xref: /linux/drivers/platform/x86/asus-laptop.c (revision fc6dfd5547794b0bf10790576a9d97443d975439)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  asus-laptop.c - Asus Laptop Support
4  *
5  *  Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
6  *  Copyright (C) 2006-2007 Corentin Chary
7  *  Copyright (C) 2011 Wind River Systems
8  *
9  *  The development page for this driver is located at
10  *  http://sourceforge.net/projects/acpi4asus/
11  *
12  *  Credits:
13  *  Pontus Fuchs   - Helper functions, cleanup
14  *  Johann Wiesner - Small compile fixes
15  *  John Belmonte  - ACPI code for Toshiba laptop was a good starting point.
16  *  Eric Burghard  - LED display support for W1N
17  *  Josh Green     - Light Sens support
18  *  Thomas Tuttle  - His first patch for led support was very helpful
19  *  Sam Lin        - GPS support
20  */
21 
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/err.h>
29 #include <linux/proc_fs.h>
30 #include <linux/backlight.h>
31 #include <linux/fb.h>
32 #include <linux/leds.h>
33 #include <linux/platform_device.h>
34 #include <linux/uaccess.h>
35 #include <linux/input.h>
36 #include <linux/input/sparse-keymap.h>
37 #include <linux/rfkill.h>
38 #include <linux/slab.h>
39 #include <linux/dmi.h>
40 #include <linux/acpi.h>
41 #include <acpi/video.h>
42 
43 #define ASUS_LAPTOP_VERSION	"0.42"
44 
45 #define ASUS_LAPTOP_NAME	"Asus Laptop Support"
46 #define ASUS_LAPTOP_CLASS	"hotkey"
47 #define ASUS_LAPTOP_DEVICE_NAME	"Hotkey"
48 #define ASUS_LAPTOP_FILE	KBUILD_MODNAME
49 #define ASUS_LAPTOP_PREFIX	"\\_SB.ATKD."
50 
51 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary");
52 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME);
53 MODULE_LICENSE("GPL");
54 
55 /*
56  * WAPF defines the behavior of the Fn+Fx wlan key
57  * The significance of values is yet to be found, but
58  * most of the time:
59  * Bit | Bluetooth | WLAN
60  *  0  | Hardware  | Hardware
61  *  1  | Hardware  | Software
62  *  4  | Software  | Software
63  */
64 static uint wapf = 1;
65 module_param(wapf, uint, 0444);
66 MODULE_PARM_DESC(wapf, "WAPF value");
67 
68 static char *wled_type = "unknown";
69 static char *bled_type = "unknown";
70 
71 module_param(wled_type, charp, 0444);
72 MODULE_PARM_DESC(wled_type, "Set the wled type on boot "
73 		 "(unknown, led or rfkill). "
74 		 "default is unknown");
75 
76 module_param(bled_type, charp, 0444);
77 MODULE_PARM_DESC(bled_type, "Set the bled type on boot "
78 		 "(unknown, led or rfkill). "
79 		 "default is unknown");
80 
81 static int wlan_status = 1;
82 static int bluetooth_status = 1;
83 static int wimax_status = -1;
84 static int wwan_status = -1;
85 static int als_status;
86 
87 module_param(wlan_status, int, 0444);
88 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot "
89 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
90 		 "default is -1");
91 
92 module_param(bluetooth_status, int, 0444);
93 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot "
94 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
95 		 "default is -1");
96 
97 module_param(wimax_status, int, 0444);
98 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot "
99 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
100 		 "default is -1");
101 
102 module_param(wwan_status, int, 0444);
103 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot "
104 		 "(0 = disabled, 1 = enabled, -1 = don't do anything). "
105 		 "default is -1");
106 
107 module_param(als_status, int, 0444);
108 MODULE_PARM_DESC(als_status, "Set the ALS status on boot "
109 		 "(0 = disabled, 1 = enabled). "
110 		 "default is 0");
111 
112 /*
113  * Some events we use, same for all Asus
114  */
115 #define ATKD_BRNUP_MIN		0x10
116 #define ATKD_BRNUP_MAX		0x1f
117 #define ATKD_BRNDOWN_MIN	0x20
118 #define ATKD_BRNDOWN_MAX	0x2f
119 #define ATKD_BRNDOWN		0x20
120 #define ATKD_BRNUP		0x2f
121 #define ATKD_LCD_ON	0x33
122 #define ATKD_LCD_OFF	0x34
123 
124 /*
125  * Known bits returned by \_SB.ATKD.HWRS
126  */
127 #define WL_HWRS		0x80
128 #define BT_HWRS		0x100
129 
130 /*
131  * Flags for hotk status
132  * WL_ON and BT_ON are also used for wireless_status()
133  */
134 #define WL_RSTS		0x01	/* internal Wifi */
135 #define BT_RSTS		0x02	/* internal Bluetooth */
136 #define WM_RSTS		0x08    /* internal wimax */
137 #define WW_RSTS		0x20    /* internal wwan */
138 
139 /* WLED and BLED type */
140 #define TYPE_UNKNOWN	0
141 #define TYPE_LED	1
142 #define TYPE_RFKILL	2
143 
144 /* LED */
145 #define METHOD_MLED		"MLED"
146 #define METHOD_TLED		"TLED"
147 #define METHOD_RLED		"RLED"	/* W1JC */
148 #define METHOD_PLED		"PLED"	/* A7J */
149 #define METHOD_GLED		"GLED"	/* G1, G2 (probably) */
150 
151 /* LEDD */
152 #define METHOD_LEDD		"SLCM"
153 
154 /*
155  * Bluetooth and WLAN
156  * WLED and BLED are not handled like other XLED, because in some dsdt
157  * they also control the WLAN/Bluetooth device.
158  */
159 #define METHOD_WLAN		"WLED"
160 #define METHOD_BLUETOOTH	"BLED"
161 
162 /* WWAN and WIMAX */
163 #define METHOD_WWAN		"GSMC"
164 #define METHOD_WIMAX		"WMXC"
165 
166 #define METHOD_WL_STATUS	"RSTS"
167 
168 /* Brightness */
169 #define METHOD_BRIGHTNESS_SET	"SPLV"
170 #define METHOD_BRIGHTNESS_GET	"GPLV"
171 
172 /* Display */
173 #define METHOD_SWITCH_DISPLAY	"SDSP"
174 
175 #define METHOD_ALS_CONTROL	"ALSC" /* Z71A Z71V */
176 #define METHOD_ALS_LEVEL	"ALSL" /* Z71A Z71V */
177 
178 /* GPS */
179 /* R2H use different handle for GPS on/off */
180 #define METHOD_GPS_ON		"SDON"
181 #define METHOD_GPS_OFF		"SDOF"
182 #define METHOD_GPS_STATUS	"GPST"
183 
184 /* Keyboard light */
185 #define METHOD_KBD_LIGHT_SET	"SLKB"
186 #define METHOD_KBD_LIGHT_GET	"GLKB"
187 
188 /* For Pegatron Lucid tablet */
189 #define DEVICE_NAME_PEGA	"Lucid"
190 
191 #define METHOD_PEGA_ENABLE	"ENPR"
192 #define METHOD_PEGA_DISABLE	"DAPR"
193 #define PEGA_WLAN	0x00
194 #define PEGA_BLUETOOTH	0x01
195 #define PEGA_WWAN	0x02
196 #define PEGA_ALS	0x04
197 #define PEGA_ALS_POWER	0x05
198 
199 #define METHOD_PEGA_READ	"RDLN"
200 #define PEGA_READ_ALS_H	0x02
201 #define PEGA_READ_ALS_L	0x03
202 
203 #define PEGA_ACCEL_NAME "pega_accel"
204 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer"
205 #define METHOD_XLRX "XLRX"
206 #define METHOD_XLRY "XLRY"
207 #define METHOD_XLRZ "XLRZ"
208 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */
209 #define PEGA_ACC_RETRIES 3
210 
211 /*
212  * Define a specific led structure to keep the main structure clean
213  */
214 struct asus_led {
215 	int wk;
216 	struct work_struct work;
217 	struct led_classdev led;
218 	struct asus_laptop *asus;
219 	const char *method;
220 };
221 
222 /*
223  * Same thing for rfkill
224  */
225 struct asus_rfkill {
226 	/* type of control. Maps to PEGA_* values or *_RSTS  */
227 	int control_id;
228 	struct rfkill *rfkill;
229 	struct asus_laptop *asus;
230 };
231 
232 /*
233  * This is the main structure, we can use it to store anything interesting
234  * about the hotk device
235  */
236 struct asus_laptop {
237 	char *name;		/* laptop name */
238 
239 	struct acpi_table_header *dsdt_info;
240 	struct platform_device *platform_device;
241 	struct acpi_device *device;		/* the device we are in */
242 	struct backlight_device *backlight_device;
243 
244 	struct input_dev *inputdev;
245 	struct key_entry *keymap;
246 	struct input_dev *pega_accel_poll;
247 
248 	struct asus_led wled;
249 	struct asus_led bled;
250 	struct asus_led mled;
251 	struct asus_led tled;
252 	struct asus_led rled;
253 	struct asus_led pled;
254 	struct asus_led gled;
255 	struct asus_led kled;
256 	struct workqueue_struct *led_workqueue;
257 
258 	int wled_type;
259 	int bled_type;
260 	int wireless_status;
261 	bool have_rsts;
262 	bool is_pega_lucid;
263 	bool pega_acc_live;
264 	int pega_acc_x;
265 	int pega_acc_y;
266 	int pega_acc_z;
267 
268 	struct asus_rfkill wlan;
269 	struct asus_rfkill bluetooth;
270 	struct asus_rfkill wwan;
271 	struct asus_rfkill wimax;
272 	struct asus_rfkill gps;
273 
274 	acpi_handle handle;	/* the handle of the hotk device */
275 	u32 ledd_status;	/* status of the LED display */
276 	u8 light_level;		/* light sensor level */
277 	u8 light_switch;	/* light sensor switch value */
278 	u16 event_count[128];	/* count for each event TODO make this better */
279 };
280 
281 static const struct key_entry asus_keymap[] = {
282 	/* Lenovo SL Specific keycodes */
283 	{KE_KEY, 0x02, { KEY_SCREENLOCK } },
284 	{KE_KEY, 0x05, { KEY_WLAN } },
285 	{KE_KEY, 0x08, { KEY_F13 } },
286 	{KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */
287 	{KE_KEY, 0x17, { KEY_ZOOM } },
288 	{KE_KEY, 0x1f, { KEY_BATTERY } },
289 	/* End of Lenovo SL Specific keycodes */
290 	{KE_KEY, ATKD_BRNDOWN, { KEY_BRIGHTNESSDOWN } },
291 	{KE_KEY, ATKD_BRNUP, { KEY_BRIGHTNESSUP } },
292 	{KE_KEY, 0x30, { KEY_VOLUMEUP } },
293 	{KE_KEY, 0x31, { KEY_VOLUMEDOWN } },
294 	{KE_KEY, 0x32, { KEY_MUTE } },
295 	{KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */
296 	{KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */
297 	{KE_KEY, 0x40, { KEY_PREVIOUSSONG } },
298 	{KE_KEY, 0x41, { KEY_NEXTSONG } },
299 	{KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */
300 	{KE_KEY, 0x45, { KEY_PLAYPAUSE } },
301 	{KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */
302 	{KE_KEY, 0x50, { KEY_EMAIL } },
303 	{KE_KEY, 0x51, { KEY_WWW } },
304 	{KE_KEY, 0x55, { KEY_CALC } },
305 	{KE_IGNORE, 0x57, },  /* Battery mode */
306 	{KE_IGNORE, 0x58, },  /* AC mode */
307 	{KE_KEY, 0x5C, { KEY_SCREENLOCK } },  /* Screenlock */
308 	{KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */
309 	{KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */
310 	{KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */
311 	{KE_KEY, 0x60, { KEY_TOUCHPAD_ON } },
312 	{KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */
313 	{KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */
314 	{KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */
315 	{KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */
316 	{KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */
317 	{KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */
318 	{KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */
319 	{KE_KEY, 0x6A, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad Fn + F9 */
320 	{KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */
321 	{KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */
322 	{KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */
323 	{KE_IGNORE, 0x6E, },  /* Low Battery notification */
324 	{KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */
325 	{KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */
326 	{KE_KEY, 0x82, { KEY_CAMERA } },
327 	{KE_KEY, 0x88, { KEY_RFKILL  } }, /* Radio Toggle Key */
328 	{KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */
329 	{KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */
330 	{KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */
331 	{KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */
332 	{KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */
333 	{KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */
334 	{KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */
335 	{KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */
336 	{KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */
337 	{KE_KEY, 0x95, { KEY_MEDIA } },
338 	{KE_KEY, 0x99, { KEY_PHONE } },
339 	{KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */
340 	{KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */
341 	{KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */
342 	{KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */
343 	{KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */
344 	{KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */
345 	{KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */
346 	{KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */
347 	{KE_KEY, 0xB5, { KEY_CALC } },
348 	{KE_KEY, 0xC4, { KEY_KBDILLUMUP } },
349 	{KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } },
350 	{KE_END, 0},
351 };
352 
353 
354 /*
355  * This function evaluates an ACPI method, given an int as parameter, the
356  * method is searched within the scope of the handle, can be NULL. The output
357  * of the method is written is output, which can also be NULL
358  *
359  * returns 0 if write is successful, -1 else.
360  */
361 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val,
362 			      struct acpi_buffer *output)
363 {
364 	struct acpi_object_list params;	/* list of input parameters (an int) */
365 	union acpi_object in_obj;	/* the only param we use */
366 	acpi_status status;
367 
368 	if (!handle)
369 		return -1;
370 
371 	params.count = 1;
372 	params.pointer = &in_obj;
373 	in_obj.type = ACPI_TYPE_INTEGER;
374 	in_obj.integer.value = val;
375 
376 	status = acpi_evaluate_object(handle, (char *)method, &params, output);
377 	if (status == AE_OK)
378 		return 0;
379 	else
380 		return -1;
381 }
382 
383 static int write_acpi_int(acpi_handle handle, const char *method, int val)
384 {
385 	return write_acpi_int_ret(handle, method, val, NULL);
386 }
387 
388 static int acpi_check_handle(acpi_handle handle, const char *method,
389 			     acpi_handle *ret)
390 {
391 	acpi_status status;
392 
393 	if (method == NULL)
394 		return -ENODEV;
395 
396 	if (ret)
397 		status = acpi_get_handle(handle, (char *)method,
398 					 ret);
399 	else {
400 		acpi_handle dummy;
401 
402 		status = acpi_get_handle(handle, (char *)method,
403 					 &dummy);
404 	}
405 
406 	if (status != AE_OK) {
407 		if (ret)
408 			pr_warn("Error finding %s\n", method);
409 		return -ENODEV;
410 	}
411 	return 0;
412 }
413 
414 static bool asus_check_pega_lucid(struct asus_laptop *asus)
415 {
416 	return !strcmp(asus->name, DEVICE_NAME_PEGA) &&
417 	   !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) &&
418 	   !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) &&
419 	   !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL);
420 }
421 
422 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable)
423 {
424 	char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE;
425 	return write_acpi_int(asus->handle, method, unit);
426 }
427 
428 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method)
429 {
430 	int i, delta;
431 	unsigned long long val;
432 	for (i = 0; i < PEGA_ACC_RETRIES; i++) {
433 		acpi_evaluate_integer(asus->handle, method, NULL, &val);
434 
435 		/* The output is noisy.  From reading the ASL
436 		 * dissassembly, timeout errors are returned with 1's
437 		 * in the high word, and the lack of locking around
438 		 * thei hi/lo byte reads means that a transition
439 		 * between (for example) -1 and 0 could be read as
440 		 * 0xff00 or 0x00ff. */
441 		delta = abs(curr - (short)val);
442 		if (delta < 128 && !(val & ~0xffff))
443 			break;
444 	}
445 	return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP);
446 }
447 
448 static void pega_accel_poll(struct input_dev *input)
449 {
450 	struct device *parent = input->dev.parent;
451 	struct asus_laptop *asus = dev_get_drvdata(parent);
452 
453 	/* In some cases, the very first call to poll causes a
454 	 * recursive fault under the polldev worker.  This is
455 	 * apparently related to very early userspace access to the
456 	 * device, and perhaps a firmware bug. Fake the first report. */
457 	if (!asus->pega_acc_live) {
458 		asus->pega_acc_live = true;
459 		input_report_abs(input, ABS_X, 0);
460 		input_report_abs(input, ABS_Y, 0);
461 		input_report_abs(input, ABS_Z, 0);
462 		input_sync(input);
463 		return;
464 	}
465 
466 	asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX);
467 	asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY);
468 	asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ);
469 
470 	/* Note transform, convert to "right/up/out" in the native
471 	 * landscape orientation (i.e. the vector is the direction of
472 	 * "real up" in the device's cartiesian coordinates). */
473 	input_report_abs(input, ABS_X, -asus->pega_acc_x);
474 	input_report_abs(input, ABS_Y, -asus->pega_acc_y);
475 	input_report_abs(input, ABS_Z,  asus->pega_acc_z);
476 	input_sync(input);
477 }
478 
479 static void pega_accel_exit(struct asus_laptop *asus)
480 {
481 	if (asus->pega_accel_poll) {
482 		input_unregister_device(asus->pega_accel_poll);
483 		asus->pega_accel_poll = NULL;
484 	}
485 }
486 
487 static int pega_accel_init(struct asus_laptop *asus)
488 {
489 	int err;
490 	struct input_dev *input;
491 
492 	if (!asus->is_pega_lucid)
493 		return -ENODEV;
494 
495 	if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) ||
496 	    acpi_check_handle(asus->handle, METHOD_XLRY, NULL) ||
497 	    acpi_check_handle(asus->handle, METHOD_XLRZ, NULL))
498 		return -ENODEV;
499 
500 	input = input_allocate_device();
501 	if (!input)
502 		return -ENOMEM;
503 
504 	input->name = PEGA_ACCEL_DESC;
505 	input->phys = PEGA_ACCEL_NAME "/input0";
506 	input->dev.parent = &asus->platform_device->dev;
507 	input->id.bustype = BUS_HOST;
508 
509 	input_set_abs_params(input, ABS_X,
510 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
511 	input_set_abs_params(input, ABS_Y,
512 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
513 	input_set_abs_params(input, ABS_Z,
514 			     -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0);
515 
516 	err = input_setup_polling(input, pega_accel_poll);
517 	if (err)
518 		goto exit;
519 
520 	input_set_poll_interval(input, 125);
521 	input_set_min_poll_interval(input, 50);
522 	input_set_max_poll_interval(input, 2000);
523 
524 	err = input_register_device(input);
525 	if (err)
526 		goto exit;
527 
528 	asus->pega_accel_poll = input;
529 	return 0;
530 
531 exit:
532 	input_free_device(input);
533 	return err;
534 }
535 
536 /* Generic LED function */
537 static int asus_led_set(struct asus_laptop *asus, const char *method,
538 			 int value)
539 {
540 	if (!strcmp(method, METHOD_MLED))
541 		value = !value;
542 	else if (!strcmp(method, METHOD_GLED))
543 		value = !value + 1;
544 	else
545 		value = !!value;
546 
547 	return write_acpi_int(asus->handle, method, value);
548 }
549 
550 /*
551  * LEDs
552  */
553 /* /sys/class/led handlers */
554 static void asus_led_cdev_set(struct led_classdev *led_cdev,
555 			 enum led_brightness value)
556 {
557 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
558 	struct asus_laptop *asus = led->asus;
559 
560 	led->wk = !!value;
561 	queue_work(asus->led_workqueue, &led->work);
562 }
563 
564 static void asus_led_cdev_update(struct work_struct *work)
565 {
566 	struct asus_led *led = container_of(work, struct asus_led, work);
567 	struct asus_laptop *asus = led->asus;
568 
569 	asus_led_set(asus, led->method, led->wk);
570 }
571 
572 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev)
573 {
574 	return led_cdev->brightness;
575 }
576 
577 /*
578  * Keyboard backlight (also a LED)
579  */
580 static int asus_kled_lvl(struct asus_laptop *asus)
581 {
582 	unsigned long long kblv;
583 	struct acpi_object_list params;
584 	union acpi_object in_obj;
585 	acpi_status rv;
586 
587 	params.count = 1;
588 	params.pointer = &in_obj;
589 	in_obj.type = ACPI_TYPE_INTEGER;
590 	in_obj.integer.value = 2;
591 
592 	rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET,
593 				   &params, &kblv);
594 	if (ACPI_FAILURE(rv)) {
595 		pr_warn("Error reading kled level\n");
596 		return -ENODEV;
597 	}
598 	return kblv;
599 }
600 
601 static int asus_kled_set(struct asus_laptop *asus, int kblv)
602 {
603 	if (kblv > 0)
604 		kblv = (1 << 7) | (kblv & 0x7F);
605 	else
606 		kblv = 0;
607 
608 	if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) {
609 		pr_warn("Keyboard LED display write failed\n");
610 		return -EINVAL;
611 	}
612 	return 0;
613 }
614 
615 static void asus_kled_cdev_set(struct led_classdev *led_cdev,
616 			      enum led_brightness value)
617 {
618 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
619 	struct asus_laptop *asus = led->asus;
620 
621 	led->wk = value;
622 	queue_work(asus->led_workqueue, &led->work);
623 }
624 
625 static void asus_kled_cdev_update(struct work_struct *work)
626 {
627 	struct asus_led *led = container_of(work, struct asus_led, work);
628 	struct asus_laptop *asus = led->asus;
629 
630 	asus_kled_set(asus, led->wk);
631 }
632 
633 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev)
634 {
635 	struct asus_led *led = container_of(led_cdev, struct asus_led, led);
636 	struct asus_laptop *asus = led->asus;
637 
638 	return asus_kled_lvl(asus);
639 }
640 
641 static void asus_led_exit(struct asus_laptop *asus)
642 {
643 	led_classdev_unregister(&asus->wled.led);
644 	led_classdev_unregister(&asus->bled.led);
645 	led_classdev_unregister(&asus->mled.led);
646 	led_classdev_unregister(&asus->tled.led);
647 	led_classdev_unregister(&asus->pled.led);
648 	led_classdev_unregister(&asus->rled.led);
649 	led_classdev_unregister(&asus->gled.led);
650 	led_classdev_unregister(&asus->kled.led);
651 
652 	if (asus->led_workqueue) {
653 		destroy_workqueue(asus->led_workqueue);
654 		asus->led_workqueue = NULL;
655 	}
656 }
657 
658 /*  Ugly macro, need to fix that later */
659 static int asus_led_register(struct asus_laptop *asus,
660 			     struct asus_led *led,
661 			     const char *name, const char *method)
662 {
663 	struct led_classdev *led_cdev = &led->led;
664 
665 	if (!method || acpi_check_handle(asus->handle, method, NULL))
666 		return 0; /* Led not present */
667 
668 	led->asus = asus;
669 	led->method = method;
670 
671 	INIT_WORK(&led->work, asus_led_cdev_update);
672 	led_cdev->name = name;
673 	led_cdev->brightness_set = asus_led_cdev_set;
674 	led_cdev->brightness_get = asus_led_cdev_get;
675 	led_cdev->max_brightness = 1;
676 	return led_classdev_register(&asus->platform_device->dev, led_cdev);
677 }
678 
679 static int asus_led_init(struct asus_laptop *asus)
680 {
681 	int r = 0;
682 
683 	/*
684 	 * The Pegatron Lucid has no physical leds, but all methods are
685 	 * available in the DSDT...
686 	 */
687 	if (asus->is_pega_lucid)
688 		return 0;
689 
690 	/*
691 	 * Functions that actually update the LED's are called from a
692 	 * workqueue. By doing this as separate work rather than when the LED
693 	 * subsystem asks, we avoid messing with the Asus ACPI stuff during a
694 	 * potentially bad time, such as a timer interrupt.
695 	 */
696 	asus->led_workqueue = create_singlethread_workqueue("led_workqueue");
697 	if (!asus->led_workqueue)
698 		return -ENOMEM;
699 
700 	if (asus->wled_type == TYPE_LED)
701 		r = asus_led_register(asus, &asus->wled, "asus::wlan",
702 				      METHOD_WLAN);
703 	if (r)
704 		goto error;
705 	if (asus->bled_type == TYPE_LED)
706 		r = asus_led_register(asus, &asus->bled, "asus::bluetooth",
707 				      METHOD_BLUETOOTH);
708 	if (r)
709 		goto error;
710 	r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED);
711 	if (r)
712 		goto error;
713 	r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED);
714 	if (r)
715 		goto error;
716 	r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED);
717 	if (r)
718 		goto error;
719 	r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED);
720 	if (r)
721 		goto error;
722 	r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED);
723 	if (r)
724 		goto error;
725 	if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) &&
726 	    !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) {
727 		struct asus_led *led = &asus->kled;
728 		struct led_classdev *cdev = &led->led;
729 
730 		led->asus = asus;
731 
732 		INIT_WORK(&led->work, asus_kled_cdev_update);
733 		cdev->name = "asus::kbd_backlight";
734 		cdev->brightness_set = asus_kled_cdev_set;
735 		cdev->brightness_get = asus_kled_cdev_get;
736 		cdev->max_brightness = 3;
737 		r = led_classdev_register(&asus->platform_device->dev, cdev);
738 	}
739 error:
740 	if (r)
741 		asus_led_exit(asus);
742 	return r;
743 }
744 
745 /*
746  * Backlight device
747  */
748 static int asus_read_brightness(struct backlight_device *bd)
749 {
750 	struct asus_laptop *asus = bl_get_data(bd);
751 	unsigned long long value;
752 	acpi_status rv;
753 
754 	rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET,
755 				   NULL, &value);
756 	if (ACPI_FAILURE(rv)) {
757 		pr_warn("Error reading brightness\n");
758 		return 0;
759 	}
760 
761 	return value;
762 }
763 
764 static int asus_set_brightness(struct backlight_device *bd, int value)
765 {
766 	struct asus_laptop *asus = bl_get_data(bd);
767 
768 	if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) {
769 		pr_warn("Error changing brightness\n");
770 		return -EIO;
771 	}
772 	return 0;
773 }
774 
775 static int update_bl_status(struct backlight_device *bd)
776 {
777 	int value = bd->props.brightness;
778 
779 	return asus_set_brightness(bd, value);
780 }
781 
782 static const struct backlight_ops asusbl_ops = {
783 	.get_brightness = asus_read_brightness,
784 	.update_status = update_bl_status,
785 };
786 
787 static int asus_backlight_notify(struct asus_laptop *asus)
788 {
789 	struct backlight_device *bd = asus->backlight_device;
790 	int old = bd->props.brightness;
791 
792 	backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY);
793 
794 	return old;
795 }
796 
797 static int asus_backlight_init(struct asus_laptop *asus)
798 {
799 	struct backlight_device *bd;
800 	struct backlight_properties props;
801 
802 	if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) ||
803 	    acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL))
804 		return 0;
805 
806 	memset(&props, 0, sizeof(struct backlight_properties));
807 	props.max_brightness = 15;
808 	props.type = BACKLIGHT_PLATFORM;
809 
810 	bd = backlight_device_register(ASUS_LAPTOP_FILE,
811 				       &asus->platform_device->dev, asus,
812 				       &asusbl_ops, &props);
813 	if (IS_ERR(bd)) {
814 		pr_err("Could not register asus backlight device\n");
815 		asus->backlight_device = NULL;
816 		return PTR_ERR(bd);
817 	}
818 
819 	asus->backlight_device = bd;
820 	bd->props.brightness = asus_read_brightness(bd);
821 	bd->props.power = FB_BLANK_UNBLANK;
822 	backlight_update_status(bd);
823 	return 0;
824 }
825 
826 static void asus_backlight_exit(struct asus_laptop *asus)
827 {
828 	backlight_device_unregister(asus->backlight_device);
829 	asus->backlight_device = NULL;
830 }
831 
832 /*
833  * Platform device handlers
834  */
835 
836 /*
837  * We write our info in page, we begin at offset off and cannot write more
838  * than count bytes. We set eof to 1 if we handle those 2 values. We return the
839  * number of bytes written in page
840  */
841 static ssize_t infos_show(struct device *dev, struct device_attribute *attr,
842 			  char *page)
843 {
844 	struct asus_laptop *asus = dev_get_drvdata(dev);
845 	int len = 0;
846 	unsigned long long temp;
847 	char buf[16];		/* enough for all info */
848 	acpi_status rv;
849 
850 	/*
851 	 * We use the easy way, we don't care of off and count,
852 	 * so we don't set eof to 1
853 	 */
854 
855 	len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n");
856 	len += sprintf(page + len, "Model reference    : %s\n", asus->name);
857 	/*
858 	 * The SFUN method probably allows the original driver to get the list
859 	 * of features supported by a given model. For now, 0x0100 or 0x0800
860 	 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
861 	 * The significance of others is yet to be found.
862 	 */
863 	rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp);
864 	if (ACPI_SUCCESS(rv))
865 		len += sprintf(page + len, "SFUN value         : %#x\n",
866 			       (uint) temp);
867 	/*
868 	 * The HWRS method return informations about the hardware.
869 	 * 0x80 bit is for WLAN, 0x100 for Bluetooth.
870 	 * 0x40 for WWAN, 0x10 for WIMAX.
871 	 * The significance of others is yet to be found.
872 	 * We don't currently use this for device detection, and it
873 	 * takes several seconds to run on some systems.
874 	 */
875 	rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp);
876 	if (ACPI_SUCCESS(rv))
877 		len += sprintf(page + len, "HWRS value         : %#x\n",
878 			       (uint) temp);
879 	/*
880 	 * Another value for userspace: the ASYM method returns 0x02 for
881 	 * battery low and 0x04 for battery critical, its readings tend to be
882 	 * more accurate than those provided by _BST.
883 	 * Note: since not all the laptops provide this method, errors are
884 	 * silently ignored.
885 	 */
886 	rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp);
887 	if (ACPI_SUCCESS(rv))
888 		len += sprintf(page + len, "ASYM value         : %#x\n",
889 			       (uint) temp);
890 	if (asus->dsdt_info) {
891 		snprintf(buf, 16, "%d", asus->dsdt_info->length);
892 		len += sprintf(page + len, "DSDT length        : %s\n", buf);
893 		snprintf(buf, 16, "%d", asus->dsdt_info->checksum);
894 		len += sprintf(page + len, "DSDT checksum      : %s\n", buf);
895 		snprintf(buf, 16, "%d", asus->dsdt_info->revision);
896 		len += sprintf(page + len, "DSDT revision      : %s\n", buf);
897 		snprintf(buf, 7, "%s", asus->dsdt_info->oem_id);
898 		len += sprintf(page + len, "OEM id             : %s\n", buf);
899 		snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id);
900 		len += sprintf(page + len, "OEM table id       : %s\n", buf);
901 		snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision);
902 		len += sprintf(page + len, "OEM revision       : 0x%s\n", buf);
903 		snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id);
904 		len += sprintf(page + len, "ASL comp vendor id : %s\n", buf);
905 		snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision);
906 		len += sprintf(page + len, "ASL comp revision  : 0x%s\n", buf);
907 	}
908 
909 	return len;
910 }
911 static DEVICE_ATTR_RO(infos);
912 
913 static ssize_t sysfs_acpi_set(struct asus_laptop *asus,
914 			      const char *buf, size_t count,
915 			      const char *method)
916 {
917 	int rv, value;
918 
919 	rv = kstrtoint(buf, 0, &value);
920 	if (rv < 0)
921 		return rv;
922 
923 	if (write_acpi_int(asus->handle, method, value))
924 		return -ENODEV;
925 	return count;
926 }
927 
928 /*
929  * LEDD display
930  */
931 static ssize_t ledd_show(struct device *dev, struct device_attribute *attr,
932 			 char *buf)
933 {
934 	struct asus_laptop *asus = dev_get_drvdata(dev);
935 
936 	return sprintf(buf, "0x%08x\n", asus->ledd_status);
937 }
938 
939 static ssize_t ledd_store(struct device *dev, struct device_attribute *attr,
940 			  const char *buf, size_t count)
941 {
942 	struct asus_laptop *asus = dev_get_drvdata(dev);
943 	int rv, value;
944 
945 	rv = kstrtoint(buf, 0, &value);
946 	if (rv < 0)
947 		return rv;
948 
949 	if (write_acpi_int(asus->handle, METHOD_LEDD, value)) {
950 		pr_warn("LED display write failed\n");
951 		return -ENODEV;
952 	}
953 
954 	asus->ledd_status = (u32) value;
955 	return count;
956 }
957 static DEVICE_ATTR_RW(ledd);
958 
959 /*
960  * Wireless
961  */
962 static int asus_wireless_status(struct asus_laptop *asus, int mask)
963 {
964 	unsigned long long status;
965 	acpi_status rv = AE_OK;
966 
967 	if (!asus->have_rsts)
968 		return (asus->wireless_status & mask) ? 1 : 0;
969 
970 	rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS,
971 				   NULL, &status);
972 	if (ACPI_FAILURE(rv)) {
973 		pr_warn("Error reading Wireless status\n");
974 		return -EINVAL;
975 	}
976 	return !!(status & mask);
977 }
978 
979 /*
980  * WLAN
981  */
982 static int asus_wlan_set(struct asus_laptop *asus, int status)
983 {
984 	if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) {
985 		pr_warn("Error setting wlan status to %d\n", status);
986 		return -EIO;
987 	}
988 	return 0;
989 }
990 
991 static ssize_t wlan_show(struct device *dev, struct device_attribute *attr,
992 			 char *buf)
993 {
994 	struct asus_laptop *asus = dev_get_drvdata(dev);
995 
996 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS));
997 }
998 
999 static ssize_t wlan_store(struct device *dev, struct device_attribute *attr,
1000 			  const char *buf, size_t count)
1001 {
1002 	struct asus_laptop *asus = dev_get_drvdata(dev);
1003 
1004 	return sysfs_acpi_set(asus, buf, count, METHOD_WLAN);
1005 }
1006 static DEVICE_ATTR_RW(wlan);
1007 
1008 /*e
1009  * Bluetooth
1010  */
1011 static int asus_bluetooth_set(struct asus_laptop *asus, int status)
1012 {
1013 	if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) {
1014 		pr_warn("Error setting bluetooth status to %d\n", status);
1015 		return -EIO;
1016 	}
1017 	return 0;
1018 }
1019 
1020 static ssize_t bluetooth_show(struct device *dev, struct device_attribute *attr,
1021 			      char *buf)
1022 {
1023 	struct asus_laptop *asus = dev_get_drvdata(dev);
1024 
1025 	return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS));
1026 }
1027 
1028 static ssize_t bluetooth_store(struct device *dev,
1029 			       struct device_attribute *attr, const char *buf,
1030 			       size_t count)
1031 {
1032 	struct asus_laptop *asus = dev_get_drvdata(dev);
1033 
1034 	return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH);
1035 }
1036 static DEVICE_ATTR_RW(bluetooth);
1037 
1038 /*
1039  * Wimax
1040  */
1041 static int asus_wimax_set(struct asus_laptop *asus, int status)
1042 {
1043 	if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) {
1044 		pr_warn("Error setting wimax status to %d\n", status);
1045 		return -EIO;
1046 	}
1047 	return 0;
1048 }
1049 
1050 static ssize_t wimax_show(struct device *dev, struct device_attribute *attr,
1051 			  char *buf)
1052 {
1053 	struct asus_laptop *asus = dev_get_drvdata(dev);
1054 
1055 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS));
1056 }
1057 
1058 static ssize_t wimax_store(struct device *dev, struct device_attribute *attr,
1059 			   const char *buf, size_t count)
1060 {
1061 	struct asus_laptop *asus = dev_get_drvdata(dev);
1062 
1063 	return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX);
1064 }
1065 static DEVICE_ATTR_RW(wimax);
1066 
1067 /*
1068  * Wwan
1069  */
1070 static int asus_wwan_set(struct asus_laptop *asus, int status)
1071 {
1072 	if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) {
1073 		pr_warn("Error setting wwan status to %d\n", status);
1074 		return -EIO;
1075 	}
1076 	return 0;
1077 }
1078 
1079 static ssize_t wwan_show(struct device *dev, struct device_attribute *attr,
1080 			 char *buf)
1081 {
1082 	struct asus_laptop *asus = dev_get_drvdata(dev);
1083 
1084 	return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS));
1085 }
1086 
1087 static ssize_t wwan_store(struct device *dev, struct device_attribute *attr,
1088 			  const char *buf, size_t count)
1089 {
1090 	struct asus_laptop *asus = dev_get_drvdata(dev);
1091 
1092 	return sysfs_acpi_set(asus, buf, count, METHOD_WWAN);
1093 }
1094 static DEVICE_ATTR_RW(wwan);
1095 
1096 /*
1097  * Display
1098  */
1099 static void asus_set_display(struct asus_laptop *asus, int value)
1100 {
1101 	/* no sanity check needed for now */
1102 	if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value))
1103 		pr_warn("Error setting display\n");
1104 	return;
1105 }
1106 
1107 /*
1108  * Experimental support for display switching. As of now: 1 should activate
1109  * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI.
1110  * Any combination (bitwise) of these will suffice. I never actually tested 4
1111  * displays hooked up simultaneously, so be warned. See the acpi4asus README
1112  * for more info.
1113  */
1114 static ssize_t display_store(struct device *dev, struct device_attribute *attr,
1115 			     const char *buf, size_t count)
1116 {
1117 	struct asus_laptop *asus = dev_get_drvdata(dev);
1118 	int rv, value;
1119 
1120 	rv = kstrtoint(buf, 0, &value);
1121 	if (rv < 0)
1122 		return rv;
1123 
1124 	asus_set_display(asus, value);
1125 	return count;
1126 }
1127 static DEVICE_ATTR_WO(display);
1128 
1129 /*
1130  * Light Sens
1131  */
1132 static void asus_als_switch(struct asus_laptop *asus, int value)
1133 {
1134 	int ret;
1135 
1136 	if (asus->is_pega_lucid) {
1137 		ret = asus_pega_lucid_set(asus, PEGA_ALS, value);
1138 		if (!ret)
1139 			ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value);
1140 	} else {
1141 		ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value);
1142 	}
1143 	if (ret)
1144 		pr_warn("Error setting light sensor switch\n");
1145 
1146 	asus->light_switch = value;
1147 }
1148 
1149 static ssize_t ls_switch_show(struct device *dev, struct device_attribute *attr,
1150 			      char *buf)
1151 {
1152 	struct asus_laptop *asus = dev_get_drvdata(dev);
1153 
1154 	return sprintf(buf, "%d\n", asus->light_switch);
1155 }
1156 
1157 static ssize_t ls_switch_store(struct device *dev,
1158 			       struct device_attribute *attr, const char *buf,
1159 			       size_t count)
1160 {
1161 	struct asus_laptop *asus = dev_get_drvdata(dev);
1162 	int rv, value;
1163 
1164 	rv = kstrtoint(buf, 0, &value);
1165 	if (rv < 0)
1166 		return rv;
1167 
1168 	asus_als_switch(asus, value ? 1 : 0);
1169 	return count;
1170 }
1171 static DEVICE_ATTR_RW(ls_switch);
1172 
1173 static void asus_als_level(struct asus_laptop *asus, int value)
1174 {
1175 	if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value))
1176 		pr_warn("Error setting light sensor level\n");
1177 	asus->light_level = value;
1178 }
1179 
1180 static ssize_t ls_level_show(struct device *dev, struct device_attribute *attr,
1181 			     char *buf)
1182 {
1183 	struct asus_laptop *asus = dev_get_drvdata(dev);
1184 
1185 	return sprintf(buf, "%d\n", asus->light_level);
1186 }
1187 
1188 static ssize_t ls_level_store(struct device *dev, struct device_attribute *attr,
1189 			      const char *buf, size_t count)
1190 {
1191 	struct asus_laptop *asus = dev_get_drvdata(dev);
1192 	int rv, value;
1193 
1194 	rv = kstrtoint(buf, 0, &value);
1195 	if (rv < 0)
1196 		return rv;
1197 
1198 	value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
1199 	/* 0 <= value <= 15 */
1200 	asus_als_level(asus, value);
1201 
1202 	return count;
1203 }
1204 static DEVICE_ATTR_RW(ls_level);
1205 
1206 static int pega_int_read(struct asus_laptop *asus, int arg, int *result)
1207 {
1208 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1209 	int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg,
1210 				     &buffer);
1211 	if (!err) {
1212 		union acpi_object *obj = buffer.pointer;
1213 		if (obj && obj->type == ACPI_TYPE_INTEGER)
1214 			*result = obj->integer.value;
1215 		else
1216 			err = -EIO;
1217 	}
1218 	return err;
1219 }
1220 
1221 static ssize_t ls_value_show(struct device *dev, struct device_attribute *attr,
1222 			     char *buf)
1223 {
1224 	struct asus_laptop *asus = dev_get_drvdata(dev);
1225 	int err, hi, lo;
1226 
1227 	err = pega_int_read(asus, PEGA_READ_ALS_H, &hi);
1228 	if (!err)
1229 		err = pega_int_read(asus, PEGA_READ_ALS_L, &lo);
1230 	if (!err)
1231 		return sprintf(buf, "%d\n", 10 * hi + lo);
1232 	return err;
1233 }
1234 static DEVICE_ATTR_RO(ls_value);
1235 
1236 /*
1237  * GPS
1238  */
1239 static int asus_gps_status(struct asus_laptop *asus)
1240 {
1241 	unsigned long long status;
1242 	acpi_status rv;
1243 
1244 	rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS,
1245 				   NULL, &status);
1246 	if (ACPI_FAILURE(rv)) {
1247 		pr_warn("Error reading GPS status\n");
1248 		return -ENODEV;
1249 	}
1250 	return !!status;
1251 }
1252 
1253 static int asus_gps_switch(struct asus_laptop *asus, int status)
1254 {
1255 	const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF;
1256 
1257 	if (write_acpi_int(asus->handle, meth, 0x02))
1258 		return -ENODEV;
1259 	return 0;
1260 }
1261 
1262 static ssize_t gps_show(struct device *dev, struct device_attribute *attr,
1263 			char *buf)
1264 {
1265 	struct asus_laptop *asus = dev_get_drvdata(dev);
1266 
1267 	return sprintf(buf, "%d\n", asus_gps_status(asus));
1268 }
1269 
1270 static ssize_t gps_store(struct device *dev, struct device_attribute *attr,
1271 			 const char *buf, size_t count)
1272 {
1273 	struct asus_laptop *asus = dev_get_drvdata(dev);
1274 	int rv, value;
1275 	int ret;
1276 
1277 	rv = kstrtoint(buf, 0, &value);
1278 	if (rv < 0)
1279 		return rv;
1280 	ret = asus_gps_switch(asus, !!value);
1281 	if (ret)
1282 		return ret;
1283 	rfkill_set_sw_state(asus->gps.rfkill, !value);
1284 	return count;
1285 }
1286 static DEVICE_ATTR_RW(gps);
1287 
1288 /*
1289  * rfkill
1290  */
1291 static int asus_gps_rfkill_set(void *data, bool blocked)
1292 {
1293 	struct asus_laptop *asus = data;
1294 
1295 	return asus_gps_switch(asus, !blocked);
1296 }
1297 
1298 static const struct rfkill_ops asus_gps_rfkill_ops = {
1299 	.set_block = asus_gps_rfkill_set,
1300 };
1301 
1302 static int asus_rfkill_set(void *data, bool blocked)
1303 {
1304 	struct asus_rfkill *rfk = data;
1305 	struct asus_laptop *asus = rfk->asus;
1306 
1307 	if (rfk->control_id == WL_RSTS)
1308 		return asus_wlan_set(asus, !blocked);
1309 	else if (rfk->control_id == BT_RSTS)
1310 		return asus_bluetooth_set(asus, !blocked);
1311 	else if (rfk->control_id == WM_RSTS)
1312 		return asus_wimax_set(asus, !blocked);
1313 	else if (rfk->control_id == WW_RSTS)
1314 		return asus_wwan_set(asus, !blocked);
1315 
1316 	return -EINVAL;
1317 }
1318 
1319 static const struct rfkill_ops asus_rfkill_ops = {
1320 	.set_block = asus_rfkill_set,
1321 };
1322 
1323 static void asus_rfkill_terminate(struct asus_rfkill *rfk)
1324 {
1325 	if (!rfk->rfkill)
1326 		return ;
1327 
1328 	rfkill_unregister(rfk->rfkill);
1329 	rfkill_destroy(rfk->rfkill);
1330 	rfk->rfkill = NULL;
1331 }
1332 
1333 static void asus_rfkill_exit(struct asus_laptop *asus)
1334 {
1335 	asus_rfkill_terminate(&asus->wwan);
1336 	asus_rfkill_terminate(&asus->bluetooth);
1337 	asus_rfkill_terminate(&asus->wlan);
1338 	asus_rfkill_terminate(&asus->gps);
1339 }
1340 
1341 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1342 			     const char *name, int control_id, int type,
1343 			     const struct rfkill_ops *ops)
1344 {
1345 	int result;
1346 
1347 	rfk->control_id = control_id;
1348 	rfk->asus = asus;
1349 	rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev,
1350 				   type, ops, rfk);
1351 	if (!rfk->rfkill)
1352 		return -EINVAL;
1353 
1354 	result = rfkill_register(rfk->rfkill);
1355 	if (result) {
1356 		rfkill_destroy(rfk->rfkill);
1357 		rfk->rfkill = NULL;
1358 	}
1359 
1360 	return result;
1361 }
1362 
1363 static int asus_rfkill_init(struct asus_laptop *asus)
1364 {
1365 	int result = 0;
1366 
1367 	if (asus->is_pega_lucid)
1368 		return -ENODEV;
1369 
1370 	if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) &&
1371 	    !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) &&
1372 	    !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL))
1373 		result = asus_rfkill_setup(asus, &asus->gps, "asus-gps",
1374 					   -1, RFKILL_TYPE_GPS,
1375 					   &asus_gps_rfkill_ops);
1376 	if (result)
1377 		goto exit;
1378 
1379 
1380 	if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) &&
1381 	    asus->wled_type == TYPE_RFKILL)
1382 		result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan",
1383 					   WL_RSTS, RFKILL_TYPE_WLAN,
1384 					   &asus_rfkill_ops);
1385 	if (result)
1386 		goto exit;
1387 
1388 	if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) &&
1389 	    asus->bled_type == TYPE_RFKILL)
1390 		result = asus_rfkill_setup(asus, &asus->bluetooth,
1391 					   "asus-bluetooth", BT_RSTS,
1392 					   RFKILL_TYPE_BLUETOOTH,
1393 					   &asus_rfkill_ops);
1394 	if (result)
1395 		goto exit;
1396 
1397 	if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL))
1398 		result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan",
1399 					   WW_RSTS, RFKILL_TYPE_WWAN,
1400 					   &asus_rfkill_ops);
1401 	if (result)
1402 		goto exit;
1403 
1404 	if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL))
1405 		result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax",
1406 					   WM_RSTS, RFKILL_TYPE_WIMAX,
1407 					   &asus_rfkill_ops);
1408 	if (result)
1409 		goto exit;
1410 
1411 exit:
1412 	if (result)
1413 		asus_rfkill_exit(asus);
1414 
1415 	return result;
1416 }
1417 
1418 static int pega_rfkill_set(void *data, bool blocked)
1419 {
1420 	struct asus_rfkill *rfk = data;
1421 
1422 	int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked);
1423 	return ret;
1424 }
1425 
1426 static const struct rfkill_ops pega_rfkill_ops = {
1427 	.set_block = pega_rfkill_set,
1428 };
1429 
1430 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk,
1431 			     const char *name, int controlid, int rfkill_type)
1432 {
1433 	return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type,
1434 				 &pega_rfkill_ops);
1435 }
1436 
1437 static int pega_rfkill_init(struct asus_laptop *asus)
1438 {
1439 	int ret = 0;
1440 
1441 	if(!asus->is_pega_lucid)
1442 		return -ENODEV;
1443 
1444 	ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan",
1445 				PEGA_WLAN, RFKILL_TYPE_WLAN);
1446 	if(ret)
1447 		goto exit;
1448 
1449 	ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt",
1450 				PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH);
1451 	if(ret)
1452 		goto exit;
1453 
1454 	ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan",
1455 				PEGA_WWAN, RFKILL_TYPE_WWAN);
1456 
1457 exit:
1458 	if (ret)
1459 		asus_rfkill_exit(asus);
1460 
1461 	return ret;
1462 }
1463 
1464 /*
1465  * Input device (i.e. hotkeys)
1466  */
1467 static void asus_input_notify(struct asus_laptop *asus, int event)
1468 {
1469 	if (!asus->inputdev)
1470 		return ;
1471 	if (!sparse_keymap_report_event(asus->inputdev, event, 1, true))
1472 		pr_info("Unknown key %x pressed\n", event);
1473 }
1474 
1475 static int asus_input_init(struct asus_laptop *asus)
1476 {
1477 	struct input_dev *input;
1478 	int error;
1479 
1480 	input = input_allocate_device();
1481 	if (!input)
1482 		return -ENOMEM;
1483 
1484 	input->name = "Asus Laptop extra buttons";
1485 	input->phys = ASUS_LAPTOP_FILE "/input0";
1486 	input->id.bustype = BUS_HOST;
1487 	input->dev.parent = &asus->platform_device->dev;
1488 
1489 	error = sparse_keymap_setup(input, asus_keymap, NULL);
1490 	if (error) {
1491 		pr_err("Unable to setup input device keymap\n");
1492 		goto err_free_dev;
1493 	}
1494 	error = input_register_device(input);
1495 	if (error) {
1496 		pr_warn("Unable to register input device\n");
1497 		goto err_free_dev;
1498 	}
1499 
1500 	asus->inputdev = input;
1501 	return 0;
1502 
1503 err_free_dev:
1504 	input_free_device(input);
1505 	return error;
1506 }
1507 
1508 static void asus_input_exit(struct asus_laptop *asus)
1509 {
1510 	if (asus->inputdev)
1511 		input_unregister_device(asus->inputdev);
1512 	asus->inputdev = NULL;
1513 }
1514 
1515 /*
1516  * ACPI driver
1517  */
1518 static void asus_acpi_notify(struct acpi_device *device, u32 event)
1519 {
1520 	struct asus_laptop *asus = acpi_driver_data(device);
1521 	u16 count;
1522 
1523 	/* TODO Find a better way to handle events count. */
1524 	count = asus->event_count[event % 128]++;
1525 	acpi_bus_generate_netlink_event(asus->device->pnp.device_class,
1526 					dev_name(&asus->device->dev), event,
1527 					count);
1528 
1529 	if (event >= ATKD_BRNUP_MIN && event <= ATKD_BRNUP_MAX)
1530 		event = ATKD_BRNUP;
1531 	else if (event >= ATKD_BRNDOWN_MIN &&
1532 		 event <= ATKD_BRNDOWN_MAX)
1533 		event = ATKD_BRNDOWN;
1534 
1535 	/* Brightness events are special */
1536 	if (event == ATKD_BRNDOWN || event == ATKD_BRNUP) {
1537 		if (asus->backlight_device != NULL) {
1538 			/* Update the backlight device. */
1539 			asus_backlight_notify(asus);
1540 			return ;
1541 		}
1542 	}
1543 
1544 	/* Accelerometer "coarse orientation change" event */
1545 	if (asus->pega_accel_poll && event == 0xEA) {
1546 		kobject_uevent(&asus->pega_accel_poll->dev.kobj, KOBJ_CHANGE);
1547 		return ;
1548 	}
1549 
1550 	asus_input_notify(asus, event);
1551 }
1552 
1553 static struct attribute *asus_attributes[] = {
1554 	&dev_attr_infos.attr,
1555 	&dev_attr_wlan.attr,
1556 	&dev_attr_bluetooth.attr,
1557 	&dev_attr_wimax.attr,
1558 	&dev_attr_wwan.attr,
1559 	&dev_attr_display.attr,
1560 	&dev_attr_ledd.attr,
1561 	&dev_attr_ls_value.attr,
1562 	&dev_attr_ls_level.attr,
1563 	&dev_attr_ls_switch.attr,
1564 	&dev_attr_gps.attr,
1565 	NULL
1566 };
1567 
1568 static umode_t asus_sysfs_is_visible(struct kobject *kobj,
1569 				    struct attribute *attr,
1570 				    int idx)
1571 {
1572 	struct device *dev = kobj_to_dev(kobj);
1573 	struct asus_laptop *asus = dev_get_drvdata(dev);
1574 	acpi_handle handle = asus->handle;
1575 	bool supported;
1576 
1577 	if (asus->is_pega_lucid) {
1578 		/* no ls_level interface on the Lucid */
1579 		if (attr == &dev_attr_ls_switch.attr)
1580 			supported = true;
1581 		else if (attr == &dev_attr_ls_level.attr)
1582 			supported = false;
1583 		else
1584 			goto normal;
1585 
1586 		return supported ? attr->mode : 0;
1587 	}
1588 
1589 normal:
1590 	if (attr == &dev_attr_wlan.attr) {
1591 		supported = !acpi_check_handle(handle, METHOD_WLAN, NULL);
1592 
1593 	} else if (attr == &dev_attr_bluetooth.attr) {
1594 		supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL);
1595 
1596 	} else if (attr == &dev_attr_display.attr) {
1597 		supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL);
1598 
1599 	} else if (attr == &dev_attr_wimax.attr) {
1600 		supported =
1601 			!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL);
1602 
1603 	} else if (attr == &dev_attr_wwan.attr) {
1604 		supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL);
1605 
1606 	} else if (attr == &dev_attr_ledd.attr) {
1607 		supported = !acpi_check_handle(handle, METHOD_LEDD, NULL);
1608 
1609 	} else if (attr == &dev_attr_ls_switch.attr ||
1610 		   attr == &dev_attr_ls_level.attr) {
1611 		supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) &&
1612 			!acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL);
1613 	} else if (attr == &dev_attr_ls_value.attr) {
1614 		supported = asus->is_pega_lucid;
1615 	} else if (attr == &dev_attr_gps.attr) {
1616 		supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) &&
1617 			    !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) &&
1618 			    !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL);
1619 	} else {
1620 		supported = true;
1621 	}
1622 
1623 	return supported ? attr->mode : 0;
1624 }
1625 
1626 
1627 static const struct attribute_group asus_attr_group = {
1628 	.is_visible	= asus_sysfs_is_visible,
1629 	.attrs		= asus_attributes,
1630 };
1631 
1632 static int asus_platform_init(struct asus_laptop *asus)
1633 {
1634 	int result;
1635 
1636 	asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, PLATFORM_DEVID_NONE);
1637 	if (!asus->platform_device)
1638 		return -ENOMEM;
1639 	platform_set_drvdata(asus->platform_device, asus);
1640 
1641 	result = platform_device_add(asus->platform_device);
1642 	if (result)
1643 		goto fail_platform_device;
1644 
1645 	result = sysfs_create_group(&asus->platform_device->dev.kobj,
1646 				    &asus_attr_group);
1647 	if (result)
1648 		goto fail_sysfs;
1649 
1650 	return 0;
1651 
1652 fail_sysfs:
1653 	platform_device_del(asus->platform_device);
1654 fail_platform_device:
1655 	platform_device_put(asus->platform_device);
1656 	return result;
1657 }
1658 
1659 static void asus_platform_exit(struct asus_laptop *asus)
1660 {
1661 	sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group);
1662 	platform_device_unregister(asus->platform_device);
1663 }
1664 
1665 static struct platform_driver platform_driver = {
1666 	.driver = {
1667 		.name = ASUS_LAPTOP_FILE,
1668 	},
1669 };
1670 
1671 /*
1672  * This function is used to initialize the context with right values. In this
1673  * method, we can make all the detection we want, and modify the asus_laptop
1674  * struct
1675  */
1676 static int asus_laptop_get_info(struct asus_laptop *asus)
1677 {
1678 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1679 	union acpi_object *model = NULL;
1680 	unsigned long long bsts_result;
1681 	char *string = NULL;
1682 	acpi_status status;
1683 
1684 	/*
1685 	 * Get DSDT headers early enough to allow for differentiating between
1686 	 * models, but late enough to allow acpi_bus_register_driver() to fail
1687 	 * before doing anything ACPI-specific. Should we encounter a machine,
1688 	 * which needs special handling (i.e. its hotkey device has a different
1689 	 * HID), this bit will be moved.
1690 	 */
1691 	status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info);
1692 	if (ACPI_FAILURE(status))
1693 		pr_warn("Couldn't get the DSDT table header\n");
1694 
1695 	/* We have to write 0 on init this far for all ASUS models */
1696 	if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) {
1697 		pr_err("Hotkey initialization failed\n");
1698 		return -ENODEV;
1699 	}
1700 
1701 	/* This needs to be called for some laptops to init properly */
1702 	status =
1703 	    acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result);
1704 	if (ACPI_FAILURE(status))
1705 		pr_warn("Error calling BSTS\n");
1706 	else if (bsts_result)
1707 		pr_notice("BSTS called, 0x%02x returned\n",
1708 		       (uint) bsts_result);
1709 
1710 	/* This too ... */
1711 	if (write_acpi_int(asus->handle, "CWAP", wapf))
1712 		pr_err("Error calling CWAP(%d)\n", wapf);
1713 	/*
1714 	 * Try to match the object returned by INIT to the specific model.
1715 	 * Handle every possible object (or the lack of thereof) the DSDT
1716 	 * writers might throw at us. When in trouble, we pass NULL to
1717 	 * asus_model_match() and try something completely different.
1718 	 */
1719 	if (buffer.pointer) {
1720 		model = buffer.pointer;
1721 		switch (model->type) {
1722 		case ACPI_TYPE_STRING:
1723 			string = model->string.pointer;
1724 			break;
1725 		case ACPI_TYPE_BUFFER:
1726 			string = model->buffer.pointer;
1727 			break;
1728 		default:
1729 			string = "";
1730 			break;
1731 		}
1732 	}
1733 	asus->name = kstrdup(string, GFP_KERNEL);
1734 	if (!asus->name) {
1735 		kfree(buffer.pointer);
1736 		return -ENOMEM;
1737 	}
1738 
1739 	if (string)
1740 		pr_notice("  %s model detected\n", string);
1741 
1742 	if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL))
1743 		asus->have_rsts = true;
1744 
1745 	kfree(model);
1746 
1747 	return AE_OK;
1748 }
1749 
1750 static int asus_acpi_init(struct asus_laptop *asus)
1751 {
1752 	int result = 0;
1753 
1754 	result = acpi_bus_get_status(asus->device);
1755 	if (result)
1756 		return result;
1757 	if (!asus->device->status.present) {
1758 		pr_err("Hotkey device not present, aborting\n");
1759 		return -ENODEV;
1760 	}
1761 
1762 	result = asus_laptop_get_info(asus);
1763 	if (result)
1764 		return result;
1765 
1766 	if (!strcmp(bled_type, "led"))
1767 		asus->bled_type = TYPE_LED;
1768 	else if (!strcmp(bled_type, "rfkill"))
1769 		asus->bled_type = TYPE_RFKILL;
1770 
1771 	if (!strcmp(wled_type, "led"))
1772 		asus->wled_type = TYPE_LED;
1773 	else if (!strcmp(wled_type, "rfkill"))
1774 		asus->wled_type = TYPE_RFKILL;
1775 
1776 	if (bluetooth_status >= 0)
1777 		asus_bluetooth_set(asus, !!bluetooth_status);
1778 
1779 	if (wlan_status >= 0)
1780 		asus_wlan_set(asus, !!wlan_status);
1781 
1782 	if (wimax_status >= 0)
1783 		asus_wimax_set(asus, !!wimax_status);
1784 
1785 	if (wwan_status >= 0)
1786 		asus_wwan_set(asus, !!wwan_status);
1787 
1788 	/* Keyboard Backlight is on by default */
1789 	if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL))
1790 		asus_kled_set(asus, 1);
1791 
1792 	/* LED display is off by default */
1793 	asus->ledd_status = 0xFFF;
1794 
1795 	/* Set initial values of light sensor and level */
1796 	asus->light_switch = !!als_status;
1797 	asus->light_level = 5;	/* level 5 for sensor sensitivity */
1798 
1799 	if (asus->is_pega_lucid) {
1800 		asus_als_switch(asus, asus->light_switch);
1801 	} else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) &&
1802 		   !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) {
1803 		asus_als_switch(asus, asus->light_switch);
1804 		asus_als_level(asus, asus->light_level);
1805 	}
1806 
1807 	return result;
1808 }
1809 
1810 static void asus_dmi_check(void)
1811 {
1812 	const char *model;
1813 
1814 	model = dmi_get_system_info(DMI_PRODUCT_NAME);
1815 	if (!model)
1816 		return;
1817 
1818 	/* On L1400B WLED control the sound card, don't mess with it ... */
1819 	if (strncmp(model, "L1400B", 6) == 0) {
1820 		wlan_status = -1;
1821 	}
1822 }
1823 
1824 static bool asus_device_present;
1825 
1826 static int asus_acpi_add(struct acpi_device *device)
1827 {
1828 	struct asus_laptop *asus;
1829 	int result;
1830 
1831 	pr_notice("Asus Laptop Support version %s\n",
1832 		  ASUS_LAPTOP_VERSION);
1833 	asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL);
1834 	if (!asus)
1835 		return -ENOMEM;
1836 	asus->handle = device->handle;
1837 	strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME);
1838 	strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS);
1839 	device->driver_data = asus;
1840 	asus->device = device;
1841 
1842 	asus_dmi_check();
1843 
1844 	result = asus_acpi_init(asus);
1845 	if (result)
1846 		goto fail_platform;
1847 
1848 	/*
1849 	 * Need platform type detection first, then the platform
1850 	 * device.  It is used as a parent for the sub-devices below.
1851 	 */
1852 	asus->is_pega_lucid = asus_check_pega_lucid(asus);
1853 	result = asus_platform_init(asus);
1854 	if (result)
1855 		goto fail_platform;
1856 
1857 	if (acpi_video_get_backlight_type() == acpi_backlight_vendor) {
1858 		result = asus_backlight_init(asus);
1859 		if (result)
1860 			goto fail_backlight;
1861 	}
1862 
1863 	result = asus_input_init(asus);
1864 	if (result)
1865 		goto fail_input;
1866 
1867 	result = asus_led_init(asus);
1868 	if (result)
1869 		goto fail_led;
1870 
1871 	result = asus_rfkill_init(asus);
1872 	if (result && result != -ENODEV)
1873 		goto fail_rfkill;
1874 
1875 	result = pega_accel_init(asus);
1876 	if (result && result != -ENODEV)
1877 		goto fail_pega_accel;
1878 
1879 	result = pega_rfkill_init(asus);
1880 	if (result && result != -ENODEV)
1881 		goto fail_pega_rfkill;
1882 
1883 	asus_device_present = true;
1884 	return 0;
1885 
1886 fail_pega_rfkill:
1887 	pega_accel_exit(asus);
1888 fail_pega_accel:
1889 	asus_rfkill_exit(asus);
1890 fail_rfkill:
1891 	asus_led_exit(asus);
1892 fail_led:
1893 	asus_input_exit(asus);
1894 fail_input:
1895 	asus_backlight_exit(asus);
1896 fail_backlight:
1897 	asus_platform_exit(asus);
1898 fail_platform:
1899 	kfree(asus);
1900 
1901 	return result;
1902 }
1903 
1904 static int asus_acpi_remove(struct acpi_device *device)
1905 {
1906 	struct asus_laptop *asus = acpi_driver_data(device);
1907 
1908 	asus_backlight_exit(asus);
1909 	asus_rfkill_exit(asus);
1910 	asus_led_exit(asus);
1911 	asus_input_exit(asus);
1912 	pega_accel_exit(asus);
1913 	asus_platform_exit(asus);
1914 
1915 	kfree(asus->name);
1916 	kfree(asus);
1917 	return 0;
1918 }
1919 
1920 static const struct acpi_device_id asus_device_ids[] = {
1921 	{"ATK0100", 0},
1922 	{"ATK0101", 0},
1923 	{"", 0},
1924 };
1925 MODULE_DEVICE_TABLE(acpi, asus_device_ids);
1926 
1927 static struct acpi_driver asus_acpi_driver = {
1928 	.name = ASUS_LAPTOP_NAME,
1929 	.class = ASUS_LAPTOP_CLASS,
1930 	.owner = THIS_MODULE,
1931 	.ids = asus_device_ids,
1932 	.flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS,
1933 	.ops = {
1934 		.add = asus_acpi_add,
1935 		.remove = asus_acpi_remove,
1936 		.notify = asus_acpi_notify,
1937 		},
1938 };
1939 
1940 static int __init asus_laptop_init(void)
1941 {
1942 	int result;
1943 
1944 	result = platform_driver_register(&platform_driver);
1945 	if (result < 0)
1946 		return result;
1947 
1948 	result = acpi_bus_register_driver(&asus_acpi_driver);
1949 	if (result < 0)
1950 		goto fail_acpi_driver;
1951 	if (!asus_device_present) {
1952 		result = -ENODEV;
1953 		goto fail_no_device;
1954 	}
1955 	return 0;
1956 
1957 fail_no_device:
1958 	acpi_bus_unregister_driver(&asus_acpi_driver);
1959 fail_acpi_driver:
1960 	platform_driver_unregister(&platform_driver);
1961 	return result;
1962 }
1963 
1964 static void __exit asus_laptop_exit(void)
1965 {
1966 	acpi_bus_unregister_driver(&asus_acpi_driver);
1967 	platform_driver_unregister(&platform_driver);
1968 }
1969 
1970 module_init(asus_laptop_init);
1971 module_exit(asus_laptop_exit);
1972