xref: /linux/drivers/platform/x86/dell/dcdbas.c (revision 3e0bc2855b573bcffa2a52955a878f537f5ac0cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  dcdbas.c: Dell Systems Management Base Driver
4  *
5  *  The Dell Systems Management Base Driver provides a sysfs interface for
6  *  systems management software to perform System Management Interrupts (SMIs)
7  *  and Host Control Actions (power cycle or power off after OS shutdown) on
8  *  Dell systems.
9  *
10  *  See Documentation/userspace-api/dcdbas.rst for more information.
11  *
12  *  Copyright (C) 1995-2006 Dell Inc.
13  */
14 
15 #include <linux/platform_device.h>
16 #include <linux/acpi.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmi.h>
19 #include <linux/errno.h>
20 #include <linux/cpu.h>
21 #include <linux/gfp.h>
22 #include <linux/init.h>
23 #include <linux/io.h>
24 #include <linux/kernel.h>
25 #include <linux/mc146818rtc.h>
26 #include <linux/module.h>
27 #include <linux/reboot.h>
28 #include <linux/sched.h>
29 #include <linux/smp.h>
30 #include <linux/spinlock.h>
31 #include <linux/string.h>
32 #include <linux/types.h>
33 #include <linux/mutex.h>
34 
35 #include "dcdbas.h"
36 
37 #define DRIVER_NAME		"dcdbas"
38 #define DRIVER_VERSION		"5.6.0-3.4"
39 #define DRIVER_DESCRIPTION	"Dell Systems Management Base Driver"
40 
41 static struct platform_device *dcdbas_pdev;
42 
43 static unsigned long max_smi_data_buf_size = MAX_SMI_DATA_BUF_SIZE;
44 static DEFINE_MUTEX(smi_data_lock);
45 static u8 *bios_buffer;
46 static struct smi_buffer smi_buf;
47 
48 static unsigned int host_control_action;
49 static unsigned int host_control_smi_type;
50 static unsigned int host_control_on_shutdown;
51 
52 static bool wsmt_enabled;
53 
54 int dcdbas_smi_alloc(struct smi_buffer *smi_buffer, unsigned long size)
55 {
56 	smi_buffer->virt = dma_alloc_coherent(&dcdbas_pdev->dev, size,
57 					      &smi_buffer->dma, GFP_KERNEL);
58 	if (!smi_buffer->virt) {
59 		dev_dbg(&dcdbas_pdev->dev,
60 			"%s: failed to allocate memory size %lu\n",
61 			__func__, size);
62 		return -ENOMEM;
63 	}
64 	smi_buffer->size = size;
65 
66 	dev_dbg(&dcdbas_pdev->dev, "%s: phys: %x size: %lu\n",
67 		__func__, (u32)smi_buffer->dma, smi_buffer->size);
68 
69 	return 0;
70 }
71 EXPORT_SYMBOL_GPL(dcdbas_smi_alloc);
72 
73 void dcdbas_smi_free(struct smi_buffer *smi_buffer)
74 {
75 	if (!smi_buffer->virt)
76 		return;
77 
78 	dev_dbg(&dcdbas_pdev->dev, "%s: phys: %x size: %lu\n",
79 		__func__, (u32)smi_buffer->dma, smi_buffer->size);
80 	dma_free_coherent(&dcdbas_pdev->dev, smi_buffer->size,
81 			  smi_buffer->virt, smi_buffer->dma);
82 	smi_buffer->virt = NULL;
83 	smi_buffer->dma = 0;
84 	smi_buffer->size = 0;
85 }
86 EXPORT_SYMBOL_GPL(dcdbas_smi_free);
87 
88 /**
89  * smi_data_buf_free: free SMI data buffer
90  */
91 static void smi_data_buf_free(void)
92 {
93 	if (!smi_buf.virt || wsmt_enabled)
94 		return;
95 
96 	dcdbas_smi_free(&smi_buf);
97 }
98 
99 /**
100  * smi_data_buf_realloc: grow SMI data buffer if needed
101  */
102 static int smi_data_buf_realloc(unsigned long size)
103 {
104 	struct smi_buffer tmp;
105 	int ret;
106 
107 	if (smi_buf.size >= size)
108 		return 0;
109 
110 	if (size > max_smi_data_buf_size)
111 		return -EINVAL;
112 
113 	/* new buffer is needed */
114 	ret = dcdbas_smi_alloc(&tmp, size);
115 	if (ret)
116 		return ret;
117 
118 	/* memory zeroed by dma_alloc_coherent */
119 	if (smi_buf.virt)
120 		memcpy(tmp.virt, smi_buf.virt, smi_buf.size);
121 
122 	/* free any existing buffer */
123 	smi_data_buf_free();
124 
125 	/* set up new buffer for use */
126 	smi_buf = tmp;
127 
128 	return 0;
129 }
130 
131 static ssize_t smi_data_buf_phys_addr_show(struct device *dev,
132 					   struct device_attribute *attr,
133 					   char *buf)
134 {
135 	return sprintf(buf, "%x\n", (u32)smi_buf.dma);
136 }
137 
138 static ssize_t smi_data_buf_size_show(struct device *dev,
139 				      struct device_attribute *attr,
140 				      char *buf)
141 {
142 	return sprintf(buf, "%lu\n", smi_buf.size);
143 }
144 
145 static ssize_t smi_data_buf_size_store(struct device *dev,
146 				       struct device_attribute *attr,
147 				       const char *buf, size_t count)
148 {
149 	unsigned long buf_size;
150 	ssize_t ret;
151 
152 	buf_size = simple_strtoul(buf, NULL, 10);
153 
154 	/* make sure SMI data buffer is at least buf_size */
155 	mutex_lock(&smi_data_lock);
156 	ret = smi_data_buf_realloc(buf_size);
157 	mutex_unlock(&smi_data_lock);
158 	if (ret)
159 		return ret;
160 
161 	return count;
162 }
163 
164 static ssize_t smi_data_read(struct file *filp, struct kobject *kobj,
165 			     struct bin_attribute *bin_attr,
166 			     char *buf, loff_t pos, size_t count)
167 {
168 	ssize_t ret;
169 
170 	mutex_lock(&smi_data_lock);
171 	ret = memory_read_from_buffer(buf, count, &pos, smi_buf.virt,
172 					smi_buf.size);
173 	mutex_unlock(&smi_data_lock);
174 	return ret;
175 }
176 
177 static ssize_t smi_data_write(struct file *filp, struct kobject *kobj,
178 			      struct bin_attribute *bin_attr,
179 			      char *buf, loff_t pos, size_t count)
180 {
181 	ssize_t ret;
182 
183 	if ((pos + count) > max_smi_data_buf_size)
184 		return -EINVAL;
185 
186 	mutex_lock(&smi_data_lock);
187 
188 	ret = smi_data_buf_realloc(pos + count);
189 	if (ret)
190 		goto out;
191 
192 	memcpy(smi_buf.virt + pos, buf, count);
193 	ret = count;
194 out:
195 	mutex_unlock(&smi_data_lock);
196 	return ret;
197 }
198 
199 static ssize_t host_control_action_show(struct device *dev,
200 					struct device_attribute *attr,
201 					char *buf)
202 {
203 	return sprintf(buf, "%u\n", host_control_action);
204 }
205 
206 static ssize_t host_control_action_store(struct device *dev,
207 					 struct device_attribute *attr,
208 					 const char *buf, size_t count)
209 {
210 	ssize_t ret;
211 
212 	/* make sure buffer is available for host control command */
213 	mutex_lock(&smi_data_lock);
214 	ret = smi_data_buf_realloc(sizeof(struct apm_cmd));
215 	mutex_unlock(&smi_data_lock);
216 	if (ret)
217 		return ret;
218 
219 	host_control_action = simple_strtoul(buf, NULL, 10);
220 	return count;
221 }
222 
223 static ssize_t host_control_smi_type_show(struct device *dev,
224 					  struct device_attribute *attr,
225 					  char *buf)
226 {
227 	return sprintf(buf, "%u\n", host_control_smi_type);
228 }
229 
230 static ssize_t host_control_smi_type_store(struct device *dev,
231 					   struct device_attribute *attr,
232 					   const char *buf, size_t count)
233 {
234 	host_control_smi_type = simple_strtoul(buf, NULL, 10);
235 	return count;
236 }
237 
238 static ssize_t host_control_on_shutdown_show(struct device *dev,
239 					     struct device_attribute *attr,
240 					     char *buf)
241 {
242 	return sprintf(buf, "%u\n", host_control_on_shutdown);
243 }
244 
245 static ssize_t host_control_on_shutdown_store(struct device *dev,
246 					      struct device_attribute *attr,
247 					      const char *buf, size_t count)
248 {
249 	host_control_on_shutdown = simple_strtoul(buf, NULL, 10);
250 	return count;
251 }
252 
253 static int raise_smi(void *par)
254 {
255 	struct smi_cmd *smi_cmd = par;
256 
257 	if (smp_processor_id() != 0) {
258 		dev_dbg(&dcdbas_pdev->dev, "%s: failed to get CPU 0\n",
259 			__func__);
260 		return -EBUSY;
261 	}
262 
263 	/* generate SMI */
264 	/* inb to force posted write through and make SMI happen now */
265 	asm volatile (
266 		"outb %b0,%w1\n"
267 		"inb %w1"
268 		: /* no output args */
269 		: "a" (smi_cmd->command_code),
270 		  "d" (smi_cmd->command_address),
271 		  "b" (smi_cmd->ebx),
272 		  "c" (smi_cmd->ecx)
273 		: "memory"
274 	);
275 
276 	return 0;
277 }
278 /**
279  * dcdbas_smi_request: generate SMI request
280  *
281  * Called with smi_data_lock.
282  */
283 int dcdbas_smi_request(struct smi_cmd *smi_cmd)
284 {
285 	int ret;
286 
287 	if (smi_cmd->magic != SMI_CMD_MAGIC) {
288 		dev_info(&dcdbas_pdev->dev, "%s: invalid magic value\n",
289 			 __func__);
290 		return -EBADR;
291 	}
292 
293 	/* SMI requires CPU 0 */
294 	cpus_read_lock();
295 	ret = smp_call_on_cpu(0, raise_smi, smi_cmd, true);
296 	cpus_read_unlock();
297 
298 	return ret;
299 }
300 EXPORT_SYMBOL(dcdbas_smi_request);
301 
302 /**
303  * smi_request_store:
304  *
305  * The valid values are:
306  * 0: zero SMI data buffer
307  * 1: generate calling interface SMI
308  * 2: generate raw SMI
309  *
310  * User application writes smi_cmd to smi_data before telling driver
311  * to generate SMI.
312  */
313 static ssize_t smi_request_store(struct device *dev,
314 				 struct device_attribute *attr,
315 				 const char *buf, size_t count)
316 {
317 	struct smi_cmd *smi_cmd;
318 	unsigned long val = simple_strtoul(buf, NULL, 10);
319 	ssize_t ret;
320 
321 	mutex_lock(&smi_data_lock);
322 
323 	if (smi_buf.size < sizeof(struct smi_cmd)) {
324 		ret = -ENODEV;
325 		goto out;
326 	}
327 	smi_cmd = (struct smi_cmd *)smi_buf.virt;
328 
329 	switch (val) {
330 	case 2:
331 		/* Raw SMI */
332 		ret = dcdbas_smi_request(smi_cmd);
333 		if (!ret)
334 			ret = count;
335 		break;
336 	case 1:
337 		/*
338 		 * Calling Interface SMI
339 		 *
340 		 * Provide physical address of command buffer field within
341 		 * the struct smi_cmd to BIOS.
342 		 *
343 		 * Because the address that smi_cmd (smi_buf.virt) points to
344 		 * will be from memremap() of a non-memory address if WSMT
345 		 * is present, we can't use virt_to_phys() on smi_cmd, so
346 		 * we have to use the physical address that was saved when
347 		 * the virtual address for smi_cmd was received.
348 		 */
349 		smi_cmd->ebx = (u32)smi_buf.dma +
350 				offsetof(struct smi_cmd, command_buffer);
351 		ret = dcdbas_smi_request(smi_cmd);
352 		if (!ret)
353 			ret = count;
354 		break;
355 	case 0:
356 		memset(smi_buf.virt, 0, smi_buf.size);
357 		ret = count;
358 		break;
359 	default:
360 		ret = -EINVAL;
361 		break;
362 	}
363 
364 out:
365 	mutex_unlock(&smi_data_lock);
366 	return ret;
367 }
368 
369 /**
370  * host_control_smi: generate host control SMI
371  *
372  * Caller must set up the host control command in smi_buf.virt.
373  */
374 static int host_control_smi(void)
375 {
376 	struct apm_cmd *apm_cmd;
377 	u8 *data;
378 	unsigned long flags;
379 	u32 num_ticks;
380 	s8 cmd_status;
381 	u8 index;
382 
383 	apm_cmd = (struct apm_cmd *)smi_buf.virt;
384 	apm_cmd->status = ESM_STATUS_CMD_UNSUCCESSFUL;
385 
386 	switch (host_control_smi_type) {
387 	case HC_SMITYPE_TYPE1:
388 		spin_lock_irqsave(&rtc_lock, flags);
389 		/* write SMI data buffer physical address */
390 		data = (u8 *)&smi_buf.dma;
391 		for (index = PE1300_CMOS_CMD_STRUCT_PTR;
392 		     index < (PE1300_CMOS_CMD_STRUCT_PTR + 4);
393 		     index++, data++) {
394 			outb(index,
395 			     (CMOS_BASE_PORT + CMOS_PAGE2_INDEX_PORT_PIIX4));
396 			outb(*data,
397 			     (CMOS_BASE_PORT + CMOS_PAGE2_DATA_PORT_PIIX4));
398 		}
399 
400 		/* first set status to -1 as called by spec */
401 		cmd_status = ESM_STATUS_CMD_UNSUCCESSFUL;
402 		outb((u8) cmd_status, PCAT_APM_STATUS_PORT);
403 
404 		/* generate SMM call */
405 		outb(ESM_APM_CMD, PCAT_APM_CONTROL_PORT);
406 		spin_unlock_irqrestore(&rtc_lock, flags);
407 
408 		/* wait a few to see if it executed */
409 		num_ticks = TIMEOUT_USEC_SHORT_SEMA_BLOCKING;
410 		while ((s8)inb(PCAT_APM_STATUS_PORT) == ESM_STATUS_CMD_UNSUCCESSFUL) {
411 			num_ticks--;
412 			if (num_ticks == EXPIRED_TIMER)
413 				return -ETIME;
414 		}
415 		break;
416 
417 	case HC_SMITYPE_TYPE2:
418 	case HC_SMITYPE_TYPE3:
419 		spin_lock_irqsave(&rtc_lock, flags);
420 		/* write SMI data buffer physical address */
421 		data = (u8 *)&smi_buf.dma;
422 		for (index = PE1400_CMOS_CMD_STRUCT_PTR;
423 		     index < (PE1400_CMOS_CMD_STRUCT_PTR + 4);
424 		     index++, data++) {
425 			outb(index, (CMOS_BASE_PORT + CMOS_PAGE1_INDEX_PORT));
426 			outb(*data, (CMOS_BASE_PORT + CMOS_PAGE1_DATA_PORT));
427 		}
428 
429 		/* generate SMM call */
430 		if (host_control_smi_type == HC_SMITYPE_TYPE3)
431 			outb(ESM_APM_CMD, PCAT_APM_CONTROL_PORT);
432 		else
433 			outb(ESM_APM_CMD, PE1400_APM_CONTROL_PORT);
434 
435 		/* restore RTC index pointer since it was written to above */
436 		CMOS_READ(RTC_REG_C);
437 		spin_unlock_irqrestore(&rtc_lock, flags);
438 
439 		/* read control port back to serialize write */
440 		cmd_status = inb(PE1400_APM_CONTROL_PORT);
441 
442 		/* wait a few to see if it executed */
443 		num_ticks = TIMEOUT_USEC_SHORT_SEMA_BLOCKING;
444 		while (apm_cmd->status == ESM_STATUS_CMD_UNSUCCESSFUL) {
445 			num_ticks--;
446 			if (num_ticks == EXPIRED_TIMER)
447 				return -ETIME;
448 		}
449 		break;
450 
451 	default:
452 		dev_dbg(&dcdbas_pdev->dev, "%s: invalid SMI type %u\n",
453 			__func__, host_control_smi_type);
454 		return -ENOSYS;
455 	}
456 
457 	return 0;
458 }
459 
460 /**
461  * dcdbas_host_control: initiate host control
462  *
463  * This function is called by the driver after the system has
464  * finished shutting down if the user application specified a
465  * host control action to perform on shutdown.  It is safe to
466  * use smi_buf.virt at this point because the system has finished
467  * shutting down and no userspace apps are running.
468  */
469 static void dcdbas_host_control(void)
470 {
471 	struct apm_cmd *apm_cmd;
472 	u8 action;
473 
474 	if (host_control_action == HC_ACTION_NONE)
475 		return;
476 
477 	action = host_control_action;
478 	host_control_action = HC_ACTION_NONE;
479 
480 	if (!smi_buf.virt) {
481 		dev_dbg(&dcdbas_pdev->dev, "%s: no SMI buffer\n", __func__);
482 		return;
483 	}
484 
485 	if (smi_buf.size < sizeof(struct apm_cmd)) {
486 		dev_dbg(&dcdbas_pdev->dev, "%s: SMI buffer too small\n",
487 			__func__);
488 		return;
489 	}
490 
491 	apm_cmd = (struct apm_cmd *)smi_buf.virt;
492 
493 	/* power off takes precedence */
494 	if (action & HC_ACTION_HOST_CONTROL_POWEROFF) {
495 		apm_cmd->command = ESM_APM_POWER_CYCLE;
496 		apm_cmd->reserved = 0;
497 		*((s16 *)&apm_cmd->parameters.shortreq.parm[0]) = (s16) 0;
498 		host_control_smi();
499 	} else if (action & HC_ACTION_HOST_CONTROL_POWERCYCLE) {
500 		apm_cmd->command = ESM_APM_POWER_CYCLE;
501 		apm_cmd->reserved = 0;
502 		*((s16 *)&apm_cmd->parameters.shortreq.parm[0]) = (s16) 20;
503 		host_control_smi();
504 	}
505 }
506 
507 /* WSMT */
508 
509 static u8 checksum(u8 *buffer, u8 length)
510 {
511 	u8 sum = 0;
512 	u8 *end = buffer + length;
513 
514 	while (buffer < end)
515 		sum += *buffer++;
516 	return sum;
517 }
518 
519 static inline struct smm_eps_table *check_eps_table(u8 *addr)
520 {
521 	struct smm_eps_table *eps = (struct smm_eps_table *)addr;
522 
523 	if (strncmp(eps->smm_comm_buff_anchor, SMM_EPS_SIG, 4) != 0)
524 		return NULL;
525 
526 	if (checksum(addr, eps->length) != 0)
527 		return NULL;
528 
529 	return eps;
530 }
531 
532 static int dcdbas_check_wsmt(void)
533 {
534 	const struct dmi_device *dev = NULL;
535 	struct acpi_table_wsmt *wsmt = NULL;
536 	struct smm_eps_table *eps = NULL;
537 	u64 bios_buf_paddr;
538 	u64 remap_size;
539 	u8 *addr;
540 
541 	acpi_get_table(ACPI_SIG_WSMT, 0, (struct acpi_table_header **)&wsmt);
542 	if (!wsmt)
543 		return 0;
544 
545 	/* Check if WSMT ACPI table shows that protection is enabled */
546 	if (!(wsmt->protection_flags & ACPI_WSMT_FIXED_COMM_BUFFERS) ||
547 	    !(wsmt->protection_flags & ACPI_WSMT_COMM_BUFFER_NESTED_PTR_PROTECTION))
548 		return 0;
549 
550 	/*
551 	 * BIOS could provide the address/size of the protected buffer
552 	 * in an SMBIOS string or in an EPS structure in 0xFxxxx.
553 	 */
554 
555 	/* Check SMBIOS for buffer address */
556 	while ((dev = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, NULL, dev)))
557 		if (sscanf(dev->name, "30[%16llx;%8llx]", &bios_buf_paddr,
558 		    &remap_size) == 2)
559 			goto remap;
560 
561 	/* Scan for EPS (entry point structure) */
562 	for (addr = (u8 *)__va(0xf0000);
563 	     addr < (u8 *)__va(0x100000 - sizeof(struct smm_eps_table));
564 	     addr += 16) {
565 		eps = check_eps_table(addr);
566 		if (eps)
567 			break;
568 	}
569 
570 	if (!eps) {
571 		dev_dbg(&dcdbas_pdev->dev, "found WSMT, but no firmware buffer found\n");
572 		return -ENODEV;
573 	}
574 	bios_buf_paddr = eps->smm_comm_buff_addr;
575 	remap_size = eps->num_of_4k_pages * PAGE_SIZE;
576 
577 remap:
578 	/*
579 	 * Get physical address of buffer and map to virtual address.
580 	 * Table gives size in 4K pages, regardless of actual system page size.
581 	 */
582 	if (upper_32_bits(bios_buf_paddr + 8)) {
583 		dev_warn(&dcdbas_pdev->dev, "found WSMT, but buffer address is above 4GB\n");
584 		return -EINVAL;
585 	}
586 	/*
587 	 * Limit remap size to MAX_SMI_DATA_BUF_SIZE + 8 (since the first 8
588 	 * bytes are used for a semaphore, not the data buffer itself).
589 	 */
590 	if (remap_size > MAX_SMI_DATA_BUF_SIZE + 8)
591 		remap_size = MAX_SMI_DATA_BUF_SIZE + 8;
592 
593 	bios_buffer = memremap(bios_buf_paddr, remap_size, MEMREMAP_WB);
594 	if (!bios_buffer) {
595 		dev_warn(&dcdbas_pdev->dev, "found WSMT, but failed to map buffer\n");
596 		return -ENOMEM;
597 	}
598 
599 	/* First 8 bytes is for a semaphore, not part of the smi_buf.virt */
600 	smi_buf.dma = bios_buf_paddr + 8;
601 	smi_buf.virt = bios_buffer + 8;
602 	smi_buf.size = remap_size - 8;
603 	max_smi_data_buf_size = smi_buf.size;
604 	wsmt_enabled = true;
605 	dev_info(&dcdbas_pdev->dev,
606 		 "WSMT found, using firmware-provided SMI buffer.\n");
607 	return 1;
608 }
609 
610 /**
611  * dcdbas_reboot_notify: handle reboot notification for host control
612  */
613 static int dcdbas_reboot_notify(struct notifier_block *nb, unsigned long code,
614 				void *unused)
615 {
616 	switch (code) {
617 	case SYS_DOWN:
618 	case SYS_HALT:
619 	case SYS_POWER_OFF:
620 		if (host_control_on_shutdown) {
621 			/* firmware is going to perform host control action */
622 			printk(KERN_WARNING "Please wait for shutdown "
623 			       "action to complete...\n");
624 			dcdbas_host_control();
625 		}
626 		break;
627 	}
628 
629 	return NOTIFY_DONE;
630 }
631 
632 static struct notifier_block dcdbas_reboot_nb = {
633 	.notifier_call = dcdbas_reboot_notify,
634 	.next = NULL,
635 	.priority = INT_MIN
636 };
637 
638 static DCDBAS_BIN_ATTR_RW(smi_data);
639 
640 static struct bin_attribute *dcdbas_bin_attrs[] = {
641 	&bin_attr_smi_data,
642 	NULL
643 };
644 
645 static DCDBAS_DEV_ATTR_RW(smi_data_buf_size);
646 static DCDBAS_DEV_ATTR_RO(smi_data_buf_phys_addr);
647 static DCDBAS_DEV_ATTR_WO(smi_request);
648 static DCDBAS_DEV_ATTR_RW(host_control_action);
649 static DCDBAS_DEV_ATTR_RW(host_control_smi_type);
650 static DCDBAS_DEV_ATTR_RW(host_control_on_shutdown);
651 
652 static struct attribute *dcdbas_dev_attrs[] = {
653 	&dev_attr_smi_data_buf_size.attr,
654 	&dev_attr_smi_data_buf_phys_addr.attr,
655 	&dev_attr_smi_request.attr,
656 	&dev_attr_host_control_action.attr,
657 	&dev_attr_host_control_smi_type.attr,
658 	&dev_attr_host_control_on_shutdown.attr,
659 	NULL
660 };
661 
662 static const struct attribute_group dcdbas_attr_group = {
663 	.attrs = dcdbas_dev_attrs,
664 	.bin_attrs = dcdbas_bin_attrs,
665 };
666 
667 static int dcdbas_probe(struct platform_device *dev)
668 {
669 	int error;
670 
671 	host_control_action = HC_ACTION_NONE;
672 	host_control_smi_type = HC_SMITYPE_NONE;
673 
674 	dcdbas_pdev = dev;
675 
676 	/* Check if ACPI WSMT table specifies protected SMI buffer address */
677 	error = dcdbas_check_wsmt();
678 	if (error < 0)
679 		return error;
680 
681 	/*
682 	 * BIOS SMI calls require buffer addresses be in 32-bit address space.
683 	 * This is done by setting the DMA mask below.
684 	 */
685 	error = dma_set_coherent_mask(&dcdbas_pdev->dev, DMA_BIT_MASK(32));
686 	if (error)
687 		return error;
688 
689 	error = sysfs_create_group(&dev->dev.kobj, &dcdbas_attr_group);
690 	if (error)
691 		return error;
692 
693 	register_reboot_notifier(&dcdbas_reboot_nb);
694 
695 	dev_info(&dev->dev, "%s (version %s)\n",
696 		 DRIVER_DESCRIPTION, DRIVER_VERSION);
697 
698 	return 0;
699 }
700 
701 static void dcdbas_remove(struct platform_device *dev)
702 {
703 	unregister_reboot_notifier(&dcdbas_reboot_nb);
704 	sysfs_remove_group(&dev->dev.kobj, &dcdbas_attr_group);
705 }
706 
707 static struct platform_driver dcdbas_driver = {
708 	.driver		= {
709 		.name	= DRIVER_NAME,
710 	},
711 	.probe		= dcdbas_probe,
712 	.remove_new	= dcdbas_remove,
713 };
714 
715 static const struct platform_device_info dcdbas_dev_info __initconst = {
716 	.name		= DRIVER_NAME,
717 	.id		= PLATFORM_DEVID_NONE,
718 	.dma_mask	= DMA_BIT_MASK(32),
719 };
720 
721 static struct platform_device *dcdbas_pdev_reg;
722 
723 /**
724  * dcdbas_init: initialize driver
725  */
726 static int __init dcdbas_init(void)
727 {
728 	int error;
729 
730 	error = platform_driver_register(&dcdbas_driver);
731 	if (error)
732 		return error;
733 
734 	dcdbas_pdev_reg = platform_device_register_full(&dcdbas_dev_info);
735 	if (IS_ERR(dcdbas_pdev_reg)) {
736 		error = PTR_ERR(dcdbas_pdev_reg);
737 		goto err_unregister_driver;
738 	}
739 
740 	return 0;
741 
742  err_unregister_driver:
743 	platform_driver_unregister(&dcdbas_driver);
744 	return error;
745 }
746 
747 /**
748  * dcdbas_exit: perform driver cleanup
749  */
750 static void __exit dcdbas_exit(void)
751 {
752 	/*
753 	 * make sure functions that use dcdbas_pdev are called
754 	 * before platform_device_unregister
755 	 */
756 	unregister_reboot_notifier(&dcdbas_reboot_nb);
757 
758 	/*
759 	 * We have to free the buffer here instead of dcdbas_remove
760 	 * because only in module exit function we can be sure that
761 	 * all sysfs attributes belonging to this module have been
762 	 * released.
763 	 */
764 	if (dcdbas_pdev)
765 		smi_data_buf_free();
766 	if (bios_buffer)
767 		memunmap(bios_buffer);
768 	platform_device_unregister(dcdbas_pdev_reg);
769 	platform_driver_unregister(&dcdbas_driver);
770 }
771 
772 subsys_initcall_sync(dcdbas_init);
773 module_exit(dcdbas_exit);
774 
775 MODULE_DESCRIPTION(DRIVER_DESCRIPTION " (version " DRIVER_VERSION ")");
776 MODULE_VERSION(DRIVER_VERSION);
777 MODULE_AUTHOR("Dell Inc.");
778 MODULE_LICENSE("GPL");
779 /* Any System or BIOS claiming to be by Dell */
780 MODULE_ALIAS("dmi:*:[bs]vnD[Ee][Ll][Ll]*:*");
781