1 /* 2 * asus-laptop.c - Asus Laptop Support 3 * 4 * 5 * Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor 6 * Copyright (C) 2006-2007 Corentin Chary 7 * Copyright (C) 2011 Wind River Systems 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 22 * 23 * 24 * The development page for this driver is located at 25 * http://sourceforge.net/projects/acpi4asus/ 26 * 27 * Credits: 28 * Pontus Fuchs - Helper functions, cleanup 29 * Johann Wiesner - Small compile fixes 30 * John Belmonte - ACPI code for Toshiba laptop was a good starting point. 31 * Eric Burghard - LED display support for W1N 32 * Josh Green - Light Sens support 33 * Thomas Tuttle - His first patch for led support was very helpful 34 * Sam Lin - GPS support 35 */ 36 37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/module.h> 41 #include <linux/init.h> 42 #include <linux/types.h> 43 #include <linux/err.h> 44 #include <linux/proc_fs.h> 45 #include <linux/backlight.h> 46 #include <linux/fb.h> 47 #include <linux/leds.h> 48 #include <linux/platform_device.h> 49 #include <linux/uaccess.h> 50 #include <linux/input.h> 51 #include <linux/input/sparse-keymap.h> 52 #include <linux/input-polldev.h> 53 #include <linux/rfkill.h> 54 #include <linux/slab.h> 55 #include <linux/dmi.h> 56 #include <linux/acpi.h> 57 #include <acpi/video.h> 58 59 #define ASUS_LAPTOP_VERSION "0.42" 60 61 #define ASUS_LAPTOP_NAME "Asus Laptop Support" 62 #define ASUS_LAPTOP_CLASS "hotkey" 63 #define ASUS_LAPTOP_DEVICE_NAME "Hotkey" 64 #define ASUS_LAPTOP_FILE KBUILD_MODNAME 65 #define ASUS_LAPTOP_PREFIX "\\_SB.ATKD." 66 67 MODULE_AUTHOR("Julien Lerouge, Karol Kozimor, Corentin Chary"); 68 MODULE_DESCRIPTION(ASUS_LAPTOP_NAME); 69 MODULE_LICENSE("GPL"); 70 71 /* 72 * WAPF defines the behavior of the Fn+Fx wlan key 73 * The significance of values is yet to be found, but 74 * most of the time: 75 * Bit | Bluetooth | WLAN 76 * 0 | Hardware | Hardware 77 * 1 | Hardware | Software 78 * 4 | Software | Software 79 */ 80 static uint wapf = 1; 81 module_param(wapf, uint, 0444); 82 MODULE_PARM_DESC(wapf, "WAPF value"); 83 84 static char *wled_type = "unknown"; 85 static char *bled_type = "unknown"; 86 87 module_param(wled_type, charp, 0444); 88 MODULE_PARM_DESC(wled_type, "Set the wled type on boot " 89 "(unknown, led or rfkill). " 90 "default is unknown"); 91 92 module_param(bled_type, charp, 0444); 93 MODULE_PARM_DESC(bled_type, "Set the bled type on boot " 94 "(unknown, led or rfkill). " 95 "default is unknown"); 96 97 static int wlan_status = 1; 98 static int bluetooth_status = 1; 99 static int wimax_status = -1; 100 static int wwan_status = -1; 101 static int als_status; 102 103 module_param(wlan_status, int, 0444); 104 MODULE_PARM_DESC(wlan_status, "Set the wireless status on boot " 105 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 106 "default is -1"); 107 108 module_param(bluetooth_status, int, 0444); 109 MODULE_PARM_DESC(bluetooth_status, "Set the wireless status on boot " 110 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 111 "default is -1"); 112 113 module_param(wimax_status, int, 0444); 114 MODULE_PARM_DESC(wimax_status, "Set the wireless status on boot " 115 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 116 "default is -1"); 117 118 module_param(wwan_status, int, 0444); 119 MODULE_PARM_DESC(wwan_status, "Set the wireless status on boot " 120 "(0 = disabled, 1 = enabled, -1 = don't do anything). " 121 "default is -1"); 122 123 module_param(als_status, int, 0444); 124 MODULE_PARM_DESC(als_status, "Set the ALS status on boot " 125 "(0 = disabled, 1 = enabled). " 126 "default is 0"); 127 128 /* 129 * Some events we use, same for all Asus 130 */ 131 #define ATKD_BRNUP_MIN 0x10 132 #define ATKD_BRNUP_MAX 0x1f 133 #define ATKD_BRNDOWN_MIN 0x20 134 #define ATKD_BRNDOWN_MAX 0x2f 135 #define ATKD_BRNDOWN 0x20 136 #define ATKD_BRNUP 0x2f 137 #define ATKD_LCD_ON 0x33 138 #define ATKD_LCD_OFF 0x34 139 140 /* 141 * Known bits returned by \_SB.ATKD.HWRS 142 */ 143 #define WL_HWRS 0x80 144 #define BT_HWRS 0x100 145 146 /* 147 * Flags for hotk status 148 * WL_ON and BT_ON are also used for wireless_status() 149 */ 150 #define WL_RSTS 0x01 /* internal Wifi */ 151 #define BT_RSTS 0x02 /* internal Bluetooth */ 152 #define WM_RSTS 0x08 /* internal wimax */ 153 #define WW_RSTS 0x20 /* internal wwan */ 154 155 /* WLED and BLED type */ 156 #define TYPE_UNKNOWN 0 157 #define TYPE_LED 1 158 #define TYPE_RFKILL 2 159 160 /* LED */ 161 #define METHOD_MLED "MLED" 162 #define METHOD_TLED "TLED" 163 #define METHOD_RLED "RLED" /* W1JC */ 164 #define METHOD_PLED "PLED" /* A7J */ 165 #define METHOD_GLED "GLED" /* G1, G2 (probably) */ 166 167 /* LEDD */ 168 #define METHOD_LEDD "SLCM" 169 170 /* 171 * Bluetooth and WLAN 172 * WLED and BLED are not handled like other XLED, because in some dsdt 173 * they also control the WLAN/Bluetooth device. 174 */ 175 #define METHOD_WLAN "WLED" 176 #define METHOD_BLUETOOTH "BLED" 177 178 /* WWAN and WIMAX */ 179 #define METHOD_WWAN "GSMC" 180 #define METHOD_WIMAX "WMXC" 181 182 #define METHOD_WL_STATUS "RSTS" 183 184 /* Brightness */ 185 #define METHOD_BRIGHTNESS_SET "SPLV" 186 #define METHOD_BRIGHTNESS_GET "GPLV" 187 188 /* Display */ 189 #define METHOD_SWITCH_DISPLAY "SDSP" 190 191 #define METHOD_ALS_CONTROL "ALSC" /* Z71A Z71V */ 192 #define METHOD_ALS_LEVEL "ALSL" /* Z71A Z71V */ 193 194 /* GPS */ 195 /* R2H use different handle for GPS on/off */ 196 #define METHOD_GPS_ON "SDON" 197 #define METHOD_GPS_OFF "SDOF" 198 #define METHOD_GPS_STATUS "GPST" 199 200 /* Keyboard light */ 201 #define METHOD_KBD_LIGHT_SET "SLKB" 202 #define METHOD_KBD_LIGHT_GET "GLKB" 203 204 /* For Pegatron Lucid tablet */ 205 #define DEVICE_NAME_PEGA "Lucid" 206 207 #define METHOD_PEGA_ENABLE "ENPR" 208 #define METHOD_PEGA_DISABLE "DAPR" 209 #define PEGA_WLAN 0x00 210 #define PEGA_BLUETOOTH 0x01 211 #define PEGA_WWAN 0x02 212 #define PEGA_ALS 0x04 213 #define PEGA_ALS_POWER 0x05 214 215 #define METHOD_PEGA_READ "RDLN" 216 #define PEGA_READ_ALS_H 0x02 217 #define PEGA_READ_ALS_L 0x03 218 219 #define PEGA_ACCEL_NAME "pega_accel" 220 #define PEGA_ACCEL_DESC "Pegatron Lucid Tablet Accelerometer" 221 #define METHOD_XLRX "XLRX" 222 #define METHOD_XLRY "XLRY" 223 #define METHOD_XLRZ "XLRZ" 224 #define PEGA_ACC_CLAMP 512 /* 1G accel is reported as ~256, so clamp to 2G */ 225 #define PEGA_ACC_RETRIES 3 226 227 /* 228 * Define a specific led structure to keep the main structure clean 229 */ 230 struct asus_led { 231 int wk; 232 struct work_struct work; 233 struct led_classdev led; 234 struct asus_laptop *asus; 235 const char *method; 236 }; 237 238 /* 239 * Same thing for rfkill 240 */ 241 struct asus_rfkill { 242 /* type of control. Maps to PEGA_* values or *_RSTS */ 243 int control_id; 244 struct rfkill *rfkill; 245 struct asus_laptop *asus; 246 }; 247 248 /* 249 * This is the main structure, we can use it to store anything interesting 250 * about the hotk device 251 */ 252 struct asus_laptop { 253 char *name; /* laptop name */ 254 255 struct acpi_table_header *dsdt_info; 256 struct platform_device *platform_device; 257 struct acpi_device *device; /* the device we are in */ 258 struct backlight_device *backlight_device; 259 260 struct input_dev *inputdev; 261 struct key_entry *keymap; 262 struct input_polled_dev *pega_accel_poll; 263 264 struct asus_led wled; 265 struct asus_led bled; 266 struct asus_led mled; 267 struct asus_led tled; 268 struct asus_led rled; 269 struct asus_led pled; 270 struct asus_led gled; 271 struct asus_led kled; 272 struct workqueue_struct *led_workqueue; 273 274 int wled_type; 275 int bled_type; 276 int wireless_status; 277 bool have_rsts; 278 bool is_pega_lucid; 279 bool pega_acc_live; 280 int pega_acc_x; 281 int pega_acc_y; 282 int pega_acc_z; 283 284 struct asus_rfkill wlan; 285 struct asus_rfkill bluetooth; 286 struct asus_rfkill wwan; 287 struct asus_rfkill wimax; 288 struct asus_rfkill gps; 289 290 acpi_handle handle; /* the handle of the hotk device */ 291 u32 ledd_status; /* status of the LED display */ 292 u8 light_level; /* light sensor level */ 293 u8 light_switch; /* light sensor switch value */ 294 u16 event_count[128]; /* count for each event TODO make this better */ 295 }; 296 297 static const struct key_entry asus_keymap[] = { 298 /* Lenovo SL Specific keycodes */ 299 {KE_KEY, 0x02, { KEY_SCREENLOCK } }, 300 {KE_KEY, 0x05, { KEY_WLAN } }, 301 {KE_KEY, 0x08, { KEY_F13 } }, 302 {KE_KEY, 0x09, { KEY_PROG2 } }, /* Dock */ 303 {KE_KEY, 0x17, { KEY_ZOOM } }, 304 {KE_KEY, 0x1f, { KEY_BATTERY } }, 305 /* End of Lenovo SL Specific keycodes */ 306 {KE_KEY, ATKD_BRNDOWN, { KEY_BRIGHTNESSDOWN } }, 307 {KE_KEY, ATKD_BRNUP, { KEY_BRIGHTNESSUP } }, 308 {KE_KEY, 0x30, { KEY_VOLUMEUP } }, 309 {KE_KEY, 0x31, { KEY_VOLUMEDOWN } }, 310 {KE_KEY, 0x32, { KEY_MUTE } }, 311 {KE_KEY, 0x33, { KEY_DISPLAYTOGGLE } }, /* LCD on */ 312 {KE_KEY, 0x34, { KEY_DISPLAY_OFF } }, /* LCD off */ 313 {KE_KEY, 0x40, { KEY_PREVIOUSSONG } }, 314 {KE_KEY, 0x41, { KEY_NEXTSONG } }, 315 {KE_KEY, 0x43, { KEY_STOPCD } }, /* Stop/Eject */ 316 {KE_KEY, 0x45, { KEY_PLAYPAUSE } }, 317 {KE_KEY, 0x4c, { KEY_MEDIA } }, /* WMP Key */ 318 {KE_KEY, 0x50, { KEY_EMAIL } }, 319 {KE_KEY, 0x51, { KEY_WWW } }, 320 {KE_KEY, 0x55, { KEY_CALC } }, 321 {KE_IGNORE, 0x57, }, /* Battery mode */ 322 {KE_IGNORE, 0x58, }, /* AC mode */ 323 {KE_KEY, 0x5C, { KEY_SCREENLOCK } }, /* Screenlock */ 324 {KE_KEY, 0x5D, { KEY_WLAN } }, /* WLAN Toggle */ 325 {KE_KEY, 0x5E, { KEY_WLAN } }, /* WLAN Enable */ 326 {KE_KEY, 0x5F, { KEY_WLAN } }, /* WLAN Disable */ 327 {KE_KEY, 0x60, { KEY_TOUCHPAD_ON } }, 328 {KE_KEY, 0x61, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD only */ 329 {KE_KEY, 0x62, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT only */ 330 {KE_KEY, 0x63, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT */ 331 {KE_KEY, 0x64, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV */ 332 {KE_KEY, 0x65, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV */ 333 {KE_KEY, 0x66, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV */ 334 {KE_KEY, 0x67, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV */ 335 {KE_KEY, 0x6A, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad Fn + F9 */ 336 {KE_KEY, 0x6B, { KEY_TOUCHPAD_TOGGLE } }, /* Lock Touchpad */ 337 {KE_KEY, 0x6C, { KEY_SLEEP } }, /* Suspend */ 338 {KE_KEY, 0x6D, { KEY_SLEEP } }, /* Hibernate */ 339 {KE_IGNORE, 0x6E, }, /* Low Battery notification */ 340 {KE_KEY, 0x7D, { KEY_BLUETOOTH } }, /* Bluetooth Enable */ 341 {KE_KEY, 0x7E, { KEY_BLUETOOTH } }, /* Bluetooth Disable */ 342 {KE_KEY, 0x82, { KEY_CAMERA } }, 343 {KE_KEY, 0x88, { KEY_RFKILL } }, /* Radio Toggle Key */ 344 {KE_KEY, 0x8A, { KEY_PROG1 } }, /* Color enhancement mode */ 345 {KE_KEY, 0x8C, { KEY_SWITCHVIDEOMODE } }, /* SDSP DVI only */ 346 {KE_KEY, 0x8D, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + DVI */ 347 {KE_KEY, 0x8E, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + DVI */ 348 {KE_KEY, 0x8F, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + DVI */ 349 {KE_KEY, 0x90, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + DVI */ 350 {KE_KEY, 0x91, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + DVI */ 351 {KE_KEY, 0x92, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + DVI */ 352 {KE_KEY, 0x93, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + DVI */ 353 {KE_KEY, 0x95, { KEY_MEDIA } }, 354 {KE_KEY, 0x99, { KEY_PHONE } }, 355 {KE_KEY, 0xA0, { KEY_SWITCHVIDEOMODE } }, /* SDSP HDMI only */ 356 {KE_KEY, 0xA1, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + HDMI */ 357 {KE_KEY, 0xA2, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + HDMI */ 358 {KE_KEY, 0xA3, { KEY_SWITCHVIDEOMODE } }, /* SDSP TV + HDMI */ 359 {KE_KEY, 0xA4, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + HDMI */ 360 {KE_KEY, 0xA5, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + TV + HDMI */ 361 {KE_KEY, 0xA6, { KEY_SWITCHVIDEOMODE } }, /* SDSP CRT + TV + HDMI */ 362 {KE_KEY, 0xA7, { KEY_SWITCHVIDEOMODE } }, /* SDSP LCD + CRT + TV + HDMI */ 363 {KE_KEY, 0xB5, { KEY_CALC } }, 364 {KE_KEY, 0xC4, { KEY_KBDILLUMUP } }, 365 {KE_KEY, 0xC5, { KEY_KBDILLUMDOWN } }, 366 {KE_END, 0}, 367 }; 368 369 370 /* 371 * This function evaluates an ACPI method, given an int as parameter, the 372 * method is searched within the scope of the handle, can be NULL. The output 373 * of the method is written is output, which can also be NULL 374 * 375 * returns 0 if write is successful, -1 else. 376 */ 377 static int write_acpi_int_ret(acpi_handle handle, const char *method, int val, 378 struct acpi_buffer *output) 379 { 380 struct acpi_object_list params; /* list of input parameters (an int) */ 381 union acpi_object in_obj; /* the only param we use */ 382 acpi_status status; 383 384 if (!handle) 385 return -1; 386 387 params.count = 1; 388 params.pointer = &in_obj; 389 in_obj.type = ACPI_TYPE_INTEGER; 390 in_obj.integer.value = val; 391 392 status = acpi_evaluate_object(handle, (char *)method, ¶ms, output); 393 if (status == AE_OK) 394 return 0; 395 else 396 return -1; 397 } 398 399 static int write_acpi_int(acpi_handle handle, const char *method, int val) 400 { 401 return write_acpi_int_ret(handle, method, val, NULL); 402 } 403 404 static int acpi_check_handle(acpi_handle handle, const char *method, 405 acpi_handle *ret) 406 { 407 acpi_status status; 408 409 if (method == NULL) 410 return -ENODEV; 411 412 if (ret) 413 status = acpi_get_handle(handle, (char *)method, 414 ret); 415 else { 416 acpi_handle dummy; 417 418 status = acpi_get_handle(handle, (char *)method, 419 &dummy); 420 } 421 422 if (status != AE_OK) { 423 if (ret) 424 pr_warn("Error finding %s\n", method); 425 return -ENODEV; 426 } 427 return 0; 428 } 429 430 static bool asus_check_pega_lucid(struct asus_laptop *asus) 431 { 432 return !strcmp(asus->name, DEVICE_NAME_PEGA) && 433 !acpi_check_handle(asus->handle, METHOD_PEGA_ENABLE, NULL) && 434 !acpi_check_handle(asus->handle, METHOD_PEGA_DISABLE, NULL) && 435 !acpi_check_handle(asus->handle, METHOD_PEGA_READ, NULL); 436 } 437 438 static int asus_pega_lucid_set(struct asus_laptop *asus, int unit, bool enable) 439 { 440 char *method = enable ? METHOD_PEGA_ENABLE : METHOD_PEGA_DISABLE; 441 return write_acpi_int(asus->handle, method, unit); 442 } 443 444 static int pega_acc_axis(struct asus_laptop *asus, int curr, char *method) 445 { 446 int i, delta; 447 unsigned long long val; 448 for (i = 0; i < PEGA_ACC_RETRIES; i++) { 449 acpi_evaluate_integer(asus->handle, method, NULL, &val); 450 451 /* The output is noisy. From reading the ASL 452 * dissassembly, timeout errors are returned with 1's 453 * in the high word, and the lack of locking around 454 * thei hi/lo byte reads means that a transition 455 * between (for example) -1 and 0 could be read as 456 * 0xff00 or 0x00ff. */ 457 delta = abs(curr - (short)val); 458 if (delta < 128 && !(val & ~0xffff)) 459 break; 460 } 461 return clamp_val((short)val, -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP); 462 } 463 464 static void pega_accel_poll(struct input_polled_dev *ipd) 465 { 466 struct device *parent = ipd->input->dev.parent; 467 struct asus_laptop *asus = dev_get_drvdata(parent); 468 469 /* In some cases, the very first call to poll causes a 470 * recursive fault under the polldev worker. This is 471 * apparently related to very early userspace access to the 472 * device, and perhaps a firmware bug. Fake the first report. */ 473 if (!asus->pega_acc_live) { 474 asus->pega_acc_live = true; 475 input_report_abs(ipd->input, ABS_X, 0); 476 input_report_abs(ipd->input, ABS_Y, 0); 477 input_report_abs(ipd->input, ABS_Z, 0); 478 input_sync(ipd->input); 479 return; 480 } 481 482 asus->pega_acc_x = pega_acc_axis(asus, asus->pega_acc_x, METHOD_XLRX); 483 asus->pega_acc_y = pega_acc_axis(asus, asus->pega_acc_y, METHOD_XLRY); 484 asus->pega_acc_z = pega_acc_axis(asus, asus->pega_acc_z, METHOD_XLRZ); 485 486 /* Note transform, convert to "right/up/out" in the native 487 * landscape orientation (i.e. the vector is the direction of 488 * "real up" in the device's cartiesian coordinates). */ 489 input_report_abs(ipd->input, ABS_X, -asus->pega_acc_x); 490 input_report_abs(ipd->input, ABS_Y, -asus->pega_acc_y); 491 input_report_abs(ipd->input, ABS_Z, asus->pega_acc_z); 492 input_sync(ipd->input); 493 } 494 495 static void pega_accel_exit(struct asus_laptop *asus) 496 { 497 if (asus->pega_accel_poll) { 498 input_unregister_polled_device(asus->pega_accel_poll); 499 input_free_polled_device(asus->pega_accel_poll); 500 } 501 asus->pega_accel_poll = NULL; 502 } 503 504 static int pega_accel_init(struct asus_laptop *asus) 505 { 506 int err; 507 struct input_polled_dev *ipd; 508 509 if (!asus->is_pega_lucid) 510 return -ENODEV; 511 512 if (acpi_check_handle(asus->handle, METHOD_XLRX, NULL) || 513 acpi_check_handle(asus->handle, METHOD_XLRY, NULL) || 514 acpi_check_handle(asus->handle, METHOD_XLRZ, NULL)) 515 return -ENODEV; 516 517 ipd = input_allocate_polled_device(); 518 if (!ipd) 519 return -ENOMEM; 520 521 ipd->poll = pega_accel_poll; 522 ipd->poll_interval = 125; 523 ipd->poll_interval_min = 50; 524 ipd->poll_interval_max = 2000; 525 526 ipd->input->name = PEGA_ACCEL_DESC; 527 ipd->input->phys = PEGA_ACCEL_NAME "/input0"; 528 ipd->input->dev.parent = &asus->platform_device->dev; 529 ipd->input->id.bustype = BUS_HOST; 530 531 set_bit(EV_ABS, ipd->input->evbit); 532 input_set_abs_params(ipd->input, ABS_X, 533 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); 534 input_set_abs_params(ipd->input, ABS_Y, 535 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); 536 input_set_abs_params(ipd->input, ABS_Z, 537 -PEGA_ACC_CLAMP, PEGA_ACC_CLAMP, 0, 0); 538 539 err = input_register_polled_device(ipd); 540 if (err) 541 goto exit; 542 543 asus->pega_accel_poll = ipd; 544 return 0; 545 546 exit: 547 input_free_polled_device(ipd); 548 return err; 549 } 550 551 /* Generic LED function */ 552 static int asus_led_set(struct asus_laptop *asus, const char *method, 553 int value) 554 { 555 if (!strcmp(method, METHOD_MLED)) 556 value = !value; 557 else if (!strcmp(method, METHOD_GLED)) 558 value = !value + 1; 559 else 560 value = !!value; 561 562 return write_acpi_int(asus->handle, method, value); 563 } 564 565 /* 566 * LEDs 567 */ 568 /* /sys/class/led handlers */ 569 static void asus_led_cdev_set(struct led_classdev *led_cdev, 570 enum led_brightness value) 571 { 572 struct asus_led *led = container_of(led_cdev, struct asus_led, led); 573 struct asus_laptop *asus = led->asus; 574 575 led->wk = !!value; 576 queue_work(asus->led_workqueue, &led->work); 577 } 578 579 static void asus_led_cdev_update(struct work_struct *work) 580 { 581 struct asus_led *led = container_of(work, struct asus_led, work); 582 struct asus_laptop *asus = led->asus; 583 584 asus_led_set(asus, led->method, led->wk); 585 } 586 587 static enum led_brightness asus_led_cdev_get(struct led_classdev *led_cdev) 588 { 589 return led_cdev->brightness; 590 } 591 592 /* 593 * Keyboard backlight (also a LED) 594 */ 595 static int asus_kled_lvl(struct asus_laptop *asus) 596 { 597 unsigned long long kblv; 598 struct acpi_object_list params; 599 union acpi_object in_obj; 600 acpi_status rv; 601 602 params.count = 1; 603 params.pointer = &in_obj; 604 in_obj.type = ACPI_TYPE_INTEGER; 605 in_obj.integer.value = 2; 606 607 rv = acpi_evaluate_integer(asus->handle, METHOD_KBD_LIGHT_GET, 608 ¶ms, &kblv); 609 if (ACPI_FAILURE(rv)) { 610 pr_warn("Error reading kled level\n"); 611 return -ENODEV; 612 } 613 return kblv; 614 } 615 616 static int asus_kled_set(struct asus_laptop *asus, int kblv) 617 { 618 if (kblv > 0) 619 kblv = (1 << 7) | (kblv & 0x7F); 620 else 621 kblv = 0; 622 623 if (write_acpi_int(asus->handle, METHOD_KBD_LIGHT_SET, kblv)) { 624 pr_warn("Keyboard LED display write failed\n"); 625 return -EINVAL; 626 } 627 return 0; 628 } 629 630 static void asus_kled_cdev_set(struct led_classdev *led_cdev, 631 enum led_brightness value) 632 { 633 struct asus_led *led = container_of(led_cdev, struct asus_led, led); 634 struct asus_laptop *asus = led->asus; 635 636 led->wk = value; 637 queue_work(asus->led_workqueue, &led->work); 638 } 639 640 static void asus_kled_cdev_update(struct work_struct *work) 641 { 642 struct asus_led *led = container_of(work, struct asus_led, work); 643 struct asus_laptop *asus = led->asus; 644 645 asus_kled_set(asus, led->wk); 646 } 647 648 static enum led_brightness asus_kled_cdev_get(struct led_classdev *led_cdev) 649 { 650 struct asus_led *led = container_of(led_cdev, struct asus_led, led); 651 struct asus_laptop *asus = led->asus; 652 653 return asus_kled_lvl(asus); 654 } 655 656 static void asus_led_exit(struct asus_laptop *asus) 657 { 658 if (!IS_ERR_OR_NULL(asus->wled.led.dev)) 659 led_classdev_unregister(&asus->wled.led); 660 if (!IS_ERR_OR_NULL(asus->bled.led.dev)) 661 led_classdev_unregister(&asus->bled.led); 662 if (!IS_ERR_OR_NULL(asus->mled.led.dev)) 663 led_classdev_unregister(&asus->mled.led); 664 if (!IS_ERR_OR_NULL(asus->tled.led.dev)) 665 led_classdev_unregister(&asus->tled.led); 666 if (!IS_ERR_OR_NULL(asus->pled.led.dev)) 667 led_classdev_unregister(&asus->pled.led); 668 if (!IS_ERR_OR_NULL(asus->rled.led.dev)) 669 led_classdev_unregister(&asus->rled.led); 670 if (!IS_ERR_OR_NULL(asus->gled.led.dev)) 671 led_classdev_unregister(&asus->gled.led); 672 if (!IS_ERR_OR_NULL(asus->kled.led.dev)) 673 led_classdev_unregister(&asus->kled.led); 674 if (asus->led_workqueue) { 675 destroy_workqueue(asus->led_workqueue); 676 asus->led_workqueue = NULL; 677 } 678 } 679 680 /* Ugly macro, need to fix that later */ 681 static int asus_led_register(struct asus_laptop *asus, 682 struct asus_led *led, 683 const char *name, const char *method) 684 { 685 struct led_classdev *led_cdev = &led->led; 686 687 if (!method || acpi_check_handle(asus->handle, method, NULL)) 688 return 0; /* Led not present */ 689 690 led->asus = asus; 691 led->method = method; 692 693 INIT_WORK(&led->work, asus_led_cdev_update); 694 led_cdev->name = name; 695 led_cdev->brightness_set = asus_led_cdev_set; 696 led_cdev->brightness_get = asus_led_cdev_get; 697 led_cdev->max_brightness = 1; 698 return led_classdev_register(&asus->platform_device->dev, led_cdev); 699 } 700 701 static int asus_led_init(struct asus_laptop *asus) 702 { 703 int r = 0; 704 705 /* 706 * The Pegatron Lucid has no physical leds, but all methods are 707 * available in the DSDT... 708 */ 709 if (asus->is_pega_lucid) 710 return 0; 711 712 /* 713 * Functions that actually update the LED's are called from a 714 * workqueue. By doing this as separate work rather than when the LED 715 * subsystem asks, we avoid messing with the Asus ACPI stuff during a 716 * potentially bad time, such as a timer interrupt. 717 */ 718 asus->led_workqueue = create_singlethread_workqueue("led_workqueue"); 719 if (!asus->led_workqueue) 720 return -ENOMEM; 721 722 if (asus->wled_type == TYPE_LED) 723 r = asus_led_register(asus, &asus->wled, "asus::wlan", 724 METHOD_WLAN); 725 if (r) 726 goto error; 727 if (asus->bled_type == TYPE_LED) 728 r = asus_led_register(asus, &asus->bled, "asus::bluetooth", 729 METHOD_BLUETOOTH); 730 if (r) 731 goto error; 732 r = asus_led_register(asus, &asus->mled, "asus::mail", METHOD_MLED); 733 if (r) 734 goto error; 735 r = asus_led_register(asus, &asus->tled, "asus::touchpad", METHOD_TLED); 736 if (r) 737 goto error; 738 r = asus_led_register(asus, &asus->rled, "asus::record", METHOD_RLED); 739 if (r) 740 goto error; 741 r = asus_led_register(asus, &asus->pled, "asus::phone", METHOD_PLED); 742 if (r) 743 goto error; 744 r = asus_led_register(asus, &asus->gled, "asus::gaming", METHOD_GLED); 745 if (r) 746 goto error; 747 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL) && 748 !acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_GET, NULL)) { 749 struct asus_led *led = &asus->kled; 750 struct led_classdev *cdev = &led->led; 751 752 led->asus = asus; 753 754 INIT_WORK(&led->work, asus_kled_cdev_update); 755 cdev->name = "asus::kbd_backlight"; 756 cdev->brightness_set = asus_kled_cdev_set; 757 cdev->brightness_get = asus_kled_cdev_get; 758 cdev->max_brightness = 3; 759 r = led_classdev_register(&asus->platform_device->dev, cdev); 760 } 761 error: 762 if (r) 763 asus_led_exit(asus); 764 return r; 765 } 766 767 /* 768 * Backlight device 769 */ 770 static int asus_read_brightness(struct backlight_device *bd) 771 { 772 struct asus_laptop *asus = bl_get_data(bd); 773 unsigned long long value; 774 acpi_status rv; 775 776 rv = acpi_evaluate_integer(asus->handle, METHOD_BRIGHTNESS_GET, 777 NULL, &value); 778 if (ACPI_FAILURE(rv)) { 779 pr_warn("Error reading brightness\n"); 780 return 0; 781 } 782 783 return value; 784 } 785 786 static int asus_set_brightness(struct backlight_device *bd, int value) 787 { 788 struct asus_laptop *asus = bl_get_data(bd); 789 790 if (write_acpi_int(asus->handle, METHOD_BRIGHTNESS_SET, value)) { 791 pr_warn("Error changing brightness\n"); 792 return -EIO; 793 } 794 return 0; 795 } 796 797 static int update_bl_status(struct backlight_device *bd) 798 { 799 int value = bd->props.brightness; 800 801 return asus_set_brightness(bd, value); 802 } 803 804 static const struct backlight_ops asusbl_ops = { 805 .get_brightness = asus_read_brightness, 806 .update_status = update_bl_status, 807 }; 808 809 static int asus_backlight_notify(struct asus_laptop *asus) 810 { 811 struct backlight_device *bd = asus->backlight_device; 812 int old = bd->props.brightness; 813 814 backlight_force_update(bd, BACKLIGHT_UPDATE_HOTKEY); 815 816 return old; 817 } 818 819 static int asus_backlight_init(struct asus_laptop *asus) 820 { 821 struct backlight_device *bd; 822 struct backlight_properties props; 823 824 if (acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_GET, NULL) || 825 acpi_check_handle(asus->handle, METHOD_BRIGHTNESS_SET, NULL)) 826 return 0; 827 828 memset(&props, 0, sizeof(struct backlight_properties)); 829 props.max_brightness = 15; 830 props.type = BACKLIGHT_PLATFORM; 831 832 bd = backlight_device_register(ASUS_LAPTOP_FILE, 833 &asus->platform_device->dev, asus, 834 &asusbl_ops, &props); 835 if (IS_ERR(bd)) { 836 pr_err("Could not register asus backlight device\n"); 837 asus->backlight_device = NULL; 838 return PTR_ERR(bd); 839 } 840 841 asus->backlight_device = bd; 842 bd->props.brightness = asus_read_brightness(bd); 843 bd->props.power = FB_BLANK_UNBLANK; 844 backlight_update_status(bd); 845 return 0; 846 } 847 848 static void asus_backlight_exit(struct asus_laptop *asus) 849 { 850 backlight_device_unregister(asus->backlight_device); 851 asus->backlight_device = NULL; 852 } 853 854 /* 855 * Platform device handlers 856 */ 857 858 /* 859 * We write our info in page, we begin at offset off and cannot write more 860 * than count bytes. We set eof to 1 if we handle those 2 values. We return the 861 * number of bytes written in page 862 */ 863 static ssize_t infos_show(struct device *dev, struct device_attribute *attr, 864 char *page) 865 { 866 struct asus_laptop *asus = dev_get_drvdata(dev); 867 int len = 0; 868 unsigned long long temp; 869 char buf[16]; /* enough for all info */ 870 acpi_status rv; 871 872 /* 873 * We use the easy way, we don't care of off and count, 874 * so we don't set eof to 1 875 */ 876 877 len += sprintf(page, ASUS_LAPTOP_NAME " " ASUS_LAPTOP_VERSION "\n"); 878 len += sprintf(page + len, "Model reference : %s\n", asus->name); 879 /* 880 * The SFUN method probably allows the original driver to get the list 881 * of features supported by a given model. For now, 0x0100 or 0x0800 882 * bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card. 883 * The significance of others is yet to be found. 884 */ 885 rv = acpi_evaluate_integer(asus->handle, "SFUN", NULL, &temp); 886 if (!ACPI_FAILURE(rv)) 887 len += sprintf(page + len, "SFUN value : %#x\n", 888 (uint) temp); 889 /* 890 * The HWRS method return informations about the hardware. 891 * 0x80 bit is for WLAN, 0x100 for Bluetooth. 892 * 0x40 for WWAN, 0x10 for WIMAX. 893 * The significance of others is yet to be found. 894 * We don't currently use this for device detection, and it 895 * takes several seconds to run on some systems. 896 */ 897 rv = acpi_evaluate_integer(asus->handle, "HWRS", NULL, &temp); 898 if (!ACPI_FAILURE(rv)) 899 len += sprintf(page + len, "HWRS value : %#x\n", 900 (uint) temp); 901 /* 902 * Another value for userspace: the ASYM method returns 0x02 for 903 * battery low and 0x04 for battery critical, its readings tend to be 904 * more accurate than those provided by _BST. 905 * Note: since not all the laptops provide this method, errors are 906 * silently ignored. 907 */ 908 rv = acpi_evaluate_integer(asus->handle, "ASYM", NULL, &temp); 909 if (!ACPI_FAILURE(rv)) 910 len += sprintf(page + len, "ASYM value : %#x\n", 911 (uint) temp); 912 if (asus->dsdt_info) { 913 snprintf(buf, 16, "%d", asus->dsdt_info->length); 914 len += sprintf(page + len, "DSDT length : %s\n", buf); 915 snprintf(buf, 16, "%d", asus->dsdt_info->checksum); 916 len += sprintf(page + len, "DSDT checksum : %s\n", buf); 917 snprintf(buf, 16, "%d", asus->dsdt_info->revision); 918 len += sprintf(page + len, "DSDT revision : %s\n", buf); 919 snprintf(buf, 7, "%s", asus->dsdt_info->oem_id); 920 len += sprintf(page + len, "OEM id : %s\n", buf); 921 snprintf(buf, 9, "%s", asus->dsdt_info->oem_table_id); 922 len += sprintf(page + len, "OEM table id : %s\n", buf); 923 snprintf(buf, 16, "%x", asus->dsdt_info->oem_revision); 924 len += sprintf(page + len, "OEM revision : 0x%s\n", buf); 925 snprintf(buf, 5, "%s", asus->dsdt_info->asl_compiler_id); 926 len += sprintf(page + len, "ASL comp vendor id : %s\n", buf); 927 snprintf(buf, 16, "%x", asus->dsdt_info->asl_compiler_revision); 928 len += sprintf(page + len, "ASL comp revision : 0x%s\n", buf); 929 } 930 931 return len; 932 } 933 static DEVICE_ATTR_RO(infos); 934 935 static int parse_arg(const char *buf, unsigned long count, int *val) 936 { 937 if (!count) 938 return 0; 939 if (count > 31) 940 return -EINVAL; 941 if (sscanf(buf, "%i", val) != 1) 942 return -EINVAL; 943 return count; 944 } 945 946 static ssize_t sysfs_acpi_set(struct asus_laptop *asus, 947 const char *buf, size_t count, 948 const char *method) 949 { 950 int rv, value; 951 952 rv = parse_arg(buf, count, &value); 953 if (rv <= 0) 954 return rv; 955 956 if (write_acpi_int(asus->handle, method, value)) 957 return -ENODEV; 958 return rv; 959 } 960 961 /* 962 * LEDD display 963 */ 964 static ssize_t ledd_show(struct device *dev, struct device_attribute *attr, 965 char *buf) 966 { 967 struct asus_laptop *asus = dev_get_drvdata(dev); 968 969 return sprintf(buf, "0x%08x\n", asus->ledd_status); 970 } 971 972 static ssize_t ledd_store(struct device *dev, struct device_attribute *attr, 973 const char *buf, size_t count) 974 { 975 struct asus_laptop *asus = dev_get_drvdata(dev); 976 int rv, value; 977 978 rv = parse_arg(buf, count, &value); 979 if (rv > 0) { 980 if (write_acpi_int(asus->handle, METHOD_LEDD, value)) { 981 pr_warn("LED display write failed\n"); 982 return -ENODEV; 983 } 984 asus->ledd_status = (u32) value; 985 } 986 return rv; 987 } 988 static DEVICE_ATTR_RW(ledd); 989 990 /* 991 * Wireless 992 */ 993 static int asus_wireless_status(struct asus_laptop *asus, int mask) 994 { 995 unsigned long long status; 996 acpi_status rv = AE_OK; 997 998 if (!asus->have_rsts) 999 return (asus->wireless_status & mask) ? 1 : 0; 1000 1001 rv = acpi_evaluate_integer(asus->handle, METHOD_WL_STATUS, 1002 NULL, &status); 1003 if (ACPI_FAILURE(rv)) { 1004 pr_warn("Error reading Wireless status\n"); 1005 return -EINVAL; 1006 } 1007 return !!(status & mask); 1008 } 1009 1010 /* 1011 * WLAN 1012 */ 1013 static int asus_wlan_set(struct asus_laptop *asus, int status) 1014 { 1015 if (write_acpi_int(asus->handle, METHOD_WLAN, !!status)) { 1016 pr_warn("Error setting wlan status to %d\n", status); 1017 return -EIO; 1018 } 1019 return 0; 1020 } 1021 1022 static ssize_t wlan_show(struct device *dev, struct device_attribute *attr, 1023 char *buf) 1024 { 1025 struct asus_laptop *asus = dev_get_drvdata(dev); 1026 1027 return sprintf(buf, "%d\n", asus_wireless_status(asus, WL_RSTS)); 1028 } 1029 1030 static ssize_t wlan_store(struct device *dev, struct device_attribute *attr, 1031 const char *buf, size_t count) 1032 { 1033 struct asus_laptop *asus = dev_get_drvdata(dev); 1034 1035 return sysfs_acpi_set(asus, buf, count, METHOD_WLAN); 1036 } 1037 static DEVICE_ATTR_RW(wlan); 1038 1039 /*e 1040 * Bluetooth 1041 */ 1042 static int asus_bluetooth_set(struct asus_laptop *asus, int status) 1043 { 1044 if (write_acpi_int(asus->handle, METHOD_BLUETOOTH, !!status)) { 1045 pr_warn("Error setting bluetooth status to %d\n", status); 1046 return -EIO; 1047 } 1048 return 0; 1049 } 1050 1051 static ssize_t bluetooth_show(struct device *dev, struct device_attribute *attr, 1052 char *buf) 1053 { 1054 struct asus_laptop *asus = dev_get_drvdata(dev); 1055 1056 return sprintf(buf, "%d\n", asus_wireless_status(asus, BT_RSTS)); 1057 } 1058 1059 static ssize_t bluetooth_store(struct device *dev, 1060 struct device_attribute *attr, const char *buf, 1061 size_t count) 1062 { 1063 struct asus_laptop *asus = dev_get_drvdata(dev); 1064 1065 return sysfs_acpi_set(asus, buf, count, METHOD_BLUETOOTH); 1066 } 1067 static DEVICE_ATTR_RW(bluetooth); 1068 1069 /* 1070 * Wimax 1071 */ 1072 static int asus_wimax_set(struct asus_laptop *asus, int status) 1073 { 1074 if (write_acpi_int(asus->handle, METHOD_WIMAX, !!status)) { 1075 pr_warn("Error setting wimax status to %d\n", status); 1076 return -EIO; 1077 } 1078 return 0; 1079 } 1080 1081 static ssize_t wimax_show(struct device *dev, struct device_attribute *attr, 1082 char *buf) 1083 { 1084 struct asus_laptop *asus = dev_get_drvdata(dev); 1085 1086 return sprintf(buf, "%d\n", asus_wireless_status(asus, WM_RSTS)); 1087 } 1088 1089 static ssize_t wimax_store(struct device *dev, struct device_attribute *attr, 1090 const char *buf, size_t count) 1091 { 1092 struct asus_laptop *asus = dev_get_drvdata(dev); 1093 1094 return sysfs_acpi_set(asus, buf, count, METHOD_WIMAX); 1095 } 1096 static DEVICE_ATTR_RW(wimax); 1097 1098 /* 1099 * Wwan 1100 */ 1101 static int asus_wwan_set(struct asus_laptop *asus, int status) 1102 { 1103 if (write_acpi_int(asus->handle, METHOD_WWAN, !!status)) { 1104 pr_warn("Error setting wwan status to %d\n", status); 1105 return -EIO; 1106 } 1107 return 0; 1108 } 1109 1110 static ssize_t wwan_show(struct device *dev, struct device_attribute *attr, 1111 char *buf) 1112 { 1113 struct asus_laptop *asus = dev_get_drvdata(dev); 1114 1115 return sprintf(buf, "%d\n", asus_wireless_status(asus, WW_RSTS)); 1116 } 1117 1118 static ssize_t wwan_store(struct device *dev, struct device_attribute *attr, 1119 const char *buf, size_t count) 1120 { 1121 struct asus_laptop *asus = dev_get_drvdata(dev); 1122 1123 return sysfs_acpi_set(asus, buf, count, METHOD_WWAN); 1124 } 1125 static DEVICE_ATTR_RW(wwan); 1126 1127 /* 1128 * Display 1129 */ 1130 static void asus_set_display(struct asus_laptop *asus, int value) 1131 { 1132 /* no sanity check needed for now */ 1133 if (write_acpi_int(asus->handle, METHOD_SWITCH_DISPLAY, value)) 1134 pr_warn("Error setting display\n"); 1135 return; 1136 } 1137 1138 /* 1139 * Experimental support for display switching. As of now: 1 should activate 1140 * the LCD output, 2 should do for CRT, 4 for TV-Out and 8 for DVI. 1141 * Any combination (bitwise) of these will suffice. I never actually tested 4 1142 * displays hooked up simultaneously, so be warned. See the acpi4asus README 1143 * for more info. 1144 */ 1145 static ssize_t display_store(struct device *dev, struct device_attribute *attr, 1146 const char *buf, size_t count) 1147 { 1148 struct asus_laptop *asus = dev_get_drvdata(dev); 1149 int rv, value; 1150 1151 rv = parse_arg(buf, count, &value); 1152 if (rv > 0) 1153 asus_set_display(asus, value); 1154 return rv; 1155 } 1156 static DEVICE_ATTR_WO(display); 1157 1158 /* 1159 * Light Sens 1160 */ 1161 static void asus_als_switch(struct asus_laptop *asus, int value) 1162 { 1163 int ret; 1164 1165 if (asus->is_pega_lucid) { 1166 ret = asus_pega_lucid_set(asus, PEGA_ALS, value); 1167 if (!ret) 1168 ret = asus_pega_lucid_set(asus, PEGA_ALS_POWER, value); 1169 } else { 1170 ret = write_acpi_int(asus->handle, METHOD_ALS_CONTROL, value); 1171 } 1172 if (ret) 1173 pr_warning("Error setting light sensor switch\n"); 1174 1175 asus->light_switch = value; 1176 } 1177 1178 static ssize_t ls_switch_show(struct device *dev, struct device_attribute *attr, 1179 char *buf) 1180 { 1181 struct asus_laptop *asus = dev_get_drvdata(dev); 1182 1183 return sprintf(buf, "%d\n", asus->light_switch); 1184 } 1185 1186 static ssize_t ls_switch_store(struct device *dev, 1187 struct device_attribute *attr, const char *buf, 1188 size_t count) 1189 { 1190 struct asus_laptop *asus = dev_get_drvdata(dev); 1191 int rv, value; 1192 1193 rv = parse_arg(buf, count, &value); 1194 if (rv > 0) 1195 asus_als_switch(asus, value ? 1 : 0); 1196 1197 return rv; 1198 } 1199 static DEVICE_ATTR_RW(ls_switch); 1200 1201 static void asus_als_level(struct asus_laptop *asus, int value) 1202 { 1203 if (write_acpi_int(asus->handle, METHOD_ALS_LEVEL, value)) 1204 pr_warn("Error setting light sensor level\n"); 1205 asus->light_level = value; 1206 } 1207 1208 static ssize_t ls_level_show(struct device *dev, struct device_attribute *attr, 1209 char *buf) 1210 { 1211 struct asus_laptop *asus = dev_get_drvdata(dev); 1212 1213 return sprintf(buf, "%d\n", asus->light_level); 1214 } 1215 1216 static ssize_t ls_level_store(struct device *dev, struct device_attribute *attr, 1217 const char *buf, size_t count) 1218 { 1219 struct asus_laptop *asus = dev_get_drvdata(dev); 1220 int rv, value; 1221 1222 rv = parse_arg(buf, count, &value); 1223 if (rv > 0) { 1224 value = (0 < value) ? ((15 < value) ? 15 : value) : 0; 1225 /* 0 <= value <= 15 */ 1226 asus_als_level(asus, value); 1227 } 1228 1229 return rv; 1230 } 1231 static DEVICE_ATTR_RW(ls_level); 1232 1233 static int pega_int_read(struct asus_laptop *asus, int arg, int *result) 1234 { 1235 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1236 int err = write_acpi_int_ret(asus->handle, METHOD_PEGA_READ, arg, 1237 &buffer); 1238 if (!err) { 1239 union acpi_object *obj = buffer.pointer; 1240 if (obj && obj->type == ACPI_TYPE_INTEGER) 1241 *result = obj->integer.value; 1242 else 1243 err = -EIO; 1244 } 1245 return err; 1246 } 1247 1248 static ssize_t ls_value_show(struct device *dev, struct device_attribute *attr, 1249 char *buf) 1250 { 1251 struct asus_laptop *asus = dev_get_drvdata(dev); 1252 int err, hi, lo; 1253 1254 err = pega_int_read(asus, PEGA_READ_ALS_H, &hi); 1255 if (!err) 1256 err = pega_int_read(asus, PEGA_READ_ALS_L, &lo); 1257 if (!err) 1258 return sprintf(buf, "%d\n", 10 * hi + lo); 1259 return err; 1260 } 1261 static DEVICE_ATTR_RO(ls_value); 1262 1263 /* 1264 * GPS 1265 */ 1266 static int asus_gps_status(struct asus_laptop *asus) 1267 { 1268 unsigned long long status; 1269 acpi_status rv; 1270 1271 rv = acpi_evaluate_integer(asus->handle, METHOD_GPS_STATUS, 1272 NULL, &status); 1273 if (ACPI_FAILURE(rv)) { 1274 pr_warn("Error reading GPS status\n"); 1275 return -ENODEV; 1276 } 1277 return !!status; 1278 } 1279 1280 static int asus_gps_switch(struct asus_laptop *asus, int status) 1281 { 1282 const char *meth = status ? METHOD_GPS_ON : METHOD_GPS_OFF; 1283 1284 if (write_acpi_int(asus->handle, meth, 0x02)) 1285 return -ENODEV; 1286 return 0; 1287 } 1288 1289 static ssize_t gps_show(struct device *dev, struct device_attribute *attr, 1290 char *buf) 1291 { 1292 struct asus_laptop *asus = dev_get_drvdata(dev); 1293 1294 return sprintf(buf, "%d\n", asus_gps_status(asus)); 1295 } 1296 1297 static ssize_t gps_store(struct device *dev, struct device_attribute *attr, 1298 const char *buf, size_t count) 1299 { 1300 struct asus_laptop *asus = dev_get_drvdata(dev); 1301 int rv, value; 1302 int ret; 1303 1304 rv = parse_arg(buf, count, &value); 1305 if (rv <= 0) 1306 return -EINVAL; 1307 ret = asus_gps_switch(asus, !!value); 1308 if (ret) 1309 return ret; 1310 rfkill_set_sw_state(asus->gps.rfkill, !value); 1311 return rv; 1312 } 1313 static DEVICE_ATTR_RW(gps); 1314 1315 /* 1316 * rfkill 1317 */ 1318 static int asus_gps_rfkill_set(void *data, bool blocked) 1319 { 1320 struct asus_laptop *asus = data; 1321 1322 return asus_gps_switch(asus, !blocked); 1323 } 1324 1325 static const struct rfkill_ops asus_gps_rfkill_ops = { 1326 .set_block = asus_gps_rfkill_set, 1327 }; 1328 1329 static int asus_rfkill_set(void *data, bool blocked) 1330 { 1331 struct asus_rfkill *rfk = data; 1332 struct asus_laptop *asus = rfk->asus; 1333 1334 if (rfk->control_id == WL_RSTS) 1335 return asus_wlan_set(asus, !blocked); 1336 else if (rfk->control_id == BT_RSTS) 1337 return asus_bluetooth_set(asus, !blocked); 1338 else if (rfk->control_id == WM_RSTS) 1339 return asus_wimax_set(asus, !blocked); 1340 else if (rfk->control_id == WW_RSTS) 1341 return asus_wwan_set(asus, !blocked); 1342 1343 return -EINVAL; 1344 } 1345 1346 static const struct rfkill_ops asus_rfkill_ops = { 1347 .set_block = asus_rfkill_set, 1348 }; 1349 1350 static void asus_rfkill_terminate(struct asus_rfkill *rfk) 1351 { 1352 if (!rfk->rfkill) 1353 return ; 1354 1355 rfkill_unregister(rfk->rfkill); 1356 rfkill_destroy(rfk->rfkill); 1357 rfk->rfkill = NULL; 1358 } 1359 1360 static void asus_rfkill_exit(struct asus_laptop *asus) 1361 { 1362 asus_rfkill_terminate(&asus->wwan); 1363 asus_rfkill_terminate(&asus->bluetooth); 1364 asus_rfkill_terminate(&asus->wlan); 1365 asus_rfkill_terminate(&asus->gps); 1366 } 1367 1368 static int asus_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk, 1369 const char *name, int control_id, int type, 1370 const struct rfkill_ops *ops) 1371 { 1372 int result; 1373 1374 rfk->control_id = control_id; 1375 rfk->asus = asus; 1376 rfk->rfkill = rfkill_alloc(name, &asus->platform_device->dev, 1377 type, ops, rfk); 1378 if (!rfk->rfkill) 1379 return -EINVAL; 1380 1381 result = rfkill_register(rfk->rfkill); 1382 if (result) { 1383 rfkill_destroy(rfk->rfkill); 1384 rfk->rfkill = NULL; 1385 } 1386 1387 return result; 1388 } 1389 1390 static int asus_rfkill_init(struct asus_laptop *asus) 1391 { 1392 int result = 0; 1393 1394 if (asus->is_pega_lucid) 1395 return -ENODEV; 1396 1397 if (!acpi_check_handle(asus->handle, METHOD_GPS_ON, NULL) && 1398 !acpi_check_handle(asus->handle, METHOD_GPS_OFF, NULL) && 1399 !acpi_check_handle(asus->handle, METHOD_GPS_STATUS, NULL)) 1400 result = asus_rfkill_setup(asus, &asus->gps, "asus-gps", 1401 -1, RFKILL_TYPE_GPS, 1402 &asus_gps_rfkill_ops); 1403 if (result) 1404 goto exit; 1405 1406 1407 if (!acpi_check_handle(asus->handle, METHOD_WLAN, NULL) && 1408 asus->wled_type == TYPE_RFKILL) 1409 result = asus_rfkill_setup(asus, &asus->wlan, "asus-wlan", 1410 WL_RSTS, RFKILL_TYPE_WLAN, 1411 &asus_rfkill_ops); 1412 if (result) 1413 goto exit; 1414 1415 if (!acpi_check_handle(asus->handle, METHOD_BLUETOOTH, NULL) && 1416 asus->bled_type == TYPE_RFKILL) 1417 result = asus_rfkill_setup(asus, &asus->bluetooth, 1418 "asus-bluetooth", BT_RSTS, 1419 RFKILL_TYPE_BLUETOOTH, 1420 &asus_rfkill_ops); 1421 if (result) 1422 goto exit; 1423 1424 if (!acpi_check_handle(asus->handle, METHOD_WWAN, NULL)) 1425 result = asus_rfkill_setup(asus, &asus->wwan, "asus-wwan", 1426 WW_RSTS, RFKILL_TYPE_WWAN, 1427 &asus_rfkill_ops); 1428 if (result) 1429 goto exit; 1430 1431 if (!acpi_check_handle(asus->handle, METHOD_WIMAX, NULL)) 1432 result = asus_rfkill_setup(asus, &asus->wimax, "asus-wimax", 1433 WM_RSTS, RFKILL_TYPE_WIMAX, 1434 &asus_rfkill_ops); 1435 if (result) 1436 goto exit; 1437 1438 exit: 1439 if (result) 1440 asus_rfkill_exit(asus); 1441 1442 return result; 1443 } 1444 1445 static int pega_rfkill_set(void *data, bool blocked) 1446 { 1447 struct asus_rfkill *rfk = data; 1448 1449 int ret = asus_pega_lucid_set(rfk->asus, rfk->control_id, !blocked); 1450 return ret; 1451 } 1452 1453 static const struct rfkill_ops pega_rfkill_ops = { 1454 .set_block = pega_rfkill_set, 1455 }; 1456 1457 static int pega_rfkill_setup(struct asus_laptop *asus, struct asus_rfkill *rfk, 1458 const char *name, int controlid, int rfkill_type) 1459 { 1460 return asus_rfkill_setup(asus, rfk, name, controlid, rfkill_type, 1461 &pega_rfkill_ops); 1462 } 1463 1464 static int pega_rfkill_init(struct asus_laptop *asus) 1465 { 1466 int ret = 0; 1467 1468 if(!asus->is_pega_lucid) 1469 return -ENODEV; 1470 1471 ret = pega_rfkill_setup(asus, &asus->wlan, "pega-wlan", 1472 PEGA_WLAN, RFKILL_TYPE_WLAN); 1473 if(ret) 1474 goto exit; 1475 1476 ret = pega_rfkill_setup(asus, &asus->bluetooth, "pega-bt", 1477 PEGA_BLUETOOTH, RFKILL_TYPE_BLUETOOTH); 1478 if(ret) 1479 goto exit; 1480 1481 ret = pega_rfkill_setup(asus, &asus->wwan, "pega-wwan", 1482 PEGA_WWAN, RFKILL_TYPE_WWAN); 1483 1484 exit: 1485 if (ret) 1486 asus_rfkill_exit(asus); 1487 1488 return ret; 1489 } 1490 1491 /* 1492 * Input device (i.e. hotkeys) 1493 */ 1494 static void asus_input_notify(struct asus_laptop *asus, int event) 1495 { 1496 if (!asus->inputdev) 1497 return ; 1498 if (!sparse_keymap_report_event(asus->inputdev, event, 1, true)) 1499 pr_info("Unknown key %x pressed\n", event); 1500 } 1501 1502 static int asus_input_init(struct asus_laptop *asus) 1503 { 1504 struct input_dev *input; 1505 int error; 1506 1507 input = input_allocate_device(); 1508 if (!input) 1509 return -ENOMEM; 1510 1511 input->name = "Asus Laptop extra buttons"; 1512 input->phys = ASUS_LAPTOP_FILE "/input0"; 1513 input->id.bustype = BUS_HOST; 1514 input->dev.parent = &asus->platform_device->dev; 1515 1516 error = sparse_keymap_setup(input, asus_keymap, NULL); 1517 if (error) { 1518 pr_err("Unable to setup input device keymap\n"); 1519 goto err_free_dev; 1520 } 1521 error = input_register_device(input); 1522 if (error) { 1523 pr_warn("Unable to register input device\n"); 1524 goto err_free_keymap; 1525 } 1526 1527 asus->inputdev = input; 1528 return 0; 1529 1530 err_free_keymap: 1531 sparse_keymap_free(input); 1532 err_free_dev: 1533 input_free_device(input); 1534 return error; 1535 } 1536 1537 static void asus_input_exit(struct asus_laptop *asus) 1538 { 1539 if (asus->inputdev) { 1540 sparse_keymap_free(asus->inputdev); 1541 input_unregister_device(asus->inputdev); 1542 } 1543 asus->inputdev = NULL; 1544 } 1545 1546 /* 1547 * ACPI driver 1548 */ 1549 static void asus_acpi_notify(struct acpi_device *device, u32 event) 1550 { 1551 struct asus_laptop *asus = acpi_driver_data(device); 1552 u16 count; 1553 1554 /* TODO Find a better way to handle events count. */ 1555 count = asus->event_count[event % 128]++; 1556 acpi_bus_generate_netlink_event(asus->device->pnp.device_class, 1557 dev_name(&asus->device->dev), event, 1558 count); 1559 1560 if (event >= ATKD_BRNUP_MIN && event <= ATKD_BRNUP_MAX) 1561 event = ATKD_BRNUP; 1562 else if (event >= ATKD_BRNDOWN_MIN && 1563 event <= ATKD_BRNDOWN_MAX) 1564 event = ATKD_BRNDOWN; 1565 1566 /* Brightness events are special */ 1567 if (event == ATKD_BRNDOWN || event == ATKD_BRNUP) { 1568 if (asus->backlight_device != NULL) { 1569 /* Update the backlight device. */ 1570 asus_backlight_notify(asus); 1571 return ; 1572 } 1573 } 1574 1575 /* Accelerometer "coarse orientation change" event */ 1576 if (asus->pega_accel_poll && event == 0xEA) { 1577 kobject_uevent(&asus->pega_accel_poll->input->dev.kobj, 1578 KOBJ_CHANGE); 1579 return ; 1580 } 1581 1582 asus_input_notify(asus, event); 1583 } 1584 1585 static struct attribute *asus_attributes[] = { 1586 &dev_attr_infos.attr, 1587 &dev_attr_wlan.attr, 1588 &dev_attr_bluetooth.attr, 1589 &dev_attr_wimax.attr, 1590 &dev_attr_wwan.attr, 1591 &dev_attr_display.attr, 1592 &dev_attr_ledd.attr, 1593 &dev_attr_ls_value.attr, 1594 &dev_attr_ls_level.attr, 1595 &dev_attr_ls_switch.attr, 1596 &dev_attr_gps.attr, 1597 NULL 1598 }; 1599 1600 static umode_t asus_sysfs_is_visible(struct kobject *kobj, 1601 struct attribute *attr, 1602 int idx) 1603 { 1604 struct device *dev = container_of(kobj, struct device, kobj); 1605 struct platform_device *pdev = to_platform_device(dev); 1606 struct asus_laptop *asus = platform_get_drvdata(pdev); 1607 acpi_handle handle = asus->handle; 1608 bool supported; 1609 1610 if (asus->is_pega_lucid) { 1611 /* no ls_level interface on the Lucid */ 1612 if (attr == &dev_attr_ls_switch.attr) 1613 supported = true; 1614 else if (attr == &dev_attr_ls_level.attr) 1615 supported = false; 1616 else 1617 goto normal; 1618 1619 return supported ? attr->mode : 0; 1620 } 1621 1622 normal: 1623 if (attr == &dev_attr_wlan.attr) { 1624 supported = !acpi_check_handle(handle, METHOD_WLAN, NULL); 1625 1626 } else if (attr == &dev_attr_bluetooth.attr) { 1627 supported = !acpi_check_handle(handle, METHOD_BLUETOOTH, NULL); 1628 1629 } else if (attr == &dev_attr_display.attr) { 1630 supported = !acpi_check_handle(handle, METHOD_SWITCH_DISPLAY, NULL); 1631 1632 } else if (attr == &dev_attr_wimax.attr) { 1633 supported = 1634 !acpi_check_handle(asus->handle, METHOD_WIMAX, NULL); 1635 1636 } else if (attr == &dev_attr_wwan.attr) { 1637 supported = !acpi_check_handle(asus->handle, METHOD_WWAN, NULL); 1638 1639 } else if (attr == &dev_attr_ledd.attr) { 1640 supported = !acpi_check_handle(handle, METHOD_LEDD, NULL); 1641 1642 } else if (attr == &dev_attr_ls_switch.attr || 1643 attr == &dev_attr_ls_level.attr) { 1644 supported = !acpi_check_handle(handle, METHOD_ALS_CONTROL, NULL) && 1645 !acpi_check_handle(handle, METHOD_ALS_LEVEL, NULL); 1646 } else if (attr == &dev_attr_ls_value.attr) { 1647 supported = asus->is_pega_lucid; 1648 } else if (attr == &dev_attr_gps.attr) { 1649 supported = !acpi_check_handle(handle, METHOD_GPS_ON, NULL) && 1650 !acpi_check_handle(handle, METHOD_GPS_OFF, NULL) && 1651 !acpi_check_handle(handle, METHOD_GPS_STATUS, NULL); 1652 } else { 1653 supported = true; 1654 } 1655 1656 return supported ? attr->mode : 0; 1657 } 1658 1659 1660 static const struct attribute_group asus_attr_group = { 1661 .is_visible = asus_sysfs_is_visible, 1662 .attrs = asus_attributes, 1663 }; 1664 1665 static int asus_platform_init(struct asus_laptop *asus) 1666 { 1667 int result; 1668 1669 asus->platform_device = platform_device_alloc(ASUS_LAPTOP_FILE, -1); 1670 if (!asus->platform_device) 1671 return -ENOMEM; 1672 platform_set_drvdata(asus->platform_device, asus); 1673 1674 result = platform_device_add(asus->platform_device); 1675 if (result) 1676 goto fail_platform_device; 1677 1678 result = sysfs_create_group(&asus->platform_device->dev.kobj, 1679 &asus_attr_group); 1680 if (result) 1681 goto fail_sysfs; 1682 1683 return 0; 1684 1685 fail_sysfs: 1686 platform_device_del(asus->platform_device); 1687 fail_platform_device: 1688 platform_device_put(asus->platform_device); 1689 return result; 1690 } 1691 1692 static void asus_platform_exit(struct asus_laptop *asus) 1693 { 1694 sysfs_remove_group(&asus->platform_device->dev.kobj, &asus_attr_group); 1695 platform_device_unregister(asus->platform_device); 1696 } 1697 1698 static struct platform_driver platform_driver = { 1699 .driver = { 1700 .name = ASUS_LAPTOP_FILE, 1701 }, 1702 }; 1703 1704 /* 1705 * This function is used to initialize the context with right values. In this 1706 * method, we can make all the detection we want, and modify the asus_laptop 1707 * struct 1708 */ 1709 static int asus_laptop_get_info(struct asus_laptop *asus) 1710 { 1711 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; 1712 union acpi_object *model = NULL; 1713 unsigned long long bsts_result; 1714 char *string = NULL; 1715 acpi_status status; 1716 1717 /* 1718 * Get DSDT headers early enough to allow for differentiating between 1719 * models, but late enough to allow acpi_bus_register_driver() to fail 1720 * before doing anything ACPI-specific. Should we encounter a machine, 1721 * which needs special handling (i.e. its hotkey device has a different 1722 * HID), this bit will be moved. 1723 */ 1724 status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus->dsdt_info); 1725 if (ACPI_FAILURE(status)) 1726 pr_warn("Couldn't get the DSDT table header\n"); 1727 1728 /* We have to write 0 on init this far for all ASUS models */ 1729 if (write_acpi_int_ret(asus->handle, "INIT", 0, &buffer)) { 1730 pr_err("Hotkey initialization failed\n"); 1731 return -ENODEV; 1732 } 1733 1734 /* This needs to be called for some laptops to init properly */ 1735 status = 1736 acpi_evaluate_integer(asus->handle, "BSTS", NULL, &bsts_result); 1737 if (ACPI_FAILURE(status)) 1738 pr_warn("Error calling BSTS\n"); 1739 else if (bsts_result) 1740 pr_notice("BSTS called, 0x%02x returned\n", 1741 (uint) bsts_result); 1742 1743 /* This too ... */ 1744 if (write_acpi_int(asus->handle, "CWAP", wapf)) 1745 pr_err("Error calling CWAP(%d)\n", wapf); 1746 /* 1747 * Try to match the object returned by INIT to the specific model. 1748 * Handle every possible object (or the lack of thereof) the DSDT 1749 * writers might throw at us. When in trouble, we pass NULL to 1750 * asus_model_match() and try something completely different. 1751 */ 1752 if (buffer.pointer) { 1753 model = buffer.pointer; 1754 switch (model->type) { 1755 case ACPI_TYPE_STRING: 1756 string = model->string.pointer; 1757 break; 1758 case ACPI_TYPE_BUFFER: 1759 string = model->buffer.pointer; 1760 break; 1761 default: 1762 string = ""; 1763 break; 1764 } 1765 } 1766 asus->name = kstrdup(string, GFP_KERNEL); 1767 if (!asus->name) { 1768 kfree(buffer.pointer); 1769 return -ENOMEM; 1770 } 1771 1772 if (string) 1773 pr_notice(" %s model detected\n", string); 1774 1775 if (!acpi_check_handle(asus->handle, METHOD_WL_STATUS, NULL)) 1776 asus->have_rsts = true; 1777 1778 kfree(model); 1779 1780 return AE_OK; 1781 } 1782 1783 static int asus_acpi_init(struct asus_laptop *asus) 1784 { 1785 int result = 0; 1786 1787 result = acpi_bus_get_status(asus->device); 1788 if (result) 1789 return result; 1790 if (!asus->device->status.present) { 1791 pr_err("Hotkey device not present, aborting\n"); 1792 return -ENODEV; 1793 } 1794 1795 result = asus_laptop_get_info(asus); 1796 if (result) 1797 return result; 1798 1799 if (!strcmp(bled_type, "led")) 1800 asus->bled_type = TYPE_LED; 1801 else if (!strcmp(bled_type, "rfkill")) 1802 asus->bled_type = TYPE_RFKILL; 1803 1804 if (!strcmp(wled_type, "led")) 1805 asus->wled_type = TYPE_LED; 1806 else if (!strcmp(wled_type, "rfkill")) 1807 asus->wled_type = TYPE_RFKILL; 1808 1809 if (bluetooth_status >= 0) 1810 asus_bluetooth_set(asus, !!bluetooth_status); 1811 1812 if (wlan_status >= 0) 1813 asus_wlan_set(asus, !!wlan_status); 1814 1815 if (wimax_status >= 0) 1816 asus_wimax_set(asus, !!wimax_status); 1817 1818 if (wwan_status >= 0) 1819 asus_wwan_set(asus, !!wwan_status); 1820 1821 /* Keyboard Backlight is on by default */ 1822 if (!acpi_check_handle(asus->handle, METHOD_KBD_LIGHT_SET, NULL)) 1823 asus_kled_set(asus, 1); 1824 1825 /* LED display is off by default */ 1826 asus->ledd_status = 0xFFF; 1827 1828 /* Set initial values of light sensor and level */ 1829 asus->light_switch = !!als_status; 1830 asus->light_level = 5; /* level 5 for sensor sensitivity */ 1831 1832 if (asus->is_pega_lucid) { 1833 asus_als_switch(asus, asus->light_switch); 1834 } else if (!acpi_check_handle(asus->handle, METHOD_ALS_CONTROL, NULL) && 1835 !acpi_check_handle(asus->handle, METHOD_ALS_LEVEL, NULL)) { 1836 asus_als_switch(asus, asus->light_switch); 1837 asus_als_level(asus, asus->light_level); 1838 } 1839 1840 return result; 1841 } 1842 1843 static void asus_dmi_check(void) 1844 { 1845 const char *model; 1846 1847 model = dmi_get_system_info(DMI_PRODUCT_NAME); 1848 if (!model) 1849 return; 1850 1851 /* On L1400B WLED control the sound card, don't mess with it ... */ 1852 if (strncmp(model, "L1400B", 6) == 0) { 1853 wlan_status = -1; 1854 } 1855 } 1856 1857 static bool asus_device_present; 1858 1859 static int asus_acpi_add(struct acpi_device *device) 1860 { 1861 struct asus_laptop *asus; 1862 int result; 1863 1864 pr_notice("Asus Laptop Support version %s\n", 1865 ASUS_LAPTOP_VERSION); 1866 asus = kzalloc(sizeof(struct asus_laptop), GFP_KERNEL); 1867 if (!asus) 1868 return -ENOMEM; 1869 asus->handle = device->handle; 1870 strcpy(acpi_device_name(device), ASUS_LAPTOP_DEVICE_NAME); 1871 strcpy(acpi_device_class(device), ASUS_LAPTOP_CLASS); 1872 device->driver_data = asus; 1873 asus->device = device; 1874 1875 asus_dmi_check(); 1876 1877 result = asus_acpi_init(asus); 1878 if (result) 1879 goto fail_platform; 1880 1881 /* 1882 * Need platform type detection first, then the platform 1883 * device. It is used as a parent for the sub-devices below. 1884 */ 1885 asus->is_pega_lucid = asus_check_pega_lucid(asus); 1886 result = asus_platform_init(asus); 1887 if (result) 1888 goto fail_platform; 1889 1890 if (acpi_video_get_backlight_type() == acpi_backlight_vendor) { 1891 result = asus_backlight_init(asus); 1892 if (result) 1893 goto fail_backlight; 1894 } 1895 1896 result = asus_input_init(asus); 1897 if (result) 1898 goto fail_input; 1899 1900 result = asus_led_init(asus); 1901 if (result) 1902 goto fail_led; 1903 1904 result = asus_rfkill_init(asus); 1905 if (result && result != -ENODEV) 1906 goto fail_rfkill; 1907 1908 result = pega_accel_init(asus); 1909 if (result && result != -ENODEV) 1910 goto fail_pega_accel; 1911 1912 result = pega_rfkill_init(asus); 1913 if (result && result != -ENODEV) 1914 goto fail_pega_rfkill; 1915 1916 asus_device_present = true; 1917 return 0; 1918 1919 fail_pega_rfkill: 1920 pega_accel_exit(asus); 1921 fail_pega_accel: 1922 asus_rfkill_exit(asus); 1923 fail_rfkill: 1924 asus_led_exit(asus); 1925 fail_led: 1926 asus_input_exit(asus); 1927 fail_input: 1928 asus_backlight_exit(asus); 1929 fail_backlight: 1930 asus_platform_exit(asus); 1931 fail_platform: 1932 kfree(asus); 1933 1934 return result; 1935 } 1936 1937 static int asus_acpi_remove(struct acpi_device *device) 1938 { 1939 struct asus_laptop *asus = acpi_driver_data(device); 1940 1941 asus_backlight_exit(asus); 1942 asus_rfkill_exit(asus); 1943 asus_led_exit(asus); 1944 asus_input_exit(asus); 1945 pega_accel_exit(asus); 1946 asus_platform_exit(asus); 1947 1948 kfree(asus->name); 1949 kfree(asus); 1950 return 0; 1951 } 1952 1953 static const struct acpi_device_id asus_device_ids[] = { 1954 {"ATK0100", 0}, 1955 {"ATK0101", 0}, 1956 {"", 0}, 1957 }; 1958 MODULE_DEVICE_TABLE(acpi, asus_device_ids); 1959 1960 static struct acpi_driver asus_acpi_driver = { 1961 .name = ASUS_LAPTOP_NAME, 1962 .class = ASUS_LAPTOP_CLASS, 1963 .owner = THIS_MODULE, 1964 .ids = asus_device_ids, 1965 .flags = ACPI_DRIVER_ALL_NOTIFY_EVENTS, 1966 .ops = { 1967 .add = asus_acpi_add, 1968 .remove = asus_acpi_remove, 1969 .notify = asus_acpi_notify, 1970 }, 1971 }; 1972 1973 static int __init asus_laptop_init(void) 1974 { 1975 int result; 1976 1977 result = platform_driver_register(&platform_driver); 1978 if (result < 0) 1979 return result; 1980 1981 result = acpi_bus_register_driver(&asus_acpi_driver); 1982 if (result < 0) 1983 goto fail_acpi_driver; 1984 if (!asus_device_present) { 1985 result = -ENODEV; 1986 goto fail_no_device; 1987 } 1988 return 0; 1989 1990 fail_no_device: 1991 acpi_bus_unregister_driver(&asus_acpi_driver); 1992 fail_acpi_driver: 1993 platform_driver_unregister(&platform_driver); 1994 return result; 1995 } 1996 1997 static void __exit asus_laptop_exit(void) 1998 { 1999 acpi_bus_unregister_driver(&asus_acpi_driver); 2000 platform_driver_unregister(&platform_driver); 2001 } 2002 2003 module_init(asus_laptop_init); 2004 module_exit(asus_laptop_exit); 2005