1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Intel Platform Monitory Technology Telemetry driver 4 * 5 * Copyright (c) 2020, Intel Corporation. 6 * All Rights Reserved. 7 * 8 * Author: "Alexander Duyck" <alexander.h.duyck@linux.intel.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/io-64-nonatomic-lo-hi.h> 13 #include <linux/module.h> 14 #include <linux/mm.h> 15 #include <linux/pci.h> 16 17 #include "../vsec.h" 18 #include "class.h" 19 20 #define PMT_XA_START 0 21 #define PMT_XA_MAX INT_MAX 22 #define PMT_XA_LIMIT XA_LIMIT(PMT_XA_START, PMT_XA_MAX) 23 #define GUID_SPR_PUNIT 0x9956f43f 24 25 bool intel_pmt_is_early_client_hw(struct device *dev) 26 { 27 struct intel_vsec_device *ivdev = dev_to_ivdev(dev); 28 29 /* 30 * Early implementations of PMT on client platforms have some 31 * differences from the server platforms (which use the Out Of Band 32 * Management Services Module OOBMSM). 33 */ 34 return !!(ivdev->info->quirks & VSEC_QUIRK_EARLY_HW); 35 } 36 EXPORT_SYMBOL_GPL(intel_pmt_is_early_client_hw); 37 38 static inline int 39 pmt_memcpy64_fromio(void *to, const u64 __iomem *from, size_t count) 40 { 41 int i, remain; 42 u64 *buf = to; 43 44 if (!IS_ALIGNED((unsigned long)from, 8)) 45 return -EFAULT; 46 47 for (i = 0; i < count/8; i++) 48 buf[i] = readq(&from[i]); 49 50 /* Copy any remaining bytes */ 51 remain = count % 8; 52 if (remain) { 53 u64 tmp = readq(&from[i]); 54 55 memcpy(&buf[i], &tmp, remain); 56 } 57 58 return count; 59 } 60 61 /* 62 * sysfs 63 */ 64 static ssize_t 65 intel_pmt_read(struct file *filp, struct kobject *kobj, 66 struct bin_attribute *attr, char *buf, loff_t off, 67 size_t count) 68 { 69 struct intel_pmt_entry *entry = container_of(attr, 70 struct intel_pmt_entry, 71 pmt_bin_attr); 72 73 if (off < 0) 74 return -EINVAL; 75 76 if (off >= entry->size) 77 return 0; 78 79 if (count > entry->size - off) 80 count = entry->size - off; 81 82 if (entry->guid == GUID_SPR_PUNIT) 83 /* PUNIT on SPR only supports aligned 64-bit read */ 84 count = pmt_memcpy64_fromio(buf, entry->base + off, count); 85 else 86 memcpy_fromio(buf, entry->base + off, count); 87 88 return count; 89 } 90 91 static int 92 intel_pmt_mmap(struct file *filp, struct kobject *kobj, 93 struct bin_attribute *attr, struct vm_area_struct *vma) 94 { 95 struct intel_pmt_entry *entry = container_of(attr, 96 struct intel_pmt_entry, 97 pmt_bin_attr); 98 unsigned long vsize = vma->vm_end - vma->vm_start; 99 struct device *dev = kobj_to_dev(kobj); 100 unsigned long phys = entry->base_addr; 101 unsigned long pfn = PFN_DOWN(phys); 102 unsigned long psize; 103 104 if (vma->vm_flags & (VM_WRITE | VM_MAYWRITE)) 105 return -EROFS; 106 107 psize = (PFN_UP(entry->base_addr + entry->size) - pfn) * PAGE_SIZE; 108 if (vsize > psize) { 109 dev_err(dev, "Requested mmap size is too large\n"); 110 return -EINVAL; 111 } 112 113 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 114 if (io_remap_pfn_range(vma, vma->vm_start, pfn, 115 vsize, vma->vm_page_prot)) 116 return -EAGAIN; 117 118 return 0; 119 } 120 121 static ssize_t 122 guid_show(struct device *dev, struct device_attribute *attr, char *buf) 123 { 124 struct intel_pmt_entry *entry = dev_get_drvdata(dev); 125 126 return sprintf(buf, "0x%x\n", entry->guid); 127 } 128 static DEVICE_ATTR_RO(guid); 129 130 static ssize_t size_show(struct device *dev, struct device_attribute *attr, 131 char *buf) 132 { 133 struct intel_pmt_entry *entry = dev_get_drvdata(dev); 134 135 return sprintf(buf, "%zu\n", entry->size); 136 } 137 static DEVICE_ATTR_RO(size); 138 139 static ssize_t 140 offset_show(struct device *dev, struct device_attribute *attr, char *buf) 141 { 142 struct intel_pmt_entry *entry = dev_get_drvdata(dev); 143 144 return sprintf(buf, "%lu\n", offset_in_page(entry->base_addr)); 145 } 146 static DEVICE_ATTR_RO(offset); 147 148 static struct attribute *intel_pmt_attrs[] = { 149 &dev_attr_guid.attr, 150 &dev_attr_size.attr, 151 &dev_attr_offset.attr, 152 NULL 153 }; 154 ATTRIBUTE_GROUPS(intel_pmt); 155 156 static struct class intel_pmt_class = { 157 .name = "intel_pmt", 158 .owner = THIS_MODULE, 159 .dev_groups = intel_pmt_groups, 160 }; 161 162 static int intel_pmt_populate_entry(struct intel_pmt_entry *entry, 163 struct intel_pmt_header *header, 164 struct device *dev, 165 struct resource *disc_res) 166 { 167 struct pci_dev *pci_dev = to_pci_dev(dev->parent); 168 u8 bir; 169 170 /* 171 * The base offset should always be 8 byte aligned. 172 * 173 * For non-local access types the lower 3 bits of base offset 174 * contains the index of the base address register where the 175 * telemetry can be found. 176 */ 177 bir = GET_BIR(header->base_offset); 178 179 /* Local access and BARID only for now */ 180 switch (header->access_type) { 181 case ACCESS_LOCAL: 182 if (bir) { 183 dev_err(dev, 184 "Unsupported BAR index %d for access type %d\n", 185 bir, header->access_type); 186 return -EINVAL; 187 } 188 /* 189 * For access_type LOCAL, the base address is as follows: 190 * base address = end of discovery region + base offset 191 */ 192 entry->base_addr = disc_res->end + 1 + header->base_offset; 193 194 /* 195 * Some hardware use a different calculation for the base address 196 * when access_type == ACCESS_LOCAL. On the these systems 197 * ACCCESS_LOCAL refers to an address in the same BAR as the 198 * header but at a fixed offset. But as the header address was 199 * supplied to the driver, we don't know which BAR it was in. 200 * So search for the bar whose range includes the header address. 201 */ 202 if (intel_pmt_is_early_client_hw(dev)) { 203 int i; 204 205 entry->base_addr = 0; 206 for (i = 0; i < 6; i++) 207 if (disc_res->start >= pci_resource_start(pci_dev, i) && 208 (disc_res->start <= pci_resource_end(pci_dev, i))) { 209 entry->base_addr = pci_resource_start(pci_dev, i) + 210 header->base_offset; 211 break; 212 } 213 if (!entry->base_addr) 214 return -EINVAL; 215 } 216 217 break; 218 case ACCESS_BARID: 219 /* 220 * If another BAR was specified then the base offset 221 * represents the offset within that BAR. SO retrieve the 222 * address from the parent PCI device and add offset. 223 */ 224 entry->base_addr = pci_resource_start(pci_dev, bir) + 225 GET_ADDRESS(header->base_offset); 226 break; 227 default: 228 dev_err(dev, "Unsupported access type %d\n", 229 header->access_type); 230 return -EINVAL; 231 } 232 233 entry->guid = header->guid; 234 entry->size = header->size; 235 236 return 0; 237 } 238 239 static int intel_pmt_dev_register(struct intel_pmt_entry *entry, 240 struct intel_pmt_namespace *ns, 241 struct device *parent) 242 { 243 struct resource res = {0}; 244 struct device *dev; 245 int ret; 246 247 ret = xa_alloc(ns->xa, &entry->devid, entry, PMT_XA_LIMIT, GFP_KERNEL); 248 if (ret) 249 return ret; 250 251 dev = device_create(&intel_pmt_class, parent, MKDEV(0, 0), entry, 252 "%s%d", ns->name, entry->devid); 253 254 if (IS_ERR(dev)) { 255 dev_err(parent, "Could not create %s%d device node\n", 256 ns->name, entry->devid); 257 ret = PTR_ERR(dev); 258 goto fail_dev_create; 259 } 260 261 entry->kobj = &dev->kobj; 262 263 if (ns->attr_grp) { 264 ret = sysfs_create_group(entry->kobj, ns->attr_grp); 265 if (ret) 266 goto fail_sysfs; 267 } 268 269 /* if size is 0 assume no data buffer, so no file needed */ 270 if (!entry->size) 271 return 0; 272 273 res.start = entry->base_addr; 274 res.end = res.start + entry->size - 1; 275 res.flags = IORESOURCE_MEM; 276 277 entry->base = devm_ioremap_resource(dev, &res); 278 if (IS_ERR(entry->base)) { 279 ret = PTR_ERR(entry->base); 280 goto fail_ioremap; 281 } 282 283 sysfs_bin_attr_init(&entry->pmt_bin_attr); 284 entry->pmt_bin_attr.attr.name = ns->name; 285 entry->pmt_bin_attr.attr.mode = 0440; 286 entry->pmt_bin_attr.mmap = intel_pmt_mmap; 287 entry->pmt_bin_attr.read = intel_pmt_read; 288 entry->pmt_bin_attr.size = entry->size; 289 290 ret = sysfs_create_bin_file(&dev->kobj, &entry->pmt_bin_attr); 291 if (!ret) 292 return 0; 293 294 fail_ioremap: 295 if (ns->attr_grp) 296 sysfs_remove_group(entry->kobj, ns->attr_grp); 297 fail_sysfs: 298 device_unregister(dev); 299 fail_dev_create: 300 xa_erase(ns->xa, entry->devid); 301 302 return ret; 303 } 304 305 int intel_pmt_dev_create(struct intel_pmt_entry *entry, struct intel_pmt_namespace *ns, 306 struct intel_vsec_device *intel_vsec_dev, int idx) 307 { 308 struct device *dev = &intel_vsec_dev->auxdev.dev; 309 struct intel_pmt_header header; 310 struct resource *disc_res; 311 int ret; 312 313 disc_res = &intel_vsec_dev->resource[idx]; 314 315 entry->disc_table = devm_ioremap_resource(dev, disc_res); 316 if (IS_ERR(entry->disc_table)) 317 return PTR_ERR(entry->disc_table); 318 319 ret = ns->pmt_header_decode(entry, &header, dev); 320 if (ret) 321 return ret; 322 323 ret = intel_pmt_populate_entry(entry, &header, dev, disc_res); 324 if (ret) 325 return ret; 326 327 return intel_pmt_dev_register(entry, ns, dev); 328 329 } 330 EXPORT_SYMBOL_GPL(intel_pmt_dev_create); 331 332 void intel_pmt_dev_destroy(struct intel_pmt_entry *entry, 333 struct intel_pmt_namespace *ns) 334 { 335 struct device *dev = kobj_to_dev(entry->kobj); 336 337 if (entry->size) 338 sysfs_remove_bin_file(entry->kobj, &entry->pmt_bin_attr); 339 340 if (ns->attr_grp) 341 sysfs_remove_group(entry->kobj, ns->attr_grp); 342 343 device_unregister(dev); 344 xa_erase(ns->xa, entry->devid); 345 } 346 EXPORT_SYMBOL_GPL(intel_pmt_dev_destroy); 347 348 static int __init pmt_class_init(void) 349 { 350 return class_register(&intel_pmt_class); 351 } 352 353 static void __exit pmt_class_exit(void) 354 { 355 class_unregister(&intel_pmt_class); 356 } 357 358 module_init(pmt_class_init); 359 module_exit(pmt_class_exit); 360 361 MODULE_AUTHOR("Alexander Duyck <alexander.h.duyck@linux.intel.com>"); 362 MODULE_DESCRIPTION("Intel PMT Class driver"); 363 MODULE_LICENSE("GPL v2"); 364