xref: /linux/drivers/platform/surface/aggregator/controller.c (revision 170aafe35cb98e0f3fbacb446ea86389fbce22ea)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Main SSAM/SSH controller structure and functionality.
4  *
5  * Copyright (C) 2019-2022 Maximilian Luz <luzmaximilian@gmail.com>
6  */
7 
8 #include <linux/acpi.h>
9 #include <linux/atomic.h>
10 #include <linux/completion.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/interrupt.h>
13 #include <linux/kref.h>
14 #include <linux/limits.h>
15 #include <linux/list.h>
16 #include <linux/lockdep.h>
17 #include <linux/mutex.h>
18 #include <linux/rculist.h>
19 #include <linux/rbtree.h>
20 #include <linux/rwsem.h>
21 #include <linux/serdev.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/srcu.h>
25 #include <linux/types.h>
26 #include <linux/workqueue.h>
27 
28 #include <linux/surface_aggregator/controller.h>
29 #include <linux/surface_aggregator/serial_hub.h>
30 
31 #include "controller.h"
32 #include "ssh_msgb.h"
33 #include "ssh_request_layer.h"
34 
35 #include "trace.h"
36 
37 
38 /* -- Safe counters. -------------------------------------------------------- */
39 
40 /**
41  * ssh_seq_reset() - Reset/initialize sequence ID counter.
42  * @c: The counter to reset.
43  */
44 static void ssh_seq_reset(struct ssh_seq_counter *c)
45 {
46 	WRITE_ONCE(c->value, 0);
47 }
48 
49 /**
50  * ssh_seq_next() - Get next sequence ID.
51  * @c: The counter providing the sequence IDs.
52  *
53  * Return: Returns the next sequence ID of the counter.
54  */
55 static u8 ssh_seq_next(struct ssh_seq_counter *c)
56 {
57 	u8 old = READ_ONCE(c->value);
58 	u8 new = old + 1;
59 	u8 ret;
60 
61 	while (unlikely((ret = cmpxchg(&c->value, old, new)) != old)) {
62 		old = ret;
63 		new = old + 1;
64 	}
65 
66 	return old;
67 }
68 
69 /**
70  * ssh_rqid_reset() - Reset/initialize request ID counter.
71  * @c: The counter to reset.
72  */
73 static void ssh_rqid_reset(struct ssh_rqid_counter *c)
74 {
75 	WRITE_ONCE(c->value, 0);
76 }
77 
78 /**
79  * ssh_rqid_next() - Get next request ID.
80  * @c: The counter providing the request IDs.
81  *
82  * Return: Returns the next request ID of the counter, skipping any reserved
83  * request IDs.
84  */
85 static u16 ssh_rqid_next(struct ssh_rqid_counter *c)
86 {
87 	u16 old = READ_ONCE(c->value);
88 	u16 new = ssh_rqid_next_valid(old);
89 	u16 ret;
90 
91 	while (unlikely((ret = cmpxchg(&c->value, old, new)) != old)) {
92 		old = ret;
93 		new = ssh_rqid_next_valid(old);
94 	}
95 
96 	return old;
97 }
98 
99 
100 /* -- Event notifier/callbacks. --------------------------------------------- */
101 /*
102  * The notifier system is based on linux/notifier.h, specifically the SRCU
103  * implementation. The difference to that is, that some bits of the notifier
104  * call return value can be tracked across multiple calls. This is done so
105  * that handling of events can be tracked and a warning can be issued in case
106  * an event goes unhandled. The idea of that warning is that it should help
107  * discover and identify new/currently unimplemented features.
108  */
109 
110 /**
111  * ssam_event_matches_notifier() - Test if an event matches a notifier.
112  * @n: The event notifier to test against.
113  * @event: The event to test.
114  *
115  * Return: Returns %true if the given event matches the given notifier
116  * according to the rules set in the notifier's event mask, %false otherwise.
117  */
118 static bool ssam_event_matches_notifier(const struct ssam_event_notifier *n,
119 					const struct ssam_event *event)
120 {
121 	bool match = n->event.id.target_category == event->target_category;
122 
123 	if (n->event.mask & SSAM_EVENT_MASK_TARGET)
124 		match &= n->event.reg.target_id == event->target_id;
125 
126 	if (n->event.mask & SSAM_EVENT_MASK_INSTANCE)
127 		match &= n->event.id.instance == event->instance_id;
128 
129 	return match;
130 }
131 
132 /**
133  * ssam_nfblk_call_chain() - Call event notifier callbacks of the given chain.
134  * @nh:    The notifier head for which the notifier callbacks should be called.
135  * @event: The event data provided to the callbacks.
136  *
137  * Call all registered notifier callbacks in order of their priority until
138  * either no notifier is left or a notifier returns a value with the
139  * %SSAM_NOTIF_STOP bit set. Note that this bit is automatically set via
140  * ssam_notifier_from_errno() on any non-zero error value.
141  *
142  * Return: Returns the notifier status value, which contains the notifier
143  * status bits (%SSAM_NOTIF_HANDLED and %SSAM_NOTIF_STOP) as well as a
144  * potential error value returned from the last executed notifier callback.
145  * Use ssam_notifier_to_errno() to convert this value to the original error
146  * value.
147  */
148 static int ssam_nfblk_call_chain(struct ssam_nf_head *nh, struct ssam_event *event)
149 {
150 	struct ssam_event_notifier *nf;
151 	int ret = 0, idx;
152 
153 	idx = srcu_read_lock(&nh->srcu);
154 
155 	list_for_each_entry_rcu(nf, &nh->head, base.node,
156 				srcu_read_lock_held(&nh->srcu)) {
157 		if (ssam_event_matches_notifier(nf, event)) {
158 			ret = (ret & SSAM_NOTIF_STATE_MASK) | nf->base.fn(nf, event);
159 			if (ret & SSAM_NOTIF_STOP)
160 				break;
161 		}
162 	}
163 
164 	srcu_read_unlock(&nh->srcu, idx);
165 	return ret;
166 }
167 
168 /**
169  * ssam_nfblk_insert() - Insert a new notifier block into the given notifier
170  * list.
171  * @nh: The notifier head into which the block should be inserted.
172  * @nb: The notifier block to add.
173  *
174  * Note: This function must be synchronized by the caller with respect to other
175  * insert, find, and/or remove calls by holding ``struct ssam_nf.lock``.
176  *
177  * Return: Returns zero on success, %-EEXIST if the notifier block has already
178  * been registered.
179  */
180 static int ssam_nfblk_insert(struct ssam_nf_head *nh, struct ssam_notifier_block *nb)
181 {
182 	struct ssam_notifier_block *p;
183 	struct list_head *h;
184 
185 	/* Runs under lock, no need for RCU variant. */
186 	list_for_each(h, &nh->head) {
187 		p = list_entry(h, struct ssam_notifier_block, node);
188 
189 		if (unlikely(p == nb)) {
190 			WARN(1, "double register detected");
191 			return -EEXIST;
192 		}
193 
194 		if (nb->priority > p->priority)
195 			break;
196 	}
197 
198 	list_add_tail_rcu(&nb->node, h);
199 	return 0;
200 }
201 
202 /**
203  * ssam_nfblk_find() - Check if a notifier block is registered on the given
204  * notifier head.
205  * list.
206  * @nh: The notifier head on which to search.
207  * @nb: The notifier block to search for.
208  *
209  * Note: This function must be synchronized by the caller with respect to other
210  * insert, find, and/or remove calls by holding ``struct ssam_nf.lock``.
211  *
212  * Return: Returns true if the given notifier block is registered on the given
213  * notifier head, false otherwise.
214  */
215 static bool ssam_nfblk_find(struct ssam_nf_head *nh, struct ssam_notifier_block *nb)
216 {
217 	struct ssam_notifier_block *p;
218 
219 	/* Runs under lock, no need for RCU variant. */
220 	list_for_each_entry(p, &nh->head, node) {
221 		if (p == nb)
222 			return true;
223 	}
224 
225 	return false;
226 }
227 
228 /**
229  * ssam_nfblk_remove() - Remove a notifier block from its notifier list.
230  * @nb: The notifier block to be removed.
231  *
232  * Note: This function must be synchronized by the caller with respect to
233  * other insert, find, and/or remove calls by holding ``struct ssam_nf.lock``.
234  * Furthermore, the caller _must_ ensure SRCU synchronization by calling
235  * synchronize_srcu() with ``nh->srcu`` after leaving the critical section, to
236  * ensure that the removed notifier block is not in use any more.
237  */
238 static void ssam_nfblk_remove(struct ssam_notifier_block *nb)
239 {
240 	list_del_rcu(&nb->node);
241 }
242 
243 /**
244  * ssam_nf_head_init() - Initialize the given notifier head.
245  * @nh: The notifier head to initialize.
246  */
247 static int ssam_nf_head_init(struct ssam_nf_head *nh)
248 {
249 	int status;
250 
251 	status = init_srcu_struct(&nh->srcu);
252 	if (status)
253 		return status;
254 
255 	INIT_LIST_HEAD(&nh->head);
256 	return 0;
257 }
258 
259 /**
260  * ssam_nf_head_destroy() - Deinitialize the given notifier head.
261  * @nh: The notifier head to deinitialize.
262  */
263 static void ssam_nf_head_destroy(struct ssam_nf_head *nh)
264 {
265 	cleanup_srcu_struct(&nh->srcu);
266 }
267 
268 
269 /* -- Event/notification registry. ------------------------------------------ */
270 
271 /**
272  * struct ssam_nf_refcount_key - Key used for event activation reference
273  * counting.
274  * @reg: The registry via which the event is enabled/disabled.
275  * @id:  The ID uniquely describing the event.
276  */
277 struct ssam_nf_refcount_key {
278 	struct ssam_event_registry reg;
279 	struct ssam_event_id id;
280 };
281 
282 /**
283  * struct ssam_nf_refcount_entry - RB-tree entry for reference counting event
284  * activations.
285  * @node:     The node of this entry in the rb-tree.
286  * @key:      The key of the event.
287  * @refcount: The reference-count of the event.
288  * @flags:    The flags used when enabling the event.
289  */
290 struct ssam_nf_refcount_entry {
291 	struct rb_node node;
292 	struct ssam_nf_refcount_key key;
293 	int refcount;
294 	u8 flags;
295 };
296 
297 /**
298  * ssam_nf_refcount_inc() - Increment reference-/activation-count of the given
299  * event.
300  * @nf:  The notifier system reference.
301  * @reg: The registry used to enable/disable the event.
302  * @id:  The event ID.
303  *
304  * Increments the reference-/activation-count associated with the specified
305  * event type/ID, allocating a new entry for this event ID if necessary. A
306  * newly allocated entry will have a refcount of one.
307  *
308  * Note: ``nf->lock`` must be held when calling this function.
309  *
310  * Return: Returns the refcount entry on success. Returns an error pointer
311  * with %-ENOSPC if there have already been %INT_MAX events of the specified
312  * ID and type registered, or %-ENOMEM if the entry could not be allocated.
313  */
314 static struct ssam_nf_refcount_entry *
315 ssam_nf_refcount_inc(struct ssam_nf *nf, struct ssam_event_registry reg,
316 		     struct ssam_event_id id)
317 {
318 	struct ssam_nf_refcount_entry *entry;
319 	struct ssam_nf_refcount_key key;
320 	struct rb_node **link = &nf->refcount.rb_node;
321 	struct rb_node *parent = NULL;
322 	int cmp;
323 
324 	lockdep_assert_held(&nf->lock);
325 
326 	key.reg = reg;
327 	key.id = id;
328 
329 	while (*link) {
330 		entry = rb_entry(*link, struct ssam_nf_refcount_entry, node);
331 		parent = *link;
332 
333 		cmp = memcmp(&key, &entry->key, sizeof(key));
334 		if (cmp < 0) {
335 			link = &(*link)->rb_left;
336 		} else if (cmp > 0) {
337 			link = &(*link)->rb_right;
338 		} else if (entry->refcount < INT_MAX) {
339 			entry->refcount++;
340 			return entry;
341 		} else {
342 			WARN_ON(1);
343 			return ERR_PTR(-ENOSPC);
344 		}
345 	}
346 
347 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
348 	if (!entry)
349 		return ERR_PTR(-ENOMEM);
350 
351 	entry->key = key;
352 	entry->refcount = 1;
353 
354 	rb_link_node(&entry->node, parent, link);
355 	rb_insert_color(&entry->node, &nf->refcount);
356 
357 	return entry;
358 }
359 
360 /**
361  * ssam_nf_refcount_dec() - Decrement reference-/activation-count of the given
362  * event.
363  * @nf:  The notifier system reference.
364  * @reg: The registry used to enable/disable the event.
365  * @id:  The event ID.
366  *
367  * Decrements the reference-/activation-count of the specified event,
368  * returning its entry. If the returned entry has a refcount of zero, the
369  * caller is responsible for freeing it using kfree().
370  *
371  * Note: ``nf->lock`` must be held when calling this function.
372  *
373  * Return: Returns the refcount entry on success or %NULL if the entry has not
374  * been found.
375  */
376 static struct ssam_nf_refcount_entry *
377 ssam_nf_refcount_dec(struct ssam_nf *nf, struct ssam_event_registry reg,
378 		     struct ssam_event_id id)
379 {
380 	struct ssam_nf_refcount_entry *entry;
381 	struct ssam_nf_refcount_key key;
382 	struct rb_node *node = nf->refcount.rb_node;
383 	int cmp;
384 
385 	lockdep_assert_held(&nf->lock);
386 
387 	key.reg = reg;
388 	key.id = id;
389 
390 	while (node) {
391 		entry = rb_entry(node, struct ssam_nf_refcount_entry, node);
392 
393 		cmp = memcmp(&key, &entry->key, sizeof(key));
394 		if (cmp < 0) {
395 			node = node->rb_left;
396 		} else if (cmp > 0) {
397 			node = node->rb_right;
398 		} else {
399 			entry->refcount--;
400 			if (entry->refcount == 0)
401 				rb_erase(&entry->node, &nf->refcount);
402 
403 			return entry;
404 		}
405 	}
406 
407 	return NULL;
408 }
409 
410 /**
411  * ssam_nf_refcount_dec_free() - Decrement reference-/activation-count of the
412  * given event and free its entry if the reference count reaches zero.
413  * @nf:  The notifier system reference.
414  * @reg: The registry used to enable/disable the event.
415  * @id:  The event ID.
416  *
417  * Decrements the reference-/activation-count of the specified event, freeing
418  * its entry if it reaches zero.
419  *
420  * Note: ``nf->lock`` must be held when calling this function.
421  */
422 static void ssam_nf_refcount_dec_free(struct ssam_nf *nf,
423 				      struct ssam_event_registry reg,
424 				      struct ssam_event_id id)
425 {
426 	struct ssam_nf_refcount_entry *entry;
427 
428 	lockdep_assert_held(&nf->lock);
429 
430 	entry = ssam_nf_refcount_dec(nf, reg, id);
431 	if (entry && entry->refcount == 0)
432 		kfree(entry);
433 }
434 
435 /**
436  * ssam_nf_refcount_empty() - Test if the notification system has any
437  * enabled/active events.
438  * @nf: The notification system.
439  */
440 static bool ssam_nf_refcount_empty(struct ssam_nf *nf)
441 {
442 	return RB_EMPTY_ROOT(&nf->refcount);
443 }
444 
445 /**
446  * ssam_nf_call() - Call notification callbacks for the provided event.
447  * @nf:    The notifier system
448  * @dev:   The associated device, only used for logging.
449  * @rqid:  The request ID of the event.
450  * @event: The event provided to the callbacks.
451  *
452  * Execute registered callbacks in order of their priority until either no
453  * callback is left or a callback returns a value with the %SSAM_NOTIF_STOP
454  * bit set. Note that this bit is set automatically when converting non-zero
455  * error values via ssam_notifier_from_errno() to notifier values.
456  *
457  * Also note that any callback that could handle an event should return a value
458  * with bit %SSAM_NOTIF_HANDLED set, indicating that the event does not go
459  * unhandled/ignored. In case no registered callback could handle an event,
460  * this function will emit a warning.
461  *
462  * In case a callback failed, this function will emit an error message.
463  */
464 static void ssam_nf_call(struct ssam_nf *nf, struct device *dev, u16 rqid,
465 			 struct ssam_event *event)
466 {
467 	struct ssam_nf_head *nf_head;
468 	int status, nf_ret;
469 
470 	if (!ssh_rqid_is_event(rqid)) {
471 		dev_warn(dev, "event: unsupported rqid: %#06x\n", rqid);
472 		return;
473 	}
474 
475 	nf_head = &nf->head[ssh_rqid_to_event(rqid)];
476 	nf_ret = ssam_nfblk_call_chain(nf_head, event);
477 	status = ssam_notifier_to_errno(nf_ret);
478 
479 	if (status < 0) {
480 		dev_err(dev,
481 			"event: error handling event: %d (tc: %#04x, tid: %#04x, cid: %#04x, iid: %#04x)\n",
482 			status, event->target_category, event->target_id,
483 			event->command_id, event->instance_id);
484 	} else if (!(nf_ret & SSAM_NOTIF_HANDLED)) {
485 		dev_warn(dev,
486 			 "event: unhandled event (rqid: %#04x, tc: %#04x, tid: %#04x, cid: %#04x, iid: %#04x)\n",
487 			 rqid, event->target_category, event->target_id,
488 			 event->command_id, event->instance_id);
489 	}
490 }
491 
492 /**
493  * ssam_nf_init() - Initialize the notifier system.
494  * @nf: The notifier system to initialize.
495  */
496 static int ssam_nf_init(struct ssam_nf *nf)
497 {
498 	int i, status;
499 
500 	for (i = 0; i < SSH_NUM_EVENTS; i++) {
501 		status = ssam_nf_head_init(&nf->head[i]);
502 		if (status)
503 			break;
504 	}
505 
506 	if (status) {
507 		while (i--)
508 			ssam_nf_head_destroy(&nf->head[i]);
509 
510 		return status;
511 	}
512 
513 	mutex_init(&nf->lock);
514 	return 0;
515 }
516 
517 /**
518  * ssam_nf_destroy() - Deinitialize the notifier system.
519  * @nf: The notifier system to deinitialize.
520  */
521 static void ssam_nf_destroy(struct ssam_nf *nf)
522 {
523 	int i;
524 
525 	for (i = 0; i < SSH_NUM_EVENTS; i++)
526 		ssam_nf_head_destroy(&nf->head[i]);
527 
528 	mutex_destroy(&nf->lock);
529 }
530 
531 
532 /* -- Event/async request completion system. -------------------------------- */
533 
534 #define SSAM_CPLT_WQ_NAME	"ssam_cpltq"
535 
536 /*
537  * SSAM_CPLT_WQ_BATCH - Maximum number of event item completions executed per
538  * work execution. Used to prevent livelocking of the workqueue. Value chosen
539  * via educated guess, may be adjusted.
540  */
541 #define SSAM_CPLT_WQ_BATCH	10
542 
543 /*
544  * SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN - Maximum payload length for a cached
545  * &struct ssam_event_item.
546  *
547  * This length has been chosen to be accommodate standard touchpad and
548  * keyboard input events. Events with larger payloads will be allocated
549  * separately.
550  */
551 #define SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN	32
552 
553 static struct kmem_cache *ssam_event_item_cache;
554 
555 /**
556  * ssam_event_item_cache_init() - Initialize the event item cache.
557  */
558 int ssam_event_item_cache_init(void)
559 {
560 	const unsigned int size = sizeof(struct ssam_event_item)
561 				  + SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN;
562 	const unsigned int align = __alignof__(struct ssam_event_item);
563 	struct kmem_cache *cache;
564 
565 	cache = kmem_cache_create("ssam_event_item", size, align, 0, NULL);
566 	if (!cache)
567 		return -ENOMEM;
568 
569 	ssam_event_item_cache = cache;
570 	return 0;
571 }
572 
573 /**
574  * ssam_event_item_cache_destroy() - Deinitialize the event item cache.
575  */
576 void ssam_event_item_cache_destroy(void)
577 {
578 	kmem_cache_destroy(ssam_event_item_cache);
579 	ssam_event_item_cache = NULL;
580 }
581 
582 static void __ssam_event_item_free_cached(struct ssam_event_item *item)
583 {
584 	kmem_cache_free(ssam_event_item_cache, item);
585 }
586 
587 static void __ssam_event_item_free_generic(struct ssam_event_item *item)
588 {
589 	kfree(item);
590 }
591 
592 /**
593  * ssam_event_item_free() - Free the provided event item.
594  * @item: The event item to free.
595  */
596 static void ssam_event_item_free(struct ssam_event_item *item)
597 {
598 	trace_ssam_event_item_free(item);
599 	item->ops.free(item);
600 }
601 
602 /**
603  * ssam_event_item_alloc() - Allocate an event item with the given payload size.
604  * @len:   The event payload length.
605  * @flags: The flags used for allocation.
606  *
607  * Allocate an event item with the given payload size, preferring allocation
608  * from the event item cache if the payload is small enough (i.e. smaller than
609  * %SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN). Sets the item operations and payload
610  * length values. The item free callback (``ops.free``) should not be
611  * overwritten after this call.
612  *
613  * Return: Returns the newly allocated event item.
614  */
615 static struct ssam_event_item *ssam_event_item_alloc(size_t len, gfp_t flags)
616 {
617 	struct ssam_event_item *item;
618 
619 	if (len <= SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN) {
620 		item = kmem_cache_alloc(ssam_event_item_cache, flags);
621 		if (!item)
622 			return NULL;
623 
624 		item->ops.free = __ssam_event_item_free_cached;
625 	} else {
626 		item = kzalloc(struct_size(item, event.data, len), flags);
627 		if (!item)
628 			return NULL;
629 
630 		item->ops.free = __ssam_event_item_free_generic;
631 	}
632 
633 	item->event.length = len;
634 
635 	trace_ssam_event_item_alloc(item, len);
636 	return item;
637 }
638 
639 /**
640  * ssam_event_queue_push() - Push an event item to the event queue.
641  * @q:    The event queue.
642  * @item: The item to add.
643  */
644 static void ssam_event_queue_push(struct ssam_event_queue *q,
645 				  struct ssam_event_item *item)
646 {
647 	spin_lock(&q->lock);
648 	list_add_tail(&item->node, &q->head);
649 	spin_unlock(&q->lock);
650 }
651 
652 /**
653  * ssam_event_queue_pop() - Pop the next event item from the event queue.
654  * @q: The event queue.
655  *
656  * Returns and removes the next event item from the queue. Returns %NULL If
657  * there is no event item left.
658  */
659 static struct ssam_event_item *ssam_event_queue_pop(struct ssam_event_queue *q)
660 {
661 	struct ssam_event_item *item;
662 
663 	spin_lock(&q->lock);
664 	item = list_first_entry_or_null(&q->head, struct ssam_event_item, node);
665 	if (item)
666 		list_del(&item->node);
667 	spin_unlock(&q->lock);
668 
669 	return item;
670 }
671 
672 /**
673  * ssam_event_queue_is_empty() - Check if the event queue is empty.
674  * @q: The event queue.
675  */
676 static bool ssam_event_queue_is_empty(struct ssam_event_queue *q)
677 {
678 	bool empty;
679 
680 	spin_lock(&q->lock);
681 	empty = list_empty(&q->head);
682 	spin_unlock(&q->lock);
683 
684 	return empty;
685 }
686 
687 /**
688  * ssam_cplt_get_event_queue() - Get the event queue for the given parameters.
689  * @cplt: The completion system on which to look for the queue.
690  * @tid:  The target ID of the queue.
691  * @rqid: The request ID representing the event ID for which to get the queue.
692  *
693  * Return: Returns the event queue corresponding to the event type described
694  * by the given parameters. If the request ID does not represent an event,
695  * this function returns %NULL. If the target ID is not supported, this
696  * function will fall back to the default target ID (``tid = 1``).
697  */
698 static
699 struct ssam_event_queue *ssam_cplt_get_event_queue(struct ssam_cplt *cplt,
700 						   u8 tid, u16 rqid)
701 {
702 	u16 event = ssh_rqid_to_event(rqid);
703 	u16 tidx = ssh_tid_to_index(tid);
704 
705 	if (!ssh_rqid_is_event(rqid)) {
706 		dev_err(cplt->dev, "event: unsupported request ID: %#06x\n", rqid);
707 		return NULL;
708 	}
709 
710 	if (!ssh_tid_is_valid(tid)) {
711 		dev_warn(cplt->dev, "event: unsupported target ID: %u\n", tid);
712 		tidx = 0;
713 	}
714 
715 	return &cplt->event.target[tidx].queue[event];
716 }
717 
718 /**
719  * ssam_cplt_submit() - Submit a work item to the completion system workqueue.
720  * @cplt: The completion system.
721  * @work: The work item to submit.
722  */
723 static bool ssam_cplt_submit(struct ssam_cplt *cplt, struct work_struct *work)
724 {
725 	return queue_work(cplt->wq, work);
726 }
727 
728 /**
729  * ssam_cplt_submit_event() - Submit an event to the completion system.
730  * @cplt: The completion system.
731  * @item: The event item to submit.
732  *
733  * Submits the event to the completion system by queuing it on the event item
734  * queue and queuing the respective event queue work item on the completion
735  * workqueue, which will eventually complete the event.
736  *
737  * Return: Returns zero on success, %-EINVAL if there is no event queue that
738  * can handle the given event item.
739  */
740 static int ssam_cplt_submit_event(struct ssam_cplt *cplt,
741 				  struct ssam_event_item *item)
742 {
743 	struct ssam_event_queue *evq;
744 
745 	evq = ssam_cplt_get_event_queue(cplt, item->event.target_id, item->rqid);
746 	if (!evq)
747 		return -EINVAL;
748 
749 	ssam_event_queue_push(evq, item);
750 	ssam_cplt_submit(cplt, &evq->work);
751 	return 0;
752 }
753 
754 /**
755  * ssam_cplt_flush() - Flush the completion system.
756  * @cplt: The completion system.
757  *
758  * Flush the completion system by waiting until all currently submitted work
759  * items have been completed.
760  *
761  * Note: This function does not guarantee that all events will have been
762  * handled once this call terminates. In case of a larger number of
763  * to-be-completed events, the event queue work function may re-schedule its
764  * work item, which this flush operation will ignore.
765  *
766  * This operation is only intended to, during normal operation prior to
767  * shutdown, try to complete most events and requests to get them out of the
768  * system while the system is still fully operational. It does not aim to
769  * provide any guarantee that all of them have been handled.
770  */
771 static void ssam_cplt_flush(struct ssam_cplt *cplt)
772 {
773 	flush_workqueue(cplt->wq);
774 }
775 
776 static void ssam_event_queue_work_fn(struct work_struct *work)
777 {
778 	struct ssam_event_queue *queue;
779 	struct ssam_event_item *item;
780 	struct ssam_nf *nf;
781 	struct device *dev;
782 	unsigned int iterations = SSAM_CPLT_WQ_BATCH;
783 
784 	queue = container_of(work, struct ssam_event_queue, work);
785 	nf = &queue->cplt->event.notif;
786 	dev = queue->cplt->dev;
787 
788 	/* Limit number of processed events to avoid livelocking. */
789 	do {
790 		item = ssam_event_queue_pop(queue);
791 		if (!item)
792 			return;
793 
794 		ssam_nf_call(nf, dev, item->rqid, &item->event);
795 		ssam_event_item_free(item);
796 	} while (--iterations);
797 
798 	if (!ssam_event_queue_is_empty(queue))
799 		ssam_cplt_submit(queue->cplt, &queue->work);
800 }
801 
802 /**
803  * ssam_event_queue_init() - Initialize an event queue.
804  * @cplt: The completion system on which the queue resides.
805  * @evq:  The event queue to initialize.
806  */
807 static void ssam_event_queue_init(struct ssam_cplt *cplt,
808 				  struct ssam_event_queue *evq)
809 {
810 	evq->cplt = cplt;
811 	spin_lock_init(&evq->lock);
812 	INIT_LIST_HEAD(&evq->head);
813 	INIT_WORK(&evq->work, ssam_event_queue_work_fn);
814 }
815 
816 /**
817  * ssam_cplt_init() - Initialize completion system.
818  * @cplt: The completion system to initialize.
819  * @dev:  The device used for logging.
820  */
821 static int ssam_cplt_init(struct ssam_cplt *cplt, struct device *dev)
822 {
823 	struct ssam_event_target *target;
824 	int status, c, i;
825 
826 	cplt->dev = dev;
827 
828 	cplt->wq = alloc_workqueue(SSAM_CPLT_WQ_NAME, WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
829 	if (!cplt->wq)
830 		return -ENOMEM;
831 
832 	for (c = 0; c < ARRAY_SIZE(cplt->event.target); c++) {
833 		target = &cplt->event.target[c];
834 
835 		for (i = 0; i < ARRAY_SIZE(target->queue); i++)
836 			ssam_event_queue_init(cplt, &target->queue[i]);
837 	}
838 
839 	status = ssam_nf_init(&cplt->event.notif);
840 	if (status)
841 		destroy_workqueue(cplt->wq);
842 
843 	return status;
844 }
845 
846 /**
847  * ssam_cplt_destroy() - Deinitialize the completion system.
848  * @cplt: The completion system to deinitialize.
849  *
850  * Deinitialize the given completion system and ensure that all pending, i.e.
851  * yet-to-be-completed, event items and requests have been handled.
852  */
853 static void ssam_cplt_destroy(struct ssam_cplt *cplt)
854 {
855 	/*
856 	 * Note: destroy_workqueue ensures that all currently queued work will
857 	 * be fully completed and the workqueue drained. This means that this
858 	 * call will inherently also free any queued ssam_event_items, thus we
859 	 * don't have to take care of that here explicitly.
860 	 */
861 	destroy_workqueue(cplt->wq);
862 	ssam_nf_destroy(&cplt->event.notif);
863 }
864 
865 
866 /* -- Main SSAM device structures. ------------------------------------------ */
867 
868 /**
869  * ssam_controller_device() - Get the &struct device associated with this
870  * controller.
871  * @c: The controller for which to get the device.
872  *
873  * Return: Returns the &struct device associated with this controller,
874  * providing its lower-level transport.
875  */
876 struct device *ssam_controller_device(struct ssam_controller *c)
877 {
878 	return ssh_rtl_get_device(&c->rtl);
879 }
880 EXPORT_SYMBOL_GPL(ssam_controller_device);
881 
882 static void __ssam_controller_release(struct kref *kref)
883 {
884 	struct ssam_controller *ctrl = to_ssam_controller(kref, kref);
885 
886 	/*
887 	 * The lock-call here is to satisfy lockdep. At this point we really
888 	 * expect this to be the last remaining reference to the controller.
889 	 * Anything else is a bug.
890 	 */
891 	ssam_controller_lock(ctrl);
892 	ssam_controller_destroy(ctrl);
893 	ssam_controller_unlock(ctrl);
894 
895 	kfree(ctrl);
896 }
897 
898 /**
899  * ssam_controller_get() - Increment reference count of controller.
900  * @c: The controller.
901  *
902  * Return: Returns the controller provided as input.
903  */
904 struct ssam_controller *ssam_controller_get(struct ssam_controller *c)
905 {
906 	if (c)
907 		kref_get(&c->kref);
908 	return c;
909 }
910 EXPORT_SYMBOL_GPL(ssam_controller_get);
911 
912 /**
913  * ssam_controller_put() - Decrement reference count of controller.
914  * @c: The controller.
915  */
916 void ssam_controller_put(struct ssam_controller *c)
917 {
918 	if (c)
919 		kref_put(&c->kref, __ssam_controller_release);
920 }
921 EXPORT_SYMBOL_GPL(ssam_controller_put);
922 
923 /**
924  * ssam_controller_statelock() - Lock the controller against state transitions.
925  * @c: The controller to lock.
926  *
927  * Lock the controller against state transitions. Holding this lock guarantees
928  * that the controller will not transition between states, i.e. if the
929  * controller is in state "started", when this lock has been acquired, it will
930  * remain in this state at least until the lock has been released.
931  *
932  * Multiple clients may concurrently hold this lock. In other words: The
933  * ``statelock`` functions represent the read-lock part of a r/w-semaphore.
934  * Actions causing state transitions of the controller must be executed while
935  * holding the write-part of this r/w-semaphore (see ssam_controller_lock()
936  * and ssam_controller_unlock() for that).
937  *
938  * See ssam_controller_stateunlock() for the corresponding unlock function.
939  */
940 void ssam_controller_statelock(struct ssam_controller *c)
941 {
942 	down_read(&c->lock);
943 }
944 EXPORT_SYMBOL_GPL(ssam_controller_statelock);
945 
946 /**
947  * ssam_controller_stateunlock() - Unlock controller state transitions.
948  * @c: The controller to unlock.
949  *
950  * See ssam_controller_statelock() for the corresponding lock function.
951  */
952 void ssam_controller_stateunlock(struct ssam_controller *c)
953 {
954 	up_read(&c->lock);
955 }
956 EXPORT_SYMBOL_GPL(ssam_controller_stateunlock);
957 
958 /**
959  * ssam_controller_lock() - Acquire the main controller lock.
960  * @c: The controller to lock.
961  *
962  * This lock must be held for any state transitions, including transition to
963  * suspend/resumed states and during shutdown. See ssam_controller_statelock()
964  * for more details on controller locking.
965  *
966  * See ssam_controller_unlock() for the corresponding unlock function.
967  */
968 void ssam_controller_lock(struct ssam_controller *c)
969 {
970 	down_write(&c->lock);
971 }
972 
973 /*
974  * ssam_controller_unlock() - Release the main controller lock.
975  * @c: The controller to unlock.
976  *
977  * See ssam_controller_lock() for the corresponding lock function.
978  */
979 void ssam_controller_unlock(struct ssam_controller *c)
980 {
981 	up_write(&c->lock);
982 }
983 
984 static void ssam_handle_event(struct ssh_rtl *rtl,
985 			      const struct ssh_command *cmd,
986 			      const struct ssam_span *data)
987 {
988 	struct ssam_controller *ctrl = to_ssam_controller(rtl, rtl);
989 	struct ssam_event_item *item;
990 
991 	item = ssam_event_item_alloc(data->len, GFP_KERNEL);
992 	if (!item)
993 		return;
994 
995 	item->rqid = get_unaligned_le16(&cmd->rqid);
996 	item->event.target_category = cmd->tc;
997 	item->event.target_id = cmd->sid;
998 	item->event.command_id = cmd->cid;
999 	item->event.instance_id = cmd->iid;
1000 	memcpy(&item->event.data[0], data->ptr, data->len);
1001 
1002 	if (WARN_ON(ssam_cplt_submit_event(&ctrl->cplt, item)))
1003 		ssam_event_item_free(item);
1004 }
1005 
1006 static const struct ssh_rtl_ops ssam_rtl_ops = {
1007 	.handle_event = ssam_handle_event,
1008 };
1009 
1010 static bool ssam_notifier_is_empty(struct ssam_controller *ctrl);
1011 static void ssam_notifier_unregister_all(struct ssam_controller *ctrl);
1012 
1013 #define SSAM_SSH_DSM_REVISION	0
1014 
1015 /* d5e383e1-d892-4a76-89fc-f6aaae7ed5b5 */
1016 static const guid_t SSAM_SSH_DSM_GUID =
1017 	GUID_INIT(0xd5e383e1, 0xd892, 0x4a76,
1018 		  0x89, 0xfc, 0xf6, 0xaa, 0xae, 0x7e, 0xd5, 0xb5);
1019 
1020 enum ssh_dsm_fn {
1021 	SSH_DSM_FN_SSH_POWER_PROFILE             = 0x05,
1022 	SSH_DSM_FN_SCREEN_ON_SLEEP_IDLE_TIMEOUT  = 0x06,
1023 	SSH_DSM_FN_SCREEN_OFF_SLEEP_IDLE_TIMEOUT = 0x07,
1024 	SSH_DSM_FN_D3_CLOSES_HANDLE              = 0x08,
1025 	SSH_DSM_FN_SSH_BUFFER_SIZE               = 0x09,
1026 };
1027 
1028 static int ssam_dsm_get_functions(acpi_handle handle, u64 *funcs)
1029 {
1030 	union acpi_object *obj;
1031 	u64 mask = 0;
1032 	int i;
1033 
1034 	*funcs = 0;
1035 
1036 	/*
1037 	 * The _DSM function is only present on newer models. It is not
1038 	 * present on 5th and 6th generation devices (i.e. up to and including
1039 	 * Surface Pro 6, Surface Laptop 2, Surface Book 2).
1040 	 *
1041 	 * If the _DSM is not present, indicate that no function is supported.
1042 	 * This will result in default values being set.
1043 	 */
1044 	if (!acpi_has_method(handle, "_DSM"))
1045 		return 0;
1046 
1047 	obj = acpi_evaluate_dsm_typed(handle, &SSAM_SSH_DSM_GUID,
1048 				      SSAM_SSH_DSM_REVISION, 0, NULL,
1049 				      ACPI_TYPE_BUFFER);
1050 	if (!obj)
1051 		return -EIO;
1052 
1053 	for (i = 0; i < obj->buffer.length && i < 8; i++)
1054 		mask |= (((u64)obj->buffer.pointer[i]) << (i * 8));
1055 
1056 	if (mask & BIT(0))
1057 		*funcs = mask;
1058 
1059 	ACPI_FREE(obj);
1060 	return 0;
1061 }
1062 
1063 static int ssam_dsm_load_u32(acpi_handle handle, u64 funcs, u64 func, u32 *ret)
1064 {
1065 	union acpi_object *obj;
1066 	u64 val;
1067 
1068 	if (!(funcs & BIT_ULL(func)))
1069 		return 0; /* Not supported, leave *ret at its default value */
1070 
1071 	obj = acpi_evaluate_dsm_typed(handle, &SSAM_SSH_DSM_GUID,
1072 				      SSAM_SSH_DSM_REVISION, func, NULL,
1073 				      ACPI_TYPE_INTEGER);
1074 	if (!obj)
1075 		return -EIO;
1076 
1077 	val = obj->integer.value;
1078 	ACPI_FREE(obj);
1079 
1080 	if (val > U32_MAX)
1081 		return -ERANGE;
1082 
1083 	*ret = val;
1084 	return 0;
1085 }
1086 
1087 /**
1088  * ssam_controller_caps_load_from_acpi() - Load controller capabilities from
1089  * ACPI _DSM.
1090  * @handle: The handle of the ACPI controller/SSH device.
1091  * @caps:   Where to store the capabilities in.
1092  *
1093  * Initializes the given controller capabilities with default values, then
1094  * checks and, if the respective _DSM functions are available, loads the
1095  * actual capabilities from the _DSM.
1096  *
1097  * Return: Returns zero on success, a negative error code on failure.
1098  */
1099 static
1100 int ssam_controller_caps_load_from_acpi(acpi_handle handle,
1101 					struct ssam_controller_caps *caps)
1102 {
1103 	u32 d3_closes_handle = false;
1104 	u64 funcs;
1105 	int status;
1106 
1107 	/* Set defaults. */
1108 	caps->ssh_power_profile = U32_MAX;
1109 	caps->screen_on_sleep_idle_timeout = U32_MAX;
1110 	caps->screen_off_sleep_idle_timeout = U32_MAX;
1111 	caps->d3_closes_handle = false;
1112 	caps->ssh_buffer_size = U32_MAX;
1113 
1114 	/* Pre-load supported DSM functions. */
1115 	status = ssam_dsm_get_functions(handle, &funcs);
1116 	if (status)
1117 		return status;
1118 
1119 	/* Load actual values from ACPI, if present. */
1120 	status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_SSH_POWER_PROFILE,
1121 				   &caps->ssh_power_profile);
1122 	if (status)
1123 		return status;
1124 
1125 	status = ssam_dsm_load_u32(handle, funcs,
1126 				   SSH_DSM_FN_SCREEN_ON_SLEEP_IDLE_TIMEOUT,
1127 				   &caps->screen_on_sleep_idle_timeout);
1128 	if (status)
1129 		return status;
1130 
1131 	status = ssam_dsm_load_u32(handle, funcs,
1132 				   SSH_DSM_FN_SCREEN_OFF_SLEEP_IDLE_TIMEOUT,
1133 				   &caps->screen_off_sleep_idle_timeout);
1134 	if (status)
1135 		return status;
1136 
1137 	status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_D3_CLOSES_HANDLE,
1138 				   &d3_closes_handle);
1139 	if (status)
1140 		return status;
1141 
1142 	caps->d3_closes_handle = !!d3_closes_handle;
1143 
1144 	status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_SSH_BUFFER_SIZE,
1145 				   &caps->ssh_buffer_size);
1146 	if (status)
1147 		return status;
1148 
1149 	return 0;
1150 }
1151 
1152 /**
1153  * ssam_controller_init() - Initialize SSAM controller.
1154  * @ctrl:   The controller to initialize.
1155  * @serdev: The serial device representing the underlying data transport.
1156  *
1157  * Initializes the given controller. Does neither start receiver nor
1158  * transmitter threads. After this call, the controller has to be hooked up to
1159  * the serdev core separately via &struct serdev_device_ops, relaying calls to
1160  * ssam_controller_receive_buf() and ssam_controller_write_wakeup(). Once the
1161  * controller has been hooked up, transmitter and receiver threads may be
1162  * started via ssam_controller_start(). These setup steps need to be completed
1163  * before controller can be used for requests.
1164  */
1165 int ssam_controller_init(struct ssam_controller *ctrl,
1166 			 struct serdev_device *serdev)
1167 {
1168 	acpi_handle handle = ACPI_HANDLE(&serdev->dev);
1169 	int status;
1170 
1171 	init_rwsem(&ctrl->lock);
1172 	kref_init(&ctrl->kref);
1173 
1174 	status = ssam_controller_caps_load_from_acpi(handle, &ctrl->caps);
1175 	if (status)
1176 		return status;
1177 
1178 	dev_dbg(&serdev->dev,
1179 		"device capabilities:\n"
1180 		"  ssh_power_profile:             %u\n"
1181 		"  ssh_buffer_size:               %u\n"
1182 		"  screen_on_sleep_idle_timeout:  %u\n"
1183 		"  screen_off_sleep_idle_timeout: %u\n"
1184 		"  d3_closes_handle:              %u\n",
1185 		ctrl->caps.ssh_power_profile,
1186 		ctrl->caps.ssh_buffer_size,
1187 		ctrl->caps.screen_on_sleep_idle_timeout,
1188 		ctrl->caps.screen_off_sleep_idle_timeout,
1189 		ctrl->caps.d3_closes_handle);
1190 
1191 	ssh_seq_reset(&ctrl->counter.seq);
1192 	ssh_rqid_reset(&ctrl->counter.rqid);
1193 
1194 	/* Initialize event/request completion system. */
1195 	status = ssam_cplt_init(&ctrl->cplt, &serdev->dev);
1196 	if (status)
1197 		return status;
1198 
1199 	/* Initialize request and packet transport layers. */
1200 	status = ssh_rtl_init(&ctrl->rtl, serdev, &ssam_rtl_ops);
1201 	if (status) {
1202 		ssam_cplt_destroy(&ctrl->cplt);
1203 		return status;
1204 	}
1205 
1206 	/*
1207 	 * Set state via write_once even though we expect to be in an
1208 	 * exclusive context, due to smoke-testing in
1209 	 * ssam_request_sync_submit().
1210 	 */
1211 	WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_INITIALIZED);
1212 	return 0;
1213 }
1214 
1215 /**
1216  * ssam_controller_start() - Start the receiver and transmitter threads of the
1217  * controller.
1218  * @ctrl: The controller.
1219  *
1220  * Note: When this function is called, the controller should be properly
1221  * hooked up to the serdev core via &struct serdev_device_ops. Please refer
1222  * to ssam_controller_init() for more details on controller initialization.
1223  *
1224  * This function must be called with the main controller lock held (i.e. by
1225  * calling ssam_controller_lock()).
1226  */
1227 int ssam_controller_start(struct ssam_controller *ctrl)
1228 {
1229 	int status;
1230 
1231 	lockdep_assert_held_write(&ctrl->lock);
1232 
1233 	if (ctrl->state != SSAM_CONTROLLER_INITIALIZED)
1234 		return -EINVAL;
1235 
1236 	status = ssh_rtl_start(&ctrl->rtl);
1237 	if (status)
1238 		return status;
1239 
1240 	/*
1241 	 * Set state via write_once even though we expect to be locked/in an
1242 	 * exclusive context, due to smoke-testing in
1243 	 * ssam_request_sync_submit().
1244 	 */
1245 	WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STARTED);
1246 	return 0;
1247 }
1248 
1249 /*
1250  * SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT - Timeout for flushing requests during
1251  * shutdown.
1252  *
1253  * Chosen to be larger than one full request timeout, including packets timing
1254  * out. This value should give ample time to complete any outstanding requests
1255  * during normal operation and account for the odd package timeout.
1256  */
1257 #define SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT	msecs_to_jiffies(5000)
1258 
1259 /**
1260  * ssam_controller_shutdown() - Shut down the controller.
1261  * @ctrl: The controller.
1262  *
1263  * Shuts down the controller by flushing all pending requests and stopping the
1264  * transmitter and receiver threads. All requests submitted after this call
1265  * will fail with %-ESHUTDOWN. While it is discouraged to do so, this function
1266  * is safe to use in parallel with ongoing request submission.
1267  *
1268  * In the course of this shutdown procedure, all currently registered
1269  * notifiers will be unregistered. It is, however, strongly recommended to not
1270  * rely on this behavior, and instead the party registering the notifier
1271  * should unregister it before the controller gets shut down, e.g. via the
1272  * SSAM bus which guarantees client devices to be removed before a shutdown.
1273  *
1274  * Note that events may still be pending after this call, but, due to the
1275  * notifiers being unregistered, these events will be dropped when the
1276  * controller is subsequently destroyed via ssam_controller_destroy().
1277  *
1278  * This function must be called with the main controller lock held (i.e. by
1279  * calling ssam_controller_lock()).
1280  */
1281 void ssam_controller_shutdown(struct ssam_controller *ctrl)
1282 {
1283 	enum ssam_controller_state s = ctrl->state;
1284 	int status;
1285 
1286 	lockdep_assert_held_write(&ctrl->lock);
1287 
1288 	if (s == SSAM_CONTROLLER_UNINITIALIZED || s == SSAM_CONTROLLER_STOPPED)
1289 		return;
1290 
1291 	/*
1292 	 * Try to flush pending events and requests while everything still
1293 	 * works. Note: There may still be packets and/or requests in the
1294 	 * system after this call (e.g. via control packets submitted by the
1295 	 * packet transport layer or flush timeout / failure, ...). Those will
1296 	 * be handled with the ssh_rtl_shutdown() call below.
1297 	 */
1298 	status = ssh_rtl_flush(&ctrl->rtl, SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT);
1299 	if (status) {
1300 		ssam_err(ctrl, "failed to flush request transport layer: %d\n",
1301 			 status);
1302 	}
1303 
1304 	/* Try to flush all currently completing requests and events. */
1305 	ssam_cplt_flush(&ctrl->cplt);
1306 
1307 	/*
1308 	 * We expect all notifiers to have been removed by the respective client
1309 	 * driver that set them up at this point. If this warning occurs, some
1310 	 * client driver has not done that...
1311 	 */
1312 	WARN_ON(!ssam_notifier_is_empty(ctrl));
1313 
1314 	/*
1315 	 * Nevertheless, we should still take care of drivers that don't behave
1316 	 * well. Thus disable all enabled events, unregister all notifiers.
1317 	 */
1318 	ssam_notifier_unregister_all(ctrl);
1319 
1320 	/*
1321 	 * Cancel remaining requests. Ensure no new ones can be queued and stop
1322 	 * threads.
1323 	 */
1324 	ssh_rtl_shutdown(&ctrl->rtl);
1325 
1326 	/*
1327 	 * Set state via write_once even though we expect to be locked/in an
1328 	 * exclusive context, due to smoke-testing in
1329 	 * ssam_request_sync_submit().
1330 	 */
1331 	WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STOPPED);
1332 	ctrl->rtl.ptl.serdev = NULL;
1333 }
1334 
1335 /**
1336  * ssam_controller_destroy() - Destroy the controller and free its resources.
1337  * @ctrl: The controller.
1338  *
1339  * Ensures that all resources associated with the controller get freed. This
1340  * function should only be called after the controller has been stopped via
1341  * ssam_controller_shutdown(). In general, this function should not be called
1342  * directly. The only valid place to call this function directly is during
1343  * initialization, before the controller has been fully initialized and passed
1344  * to other processes. This function is called automatically when the
1345  * reference count of the controller reaches zero.
1346  *
1347  * This function must be called with the main controller lock held (i.e. by
1348  * calling ssam_controller_lock()).
1349  */
1350 void ssam_controller_destroy(struct ssam_controller *ctrl)
1351 {
1352 	lockdep_assert_held_write(&ctrl->lock);
1353 
1354 	if (ctrl->state == SSAM_CONTROLLER_UNINITIALIZED)
1355 		return;
1356 
1357 	WARN_ON(ctrl->state != SSAM_CONTROLLER_STOPPED &&
1358 		ctrl->state != SSAM_CONTROLLER_INITIALIZED);
1359 
1360 	/*
1361 	 * Note: New events could still have been received after the previous
1362 	 * flush in ssam_controller_shutdown, before the request transport layer
1363 	 * has been shut down. At this point, after the shutdown, we can be sure
1364 	 * that no new events will be queued. The call to ssam_cplt_destroy will
1365 	 * ensure that those remaining are being completed and freed.
1366 	 */
1367 
1368 	/* Actually free resources. */
1369 	ssam_cplt_destroy(&ctrl->cplt);
1370 	ssh_rtl_destroy(&ctrl->rtl);
1371 
1372 	/*
1373 	 * Set state via write_once even though we expect to be locked/in an
1374 	 * exclusive context, due to smoke-testing in
1375 	 * ssam_request_sync_submit().
1376 	 */
1377 	WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_UNINITIALIZED);
1378 }
1379 
1380 /**
1381  * ssam_controller_suspend() - Suspend the controller.
1382  * @ctrl: The controller to suspend.
1383  *
1384  * Marks the controller as suspended. Note that display-off and D0-exit
1385  * notifications have to be sent manually before transitioning the controller
1386  * into the suspended state via this function.
1387  *
1388  * See ssam_controller_resume() for the corresponding resume function.
1389  *
1390  * Return: Returns %-EINVAL if the controller is currently not in the
1391  * "started" state.
1392  */
1393 int ssam_controller_suspend(struct ssam_controller *ctrl)
1394 {
1395 	ssam_controller_lock(ctrl);
1396 
1397 	if (ctrl->state != SSAM_CONTROLLER_STARTED) {
1398 		ssam_controller_unlock(ctrl);
1399 		return -EINVAL;
1400 	}
1401 
1402 	ssam_dbg(ctrl, "pm: suspending controller\n");
1403 
1404 	/*
1405 	 * Set state via write_once even though we're locked, due to
1406 	 * smoke-testing in ssam_request_sync_submit().
1407 	 */
1408 	WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_SUSPENDED);
1409 
1410 	ssam_controller_unlock(ctrl);
1411 	return 0;
1412 }
1413 
1414 /**
1415  * ssam_controller_resume() - Resume the controller from suspend.
1416  * @ctrl: The controller to resume.
1417  *
1418  * Resume the controller from the suspended state it was put into via
1419  * ssam_controller_suspend(). This function does not issue display-on and
1420  * D0-entry notifications. If required, those have to be sent manually after
1421  * this call.
1422  *
1423  * Return: Returns %-EINVAL if the controller is currently not suspended.
1424  */
1425 int ssam_controller_resume(struct ssam_controller *ctrl)
1426 {
1427 	ssam_controller_lock(ctrl);
1428 
1429 	if (ctrl->state != SSAM_CONTROLLER_SUSPENDED) {
1430 		ssam_controller_unlock(ctrl);
1431 		return -EINVAL;
1432 	}
1433 
1434 	ssam_dbg(ctrl, "pm: resuming controller\n");
1435 
1436 	/*
1437 	 * Set state via write_once even though we're locked, due to
1438 	 * smoke-testing in ssam_request_sync_submit().
1439 	 */
1440 	WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STARTED);
1441 
1442 	ssam_controller_unlock(ctrl);
1443 	return 0;
1444 }
1445 
1446 
1447 /* -- Top-level request interface ------------------------------------------- */
1448 
1449 /**
1450  * ssam_request_write_data() - Construct and write SAM request message to
1451  * buffer.
1452  * @buf:  The buffer to write the data to.
1453  * @ctrl: The controller via which the request will be sent.
1454  * @spec: The request data and specification.
1455  *
1456  * Constructs a SAM/SSH request message and writes it to the provided buffer.
1457  * The request and transport counters, specifically RQID and SEQ, will be set
1458  * in this call. These counters are obtained from the controller. It is thus
1459  * only valid to send the resulting message via the controller specified here.
1460  *
1461  * For calculation of the required buffer size, refer to the
1462  * SSH_COMMAND_MESSAGE_LENGTH() macro.
1463  *
1464  * Return: Returns the number of bytes used in the buffer on success. Returns
1465  * %-EINVAL if the payload length provided in the request specification is too
1466  * large (larger than %SSH_COMMAND_MAX_PAYLOAD_SIZE) or if the provided buffer
1467  * is too small.
1468  */
1469 ssize_t ssam_request_write_data(struct ssam_span *buf,
1470 				struct ssam_controller *ctrl,
1471 				const struct ssam_request *spec)
1472 {
1473 	struct msgbuf msgb;
1474 	u16 rqid;
1475 	u8 seq;
1476 
1477 	if (spec->length > SSH_COMMAND_MAX_PAYLOAD_SIZE)
1478 		return -EINVAL;
1479 
1480 	if (SSH_COMMAND_MESSAGE_LENGTH(spec->length) > buf->len)
1481 		return -EINVAL;
1482 
1483 	msgb_init(&msgb, buf->ptr, buf->len);
1484 	seq = ssh_seq_next(&ctrl->counter.seq);
1485 	rqid = ssh_rqid_next(&ctrl->counter.rqid);
1486 	msgb_push_cmd(&msgb, seq, rqid, spec);
1487 
1488 	return msgb_bytes_used(&msgb);
1489 }
1490 EXPORT_SYMBOL_GPL(ssam_request_write_data);
1491 
1492 static void ssam_request_sync_complete(struct ssh_request *rqst,
1493 				       const struct ssh_command *cmd,
1494 				       const struct ssam_span *data, int status)
1495 {
1496 	struct ssh_rtl *rtl = ssh_request_rtl(rqst);
1497 	struct ssam_request_sync *r;
1498 
1499 	r = container_of(rqst, struct ssam_request_sync, base);
1500 	r->status = status;
1501 
1502 	if (r->resp)
1503 		r->resp->length = 0;
1504 
1505 	if (status) {
1506 		rtl_dbg_cond(rtl, "rsp: request failed: %d\n", status);
1507 		return;
1508 	}
1509 
1510 	if (!data)	/* Handle requests without a response. */
1511 		return;
1512 
1513 	if (!r->resp || !r->resp->pointer) {
1514 		if (data->len)
1515 			rtl_warn(rtl, "rsp: no response buffer provided, dropping data\n");
1516 		return;
1517 	}
1518 
1519 	if (data->len > r->resp->capacity) {
1520 		rtl_err(rtl,
1521 			"rsp: response buffer too small, capacity: %zu bytes, got: %zu bytes\n",
1522 			r->resp->capacity, data->len);
1523 		r->status = -ENOSPC;
1524 		return;
1525 	}
1526 
1527 	r->resp->length = data->len;
1528 	memcpy(r->resp->pointer, data->ptr, data->len);
1529 }
1530 
1531 static void ssam_request_sync_release(struct ssh_request *rqst)
1532 {
1533 	complete_all(&container_of(rqst, struct ssam_request_sync, base)->comp);
1534 }
1535 
1536 static const struct ssh_request_ops ssam_request_sync_ops = {
1537 	.release = ssam_request_sync_release,
1538 	.complete = ssam_request_sync_complete,
1539 };
1540 
1541 /**
1542  * ssam_request_sync_alloc() - Allocate a synchronous request.
1543  * @payload_len: The length of the request payload.
1544  * @flags:       Flags used for allocation.
1545  * @rqst:        Where to store the pointer to the allocated request.
1546  * @buffer:      Where to store the buffer descriptor for the message buffer of
1547  *               the request.
1548  *
1549  * Allocates a synchronous request with corresponding message buffer. The
1550  * request still needs to be initialized ssam_request_sync_init() before
1551  * it can be submitted, and the message buffer data must still be set to the
1552  * returned buffer via ssam_request_sync_set_data() after it has been filled,
1553  * if need be with adjusted message length.
1554  *
1555  * After use, the request and its corresponding message buffer should be freed
1556  * via ssam_request_sync_free(). The buffer must not be freed separately.
1557  *
1558  * Return: Returns zero on success, %-ENOMEM if the request could not be
1559  * allocated.
1560  */
1561 int ssam_request_sync_alloc(size_t payload_len, gfp_t flags,
1562 			    struct ssam_request_sync **rqst,
1563 			    struct ssam_span *buffer)
1564 {
1565 	size_t msglen = SSH_COMMAND_MESSAGE_LENGTH(payload_len);
1566 
1567 	*rqst = kzalloc(sizeof(**rqst) + msglen, flags);
1568 	if (!*rqst)
1569 		return -ENOMEM;
1570 
1571 	buffer->ptr = (u8 *)(*rqst + 1);
1572 	buffer->len = msglen;
1573 
1574 	return 0;
1575 }
1576 EXPORT_SYMBOL_GPL(ssam_request_sync_alloc);
1577 
1578 /**
1579  * ssam_request_sync_free() - Free a synchronous request.
1580  * @rqst: The request to be freed.
1581  *
1582  * Free a synchronous request and its corresponding buffer allocated with
1583  * ssam_request_sync_alloc(). Do not use for requests allocated on the stack
1584  * or via any other function.
1585  *
1586  * Warning: The caller must ensure that the request is not in use any more.
1587  * I.e. the caller must ensure that it has the only reference to the request
1588  * and the request is not currently pending. This means that the caller has
1589  * either never submitted the request, request submission has failed, or the
1590  * caller has waited until the submitted request has been completed via
1591  * ssam_request_sync_wait().
1592  */
1593 void ssam_request_sync_free(struct ssam_request_sync *rqst)
1594 {
1595 	kfree(rqst);
1596 }
1597 EXPORT_SYMBOL_GPL(ssam_request_sync_free);
1598 
1599 /**
1600  * ssam_request_sync_init() - Initialize a synchronous request struct.
1601  * @rqst:  The request to initialize.
1602  * @flags: The request flags.
1603  *
1604  * Initializes the given request struct. Does not initialize the request
1605  * message data. This has to be done explicitly after this call via
1606  * ssam_request_sync_set_data() and the actual message data has to be written
1607  * via ssam_request_write_data().
1608  *
1609  * Return: Returns zero on success or %-EINVAL if the given flags are invalid.
1610  */
1611 int ssam_request_sync_init(struct ssam_request_sync *rqst,
1612 			   enum ssam_request_flags flags)
1613 {
1614 	int status;
1615 
1616 	status = ssh_request_init(&rqst->base, flags, &ssam_request_sync_ops);
1617 	if (status)
1618 		return status;
1619 
1620 	init_completion(&rqst->comp);
1621 	rqst->resp = NULL;
1622 	rqst->status = 0;
1623 
1624 	return 0;
1625 }
1626 EXPORT_SYMBOL_GPL(ssam_request_sync_init);
1627 
1628 /**
1629  * ssam_request_sync_submit() - Submit a synchronous request.
1630  * @ctrl: The controller with which to submit the request.
1631  * @rqst: The request to submit.
1632  *
1633  * Submit a synchronous request. The request has to be initialized and
1634  * properly set up, including response buffer (may be %NULL if no response is
1635  * expected) and command message data. This function does not wait for the
1636  * request to be completed.
1637  *
1638  * If this function succeeds, ssam_request_sync_wait() must be used to ensure
1639  * that the request has been completed before the response data can be
1640  * accessed and/or the request can be freed. On failure, the request may
1641  * immediately be freed.
1642  *
1643  * This function may only be used if the controller is active, i.e. has been
1644  * initialized and not suspended.
1645  */
1646 int ssam_request_sync_submit(struct ssam_controller *ctrl,
1647 			     struct ssam_request_sync *rqst)
1648 {
1649 	int status;
1650 
1651 	/*
1652 	 * This is only a superficial check. In general, the caller needs to
1653 	 * ensure that the controller is initialized and is not (and does not
1654 	 * get) suspended during use, i.e. until the request has been completed
1655 	 * (if _absolutely_ necessary, by use of ssam_controller_statelock/
1656 	 * ssam_controller_stateunlock, but something like ssam_client_link
1657 	 * should be preferred as this needs to last until the request has been
1658 	 * completed).
1659 	 *
1660 	 * Note that it is actually safe to use this function while the
1661 	 * controller is in the process of being shut down (as ssh_rtl_submit
1662 	 * is safe with regards to this), but it is generally discouraged to do
1663 	 * so.
1664 	 */
1665 	if (WARN_ON(READ_ONCE(ctrl->state) != SSAM_CONTROLLER_STARTED)) {
1666 		ssh_request_put(&rqst->base);
1667 		return -ENODEV;
1668 	}
1669 
1670 	status = ssh_rtl_submit(&ctrl->rtl, &rqst->base);
1671 	ssh_request_put(&rqst->base);
1672 
1673 	return status;
1674 }
1675 EXPORT_SYMBOL_GPL(ssam_request_sync_submit);
1676 
1677 /**
1678  * ssam_request_do_sync() - Execute a synchronous request.
1679  * @ctrl: The controller via which the request will be submitted.
1680  * @spec: The request specification and payload.
1681  * @rsp:  The response buffer.
1682  *
1683  * Allocates a synchronous request with its message data buffer on the heap
1684  * via ssam_request_sync_alloc(), fully initializes it via the provided
1685  * request specification, submits it, and finally waits for its completion
1686  * before freeing it and returning its status.
1687  *
1688  * Return: Returns the status of the request or any failure during setup.
1689  */
1690 int ssam_request_do_sync(struct ssam_controller *ctrl,
1691 			 const struct ssam_request *spec,
1692 			 struct ssam_response *rsp)
1693 {
1694 	struct ssam_request_sync *rqst;
1695 	struct ssam_span buf;
1696 	ssize_t len;
1697 	int status;
1698 
1699 	status = ssam_request_sync_alloc(spec->length, GFP_KERNEL, &rqst, &buf);
1700 	if (status)
1701 		return status;
1702 
1703 	status = ssam_request_sync_init(rqst, spec->flags);
1704 	if (status) {
1705 		ssam_request_sync_free(rqst);
1706 		return status;
1707 	}
1708 
1709 	ssam_request_sync_set_resp(rqst, rsp);
1710 
1711 	len = ssam_request_write_data(&buf, ctrl, spec);
1712 	if (len < 0) {
1713 		ssam_request_sync_free(rqst);
1714 		return len;
1715 	}
1716 
1717 	ssam_request_sync_set_data(rqst, buf.ptr, len);
1718 
1719 	status = ssam_request_sync_submit(ctrl, rqst);
1720 	if (!status)
1721 		status = ssam_request_sync_wait(rqst);
1722 
1723 	ssam_request_sync_free(rqst);
1724 	return status;
1725 }
1726 EXPORT_SYMBOL_GPL(ssam_request_do_sync);
1727 
1728 /**
1729  * ssam_request_do_sync_with_buffer() - Execute a synchronous request with the
1730  * provided buffer as back-end for the message buffer.
1731  * @ctrl: The controller via which the request will be submitted.
1732  * @spec: The request specification and payload.
1733  * @rsp:  The response buffer.
1734  * @buf:  The buffer for the request message data.
1735  *
1736  * Allocates a synchronous request struct on the stack, fully initializes it
1737  * using the provided buffer as message data buffer, submits it, and then
1738  * waits for its completion before returning its status. The
1739  * SSH_COMMAND_MESSAGE_LENGTH() macro can be used to compute the required
1740  * message buffer size.
1741  *
1742  * This function does essentially the same as ssam_request_do_sync(), but
1743  * instead of dynamically allocating the request and message data buffer, it
1744  * uses the provided message data buffer and stores the (small) request struct
1745  * on the heap.
1746  *
1747  * Return: Returns the status of the request or any failure during setup.
1748  */
1749 int ssam_request_do_sync_with_buffer(struct ssam_controller *ctrl,
1750 				     const struct ssam_request *spec,
1751 				     struct ssam_response *rsp,
1752 				     struct ssam_span *buf)
1753 {
1754 	struct ssam_request_sync rqst;
1755 	ssize_t len;
1756 	int status;
1757 
1758 	status = ssam_request_sync_init(&rqst, spec->flags);
1759 	if (status)
1760 		return status;
1761 
1762 	ssam_request_sync_set_resp(&rqst, rsp);
1763 
1764 	len = ssam_request_write_data(buf, ctrl, spec);
1765 	if (len < 0)
1766 		return len;
1767 
1768 	ssam_request_sync_set_data(&rqst, buf->ptr, len);
1769 
1770 	status = ssam_request_sync_submit(ctrl, &rqst);
1771 	if (!status)
1772 		status = ssam_request_sync_wait(&rqst);
1773 
1774 	return status;
1775 }
1776 EXPORT_SYMBOL_GPL(ssam_request_do_sync_with_buffer);
1777 
1778 
1779 /* -- Internal SAM requests. ------------------------------------------------ */
1780 
1781 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_get_firmware_version, __le32, {
1782 	.target_category = SSAM_SSH_TC_SAM,
1783 	.target_id       = SSAM_SSH_TID_SAM,
1784 	.command_id      = 0x13,
1785 	.instance_id     = 0x00,
1786 });
1787 
1788 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_display_off, u8, {
1789 	.target_category = SSAM_SSH_TC_SAM,
1790 	.target_id       = SSAM_SSH_TID_SAM,
1791 	.command_id      = 0x15,
1792 	.instance_id     = 0x00,
1793 });
1794 
1795 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_display_on, u8, {
1796 	.target_category = SSAM_SSH_TC_SAM,
1797 	.target_id       = SSAM_SSH_TID_SAM,
1798 	.command_id      = 0x16,
1799 	.instance_id     = 0x00,
1800 });
1801 
1802 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_d0_exit, u8, {
1803 	.target_category = SSAM_SSH_TC_SAM,
1804 	.target_id       = SSAM_SSH_TID_SAM,
1805 	.command_id      = 0x33,
1806 	.instance_id     = 0x00,
1807 });
1808 
1809 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_d0_entry, u8, {
1810 	.target_category = SSAM_SSH_TC_SAM,
1811 	.target_id       = SSAM_SSH_TID_SAM,
1812 	.command_id      = 0x34,
1813 	.instance_id     = 0x00,
1814 });
1815 
1816 /**
1817  * struct ssh_notification_params - Command payload to enable/disable SSH
1818  * notifications.
1819  * @target_category: The target category for which notifications should be
1820  *                   enabled/disabled.
1821  * @flags:           Flags determining how notifications are being sent.
1822  * @request_id:      The request ID that is used to send these notifications.
1823  * @instance_id:     The specific instance in the given target category for
1824  *                   which notifications should be enabled.
1825  */
1826 struct ssh_notification_params {
1827 	u8 target_category;
1828 	u8 flags;
1829 	__le16 request_id;
1830 	u8 instance_id;
1831 } __packed;
1832 
1833 static_assert(sizeof(struct ssh_notification_params) == 5);
1834 
1835 static int __ssam_ssh_event_request(struct ssam_controller *ctrl,
1836 				    struct ssam_event_registry reg, u8 cid,
1837 				    struct ssam_event_id id, u8 flags)
1838 {
1839 	struct ssh_notification_params params;
1840 	struct ssam_request rqst;
1841 	struct ssam_response result;
1842 	int status;
1843 
1844 	u16 rqid = ssh_tc_to_rqid(id.target_category);
1845 	u8 buf = 0;
1846 
1847 	/* Only allow RQIDs that lie within the event spectrum. */
1848 	if (!ssh_rqid_is_event(rqid))
1849 		return -EINVAL;
1850 
1851 	params.target_category = id.target_category;
1852 	params.instance_id = id.instance;
1853 	params.flags = flags;
1854 	put_unaligned_le16(rqid, &params.request_id);
1855 
1856 	rqst.target_category = reg.target_category;
1857 	rqst.target_id = reg.target_id;
1858 	rqst.command_id = cid;
1859 	rqst.instance_id = 0x00;
1860 	rqst.flags = SSAM_REQUEST_HAS_RESPONSE;
1861 	rqst.length = sizeof(params);
1862 	rqst.payload = (u8 *)&params;
1863 
1864 	result.capacity = sizeof(buf);
1865 	result.length = 0;
1866 	result.pointer = &buf;
1867 
1868 	status = ssam_retry(ssam_request_do_sync_onstack, ctrl, &rqst, &result,
1869 			    sizeof(params));
1870 
1871 	return status < 0 ? status : buf;
1872 }
1873 
1874 /**
1875  * ssam_ssh_event_enable() - Enable SSH event.
1876  * @ctrl:  The controller for which to enable the event.
1877  * @reg:   The event registry describing what request to use for enabling and
1878  *         disabling the event.
1879  * @id:    The event identifier.
1880  * @flags: The event flags.
1881  *
1882  * Enables the specified event on the EC. This function does not manage
1883  * reference counting of enabled events and is basically only a wrapper for
1884  * the raw EC request. If the specified event is already enabled, the EC will
1885  * ignore this request.
1886  *
1887  * Return: Returns the status of the executed SAM request (zero on success and
1888  * negative on direct failure) or %-EPROTO if the request response indicates a
1889  * failure.
1890  */
1891 static int ssam_ssh_event_enable(struct ssam_controller *ctrl,
1892 				 struct ssam_event_registry reg,
1893 				 struct ssam_event_id id, u8 flags)
1894 {
1895 	int status;
1896 
1897 	status = __ssam_ssh_event_request(ctrl, reg, reg.cid_enable, id, flags);
1898 
1899 	if (status < 0 && status != -EINVAL) {
1900 		ssam_err(ctrl,
1901 			 "failed to enable event source (tc: %#04x, iid: %#04x, reg: %#04x)\n",
1902 			 id.target_category, id.instance, reg.target_category);
1903 	}
1904 
1905 	if (status > 0) {
1906 		ssam_err(ctrl,
1907 			 "unexpected result while enabling event source: %#04x (tc: %#04x, iid: %#04x, reg: %#04x)\n",
1908 			 status, id.target_category, id.instance, reg.target_category);
1909 		return -EPROTO;
1910 	}
1911 
1912 	return status;
1913 }
1914 
1915 /**
1916  * ssam_ssh_event_disable() - Disable SSH event.
1917  * @ctrl:  The controller for which to disable the event.
1918  * @reg:   The event registry describing what request to use for enabling and
1919  *         disabling the event (must be same as used when enabling the event).
1920  * @id:    The event identifier.
1921  * @flags: The event flags (likely ignored for disabling of events).
1922  *
1923  * Disables the specified event on the EC. This function does not manage
1924  * reference counting of enabled events and is basically only a wrapper for
1925  * the raw EC request. If the specified event is already disabled, the EC will
1926  * ignore this request.
1927  *
1928  * Return: Returns the status of the executed SAM request (zero on success and
1929  * negative on direct failure) or %-EPROTO if the request response indicates a
1930  * failure.
1931  */
1932 static int ssam_ssh_event_disable(struct ssam_controller *ctrl,
1933 				  struct ssam_event_registry reg,
1934 				  struct ssam_event_id id, u8 flags)
1935 {
1936 	int status;
1937 
1938 	status = __ssam_ssh_event_request(ctrl, reg, reg.cid_disable, id, flags);
1939 
1940 	if (status < 0 && status != -EINVAL) {
1941 		ssam_err(ctrl,
1942 			 "failed to disable event source (tc: %#04x, iid: %#04x, reg: %#04x)\n",
1943 			 id.target_category, id.instance, reg.target_category);
1944 	}
1945 
1946 	if (status > 0) {
1947 		ssam_err(ctrl,
1948 			 "unexpected result while disabling event source: %#04x (tc: %#04x, iid: %#04x, reg: %#04x)\n",
1949 			 status, id.target_category, id.instance, reg.target_category);
1950 		return -EPROTO;
1951 	}
1952 
1953 	return status;
1954 }
1955 
1956 
1957 /* -- Wrappers for internal SAM requests. ----------------------------------- */
1958 
1959 /**
1960  * ssam_get_firmware_version() - Get the SAM/EC firmware version.
1961  * @ctrl:    The controller.
1962  * @version: Where to store the version number.
1963  *
1964  * Return: Returns zero on success or the status of the executed SAM request
1965  * if that request failed.
1966  */
1967 int ssam_get_firmware_version(struct ssam_controller *ctrl, u32 *version)
1968 {
1969 	__le32 __version;
1970 	int status;
1971 
1972 	status = ssam_retry(ssam_ssh_get_firmware_version, ctrl, &__version);
1973 	if (status)
1974 		return status;
1975 
1976 	*version = le32_to_cpu(__version);
1977 	return 0;
1978 }
1979 
1980 /**
1981  * ssam_ctrl_notif_display_off() - Notify EC that the display has been turned
1982  * off.
1983  * @ctrl: The controller.
1984  *
1985  * Notify the EC that the display has been turned off and the driver may enter
1986  * a lower-power state. This will prevent events from being sent directly.
1987  * Rather, the EC signals an event by pulling the wakeup GPIO high for as long
1988  * as there are pending events. The events then need to be manually released,
1989  * one by one, via the GPIO callback request. All pending events accumulated
1990  * during this state can also be released by issuing the display-on
1991  * notification, e.g. via ssam_ctrl_notif_display_on(), which will also reset
1992  * the GPIO.
1993  *
1994  * On some devices, specifically ones with an integrated keyboard, the keyboard
1995  * backlight will be turned off by this call.
1996  *
1997  * This function will only send the display-off notification command if
1998  * display notifications are supported by the EC. Currently all known devices
1999  * support these notifications.
2000  *
2001  * Use ssam_ctrl_notif_display_on() to reverse the effects of this function.
2002  *
2003  * Return: Returns zero on success or if no request has been executed, the
2004  * status of the executed SAM request if that request failed, or %-EPROTO if
2005  * an unexpected response has been received.
2006  */
2007 int ssam_ctrl_notif_display_off(struct ssam_controller *ctrl)
2008 {
2009 	int status;
2010 	u8 response;
2011 
2012 	ssam_dbg(ctrl, "pm: notifying display off\n");
2013 
2014 	status = ssam_retry(ssam_ssh_notif_display_off, ctrl, &response);
2015 	if (status)
2016 		return status;
2017 
2018 	if (response != 0) {
2019 		ssam_err(ctrl, "unexpected response from display-off notification: %#04x\n",
2020 			 response);
2021 		return -EPROTO;
2022 	}
2023 
2024 	return 0;
2025 }
2026 
2027 /**
2028  * ssam_ctrl_notif_display_on() - Notify EC that the display has been turned on.
2029  * @ctrl: The controller.
2030  *
2031  * Notify the EC that the display has been turned back on and the driver has
2032  * exited its lower-power state. This notification is the counterpart to the
2033  * display-off notification sent via ssam_ctrl_notif_display_off() and will
2034  * reverse its effects, including resetting events to their default behavior.
2035  *
2036  * This function will only send the display-on notification command if display
2037  * notifications are supported by the EC. Currently all known devices support
2038  * these notifications.
2039  *
2040  * See ssam_ctrl_notif_display_off() for more details.
2041  *
2042  * Return: Returns zero on success or if no request has been executed, the
2043  * status of the executed SAM request if that request failed, or %-EPROTO if
2044  * an unexpected response has been received.
2045  */
2046 int ssam_ctrl_notif_display_on(struct ssam_controller *ctrl)
2047 {
2048 	int status;
2049 	u8 response;
2050 
2051 	ssam_dbg(ctrl, "pm: notifying display on\n");
2052 
2053 	status = ssam_retry(ssam_ssh_notif_display_on, ctrl, &response);
2054 	if (status)
2055 		return status;
2056 
2057 	if (response != 0) {
2058 		ssam_err(ctrl, "unexpected response from display-on notification: %#04x\n",
2059 			 response);
2060 		return -EPROTO;
2061 	}
2062 
2063 	return 0;
2064 }
2065 
2066 /**
2067  * ssam_ctrl_notif_d0_exit() - Notify EC that the driver/device exits the D0
2068  * power state.
2069  * @ctrl: The controller
2070  *
2071  * Notifies the EC that the driver prepares to exit the D0 power state in
2072  * favor of a lower-power state. Exact effects of this function related to the
2073  * EC are currently unknown.
2074  *
2075  * This function will only send the D0-exit notification command if D0-state
2076  * notifications are supported by the EC. Only newer Surface generations
2077  * support these notifications.
2078  *
2079  * Use ssam_ctrl_notif_d0_entry() to reverse the effects of this function.
2080  *
2081  * Return: Returns zero on success or if no request has been executed, the
2082  * status of the executed SAM request if that request failed, or %-EPROTO if
2083  * an unexpected response has been received.
2084  */
2085 int ssam_ctrl_notif_d0_exit(struct ssam_controller *ctrl)
2086 {
2087 	int status;
2088 	u8 response;
2089 
2090 	if (!ctrl->caps.d3_closes_handle)
2091 		return 0;
2092 
2093 	ssam_dbg(ctrl, "pm: notifying D0 exit\n");
2094 
2095 	status = ssam_retry(ssam_ssh_notif_d0_exit, ctrl, &response);
2096 	if (status)
2097 		return status;
2098 
2099 	if (response != 0) {
2100 		ssam_err(ctrl, "unexpected response from D0-exit notification: %#04x\n",
2101 			 response);
2102 		return -EPROTO;
2103 	}
2104 
2105 	return 0;
2106 }
2107 
2108 /**
2109  * ssam_ctrl_notif_d0_entry() - Notify EC that the driver/device enters the D0
2110  * power state.
2111  * @ctrl: The controller
2112  *
2113  * Notifies the EC that the driver has exited a lower-power state and entered
2114  * the D0 power state. Exact effects of this function related to the EC are
2115  * currently unknown.
2116  *
2117  * This function will only send the D0-entry notification command if D0-state
2118  * notifications are supported by the EC. Only newer Surface generations
2119  * support these notifications.
2120  *
2121  * See ssam_ctrl_notif_d0_exit() for more details.
2122  *
2123  * Return: Returns zero on success or if no request has been executed, the
2124  * status of the executed SAM request if that request failed, or %-EPROTO if
2125  * an unexpected response has been received.
2126  */
2127 int ssam_ctrl_notif_d0_entry(struct ssam_controller *ctrl)
2128 {
2129 	int status;
2130 	u8 response;
2131 
2132 	if (!ctrl->caps.d3_closes_handle)
2133 		return 0;
2134 
2135 	ssam_dbg(ctrl, "pm: notifying D0 entry\n");
2136 
2137 	status = ssam_retry(ssam_ssh_notif_d0_entry, ctrl, &response);
2138 	if (status)
2139 		return status;
2140 
2141 	if (response != 0) {
2142 		ssam_err(ctrl, "unexpected response from D0-entry notification: %#04x\n",
2143 			 response);
2144 		return -EPROTO;
2145 	}
2146 
2147 	return 0;
2148 }
2149 
2150 
2151 /* -- Top-level event registry interface. ----------------------------------- */
2152 
2153 /**
2154  * ssam_nf_refcount_enable() - Enable event for reference count entry if it has
2155  * not already been enabled.
2156  * @ctrl:  The controller to enable the event on.
2157  * @entry: The reference count entry for the event to be enabled.
2158  * @flags: The flags used for enabling the event on the EC.
2159  *
2160  * Enable the event associated with the given reference count entry if the
2161  * reference count equals one, i.e. the event has not previously been enabled.
2162  * If the event has already been enabled (i.e. reference count not equal to
2163  * one), check that the flags used for enabling match and warn about this if
2164  * they do not.
2165  *
2166  * This does not modify the reference count itself, which is done with
2167  * ssam_nf_refcount_inc() / ssam_nf_refcount_dec().
2168  *
2169  * Note: ``nf->lock`` must be held when calling this function.
2170  *
2171  * Return: Returns zero on success. If the event is enabled by this call,
2172  * returns the status of the event-enable EC command.
2173  */
2174 static int ssam_nf_refcount_enable(struct ssam_controller *ctrl,
2175 				   struct ssam_nf_refcount_entry *entry, u8 flags)
2176 {
2177 	const struct ssam_event_registry reg = entry->key.reg;
2178 	const struct ssam_event_id id = entry->key.id;
2179 	struct ssam_nf *nf = &ctrl->cplt.event.notif;
2180 	int status;
2181 
2182 	lockdep_assert_held(&nf->lock);
2183 
2184 	ssam_dbg(ctrl, "enabling event (reg: %#04x, tc: %#04x, iid: %#04x, rc: %d)\n",
2185 		 reg.target_category, id.target_category, id.instance, entry->refcount);
2186 
2187 	if (entry->refcount == 1) {
2188 		status = ssam_ssh_event_enable(ctrl, reg, id, flags);
2189 		if (status)
2190 			return status;
2191 
2192 		entry->flags = flags;
2193 
2194 	} else if (entry->flags != flags) {
2195 		ssam_warn(ctrl,
2196 			  "inconsistent flags when enabling event: got %#04x, expected %#04x (reg: %#04x, tc: %#04x, iid: %#04x)\n",
2197 			  flags, entry->flags, reg.target_category, id.target_category,
2198 			  id.instance);
2199 	}
2200 
2201 	return 0;
2202 }
2203 
2204 /**
2205  * ssam_nf_refcount_disable_free() - Disable event for reference count entry if
2206  * it is no longer in use and free the corresponding entry.
2207  * @ctrl:  The controller to disable the event on.
2208  * @entry: The reference count entry for the event to be disabled.
2209  * @flags: The flags used for enabling the event on the EC.
2210  * @ec:    Flag specifying if the event should actually be disabled on the EC.
2211  *
2212  * If ``ec`` equals ``true`` and the reference count equals zero (i.e. the
2213  * event is no longer requested by any client), the specified event will be
2214  * disabled on the EC via the corresponding request.
2215  *
2216  * If ``ec`` equals ``false``, no request will be sent to the EC and the event
2217  * can be considered in a detached state (i.e. no longer used but still
2218  * enabled). Disabling an event via this method may be required for
2219  * hot-removable devices, where event disable requests may time out after the
2220  * device has been physically removed.
2221  *
2222  * In both cases, if the reference count equals zero, the corresponding
2223  * reference count entry will be freed. The reference count entry must not be
2224  * used any more after a call to this function.
2225  *
2226  * Also checks if the flags used for disabling the event match the flags used
2227  * for enabling the event and warns if they do not (regardless of reference
2228  * count).
2229  *
2230  * This does not modify the reference count itself, which is done with
2231  * ssam_nf_refcount_inc() / ssam_nf_refcount_dec().
2232  *
2233  * Note: ``nf->lock`` must be held when calling this function.
2234  *
2235  * Return: Returns zero on success. If the event is disabled by this call,
2236  * returns the status of the event-enable EC command.
2237  */
2238 static int ssam_nf_refcount_disable_free(struct ssam_controller *ctrl,
2239 					 struct ssam_nf_refcount_entry *entry, u8 flags, bool ec)
2240 {
2241 	const struct ssam_event_registry reg = entry->key.reg;
2242 	const struct ssam_event_id id = entry->key.id;
2243 	struct ssam_nf *nf = &ctrl->cplt.event.notif;
2244 	int status = 0;
2245 
2246 	lockdep_assert_held(&nf->lock);
2247 
2248 	ssam_dbg(ctrl, "%s event (reg: %#04x, tc: %#04x, iid: %#04x, rc: %d)\n",
2249 		 ec ? "disabling" : "detaching", reg.target_category, id.target_category,
2250 		 id.instance, entry->refcount);
2251 
2252 	if (entry->flags != flags) {
2253 		ssam_warn(ctrl,
2254 			  "inconsistent flags when disabling event: got %#04x, expected %#04x (reg: %#04x, tc: %#04x, iid: %#04x)\n",
2255 			  flags, entry->flags, reg.target_category, id.target_category,
2256 			  id.instance);
2257 	}
2258 
2259 	if (ec && entry->refcount == 0) {
2260 		status = ssam_ssh_event_disable(ctrl, reg, id, flags);
2261 		kfree(entry);
2262 	}
2263 
2264 	return status;
2265 }
2266 
2267 /**
2268  * ssam_notifier_register() - Register an event notifier.
2269  * @ctrl: The controller to register the notifier on.
2270  * @n:    The event notifier to register.
2271  *
2272  * Register an event notifier. Increment the usage counter of the associated
2273  * SAM event if the notifier is not marked as an observer. If the event is not
2274  * marked as an observer and is currently not enabled, it will be enabled
2275  * during this call. If the notifier is marked as an observer, no attempt will
2276  * be made at enabling any event and no reference count will be modified.
2277  *
2278  * Notifiers marked as observers do not need to be associated with one specific
2279  * event, i.e. as long as no event matching is performed, only the event target
2280  * category needs to be set.
2281  *
2282  * Return: Returns zero on success, %-ENOSPC if there have already been
2283  * %INT_MAX notifiers for the event ID/type associated with the notifier block
2284  * registered, %-ENOMEM if the corresponding event entry could not be
2285  * allocated. If this is the first time that a notifier block is registered
2286  * for the specific associated event, returns the status of the event-enable
2287  * EC-command.
2288  */
2289 int ssam_notifier_register(struct ssam_controller *ctrl, struct ssam_event_notifier *n)
2290 {
2291 	u16 rqid = ssh_tc_to_rqid(n->event.id.target_category);
2292 	struct ssam_nf_refcount_entry *entry = NULL;
2293 	struct ssam_nf_head *nf_head;
2294 	struct ssam_nf *nf;
2295 	int status;
2296 
2297 	if (!ssh_rqid_is_event(rqid))
2298 		return -EINVAL;
2299 
2300 	nf = &ctrl->cplt.event.notif;
2301 	nf_head = &nf->head[ssh_rqid_to_event(rqid)];
2302 
2303 	mutex_lock(&nf->lock);
2304 
2305 	if (!(n->flags & SSAM_EVENT_NOTIFIER_OBSERVER)) {
2306 		entry = ssam_nf_refcount_inc(nf, n->event.reg, n->event.id);
2307 		if (IS_ERR(entry)) {
2308 			mutex_unlock(&nf->lock);
2309 			return PTR_ERR(entry);
2310 		}
2311 	}
2312 
2313 	status = ssam_nfblk_insert(nf_head, &n->base);
2314 	if (status) {
2315 		if (entry)
2316 			ssam_nf_refcount_dec_free(nf, n->event.reg, n->event.id);
2317 
2318 		mutex_unlock(&nf->lock);
2319 		return status;
2320 	}
2321 
2322 	if (entry) {
2323 		status = ssam_nf_refcount_enable(ctrl, entry, n->event.flags);
2324 		if (status) {
2325 			ssam_nfblk_remove(&n->base);
2326 			ssam_nf_refcount_dec_free(nf, n->event.reg, n->event.id);
2327 			mutex_unlock(&nf->lock);
2328 			synchronize_srcu(&nf_head->srcu);
2329 			return status;
2330 		}
2331 	}
2332 
2333 	mutex_unlock(&nf->lock);
2334 	return 0;
2335 }
2336 EXPORT_SYMBOL_GPL(ssam_notifier_register);
2337 
2338 /**
2339  * __ssam_notifier_unregister() - Unregister an event notifier.
2340  * @ctrl:    The controller the notifier has been registered on.
2341  * @n:       The event notifier to unregister.
2342  * @disable: Whether to disable the corresponding event on the EC.
2343  *
2344  * Unregister an event notifier. Decrement the usage counter of the associated
2345  * SAM event if the notifier is not marked as an observer. If the usage counter
2346  * reaches zero and ``disable`` equals ``true``, the event will be disabled.
2347  *
2348  * Useful for hot-removable devices, where communication may fail once the
2349  * device has been physically removed. In that case, specifying ``disable`` as
2350  * ``false`` avoids communication with the EC.
2351  *
2352  * Return: Returns zero on success, %-ENOENT if the given notifier block has
2353  * not been registered on the controller. If the given notifier block was the
2354  * last one associated with its specific event, returns the status of the
2355  * event-disable EC-command.
2356  */
2357 int __ssam_notifier_unregister(struct ssam_controller *ctrl, struct ssam_event_notifier *n,
2358 			       bool disable)
2359 {
2360 	u16 rqid = ssh_tc_to_rqid(n->event.id.target_category);
2361 	struct ssam_nf_refcount_entry *entry;
2362 	struct ssam_nf_head *nf_head;
2363 	struct ssam_nf *nf;
2364 	int status = 0;
2365 
2366 	if (!ssh_rqid_is_event(rqid))
2367 		return -EINVAL;
2368 
2369 	nf = &ctrl->cplt.event.notif;
2370 	nf_head = &nf->head[ssh_rqid_to_event(rqid)];
2371 
2372 	mutex_lock(&nf->lock);
2373 
2374 	if (!ssam_nfblk_find(nf_head, &n->base)) {
2375 		mutex_unlock(&nf->lock);
2376 		return -ENOENT;
2377 	}
2378 
2379 	/*
2380 	 * If this is an observer notifier, do not attempt to disable the
2381 	 * event, just remove it.
2382 	 */
2383 	if (!(n->flags & SSAM_EVENT_NOTIFIER_OBSERVER)) {
2384 		entry = ssam_nf_refcount_dec(nf, n->event.reg, n->event.id);
2385 		if (WARN_ON(!entry)) {
2386 			/*
2387 			 * If this does not return an entry, there's a logic
2388 			 * error somewhere: The notifier block is registered,
2389 			 * but the event refcount entry is not there. Remove
2390 			 * the notifier block anyways.
2391 			 */
2392 			status = -ENOENT;
2393 			goto remove;
2394 		}
2395 
2396 		status = ssam_nf_refcount_disable_free(ctrl, entry, n->event.flags, disable);
2397 	}
2398 
2399 remove:
2400 	ssam_nfblk_remove(&n->base);
2401 	mutex_unlock(&nf->lock);
2402 	synchronize_srcu(&nf_head->srcu);
2403 
2404 	return status;
2405 }
2406 EXPORT_SYMBOL_GPL(__ssam_notifier_unregister);
2407 
2408 /**
2409  * ssam_controller_event_enable() - Enable the specified event.
2410  * @ctrl:  The controller to enable the event for.
2411  * @reg:   The event registry to use for enabling the event.
2412  * @id:    The event ID specifying the event to be enabled.
2413  * @flags: The SAM event flags used for enabling the event.
2414  *
2415  * Increment the event reference count of the specified event. If the event has
2416  * not been enabled previously, it will be enabled by this call.
2417  *
2418  * Note: In general, ssam_notifier_register() with a non-observer notifier
2419  * should be preferred for enabling/disabling events, as this will guarantee
2420  * proper ordering and event forwarding in case of errors during event
2421  * enabling/disabling.
2422  *
2423  * Return: Returns zero on success, %-ENOSPC if the reference count for the
2424  * specified event has reached its maximum, %-ENOMEM if the corresponding event
2425  * entry could not be allocated. If this is the first time that this event has
2426  * been enabled (i.e. the reference count was incremented from zero to one by
2427  * this call), returns the status of the event-enable EC-command.
2428  */
2429 int ssam_controller_event_enable(struct ssam_controller *ctrl,
2430 				 struct ssam_event_registry reg,
2431 				 struct ssam_event_id id, u8 flags)
2432 {
2433 	u16 rqid = ssh_tc_to_rqid(id.target_category);
2434 	struct ssam_nf *nf = &ctrl->cplt.event.notif;
2435 	struct ssam_nf_refcount_entry *entry;
2436 	int status;
2437 
2438 	if (!ssh_rqid_is_event(rqid))
2439 		return -EINVAL;
2440 
2441 	mutex_lock(&nf->lock);
2442 
2443 	entry = ssam_nf_refcount_inc(nf, reg, id);
2444 	if (IS_ERR(entry)) {
2445 		mutex_unlock(&nf->lock);
2446 		return PTR_ERR(entry);
2447 	}
2448 
2449 	status = ssam_nf_refcount_enable(ctrl, entry, flags);
2450 	if (status) {
2451 		ssam_nf_refcount_dec_free(nf, reg, id);
2452 		mutex_unlock(&nf->lock);
2453 		return status;
2454 	}
2455 
2456 	mutex_unlock(&nf->lock);
2457 	return 0;
2458 }
2459 EXPORT_SYMBOL_GPL(ssam_controller_event_enable);
2460 
2461 /**
2462  * ssam_controller_event_disable() - Disable the specified event.
2463  * @ctrl:  The controller to disable the event for.
2464  * @reg:   The event registry to use for disabling the event.
2465  * @id:    The event ID specifying the event to be disabled.
2466  * @flags: The flags used when enabling the event.
2467  *
2468  * Decrement the reference count of the specified event. If the reference count
2469  * reaches zero, the event will be disabled.
2470  *
2471  * Note: In general, ssam_notifier_register()/ssam_notifier_unregister() with a
2472  * non-observer notifier should be preferred for enabling/disabling events, as
2473  * this will guarantee proper ordering and event forwarding in case of errors
2474  * during event enabling/disabling.
2475  *
2476  * Return: Returns zero on success, %-ENOENT if the given event has not been
2477  * enabled on the controller. If the reference count of the event reaches zero
2478  * during this call, returns the status of the event-disable EC-command.
2479  */
2480 int ssam_controller_event_disable(struct ssam_controller *ctrl,
2481 				  struct ssam_event_registry reg,
2482 				  struct ssam_event_id id, u8 flags)
2483 {
2484 	u16 rqid = ssh_tc_to_rqid(id.target_category);
2485 	struct ssam_nf *nf = &ctrl->cplt.event.notif;
2486 	struct ssam_nf_refcount_entry *entry;
2487 	int status;
2488 
2489 	if (!ssh_rqid_is_event(rqid))
2490 		return -EINVAL;
2491 
2492 	mutex_lock(&nf->lock);
2493 
2494 	entry = ssam_nf_refcount_dec(nf, reg, id);
2495 	if (!entry) {
2496 		mutex_unlock(&nf->lock);
2497 		return -ENOENT;
2498 	}
2499 
2500 	status = ssam_nf_refcount_disable_free(ctrl, entry, flags, true);
2501 
2502 	mutex_unlock(&nf->lock);
2503 	return status;
2504 }
2505 EXPORT_SYMBOL_GPL(ssam_controller_event_disable);
2506 
2507 /**
2508  * ssam_notifier_disable_registered() - Disable events for all registered
2509  * notifiers.
2510  * @ctrl: The controller for which to disable the notifiers/events.
2511  *
2512  * Disables events for all currently registered notifiers. In case of an error
2513  * (EC command failing), all previously disabled events will be restored and
2514  * the error code returned.
2515  *
2516  * This function is intended to disable all events prior to hibernation entry.
2517  * See ssam_notifier_restore_registered() to restore/re-enable all events
2518  * disabled with this function.
2519  *
2520  * Note that this function will not disable events for notifiers registered
2521  * after calling this function. It should thus be made sure that no new
2522  * notifiers are going to be added after this call and before the corresponding
2523  * call to ssam_notifier_restore_registered().
2524  *
2525  * Return: Returns zero on success. In case of failure returns the error code
2526  * returned by the failed EC command to disable an event.
2527  */
2528 int ssam_notifier_disable_registered(struct ssam_controller *ctrl)
2529 {
2530 	struct ssam_nf *nf = &ctrl->cplt.event.notif;
2531 	struct rb_node *n;
2532 	int status;
2533 
2534 	mutex_lock(&nf->lock);
2535 	for (n = rb_first(&nf->refcount); n; n = rb_next(n)) {
2536 		struct ssam_nf_refcount_entry *e;
2537 
2538 		e = rb_entry(n, struct ssam_nf_refcount_entry, node);
2539 		status = ssam_ssh_event_disable(ctrl, e->key.reg,
2540 						e->key.id, e->flags);
2541 		if (status)
2542 			goto err;
2543 	}
2544 	mutex_unlock(&nf->lock);
2545 
2546 	return 0;
2547 
2548 err:
2549 	for (n = rb_prev(n); n; n = rb_prev(n)) {
2550 		struct ssam_nf_refcount_entry *e;
2551 
2552 		e = rb_entry(n, struct ssam_nf_refcount_entry, node);
2553 		ssam_ssh_event_enable(ctrl, e->key.reg, e->key.id, e->flags);
2554 	}
2555 	mutex_unlock(&nf->lock);
2556 
2557 	return status;
2558 }
2559 
2560 /**
2561  * ssam_notifier_restore_registered() - Restore/re-enable events for all
2562  * registered notifiers.
2563  * @ctrl: The controller for which to restore the notifiers/events.
2564  *
2565  * Restores/re-enables all events for which notifiers have been registered on
2566  * the given controller. In case of a failure, the error is logged and the
2567  * function continues to try and enable the remaining events.
2568  *
2569  * This function is intended to restore/re-enable all registered events after
2570  * hibernation. See ssam_notifier_disable_registered() for the counter part
2571  * disabling the events and more details.
2572  */
2573 void ssam_notifier_restore_registered(struct ssam_controller *ctrl)
2574 {
2575 	struct ssam_nf *nf = &ctrl->cplt.event.notif;
2576 	struct rb_node *n;
2577 
2578 	mutex_lock(&nf->lock);
2579 	for (n = rb_first(&nf->refcount); n; n = rb_next(n)) {
2580 		struct ssam_nf_refcount_entry *e;
2581 
2582 		e = rb_entry(n, struct ssam_nf_refcount_entry, node);
2583 
2584 		/* Ignore errors, will get logged in call. */
2585 		ssam_ssh_event_enable(ctrl, e->key.reg, e->key.id, e->flags);
2586 	}
2587 	mutex_unlock(&nf->lock);
2588 }
2589 
2590 /**
2591  * ssam_notifier_is_empty() - Check if there are any registered notifiers.
2592  * @ctrl: The controller to check on.
2593  *
2594  * Return: Returns %true if there are currently no notifiers registered on the
2595  * controller, %false otherwise.
2596  */
2597 static bool ssam_notifier_is_empty(struct ssam_controller *ctrl)
2598 {
2599 	struct ssam_nf *nf = &ctrl->cplt.event.notif;
2600 	bool result;
2601 
2602 	mutex_lock(&nf->lock);
2603 	result = ssam_nf_refcount_empty(nf);
2604 	mutex_unlock(&nf->lock);
2605 
2606 	return result;
2607 }
2608 
2609 /**
2610  * ssam_notifier_unregister_all() - Unregister all currently registered
2611  * notifiers.
2612  * @ctrl: The controller to unregister the notifiers on.
2613  *
2614  * Unregisters all currently registered notifiers. This function is used to
2615  * ensure that all notifiers will be unregistered and associated
2616  * entries/resources freed when the controller is being shut down.
2617  */
2618 static void ssam_notifier_unregister_all(struct ssam_controller *ctrl)
2619 {
2620 	struct ssam_nf *nf = &ctrl->cplt.event.notif;
2621 	struct ssam_nf_refcount_entry *e, *n;
2622 
2623 	mutex_lock(&nf->lock);
2624 	rbtree_postorder_for_each_entry_safe(e, n, &nf->refcount, node) {
2625 		/* Ignore errors, will get logged in call. */
2626 		ssam_ssh_event_disable(ctrl, e->key.reg, e->key.id, e->flags);
2627 		kfree(e);
2628 	}
2629 	nf->refcount = RB_ROOT;
2630 	mutex_unlock(&nf->lock);
2631 }
2632 
2633 
2634 /* -- Wakeup IRQ. ----------------------------------------------------------- */
2635 
2636 static irqreturn_t ssam_irq_handle(int irq, void *dev_id)
2637 {
2638 	struct ssam_controller *ctrl = dev_id;
2639 
2640 	ssam_dbg(ctrl, "pm: wake irq triggered\n");
2641 
2642 	/*
2643 	 * Note: Proper wakeup detection is currently unimplemented.
2644 	 *       When the EC is in display-off or any other non-D0 state, it
2645 	 *       does not send events/notifications to the host. Instead it
2646 	 *       signals that there are events available via the wakeup IRQ.
2647 	 *       This driver is responsible for calling back to the EC to
2648 	 *       release these events one-by-one.
2649 	 *
2650 	 *       This IRQ should not cause a full system resume by its own.
2651 	 *       Instead, events should be handled by their respective subsystem
2652 	 *       drivers, which in turn should signal whether a full system
2653 	 *       resume should be performed.
2654 	 *
2655 	 * TODO: Send GPIO callback command repeatedly to EC until callback
2656 	 *       returns 0x00. Return flag of callback is "has more events".
2657 	 *       Each time the command is sent, one event is "released". Once
2658 	 *       all events have been released (return = 0x00), the GPIO is
2659 	 *       re-armed. Detect wakeup events during this process, go back to
2660 	 *       sleep if no wakeup event has been received.
2661 	 */
2662 
2663 	return IRQ_HANDLED;
2664 }
2665 
2666 /**
2667  * ssam_irq_setup() - Set up SAM EC wakeup-GPIO interrupt.
2668  * @ctrl: The controller for which the IRQ should be set up.
2669  *
2670  * Set up an IRQ for the wakeup-GPIO pin of the SAM EC. This IRQ can be used
2671  * to wake the device from a low power state.
2672  *
2673  * Note that this IRQ can only be triggered while the EC is in the display-off
2674  * state. In this state, events are not sent to the host in the usual way.
2675  * Instead the wakeup-GPIO gets pulled to "high" as long as there are pending
2676  * events and these events need to be released one-by-one via the GPIO
2677  * callback request, either until there are no events left and the GPIO is
2678  * reset, or all at once by transitioning the EC out of the display-off state,
2679  * which will also clear the GPIO.
2680  *
2681  * Not all events, however, should trigger a full system wakeup. Instead the
2682  * driver should, if necessary, inspect and forward each event to the
2683  * corresponding subsystem, which in turn should decide if the system needs to
2684  * be woken up. This logic has not been implemented yet, thus wakeup by this
2685  * IRQ should be disabled by default to avoid spurious wake-ups, caused, for
2686  * example, by the remaining battery percentage changing. Refer to comments in
2687  * this function and comments in the corresponding IRQ handler for more
2688  * details on how this should be implemented.
2689  *
2690  * See also ssam_ctrl_notif_display_off() and ssam_ctrl_notif_display_off()
2691  * for functions to transition the EC into and out of the display-off state as
2692  * well as more details on it.
2693  *
2694  * The IRQ is disabled by default and has to be enabled before it can wake up
2695  * the device from suspend via ssam_irq_arm_for_wakeup(). On teardown, the IRQ
2696  * should be freed via ssam_irq_free().
2697  */
2698 int ssam_irq_setup(struct ssam_controller *ctrl)
2699 {
2700 	struct device *dev = ssam_controller_device(ctrl);
2701 	struct gpio_desc *gpiod;
2702 	int irq;
2703 	int status;
2704 
2705 	/*
2706 	 * The actual GPIO interrupt is declared in ACPI as TRIGGER_HIGH.
2707 	 * However, the GPIO line only gets reset by sending the GPIO callback
2708 	 * command to SAM (or alternatively the display-on notification). As
2709 	 * proper handling for this interrupt is not implemented yet, leaving
2710 	 * the IRQ at TRIGGER_HIGH would cause an IRQ storm (as the callback
2711 	 * never gets sent and thus the line never gets reset). To avoid this,
2712 	 * mark the IRQ as TRIGGER_RISING for now, only creating a single
2713 	 * interrupt, and let the SAM resume callback during the controller
2714 	 * resume process clear it.
2715 	 */
2716 	const int irqf = IRQF_ONESHOT | IRQF_TRIGGER_RISING | IRQF_NO_AUTOEN;
2717 
2718 	gpiod = gpiod_get(dev, "ssam_wakeup-int", GPIOD_ASIS);
2719 	if (IS_ERR(gpiod))
2720 		return PTR_ERR(gpiod);
2721 
2722 	irq = gpiod_to_irq(gpiod);
2723 	gpiod_put(gpiod);
2724 
2725 	if (irq < 0)
2726 		return irq;
2727 
2728 	status = request_threaded_irq(irq, NULL, ssam_irq_handle, irqf,
2729 				      "ssam_wakeup", ctrl);
2730 	if (status)
2731 		return status;
2732 
2733 	ctrl->irq.num = irq;
2734 	return 0;
2735 }
2736 
2737 /**
2738  * ssam_irq_free() - Free SAM EC wakeup-GPIO interrupt.
2739  * @ctrl: The controller for which the IRQ should be freed.
2740  *
2741  * Free the wakeup-GPIO IRQ previously set-up via ssam_irq_setup().
2742  */
2743 void ssam_irq_free(struct ssam_controller *ctrl)
2744 {
2745 	free_irq(ctrl->irq.num, ctrl);
2746 	ctrl->irq.num = -1;
2747 }
2748 
2749 /**
2750  * ssam_irq_arm_for_wakeup() - Arm the EC IRQ for wakeup, if enabled.
2751  * @ctrl: The controller for which the IRQ should be armed.
2752  *
2753  * Sets up the IRQ so that it can be used to wake the device. Specifically,
2754  * this function enables the irq and then, if the device is allowed to wake up
2755  * the system, calls enable_irq_wake(). See ssam_irq_disarm_wakeup() for the
2756  * corresponding function to disable the IRQ.
2757  *
2758  * This function is intended to arm the IRQ before entering S2idle suspend.
2759  *
2760  * Note: calls to ssam_irq_arm_for_wakeup() and ssam_irq_disarm_wakeup() must
2761  * be balanced.
2762  */
2763 int ssam_irq_arm_for_wakeup(struct ssam_controller *ctrl)
2764 {
2765 	struct device *dev = ssam_controller_device(ctrl);
2766 	int status;
2767 
2768 	enable_irq(ctrl->irq.num);
2769 	if (device_may_wakeup(dev)) {
2770 		status = enable_irq_wake(ctrl->irq.num);
2771 		if (status) {
2772 			ssam_err(ctrl, "failed to enable wake IRQ: %d\n", status);
2773 			disable_irq(ctrl->irq.num);
2774 			return status;
2775 		}
2776 
2777 		ctrl->irq.wakeup_enabled = true;
2778 	} else {
2779 		ctrl->irq.wakeup_enabled = false;
2780 	}
2781 
2782 	return 0;
2783 }
2784 
2785 /**
2786  * ssam_irq_disarm_wakeup() - Disarm the wakeup IRQ.
2787  * @ctrl: The controller for which the IRQ should be disarmed.
2788  *
2789  * Disarm the IRQ previously set up for wake via ssam_irq_arm_for_wakeup().
2790  *
2791  * This function is intended to disarm the IRQ after exiting S2idle suspend.
2792  *
2793  * Note: calls to ssam_irq_arm_for_wakeup() and ssam_irq_disarm_wakeup() must
2794  * be balanced.
2795  */
2796 void ssam_irq_disarm_wakeup(struct ssam_controller *ctrl)
2797 {
2798 	int status;
2799 
2800 	if (ctrl->irq.wakeup_enabled) {
2801 		status = disable_irq_wake(ctrl->irq.num);
2802 		if (status)
2803 			ssam_err(ctrl, "failed to disable wake IRQ: %d\n", status);
2804 
2805 		ctrl->irq.wakeup_enabled = false;
2806 	}
2807 	disable_irq(ctrl->irq.num);
2808 }
2809