs. 1082 * Note: 1083 * If it's been more than a second since the last update, 1084 * the ME is probably hung. 1085 */ 1086 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >> 1087 ITV_ME_SEQNO_SHIFT; 1088 if (cur_seqno == last_seqno && 1089 time_after(jiffies, seqno_timestamp + HZ)) { 1090 dev_warn(ips->dev, 1091 "ME failed to update for more than 1s, likely hung\n"); 1092 } else { 1093 seqno_timestamp = get_jiffies_64(); 1094 last_seqno = cur_seqno; 1095 } 1096 1097 last_msecs = jiffies_to_msecs(jiffies); 1098 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD); 1099 1100 __set_current_state(TASK_INTERRUPTIBLE); 1101 mod_timer(&ips->timer, expire); 1102 schedule(); 1103 1104 /* Calculate actual sample period for power averaging */ 1105 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs; 1106 if (!last_sample_period) 1107 last_sample_period = 1; 1108 } while (!kthread_should_stop()); 1109 1110 del_timer_sync(&ips->timer); 1111 1112 dev_dbg(ips->dev, "ips-monitor thread stopped\n"); 1113 1114 return 0; 1115 } 1116 1117 /** 1118 * ips_irq_handler - handle temperature triggers and other IPS events 1119 * @irq: irq number 1120 * @arg: unused 1121 * 1122 * Handle temperature limit trigger events, generally by lowering the clamps. 1123 * If we're at a critical limit, we clamp back to the lowest possible value 1124 * to prevent emergency shutdown. 1125 * 1126 * Returns: IRQ_NONE or IRQ_HANDLED 1127 */ 1128 static irqreturn_t ips_irq_handler(int irq, void *arg) 1129 { 1130 struct ips_driver *ips = arg; 1131 u8 tses = thm_readb(THM_TSES); 1132 u8 tes = thm_readb(THM_TES); 1133 1134 if (!tses && !tes) 1135 return IRQ_NONE; 1136 1137 dev_info(ips->dev, "TSES: 0x%02x\n", tses); 1138 dev_info(ips->dev, "TES: 0x%02x\n", tes); 1139 1140 /* STS update from EC? */ 1141 if (tes & 1) { 1142 u32 sts, tc1; 1143 1144 sts = thm_readl(THM_STS); 1145 tc1 = thm_readl(THM_TC1); 1146 1147 if (sts & STS_NVV) { 1148 spin_lock(&ips->turbo_status_lock); 1149 ips->core_power_limit = (sts & STS_PCPL_MASK) >> 1150 STS_PCPL_SHIFT; 1151 ips->mch_power_limit = (sts & STS_GPL_MASK) >> 1152 STS_GPL_SHIFT; 1153 /* ignore EC CPU vs GPU pref */ 1154 ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS); 1155 /* 1156 * Disable turbo for now, until we can figure 1157 * out why the power figures are wrong 1158 */ 1159 ips->cpu_turbo_enabled = false; 1160 if (ips->gpu_busy) 1161 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS); 1162 ips->mcp_temp_limit = (sts & STS_PTL_MASK) >> 1163 STS_PTL_SHIFT; 1164 ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >> 1165 STS_PPL_SHIFT; 1166 verify_limits(ips); 1167 spin_unlock(&ips->turbo_status_lock); 1168 1169 thm_writeb(THM_SEC, SEC_ACK); 1170 } 1171 thm_writeb(THM_TES, tes); 1172 } 1173 1174 /* Thermal trip */ 1175 if (tses) { 1176 dev_warn(ips->dev, "thermal trip occurred, tses: 0x%04x\n", 1177 tses); 1178 thm_writeb(THM_TSES, tses); 1179 } 1180 1181 return IRQ_HANDLED; 1182 } 1183 1184 #ifndef CONFIG_DEBUG_FS 1185 static void ips_debugfs_init(struct ips_driver *ips) { return; } 1186 static void ips_debugfs_cleanup(struct ips_driver *ips) { return; } 1187 #else 1188 1189 /* Expose current state and limits in debugfs if possible */ 1190 1191 static int cpu_temp_show(struct seq_file *m, void *data) 1192 { 1193 struct ips_driver *ips = m->private; 1194 1195 seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100, 1196 ips->ctv1_avg_temp % 100); 1197 1198 return 0; 1199 } 1200 DEFINE_SHOW_ATTRIBUTE(cpu_temp); 1201 1202 static int cpu_power_show(struct seq_file *m, void *data) 1203 { 1204 struct ips_driver *ips = m->private; 1205 1206 seq_printf(m, "%dmW\n", ips->cpu_avg_power); 1207 1208 return 0; 1209 } 1210 DEFINE_SHOW_ATTRIBUTE(cpu_power); 1211 1212 static int cpu_clamp_show(struct seq_file *m, void *data) 1213 { 1214 u64 turbo_override; 1215 int tdp, tdc; 1216 1217 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1218 1219 tdp = (int)(turbo_override & TURBO_TDP_MASK); 1220 tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT); 1221 1222 /* Convert to .1W/A units */ 1223 tdp = tdp * 10 / 8; 1224 tdc = tdc * 10 / 8; 1225 1226 /* Watts Amperes */ 1227 seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10, 1228 tdc / 10, tdc % 10); 1229 1230 return 0; 1231 } 1232 DEFINE_SHOW_ATTRIBUTE(cpu_clamp); 1233 1234 static int mch_temp_show(struct seq_file *m, void *data) 1235 { 1236 struct ips_driver *ips = m->private; 1237 1238 seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100, 1239 ips->mch_avg_temp % 100); 1240 1241 return 0; 1242 } 1243 DEFINE_SHOW_ATTRIBUTE(mch_temp); 1244 1245 static int mch_power_show(struct seq_file *m, void *data) 1246 { 1247 struct ips_driver *ips = m->private; 1248 1249 seq_printf(m, "%dmW\n", ips->mch_avg_power); 1250 1251 return 0; 1252 } 1253 DEFINE_SHOW_ATTRIBUTE(mch_power); 1254 1255 static void ips_debugfs_cleanup(struct ips_driver *ips) 1256 { 1257 debugfs_remove_recursive(ips->debug_root); 1258 } 1259 1260 static void ips_debugfs_init(struct ips_driver *ips) 1261 { 1262 ips->debug_root = debugfs_create_dir("ips", NULL); 1263 1264 debugfs_create_file("cpu_temp", 0444, ips->debug_root, ips, &cpu_temp_fops); 1265 debugfs_create_file("cpu_power", 0444, ips->debug_root, ips, &cpu_power_fops); 1266 debugfs_create_file("cpu_clamp", 0444, ips->debug_root, ips, &cpu_clamp_fops); 1267 debugfs_create_file("mch_temp", 0444, ips->debug_root, ips, &mch_temp_fops); 1268 debugfs_create_file("mch_power", 0444, ips->debug_root, ips, &mch_power_fops); 1269 } 1270 #endif /* CONFIG_DEBUG_FS */ 1271 1272 /** 1273 * ips_detect_cpu - detect whether CPU supports IPS 1274 * @ips: IPS driver struct 1275 * 1276 * Walk our list and see if we're on a supported CPU. If we find one, 1277 * return the limits for it. 1278 * 1279 * Returns: the &ips_mcp_limits struct that matches the boot CPU or %NULL 1280 */ 1281 static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips) 1282 { 1283 u64 turbo_power, misc_en; 1284 struct ips_mcp_limits *limits = NULL; 1285 u16 tdp; 1286 1287 if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) { 1288 dev_info(ips->dev, "Non-IPS CPU detected.\n"); 1289 return NULL; 1290 } 1291 1292 rdmsrl(IA32_MISC_ENABLE, misc_en); 1293 /* 1294 * If the turbo enable bit isn't set, we shouldn't try to enable/disable 1295 * turbo manually or we'll get an illegal MSR access, even though 1296 * turbo will still be available. 1297 */ 1298 if (misc_en & IA32_MISC_TURBO_EN) 1299 ips->turbo_toggle_allowed = true; 1300 else 1301 ips->turbo_toggle_allowed = false; 1302 1303 if (strstr(boot_cpu_data.x86_model_id, "CPU M")) 1304 limits = &ips_sv_limits; 1305 else if (strstr(boot_cpu_data.x86_model_id, "CPU L")) 1306 limits = &ips_lv_limits; 1307 else if (strstr(boot_cpu_data.x86_model_id, "CPU U")) 1308 limits = &ips_ulv_limits; 1309 else { 1310 dev_info(ips->dev, "No CPUID match found.\n"); 1311 return NULL; 1312 } 1313 1314 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power); 1315 tdp = turbo_power & TURBO_TDP_MASK; 1316 1317 /* Sanity check TDP against CPU */ 1318 if (limits->core_power_limit != (tdp / 8) * 1000) { 1319 dev_info(ips->dev, 1320 "CPU TDP doesn't match expected value (found %d, expected %d)\n", 1321 tdp / 8, limits->core_power_limit / 1000); 1322 limits->core_power_limit = (tdp / 8) * 1000; 1323 } 1324 1325 return limits; 1326 } 1327 1328 /** 1329 * ips_get_i915_syms - try to get GPU control methods from i915 driver 1330 * @ips: IPS driver 1331 * 1332 * The i915 driver exports several interfaces to allow the IPS driver to 1333 * monitor and control graphics turbo mode. If we can find them, we can 1334 * enable graphics turbo, otherwise we must disable it to avoid exceeding 1335 * thermal and power limits in the MCP. 1336 * 1337 * Returns: %true if the required symbols are found, else %false 1338 */ 1339 static bool ips_get_i915_syms(struct ips_driver *ips) 1340 { 1341 ips->read_mch_val = symbol_get(i915_read_mch_val); 1342 if (!ips->read_mch_val) 1343 goto out_err; 1344 ips->gpu_raise = symbol_get(i915_gpu_raise); 1345 if (!ips->gpu_raise) 1346 goto out_put_mch; 1347 ips->gpu_lower = symbol_get(i915_gpu_lower); 1348 if (!ips->gpu_lower) 1349 goto out_put_raise; 1350 ips->gpu_busy = symbol_get(i915_gpu_busy); 1351 if (!ips->gpu_busy) 1352 goto out_put_lower; 1353 ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable); 1354 if (!ips->gpu_turbo_disable) 1355 goto out_put_busy; 1356 1357 return true; 1358 1359 out_put_busy: 1360 symbol_put(i915_gpu_busy); 1361 out_put_lower: 1362 symbol_put(i915_gpu_lower); 1363 out_put_raise: 1364 symbol_put(i915_gpu_raise); 1365 out_put_mch: 1366 symbol_put(i915_read_mch_val); 1367 out_err: 1368 return false; 1369 } 1370 1371 static bool 1372 ips_gpu_turbo_enabled(struct ips_driver *ips) 1373 { 1374 if (!ips->gpu_busy && late_i915_load) { 1375 if (ips_get_i915_syms(ips)) { 1376 dev_info(ips->dev, 1377 "i915 driver attached, reenabling gpu turbo\n"); 1378 ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS); 1379 } 1380 } 1381 1382 return ips->gpu_turbo_enabled; 1383 } 1384 1385 void 1386 ips_link_to_i915_driver(void) 1387 { 1388 /* We can't cleanly get at the various ips_driver structs from 1389 * this caller (the i915 driver), so just set a flag saying 1390 * that it's time to try getting the symbols again. 1391 */ 1392 late_i915_load = true; 1393 } 1394 EXPORT_SYMBOL_GPL(ips_link_to_i915_driver); 1395 1396 static const struct pci_device_id ips_id_table[] = { 1397 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), }, 1398 { 0, } 1399 }; 1400 1401 MODULE_DEVICE_TABLE(pci, ips_id_table); 1402 1403 static int ips_blacklist_callback(const struct dmi_system_id *id) 1404 { 1405 pr_info("Blacklisted intel_ips for %s\n", id->ident); 1406 return 1; 1407 } 1408 1409 static const struct dmi_system_id ips_blacklist[] = { 1410 { 1411 .callback = ips_blacklist_callback, 1412 .ident = "HP ProBook", 1413 .matches = { 1414 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), 1415 DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"), 1416 }, 1417 }, 1418 { } /* terminating entry */ 1419 }; 1420 1421 static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id) 1422 { 1423 u64 platform_info; 1424 struct ips_driver *ips; 1425 u32 hts; 1426 int ret = 0; 1427 u16 htshi, trc, trc_required_mask; 1428 u8 tse; 1429 1430 if (dmi_check_system(ips_blacklist)) 1431 return -ENODEV; 1432 1433 ips = devm_kzalloc(&dev->dev, sizeof(*ips), GFP_KERNEL); 1434 if (!ips) 1435 return -ENOMEM; 1436 1437 spin_lock_init(&ips->turbo_status_lock); 1438 ips->dev = &dev->dev; 1439 1440 ips->limits = ips_detect_cpu(ips); 1441 if (!ips->limits) { 1442 dev_info(&dev->dev, "IPS not supported on this CPU\n"); 1443 return -ENXIO; 1444 } 1445 1446 ret = pcim_enable_device(dev); 1447 if (ret) { 1448 dev_err(&dev->dev, "can't enable PCI device, aborting\n"); 1449 return ret; 1450 } 1451 1452 ret = pcim_iomap_regions(dev, 1 << 0, pci_name(dev)); 1453 if (ret) { 1454 dev_err(&dev->dev, "failed to map thermal regs, aborting\n"); 1455 return ret; 1456 } 1457 ips->regmap = pcim_iomap_table(dev)[0]; 1458 1459 pci_set_drvdata(dev, ips); 1460 1461 tse = thm_readb(THM_TSE); 1462 if (tse != TSE_EN) { 1463 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse); 1464 return -ENXIO; 1465 } 1466 1467 trc = thm_readw(THM_TRC); 1468 trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN; 1469 if ((trc & trc_required_mask) != trc_required_mask) { 1470 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n"); 1471 return -ENXIO; 1472 } 1473 1474 if (trc & TRC_CORE2_EN) 1475 ips->second_cpu = true; 1476 1477 update_turbo_limits(ips); 1478 dev_dbg(&dev->dev, "max cpu power clamp: %dW\n", 1479 ips->mcp_power_limit / 10); 1480 dev_dbg(&dev->dev, "max core power clamp: %dW\n", 1481 ips->core_power_limit / 10); 1482 /* BIOS may update limits at runtime */ 1483 if (thm_readl(THM_PSC) & PSP_PBRT) 1484 ips->poll_turbo_status = true; 1485 1486 if (!ips_get_i915_syms(ips)) { 1487 dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n"); 1488 ips->gpu_turbo_enabled = false; 1489 } else { 1490 dev_dbg(&dev->dev, "graphics turbo enabled\n"); 1491 ips->gpu_turbo_enabled = true; 1492 } 1493 1494 /* 1495 * Check PLATFORM_INFO MSR to make sure this chip is 1496 * turbo capable. 1497 */ 1498 rdmsrl(PLATFORM_INFO, platform_info); 1499 if (!(platform_info & PLATFORM_TDP)) { 1500 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n"); 1501 return -ENODEV; 1502 } 1503 1504 /* 1505 * IRQ handler for ME interaction 1506 * Note: don't use MSI here as the PCH has bugs. 1507 */ 1508 ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_INTX); 1509 if (ret < 0) 1510 return ret; 1511 1512 ips->irq = pci_irq_vector(dev, 0); 1513 1514 ret = request_irq(ips->irq, ips_irq_handler, IRQF_SHARED, "ips", ips); 1515 if (ret) { 1516 dev_err(&dev->dev, "request irq failed, aborting\n"); 1517 return ret; 1518 } 1519 1520 /* Enable aux, hot & critical interrupts */ 1521 thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI | 1522 TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI); 1523 thm_writeb(THM_TEN, TEN_UPDATE_EN); 1524 1525 /* Collect adjustment values */ 1526 ips->cta_val = thm_readw(THM_CTA); 1527 ips->pta_val = thm_readw(THM_PTA); 1528 ips->mgta_val = thm_readw(THM_MGTA); 1529 1530 /* Save turbo limits & ratios */ 1531 rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); 1532 1533 ips_disable_cpu_turbo(ips); 1534 ips->cpu_turbo_enabled = false; 1535 1536 /* Create thermal adjust thread */ 1537 ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust"); 1538 if (IS_ERR(ips->adjust)) { 1539 dev_err(&dev->dev, 1540 "failed to create thermal adjust thread, aborting\n"); 1541 ret = -ENOMEM; 1542 goto error_free_irq; 1543 1544 } 1545 1546 /* 1547 * Set up the work queue and monitor thread. The monitor thread 1548 * will wake up ips_adjust thread. 1549 */ 1550 ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor"); 1551 if (IS_ERR(ips->monitor)) { 1552 dev_err(&dev->dev, 1553 "failed to create thermal monitor thread, aborting\n"); 1554 ret = -ENOMEM; 1555 goto error_thread_cleanup; 1556 } 1557 1558 hts = (ips->core_power_limit << HTS_PCPL_SHIFT) | 1559 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV; 1560 htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT; 1561 1562 thm_writew(THM_HTSHI, htshi); 1563 thm_writel(THM_HTS, hts); 1564 1565 ips_debugfs_init(ips); 1566 1567 dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n", 1568 ips->mcp_temp_limit); 1569 return ret; 1570 1571 error_thread_cleanup: 1572 kthread_stop(ips->adjust); 1573 error_free_irq: 1574 free_irq(ips->irq, ips); 1575 pci_free_irq_vectors(dev); 1576 return ret; 1577 } 1578 1579 static void ips_remove(struct pci_dev *dev) 1580 { 1581 struct ips_driver *ips = pci_get_drvdata(dev); 1582 u64 turbo_override; 1583 1584 ips_debugfs_cleanup(ips); 1585 1586 /* Release i915 driver */ 1587 if (ips->read_mch_val) 1588 symbol_put(i915_read_mch_val); 1589 if (ips->gpu_raise) 1590 symbol_put(i915_gpu_raise); 1591 if (ips->gpu_lower) 1592 symbol_put(i915_gpu_lower); 1593 if (ips->gpu_busy) 1594 symbol_put(i915_gpu_busy); 1595 if (ips->gpu_turbo_disable) 1596 symbol_put(i915_gpu_turbo_disable); 1597 1598 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1599 turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN); 1600 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override); 1601 wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit); 1602 1603 free_irq(ips->irq, ips); 1604 pci_free_irq_vectors(dev); 1605 if (ips->adjust) 1606 kthread_stop(ips->adjust); 1607 if (ips->monitor) 1608 kthread_stop(ips->monitor); 1609 dev_dbg(&dev->dev, "IPS driver removed\n"); 1610 } 1611 1612 static struct pci_driver ips_pci_driver = { 1613 .name = "intel ips", 1614 .id_table = ips_id_table, 1615 .probe = ips_probe, 1616 .remove = ips_remove, 1617 }; 1618 1619 module_pci_driver(ips_pci_driver); 1620 1621 MODULE_LICENSE("GPL v2"); 1622 MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>"); 1623 MODULE_DESCRIPTION("Intelligent Power Sharing Driver"); 1624