xref: /linux/drivers/platform/x86/intel/pmt/class.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Intel Platform Monitory Technology Telemetry driver
4  *
5  * Copyright (c) 2020, Intel Corporation.
6  * All Rights Reserved.
7  *
8  * Author: "Alexander Duyck" <alexander.h.duyck@linux.intel.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/intel_vsec.h>
13 #include <linux/io-64-nonatomic-lo-hi.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/pci.h>
17 
18 #include "class.h"
19 
20 #define PMT_XA_START		1
21 #define PMT_XA_MAX		INT_MAX
22 #define PMT_XA_LIMIT		XA_LIMIT(PMT_XA_START, PMT_XA_MAX)
23 #define GUID_SPR_PUNIT		0x9956f43f
24 
25 bool intel_pmt_is_early_client_hw(struct device *dev)
26 {
27 	struct intel_vsec_device *ivdev = dev_to_ivdev(dev);
28 
29 	/*
30 	 * Early implementations of PMT on client platforms have some
31 	 * differences from the server platforms (which use the Out Of Band
32 	 * Management Services Module OOBMSM).
33 	 */
34 	return !!(ivdev->quirks & VSEC_QUIRK_EARLY_HW);
35 }
36 EXPORT_SYMBOL_NS_GPL(intel_pmt_is_early_client_hw, INTEL_PMT);
37 
38 static inline int
39 pmt_memcpy64_fromio(void *to, const u64 __iomem *from, size_t count)
40 {
41 	int i, remain;
42 	u64 *buf = to;
43 
44 	if (!IS_ALIGNED((unsigned long)from, 8))
45 		return -EFAULT;
46 
47 	for (i = 0; i < count/8; i++)
48 		buf[i] = readq(&from[i]);
49 
50 	/* Copy any remaining bytes */
51 	remain = count % 8;
52 	if (remain) {
53 		u64 tmp = readq(&from[i]);
54 
55 		memcpy(&buf[i], &tmp, remain);
56 	}
57 
58 	return count;
59 }
60 
61 int pmt_telem_read_mmio(struct pci_dev *pdev, struct pmt_callbacks *cb, u32 guid, void *buf,
62 			void __iomem *addr, u32 count)
63 {
64 	if (cb && cb->read_telem)
65 		return cb->read_telem(pdev, guid, buf, count);
66 
67 	if (guid == GUID_SPR_PUNIT)
68 		/* PUNIT on SPR only supports aligned 64-bit read */
69 		return pmt_memcpy64_fromio(buf, addr, count);
70 
71 	memcpy_fromio(buf, addr, count);
72 
73 	return count;
74 }
75 EXPORT_SYMBOL_NS_GPL(pmt_telem_read_mmio, INTEL_PMT);
76 
77 /*
78  * sysfs
79  */
80 static ssize_t
81 intel_pmt_read(struct file *filp, struct kobject *kobj,
82 	       struct bin_attribute *attr, char *buf, loff_t off,
83 	       size_t count)
84 {
85 	struct intel_pmt_entry *entry = container_of(attr,
86 						     struct intel_pmt_entry,
87 						     pmt_bin_attr);
88 
89 	if (off < 0)
90 		return -EINVAL;
91 
92 	if (off >= entry->size)
93 		return 0;
94 
95 	if (count > entry->size - off)
96 		count = entry->size - off;
97 
98 	count = pmt_telem_read_mmio(entry->ep->pcidev, entry->cb, entry->header.guid, buf,
99 				    entry->base + off, count);
100 
101 	return count;
102 }
103 
104 static int
105 intel_pmt_mmap(struct file *filp, struct kobject *kobj,
106 		struct bin_attribute *attr, struct vm_area_struct *vma)
107 {
108 	struct intel_pmt_entry *entry = container_of(attr,
109 						     struct intel_pmt_entry,
110 						     pmt_bin_attr);
111 	unsigned long vsize = vma->vm_end - vma->vm_start;
112 	struct device *dev = kobj_to_dev(kobj);
113 	unsigned long phys = entry->base_addr;
114 	unsigned long pfn = PFN_DOWN(phys);
115 	unsigned long psize;
116 
117 	if (vma->vm_flags & (VM_WRITE | VM_MAYWRITE))
118 		return -EROFS;
119 
120 	psize = (PFN_UP(entry->base_addr + entry->size) - pfn) * PAGE_SIZE;
121 	if (vsize > psize) {
122 		dev_err(dev, "Requested mmap size is too large\n");
123 		return -EINVAL;
124 	}
125 
126 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
127 	if (io_remap_pfn_range(vma, vma->vm_start, pfn,
128 		vsize, vma->vm_page_prot))
129 		return -EAGAIN;
130 
131 	return 0;
132 }
133 
134 static ssize_t
135 guid_show(struct device *dev, struct device_attribute *attr, char *buf)
136 {
137 	struct intel_pmt_entry *entry = dev_get_drvdata(dev);
138 
139 	return sprintf(buf, "0x%x\n", entry->guid);
140 }
141 static DEVICE_ATTR_RO(guid);
142 
143 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
144 			 char *buf)
145 {
146 	struct intel_pmt_entry *entry = dev_get_drvdata(dev);
147 
148 	return sprintf(buf, "%zu\n", entry->size);
149 }
150 static DEVICE_ATTR_RO(size);
151 
152 static ssize_t
153 offset_show(struct device *dev, struct device_attribute *attr, char *buf)
154 {
155 	struct intel_pmt_entry *entry = dev_get_drvdata(dev);
156 
157 	return sprintf(buf, "%lu\n", offset_in_page(entry->base_addr));
158 }
159 static DEVICE_ATTR_RO(offset);
160 
161 static struct attribute *intel_pmt_attrs[] = {
162 	&dev_attr_guid.attr,
163 	&dev_attr_size.attr,
164 	&dev_attr_offset.attr,
165 	NULL
166 };
167 ATTRIBUTE_GROUPS(intel_pmt);
168 
169 static struct class intel_pmt_class = {
170 	.name = "intel_pmt",
171 	.dev_groups = intel_pmt_groups,
172 };
173 
174 static int intel_pmt_populate_entry(struct intel_pmt_entry *entry,
175 				    struct intel_vsec_device *ivdev,
176 				    struct resource *disc_res)
177 {
178 	struct pci_dev *pci_dev = ivdev->pcidev;
179 	struct device *dev = &ivdev->auxdev.dev;
180 	struct intel_pmt_header *header = &entry->header;
181 	u8 bir;
182 
183 	/*
184 	 * The base offset should always be 8 byte aligned.
185 	 *
186 	 * For non-local access types the lower 3 bits of base offset
187 	 * contains the index of the base address register where the
188 	 * telemetry can be found.
189 	 */
190 	bir = GET_BIR(header->base_offset);
191 
192 	/* Local access and BARID only for now */
193 	switch (header->access_type) {
194 	case ACCESS_LOCAL:
195 		if (bir) {
196 			dev_err(dev,
197 				"Unsupported BAR index %d for access type %d\n",
198 				bir, header->access_type);
199 			return -EINVAL;
200 		}
201 		/*
202 		 * For access_type LOCAL, the base address is as follows:
203 		 * base address = end of discovery region + base offset
204 		 */
205 		entry->base_addr = disc_res->end + 1 + header->base_offset;
206 
207 		/*
208 		 * Some hardware use a different calculation for the base address
209 		 * when access_type == ACCESS_LOCAL. On the these systems
210 		 * ACCCESS_LOCAL refers to an address in the same BAR as the
211 		 * header but at a fixed offset. But as the header address was
212 		 * supplied to the driver, we don't know which BAR it was in.
213 		 * So search for the bar whose range includes the header address.
214 		 */
215 		if (intel_pmt_is_early_client_hw(dev)) {
216 			int i;
217 
218 			entry->base_addr = 0;
219 			for (i = 0; i < 6; i++)
220 				if (disc_res->start >= pci_resource_start(pci_dev, i) &&
221 				   (disc_res->start <= pci_resource_end(pci_dev, i))) {
222 					entry->base_addr = pci_resource_start(pci_dev, i) +
223 							   header->base_offset;
224 					break;
225 				}
226 			if (!entry->base_addr)
227 				return -EINVAL;
228 		}
229 
230 		break;
231 	case ACCESS_BARID:
232 		/* Use the provided base address if it exists */
233 		if (ivdev->base_addr) {
234 			entry->base_addr = ivdev->base_addr +
235 				   GET_ADDRESS(header->base_offset);
236 			break;
237 		}
238 
239 		/*
240 		 * If another BAR was specified then the base offset
241 		 * represents the offset within that BAR. SO retrieve the
242 		 * address from the parent PCI device and add offset.
243 		 */
244 		entry->base_addr = pci_resource_start(pci_dev, bir) +
245 				   GET_ADDRESS(header->base_offset);
246 		break;
247 	default:
248 		dev_err(dev, "Unsupported access type %d\n",
249 			header->access_type);
250 		return -EINVAL;
251 	}
252 
253 	entry->guid = header->guid;
254 	entry->size = header->size;
255 	entry->cb = ivdev->priv_data;
256 
257 	return 0;
258 }
259 
260 static int intel_pmt_dev_register(struct intel_pmt_entry *entry,
261 				  struct intel_pmt_namespace *ns,
262 				  struct device *parent)
263 {
264 	struct intel_vsec_device *ivdev = dev_to_ivdev(parent);
265 	struct resource res = {0};
266 	struct device *dev;
267 	int ret;
268 
269 	ret = xa_alloc(ns->xa, &entry->devid, entry, PMT_XA_LIMIT, GFP_KERNEL);
270 	if (ret)
271 		return ret;
272 
273 	dev = device_create(&intel_pmt_class, parent, MKDEV(0, 0), entry,
274 			    "%s%d", ns->name, entry->devid);
275 
276 	if (IS_ERR(dev)) {
277 		dev_err(parent, "Could not create %s%d device node\n",
278 			ns->name, entry->devid);
279 		ret = PTR_ERR(dev);
280 		goto fail_dev_create;
281 	}
282 
283 	entry->kobj = &dev->kobj;
284 
285 	if (ns->attr_grp) {
286 		ret = sysfs_create_group(entry->kobj, ns->attr_grp);
287 		if (ret)
288 			goto fail_sysfs_create_group;
289 	}
290 
291 	/* if size is 0 assume no data buffer, so no file needed */
292 	if (!entry->size)
293 		return 0;
294 
295 	res.start = entry->base_addr;
296 	res.end = res.start + entry->size - 1;
297 	res.flags = IORESOURCE_MEM;
298 
299 	entry->base = devm_ioremap_resource(dev, &res);
300 	if (IS_ERR(entry->base)) {
301 		ret = PTR_ERR(entry->base);
302 		goto fail_ioremap;
303 	}
304 
305 	sysfs_bin_attr_init(&entry->pmt_bin_attr);
306 	entry->pmt_bin_attr.attr.name = ns->name;
307 	entry->pmt_bin_attr.attr.mode = 0440;
308 	entry->pmt_bin_attr.mmap = intel_pmt_mmap;
309 	entry->pmt_bin_attr.read = intel_pmt_read;
310 	entry->pmt_bin_attr.size = entry->size;
311 
312 	ret = sysfs_create_bin_file(&dev->kobj, &entry->pmt_bin_attr);
313 	if (ret)
314 		goto fail_ioremap;
315 
316 	if (ns->pmt_add_endpoint) {
317 		ret = ns->pmt_add_endpoint(ivdev, entry);
318 		if (ret)
319 			goto fail_add_endpoint;
320 	}
321 
322 	return 0;
323 
324 fail_add_endpoint:
325 	sysfs_remove_bin_file(entry->kobj, &entry->pmt_bin_attr);
326 fail_ioremap:
327 	if (ns->attr_grp)
328 		sysfs_remove_group(entry->kobj, ns->attr_grp);
329 fail_sysfs_create_group:
330 	device_unregister(dev);
331 fail_dev_create:
332 	xa_erase(ns->xa, entry->devid);
333 
334 	return ret;
335 }
336 
337 int intel_pmt_dev_create(struct intel_pmt_entry *entry, struct intel_pmt_namespace *ns,
338 			 struct intel_vsec_device *intel_vsec_dev, int idx)
339 {
340 	struct device *dev = &intel_vsec_dev->auxdev.dev;
341 	struct resource	*disc_res;
342 	int ret;
343 
344 	disc_res = &intel_vsec_dev->resource[idx];
345 
346 	entry->disc_table = devm_ioremap_resource(dev, disc_res);
347 	if (IS_ERR(entry->disc_table))
348 		return PTR_ERR(entry->disc_table);
349 
350 	ret = ns->pmt_header_decode(entry, dev);
351 	if (ret)
352 		return ret;
353 
354 	ret = intel_pmt_populate_entry(entry, intel_vsec_dev, disc_res);
355 	if (ret)
356 		return ret;
357 
358 	return intel_pmt_dev_register(entry, ns, dev);
359 }
360 EXPORT_SYMBOL_NS_GPL(intel_pmt_dev_create, INTEL_PMT);
361 
362 void intel_pmt_dev_destroy(struct intel_pmt_entry *entry,
363 			   struct intel_pmt_namespace *ns)
364 {
365 	struct device *dev = kobj_to_dev(entry->kobj);
366 
367 	if (entry->size)
368 		sysfs_remove_bin_file(entry->kobj, &entry->pmt_bin_attr);
369 
370 	if (ns->attr_grp)
371 		sysfs_remove_group(entry->kobj, ns->attr_grp);
372 
373 	device_unregister(dev);
374 	xa_erase(ns->xa, entry->devid);
375 }
376 EXPORT_SYMBOL_NS_GPL(intel_pmt_dev_destroy, INTEL_PMT);
377 
378 static int __init pmt_class_init(void)
379 {
380 	return class_register(&intel_pmt_class);
381 }
382 
383 static void __exit pmt_class_exit(void)
384 {
385 	class_unregister(&intel_pmt_class);
386 }
387 
388 module_init(pmt_class_init);
389 module_exit(pmt_class_exit);
390 
391 MODULE_AUTHOR("Alexander Duyck <alexander.h.duyck@linux.intel.com>");
392 MODULE_DESCRIPTION("Intel PMT Class driver");
393 MODULE_LICENSE("GPL v2");
394