xref: /linux/drivers/platform/x86/intel/pmt/class.c (revision e30dca91e5667568a6be54886020c43f1f6f95d3)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Intel Platform Monitory Technology Telemetry driver
4   *
5   * Copyright (c) 2020, Intel Corporation.
6   * All Rights Reserved.
7   *
8   * Author: "Alexander Duyck" <alexander.h.duyck@linux.intel.com>
9   */
10  
11  #include <linux/kernel.h>
12  #include <linux/io-64-nonatomic-lo-hi.h>
13  #include <linux/module.h>
14  #include <linux/mm.h>
15  #include <linux/pci.h>
16  
17  #include "../vsec.h"
18  #include "class.h"
19  
20  #define PMT_XA_START		1
21  #define PMT_XA_MAX		INT_MAX
22  #define PMT_XA_LIMIT		XA_LIMIT(PMT_XA_START, PMT_XA_MAX)
23  #define GUID_SPR_PUNIT		0x9956f43f
24  
25  bool intel_pmt_is_early_client_hw(struct device *dev)
26  {
27  	struct intel_vsec_device *ivdev = dev_to_ivdev(dev);
28  
29  	/*
30  	 * Early implementations of PMT on client platforms have some
31  	 * differences from the server platforms (which use the Out Of Band
32  	 * Management Services Module OOBMSM).
33  	 */
34  	return !!(ivdev->quirks & VSEC_QUIRK_EARLY_HW);
35  }
36  EXPORT_SYMBOL_NS_GPL(intel_pmt_is_early_client_hw, INTEL_PMT);
37  
38  static inline int
39  pmt_memcpy64_fromio(void *to, const u64 __iomem *from, size_t count)
40  {
41  	int i, remain;
42  	u64 *buf = to;
43  
44  	if (!IS_ALIGNED((unsigned long)from, 8))
45  		return -EFAULT;
46  
47  	for (i = 0; i < count/8; i++)
48  		buf[i] = readq(&from[i]);
49  
50  	/* Copy any remaining bytes */
51  	remain = count % 8;
52  	if (remain) {
53  		u64 tmp = readq(&from[i]);
54  
55  		memcpy(&buf[i], &tmp, remain);
56  	}
57  
58  	return count;
59  }
60  
61  /*
62   * sysfs
63   */
64  static ssize_t
65  intel_pmt_read(struct file *filp, struct kobject *kobj,
66  	       struct bin_attribute *attr, char *buf, loff_t off,
67  	       size_t count)
68  {
69  	struct intel_pmt_entry *entry = container_of(attr,
70  						     struct intel_pmt_entry,
71  						     pmt_bin_attr);
72  
73  	if (off < 0)
74  		return -EINVAL;
75  
76  	if (off >= entry->size)
77  		return 0;
78  
79  	if (count > entry->size - off)
80  		count = entry->size - off;
81  
82  	if (entry->guid == GUID_SPR_PUNIT)
83  		/* PUNIT on SPR only supports aligned 64-bit read */
84  		count = pmt_memcpy64_fromio(buf, entry->base + off, count);
85  	else
86  		memcpy_fromio(buf, entry->base + off, count);
87  
88  	return count;
89  }
90  
91  static int
92  intel_pmt_mmap(struct file *filp, struct kobject *kobj,
93  		struct bin_attribute *attr, struct vm_area_struct *vma)
94  {
95  	struct intel_pmt_entry *entry = container_of(attr,
96  						     struct intel_pmt_entry,
97  						     pmt_bin_attr);
98  	unsigned long vsize = vma->vm_end - vma->vm_start;
99  	struct device *dev = kobj_to_dev(kobj);
100  	unsigned long phys = entry->base_addr;
101  	unsigned long pfn = PFN_DOWN(phys);
102  	unsigned long psize;
103  
104  	if (vma->vm_flags & (VM_WRITE | VM_MAYWRITE))
105  		return -EROFS;
106  
107  	psize = (PFN_UP(entry->base_addr + entry->size) - pfn) * PAGE_SIZE;
108  	if (vsize > psize) {
109  		dev_err(dev, "Requested mmap size is too large\n");
110  		return -EINVAL;
111  	}
112  
113  	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
114  	if (io_remap_pfn_range(vma, vma->vm_start, pfn,
115  		vsize, vma->vm_page_prot))
116  		return -EAGAIN;
117  
118  	return 0;
119  }
120  
121  static ssize_t
122  guid_show(struct device *dev, struct device_attribute *attr, char *buf)
123  {
124  	struct intel_pmt_entry *entry = dev_get_drvdata(dev);
125  
126  	return sprintf(buf, "0x%x\n", entry->guid);
127  }
128  static DEVICE_ATTR_RO(guid);
129  
130  static ssize_t size_show(struct device *dev, struct device_attribute *attr,
131  			 char *buf)
132  {
133  	struct intel_pmt_entry *entry = dev_get_drvdata(dev);
134  
135  	return sprintf(buf, "%zu\n", entry->size);
136  }
137  static DEVICE_ATTR_RO(size);
138  
139  static ssize_t
140  offset_show(struct device *dev, struct device_attribute *attr, char *buf)
141  {
142  	struct intel_pmt_entry *entry = dev_get_drvdata(dev);
143  
144  	return sprintf(buf, "%lu\n", offset_in_page(entry->base_addr));
145  }
146  static DEVICE_ATTR_RO(offset);
147  
148  static struct attribute *intel_pmt_attrs[] = {
149  	&dev_attr_guid.attr,
150  	&dev_attr_size.attr,
151  	&dev_attr_offset.attr,
152  	NULL
153  };
154  ATTRIBUTE_GROUPS(intel_pmt);
155  
156  static struct class intel_pmt_class = {
157  	.name = "intel_pmt",
158  	.dev_groups = intel_pmt_groups,
159  };
160  
161  static int intel_pmt_populate_entry(struct intel_pmt_entry *entry,
162  				    struct intel_vsec_device *ivdev,
163  				    struct resource *disc_res)
164  {
165  	struct pci_dev *pci_dev = ivdev->pcidev;
166  	struct device *dev = &ivdev->auxdev.dev;
167  	struct intel_pmt_header *header = &entry->header;
168  	u8 bir;
169  
170  	/*
171  	 * The base offset should always be 8 byte aligned.
172  	 *
173  	 * For non-local access types the lower 3 bits of base offset
174  	 * contains the index of the base address register where the
175  	 * telemetry can be found.
176  	 */
177  	bir = GET_BIR(header->base_offset);
178  
179  	/* Local access and BARID only for now */
180  	switch (header->access_type) {
181  	case ACCESS_LOCAL:
182  		if (bir) {
183  			dev_err(dev,
184  				"Unsupported BAR index %d for access type %d\n",
185  				bir, header->access_type);
186  			return -EINVAL;
187  		}
188  		/*
189  		 * For access_type LOCAL, the base address is as follows:
190  		 * base address = end of discovery region + base offset
191  		 */
192  		entry->base_addr = disc_res->end + 1 + header->base_offset;
193  
194  		/*
195  		 * Some hardware use a different calculation for the base address
196  		 * when access_type == ACCESS_LOCAL. On the these systems
197  		 * ACCCESS_LOCAL refers to an address in the same BAR as the
198  		 * header but at a fixed offset. But as the header address was
199  		 * supplied to the driver, we don't know which BAR it was in.
200  		 * So search for the bar whose range includes the header address.
201  		 */
202  		if (intel_pmt_is_early_client_hw(dev)) {
203  			int i;
204  
205  			entry->base_addr = 0;
206  			for (i = 0; i < 6; i++)
207  				if (disc_res->start >= pci_resource_start(pci_dev, i) &&
208  				   (disc_res->start <= pci_resource_end(pci_dev, i))) {
209  					entry->base_addr = pci_resource_start(pci_dev, i) +
210  							   header->base_offset;
211  					break;
212  				}
213  			if (!entry->base_addr)
214  				return -EINVAL;
215  		}
216  
217  		break;
218  	case ACCESS_BARID:
219  		/* Use the provided base address if it exists */
220  		if (ivdev->base_addr) {
221  			entry->base_addr = ivdev->base_addr +
222  				   GET_ADDRESS(header->base_offset);
223  			break;
224  		}
225  
226  		/*
227  		 * If another BAR was specified then the base offset
228  		 * represents the offset within that BAR. SO retrieve the
229  		 * address from the parent PCI device and add offset.
230  		 */
231  		entry->base_addr = pci_resource_start(pci_dev, bir) +
232  				   GET_ADDRESS(header->base_offset);
233  		break;
234  	default:
235  		dev_err(dev, "Unsupported access type %d\n",
236  			header->access_type);
237  		return -EINVAL;
238  	}
239  
240  	entry->guid = header->guid;
241  	entry->size = header->size;
242  
243  	return 0;
244  }
245  
246  static int intel_pmt_dev_register(struct intel_pmt_entry *entry,
247  				  struct intel_pmt_namespace *ns,
248  				  struct device *parent)
249  {
250  	struct intel_vsec_device *ivdev = dev_to_ivdev(parent);
251  	struct resource res = {0};
252  	struct device *dev;
253  	int ret;
254  
255  	ret = xa_alloc(ns->xa, &entry->devid, entry, PMT_XA_LIMIT, GFP_KERNEL);
256  	if (ret)
257  		return ret;
258  
259  	dev = device_create(&intel_pmt_class, parent, MKDEV(0, 0), entry,
260  			    "%s%d", ns->name, entry->devid);
261  
262  	if (IS_ERR(dev)) {
263  		dev_err(parent, "Could not create %s%d device node\n",
264  			ns->name, entry->devid);
265  		ret = PTR_ERR(dev);
266  		goto fail_dev_create;
267  	}
268  
269  	entry->kobj = &dev->kobj;
270  
271  	if (ns->attr_grp) {
272  		ret = sysfs_create_group(entry->kobj, ns->attr_grp);
273  		if (ret)
274  			goto fail_sysfs_create_group;
275  	}
276  
277  	/* if size is 0 assume no data buffer, so no file needed */
278  	if (!entry->size)
279  		return 0;
280  
281  	res.start = entry->base_addr;
282  	res.end = res.start + entry->size - 1;
283  	res.flags = IORESOURCE_MEM;
284  
285  	entry->base = devm_ioremap_resource(dev, &res);
286  	if (IS_ERR(entry->base)) {
287  		ret = PTR_ERR(entry->base);
288  		goto fail_ioremap;
289  	}
290  
291  	sysfs_bin_attr_init(&entry->pmt_bin_attr);
292  	entry->pmt_bin_attr.attr.name = ns->name;
293  	entry->pmt_bin_attr.attr.mode = 0440;
294  	entry->pmt_bin_attr.mmap = intel_pmt_mmap;
295  	entry->pmt_bin_attr.read = intel_pmt_read;
296  	entry->pmt_bin_attr.size = entry->size;
297  
298  	ret = sysfs_create_bin_file(&dev->kobj, &entry->pmt_bin_attr);
299  	if (ret)
300  		goto fail_ioremap;
301  
302  	if (ns->pmt_add_endpoint) {
303  		ret = ns->pmt_add_endpoint(entry, ivdev->pcidev);
304  		if (ret)
305  			goto fail_add_endpoint;
306  	}
307  
308  	return 0;
309  
310  fail_add_endpoint:
311  	sysfs_remove_bin_file(entry->kobj, &entry->pmt_bin_attr);
312  fail_ioremap:
313  	if (ns->attr_grp)
314  		sysfs_remove_group(entry->kobj, ns->attr_grp);
315  fail_sysfs_create_group:
316  	device_unregister(dev);
317  fail_dev_create:
318  	xa_erase(ns->xa, entry->devid);
319  
320  	return ret;
321  }
322  
323  int intel_pmt_dev_create(struct intel_pmt_entry *entry, struct intel_pmt_namespace *ns,
324  			 struct intel_vsec_device *intel_vsec_dev, int idx)
325  {
326  	struct device *dev = &intel_vsec_dev->auxdev.dev;
327  	struct resource	*disc_res;
328  	int ret;
329  
330  	disc_res = &intel_vsec_dev->resource[idx];
331  
332  	entry->disc_table = devm_ioremap_resource(dev, disc_res);
333  	if (IS_ERR(entry->disc_table))
334  		return PTR_ERR(entry->disc_table);
335  
336  	ret = ns->pmt_header_decode(entry, dev);
337  	if (ret)
338  		return ret;
339  
340  	ret = intel_pmt_populate_entry(entry, intel_vsec_dev, disc_res);
341  	if (ret)
342  		return ret;
343  
344  	return intel_pmt_dev_register(entry, ns, dev);
345  }
346  EXPORT_SYMBOL_NS_GPL(intel_pmt_dev_create, INTEL_PMT);
347  
348  void intel_pmt_dev_destroy(struct intel_pmt_entry *entry,
349  			   struct intel_pmt_namespace *ns)
350  {
351  	struct device *dev = kobj_to_dev(entry->kobj);
352  
353  	if (entry->size)
354  		sysfs_remove_bin_file(entry->kobj, &entry->pmt_bin_attr);
355  
356  	if (ns->attr_grp)
357  		sysfs_remove_group(entry->kobj, ns->attr_grp);
358  
359  	device_unregister(dev);
360  	xa_erase(ns->xa, entry->devid);
361  }
362  EXPORT_SYMBOL_NS_GPL(intel_pmt_dev_destroy, INTEL_PMT);
363  
364  static int __init pmt_class_init(void)
365  {
366  	return class_register(&intel_pmt_class);
367  }
368  
369  static void __exit pmt_class_exit(void)
370  {
371  	class_unregister(&intel_pmt_class);
372  }
373  
374  module_init(pmt_class_init);
375  module_exit(pmt_class_exit);
376  
377  MODULE_AUTHOR("Alexander Duyck <alexander.h.duyck@linux.intel.com>");
378  MODULE_DESCRIPTION("Intel PMT Class driver");
379  MODULE_LICENSE("GPL v2");
380