1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Main SSAM/SSH controller structure and functionality. 4 * 5 * Copyright (C) 2019-2022 Maximilian Luz <luzmaximilian@gmail.com> 6 */ 7 8 #include <linux/acpi.h> 9 #include <linux/atomic.h> 10 #include <linux/completion.h> 11 #include <linux/gpio/consumer.h> 12 #include <linux/interrupt.h> 13 #include <linux/kref.h> 14 #include <linux/limits.h> 15 #include <linux/list.h> 16 #include <linux/lockdep.h> 17 #include <linux/mutex.h> 18 #include <linux/rculist.h> 19 #include <linux/rbtree.h> 20 #include <linux/rwsem.h> 21 #include <linux/serdev.h> 22 #include <linux/slab.h> 23 #include <linux/spinlock.h> 24 #include <linux/srcu.h> 25 #include <linux/types.h> 26 #include <linux/workqueue.h> 27 28 #include <linux/surface_aggregator/controller.h> 29 #include <linux/surface_aggregator/serial_hub.h> 30 31 #include "controller.h" 32 #include "ssh_msgb.h" 33 #include "ssh_request_layer.h" 34 35 #include "trace.h" 36 37 38 /* -- Safe counters. -------------------------------------------------------- */ 39 40 /** 41 * ssh_seq_reset() - Reset/initialize sequence ID counter. 42 * @c: The counter to reset. 43 */ 44 static void ssh_seq_reset(struct ssh_seq_counter *c) 45 { 46 WRITE_ONCE(c->value, 0); 47 } 48 49 /** 50 * ssh_seq_next() - Get next sequence ID. 51 * @c: The counter providing the sequence IDs. 52 * 53 * Return: Returns the next sequence ID of the counter. 54 */ 55 static u8 ssh_seq_next(struct ssh_seq_counter *c) 56 { 57 u8 old = READ_ONCE(c->value); 58 u8 new = old + 1; 59 u8 ret; 60 61 while (unlikely((ret = cmpxchg(&c->value, old, new)) != old)) { 62 old = ret; 63 new = old + 1; 64 } 65 66 return old; 67 } 68 69 /** 70 * ssh_rqid_reset() - Reset/initialize request ID counter. 71 * @c: The counter to reset. 72 */ 73 static void ssh_rqid_reset(struct ssh_rqid_counter *c) 74 { 75 WRITE_ONCE(c->value, 0); 76 } 77 78 /** 79 * ssh_rqid_next() - Get next request ID. 80 * @c: The counter providing the request IDs. 81 * 82 * Return: Returns the next request ID of the counter, skipping any reserved 83 * request IDs. 84 */ 85 static u16 ssh_rqid_next(struct ssh_rqid_counter *c) 86 { 87 u16 old = READ_ONCE(c->value); 88 u16 new = ssh_rqid_next_valid(old); 89 u16 ret; 90 91 while (unlikely((ret = cmpxchg(&c->value, old, new)) != old)) { 92 old = ret; 93 new = ssh_rqid_next_valid(old); 94 } 95 96 return old; 97 } 98 99 100 /* -- Event notifier/callbacks. --------------------------------------------- */ 101 /* 102 * The notifier system is based on linux/notifier.h, specifically the SRCU 103 * implementation. The difference to that is, that some bits of the notifier 104 * call return value can be tracked across multiple calls. This is done so 105 * that handling of events can be tracked and a warning can be issued in case 106 * an event goes unhandled. The idea of that warning is that it should help 107 * discover and identify new/currently unimplemented features. 108 */ 109 110 /** 111 * ssam_event_matches_notifier() - Test if an event matches a notifier. 112 * @n: The event notifier to test against. 113 * @event: The event to test. 114 * 115 * Return: Returns %true if the given event matches the given notifier 116 * according to the rules set in the notifier's event mask, %false otherwise. 117 */ 118 static bool ssam_event_matches_notifier(const struct ssam_event_notifier *n, 119 const struct ssam_event *event) 120 { 121 bool match = n->event.id.target_category == event->target_category; 122 123 if (n->event.mask & SSAM_EVENT_MASK_TARGET) 124 match &= n->event.reg.target_id == event->target_id; 125 126 if (n->event.mask & SSAM_EVENT_MASK_INSTANCE) 127 match &= n->event.id.instance == event->instance_id; 128 129 return match; 130 } 131 132 /** 133 * ssam_nfblk_call_chain() - Call event notifier callbacks of the given chain. 134 * @nh: The notifier head for which the notifier callbacks should be called. 135 * @event: The event data provided to the callbacks. 136 * 137 * Call all registered notifier callbacks in order of their priority until 138 * either no notifier is left or a notifier returns a value with the 139 * %SSAM_NOTIF_STOP bit set. Note that this bit is automatically set via 140 * ssam_notifier_from_errno() on any non-zero error value. 141 * 142 * Return: Returns the notifier status value, which contains the notifier 143 * status bits (%SSAM_NOTIF_HANDLED and %SSAM_NOTIF_STOP) as well as a 144 * potential error value returned from the last executed notifier callback. 145 * Use ssam_notifier_to_errno() to convert this value to the original error 146 * value. 147 */ 148 static int ssam_nfblk_call_chain(struct ssam_nf_head *nh, struct ssam_event *event) 149 { 150 struct ssam_event_notifier *nf; 151 int ret = 0, idx; 152 153 idx = srcu_read_lock(&nh->srcu); 154 155 list_for_each_entry_rcu(nf, &nh->head, base.node, 156 srcu_read_lock_held(&nh->srcu)) { 157 if (ssam_event_matches_notifier(nf, event)) { 158 ret = (ret & SSAM_NOTIF_STATE_MASK) | nf->base.fn(nf, event); 159 if (ret & SSAM_NOTIF_STOP) 160 break; 161 } 162 } 163 164 srcu_read_unlock(&nh->srcu, idx); 165 return ret; 166 } 167 168 /** 169 * ssam_nfblk_insert() - Insert a new notifier block into the given notifier 170 * list. 171 * @nh: The notifier head into which the block should be inserted. 172 * @nb: The notifier block to add. 173 * 174 * Note: This function must be synchronized by the caller with respect to other 175 * insert, find, and/or remove calls by holding ``struct ssam_nf.lock``. 176 * 177 * Return: Returns zero on success, %-EEXIST if the notifier block has already 178 * been registered. 179 */ 180 static int ssam_nfblk_insert(struct ssam_nf_head *nh, struct ssam_notifier_block *nb) 181 { 182 struct ssam_notifier_block *p; 183 struct list_head *h; 184 185 /* Runs under lock, no need for RCU variant. */ 186 list_for_each(h, &nh->head) { 187 p = list_entry(h, struct ssam_notifier_block, node); 188 189 if (unlikely(p == nb)) { 190 WARN(1, "double register detected"); 191 return -EEXIST; 192 } 193 194 if (nb->priority > p->priority) 195 break; 196 } 197 198 list_add_tail_rcu(&nb->node, h); 199 return 0; 200 } 201 202 /** 203 * ssam_nfblk_find() - Check if a notifier block is registered on the given 204 * notifier head. 205 * list. 206 * @nh: The notifier head on which to search. 207 * @nb: The notifier block to search for. 208 * 209 * Note: This function must be synchronized by the caller with respect to other 210 * insert, find, and/or remove calls by holding ``struct ssam_nf.lock``. 211 * 212 * Return: Returns true if the given notifier block is registered on the given 213 * notifier head, false otherwise. 214 */ 215 static bool ssam_nfblk_find(struct ssam_nf_head *nh, struct ssam_notifier_block *nb) 216 { 217 struct ssam_notifier_block *p; 218 219 /* Runs under lock, no need for RCU variant. */ 220 list_for_each_entry(p, &nh->head, node) { 221 if (p == nb) 222 return true; 223 } 224 225 return false; 226 } 227 228 /** 229 * ssam_nfblk_remove() - Remove a notifier block from its notifier list. 230 * @nb: The notifier block to be removed. 231 * 232 * Note: This function must be synchronized by the caller with respect to 233 * other insert, find, and/or remove calls by holding ``struct ssam_nf.lock``. 234 * Furthermore, the caller _must_ ensure SRCU synchronization by calling 235 * synchronize_srcu() with ``nh->srcu`` after leaving the critical section, to 236 * ensure that the removed notifier block is not in use any more. 237 */ 238 static void ssam_nfblk_remove(struct ssam_notifier_block *nb) 239 { 240 list_del_rcu(&nb->node); 241 } 242 243 /** 244 * ssam_nf_head_init() - Initialize the given notifier head. 245 * @nh: The notifier head to initialize. 246 */ 247 static int ssam_nf_head_init(struct ssam_nf_head *nh) 248 { 249 int status; 250 251 status = init_srcu_struct(&nh->srcu); 252 if (status) 253 return status; 254 255 INIT_LIST_HEAD(&nh->head); 256 return 0; 257 } 258 259 /** 260 * ssam_nf_head_destroy() - Deinitialize the given notifier head. 261 * @nh: The notifier head to deinitialize. 262 */ 263 static void ssam_nf_head_destroy(struct ssam_nf_head *nh) 264 { 265 cleanup_srcu_struct(&nh->srcu); 266 } 267 268 269 /* -- Event/notification registry. ------------------------------------------ */ 270 271 /** 272 * struct ssam_nf_refcount_key - Key used for event activation reference 273 * counting. 274 * @reg: The registry via which the event is enabled/disabled. 275 * @id: The ID uniquely describing the event. 276 */ 277 struct ssam_nf_refcount_key { 278 struct ssam_event_registry reg; 279 struct ssam_event_id id; 280 }; 281 282 /** 283 * struct ssam_nf_refcount_entry - RB-tree entry for reference counting event 284 * activations. 285 * @node: The node of this entry in the rb-tree. 286 * @key: The key of the event. 287 * @refcount: The reference-count of the event. 288 * @flags: The flags used when enabling the event. 289 */ 290 struct ssam_nf_refcount_entry { 291 struct rb_node node; 292 struct ssam_nf_refcount_key key; 293 int refcount; 294 u8 flags; 295 }; 296 297 /** 298 * ssam_nf_refcount_inc() - Increment reference-/activation-count of the given 299 * event. 300 * @nf: The notifier system reference. 301 * @reg: The registry used to enable/disable the event. 302 * @id: The event ID. 303 * 304 * Increments the reference-/activation-count associated with the specified 305 * event type/ID, allocating a new entry for this event ID if necessary. A 306 * newly allocated entry will have a refcount of one. 307 * 308 * Note: ``nf->lock`` must be held when calling this function. 309 * 310 * Return: Returns the refcount entry on success. Returns an error pointer 311 * with %-ENOSPC if there have already been %INT_MAX events of the specified 312 * ID and type registered, or %-ENOMEM if the entry could not be allocated. 313 */ 314 static struct ssam_nf_refcount_entry * 315 ssam_nf_refcount_inc(struct ssam_nf *nf, struct ssam_event_registry reg, 316 struct ssam_event_id id) 317 { 318 struct ssam_nf_refcount_entry *entry; 319 struct ssam_nf_refcount_key key; 320 struct rb_node **link = &nf->refcount.rb_node; 321 struct rb_node *parent = NULL; 322 int cmp; 323 324 lockdep_assert_held(&nf->lock); 325 326 key.reg = reg; 327 key.id = id; 328 329 while (*link) { 330 entry = rb_entry(*link, struct ssam_nf_refcount_entry, node); 331 parent = *link; 332 333 cmp = memcmp(&key, &entry->key, sizeof(key)); 334 if (cmp < 0) { 335 link = &(*link)->rb_left; 336 } else if (cmp > 0) { 337 link = &(*link)->rb_right; 338 } else if (entry->refcount < INT_MAX) { 339 entry->refcount++; 340 return entry; 341 } else { 342 WARN_ON(1); 343 return ERR_PTR(-ENOSPC); 344 } 345 } 346 347 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 348 if (!entry) 349 return ERR_PTR(-ENOMEM); 350 351 entry->key = key; 352 entry->refcount = 1; 353 354 rb_link_node(&entry->node, parent, link); 355 rb_insert_color(&entry->node, &nf->refcount); 356 357 return entry; 358 } 359 360 /** 361 * ssam_nf_refcount_dec() - Decrement reference-/activation-count of the given 362 * event. 363 * @nf: The notifier system reference. 364 * @reg: The registry used to enable/disable the event. 365 * @id: The event ID. 366 * 367 * Decrements the reference-/activation-count of the specified event, 368 * returning its entry. If the returned entry has a refcount of zero, the 369 * caller is responsible for freeing it using kfree(). 370 * 371 * Note: ``nf->lock`` must be held when calling this function. 372 * 373 * Return: Returns the refcount entry on success or %NULL if the entry has not 374 * been found. 375 */ 376 static struct ssam_nf_refcount_entry * 377 ssam_nf_refcount_dec(struct ssam_nf *nf, struct ssam_event_registry reg, 378 struct ssam_event_id id) 379 { 380 struct ssam_nf_refcount_entry *entry; 381 struct ssam_nf_refcount_key key; 382 struct rb_node *node = nf->refcount.rb_node; 383 int cmp; 384 385 lockdep_assert_held(&nf->lock); 386 387 key.reg = reg; 388 key.id = id; 389 390 while (node) { 391 entry = rb_entry(node, struct ssam_nf_refcount_entry, node); 392 393 cmp = memcmp(&key, &entry->key, sizeof(key)); 394 if (cmp < 0) { 395 node = node->rb_left; 396 } else if (cmp > 0) { 397 node = node->rb_right; 398 } else { 399 entry->refcount--; 400 if (entry->refcount == 0) 401 rb_erase(&entry->node, &nf->refcount); 402 403 return entry; 404 } 405 } 406 407 return NULL; 408 } 409 410 /** 411 * ssam_nf_refcount_dec_free() - Decrement reference-/activation-count of the 412 * given event and free its entry if the reference count reaches zero. 413 * @nf: The notifier system reference. 414 * @reg: The registry used to enable/disable the event. 415 * @id: The event ID. 416 * 417 * Decrements the reference-/activation-count of the specified event, freeing 418 * its entry if it reaches zero. 419 * 420 * Note: ``nf->lock`` must be held when calling this function. 421 */ 422 static void ssam_nf_refcount_dec_free(struct ssam_nf *nf, 423 struct ssam_event_registry reg, 424 struct ssam_event_id id) 425 { 426 struct ssam_nf_refcount_entry *entry; 427 428 lockdep_assert_held(&nf->lock); 429 430 entry = ssam_nf_refcount_dec(nf, reg, id); 431 if (entry && entry->refcount == 0) 432 kfree(entry); 433 } 434 435 /** 436 * ssam_nf_refcount_empty() - Test if the notification system has any 437 * enabled/active events. 438 * @nf: The notification system. 439 */ 440 static bool ssam_nf_refcount_empty(struct ssam_nf *nf) 441 { 442 return RB_EMPTY_ROOT(&nf->refcount); 443 } 444 445 /** 446 * ssam_nf_call() - Call notification callbacks for the provided event. 447 * @nf: The notifier system 448 * @dev: The associated device, only used for logging. 449 * @rqid: The request ID of the event. 450 * @event: The event provided to the callbacks. 451 * 452 * Execute registered callbacks in order of their priority until either no 453 * callback is left or a callback returns a value with the %SSAM_NOTIF_STOP 454 * bit set. Note that this bit is set automatically when converting non-zero 455 * error values via ssam_notifier_from_errno() to notifier values. 456 * 457 * Also note that any callback that could handle an event should return a value 458 * with bit %SSAM_NOTIF_HANDLED set, indicating that the event does not go 459 * unhandled/ignored. In case no registered callback could handle an event, 460 * this function will emit a warning. 461 * 462 * In case a callback failed, this function will emit an error message. 463 */ 464 static void ssam_nf_call(struct ssam_nf *nf, struct device *dev, u16 rqid, 465 struct ssam_event *event) 466 { 467 struct ssam_nf_head *nf_head; 468 int status, nf_ret; 469 470 if (!ssh_rqid_is_event(rqid)) { 471 dev_warn(dev, "event: unsupported rqid: %#06x\n", rqid); 472 return; 473 } 474 475 nf_head = &nf->head[ssh_rqid_to_event(rqid)]; 476 nf_ret = ssam_nfblk_call_chain(nf_head, event); 477 status = ssam_notifier_to_errno(nf_ret); 478 479 if (status < 0) { 480 dev_err(dev, 481 "event: error handling event: %d (tc: %#04x, tid: %#04x, cid: %#04x, iid: %#04x)\n", 482 status, event->target_category, event->target_id, 483 event->command_id, event->instance_id); 484 } else if (!(nf_ret & SSAM_NOTIF_HANDLED)) { 485 dev_warn(dev, 486 "event: unhandled event (rqid: %#04x, tc: %#04x, tid: %#04x, cid: %#04x, iid: %#04x)\n", 487 rqid, event->target_category, event->target_id, 488 event->command_id, event->instance_id); 489 } 490 } 491 492 /** 493 * ssam_nf_init() - Initialize the notifier system. 494 * @nf: The notifier system to initialize. 495 */ 496 static int ssam_nf_init(struct ssam_nf *nf) 497 { 498 int i, status; 499 500 for (i = 0; i < SSH_NUM_EVENTS; i++) { 501 status = ssam_nf_head_init(&nf->head[i]); 502 if (status) 503 break; 504 } 505 506 if (status) { 507 while (i--) 508 ssam_nf_head_destroy(&nf->head[i]); 509 510 return status; 511 } 512 513 mutex_init(&nf->lock); 514 return 0; 515 } 516 517 /** 518 * ssam_nf_destroy() - Deinitialize the notifier system. 519 * @nf: The notifier system to deinitialize. 520 */ 521 static void ssam_nf_destroy(struct ssam_nf *nf) 522 { 523 int i; 524 525 for (i = 0; i < SSH_NUM_EVENTS; i++) 526 ssam_nf_head_destroy(&nf->head[i]); 527 528 mutex_destroy(&nf->lock); 529 } 530 531 532 /* -- Event/async request completion system. -------------------------------- */ 533 534 #define SSAM_CPLT_WQ_NAME "ssam_cpltq" 535 536 /* 537 * SSAM_CPLT_WQ_BATCH - Maximum number of event item completions executed per 538 * work execution. Used to prevent livelocking of the workqueue. Value chosen 539 * via educated guess, may be adjusted. 540 */ 541 #define SSAM_CPLT_WQ_BATCH 10 542 543 /* 544 * SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN - Maximum payload length for a cached 545 * &struct ssam_event_item. 546 * 547 * This length has been chosen to be accommodate standard touchpad and 548 * keyboard input events. Events with larger payloads will be allocated 549 * separately. 550 */ 551 #define SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN 32 552 553 static struct kmem_cache *ssam_event_item_cache; 554 555 /** 556 * ssam_event_item_cache_init() - Initialize the event item cache. 557 */ 558 int ssam_event_item_cache_init(void) 559 { 560 const unsigned int size = sizeof(struct ssam_event_item) 561 + SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN; 562 const unsigned int align = __alignof__(struct ssam_event_item); 563 struct kmem_cache *cache; 564 565 cache = kmem_cache_create("ssam_event_item", size, align, 0, NULL); 566 if (!cache) 567 return -ENOMEM; 568 569 ssam_event_item_cache = cache; 570 return 0; 571 } 572 573 /** 574 * ssam_event_item_cache_destroy() - Deinitialize the event item cache. 575 */ 576 void ssam_event_item_cache_destroy(void) 577 { 578 kmem_cache_destroy(ssam_event_item_cache); 579 ssam_event_item_cache = NULL; 580 } 581 582 static void __ssam_event_item_free_cached(struct ssam_event_item *item) 583 { 584 kmem_cache_free(ssam_event_item_cache, item); 585 } 586 587 static void __ssam_event_item_free_generic(struct ssam_event_item *item) 588 { 589 kfree(item); 590 } 591 592 /** 593 * ssam_event_item_free() - Free the provided event item. 594 * @item: The event item to free. 595 */ 596 static void ssam_event_item_free(struct ssam_event_item *item) 597 { 598 trace_ssam_event_item_free(item); 599 item->ops.free(item); 600 } 601 602 /** 603 * ssam_event_item_alloc() - Allocate an event item with the given payload size. 604 * @len: The event payload length. 605 * @flags: The flags used for allocation. 606 * 607 * Allocate an event item with the given payload size, preferring allocation 608 * from the event item cache if the payload is small enough (i.e. smaller than 609 * %SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN). Sets the item operations and payload 610 * length values. The item free callback (``ops.free``) should not be 611 * overwritten after this call. 612 * 613 * Return: Returns the newly allocated event item. 614 */ 615 static struct ssam_event_item *ssam_event_item_alloc(size_t len, gfp_t flags) 616 { 617 struct ssam_event_item *item; 618 619 if (len <= SSAM_EVENT_ITEM_CACHE_PAYLOAD_LEN) { 620 item = kmem_cache_alloc(ssam_event_item_cache, flags); 621 if (!item) 622 return NULL; 623 624 item->ops.free = __ssam_event_item_free_cached; 625 } else { 626 item = kzalloc(struct_size(item, event.data, len), flags); 627 if (!item) 628 return NULL; 629 630 item->ops.free = __ssam_event_item_free_generic; 631 } 632 633 item->event.length = len; 634 635 trace_ssam_event_item_alloc(item, len); 636 return item; 637 } 638 639 /** 640 * ssam_event_queue_push() - Push an event item to the event queue. 641 * @q: The event queue. 642 * @item: The item to add. 643 */ 644 static void ssam_event_queue_push(struct ssam_event_queue *q, 645 struct ssam_event_item *item) 646 { 647 spin_lock(&q->lock); 648 list_add_tail(&item->node, &q->head); 649 spin_unlock(&q->lock); 650 } 651 652 /** 653 * ssam_event_queue_pop() - Pop the next event item from the event queue. 654 * @q: The event queue. 655 * 656 * Returns and removes the next event item from the queue. Returns %NULL If 657 * there is no event item left. 658 */ 659 static struct ssam_event_item *ssam_event_queue_pop(struct ssam_event_queue *q) 660 { 661 struct ssam_event_item *item; 662 663 spin_lock(&q->lock); 664 item = list_first_entry_or_null(&q->head, struct ssam_event_item, node); 665 if (item) 666 list_del(&item->node); 667 spin_unlock(&q->lock); 668 669 return item; 670 } 671 672 /** 673 * ssam_event_queue_is_empty() - Check if the event queue is empty. 674 * @q: The event queue. 675 */ 676 static bool ssam_event_queue_is_empty(struct ssam_event_queue *q) 677 { 678 bool empty; 679 680 spin_lock(&q->lock); 681 empty = list_empty(&q->head); 682 spin_unlock(&q->lock); 683 684 return empty; 685 } 686 687 /** 688 * ssam_cplt_get_event_queue() - Get the event queue for the given parameters. 689 * @cplt: The completion system on which to look for the queue. 690 * @tid: The target ID of the queue. 691 * @rqid: The request ID representing the event ID for which to get the queue. 692 * 693 * Return: Returns the event queue corresponding to the event type described 694 * by the given parameters. If the request ID does not represent an event, 695 * this function returns %NULL. If the target ID is not supported, this 696 * function will fall back to the default target ID (``tid = 1``). 697 */ 698 static 699 struct ssam_event_queue *ssam_cplt_get_event_queue(struct ssam_cplt *cplt, 700 u8 tid, u16 rqid) 701 { 702 u16 event = ssh_rqid_to_event(rqid); 703 u16 tidx = ssh_tid_to_index(tid); 704 705 if (!ssh_rqid_is_event(rqid)) { 706 dev_err(cplt->dev, "event: unsupported request ID: %#06x\n", rqid); 707 return NULL; 708 } 709 710 if (!ssh_tid_is_valid(tid)) { 711 dev_warn(cplt->dev, "event: unsupported target ID: %u\n", tid); 712 tidx = 0; 713 } 714 715 return &cplt->event.target[tidx].queue[event]; 716 } 717 718 /** 719 * ssam_cplt_submit() - Submit a work item to the completion system workqueue. 720 * @cplt: The completion system. 721 * @work: The work item to submit. 722 */ 723 static bool ssam_cplt_submit(struct ssam_cplt *cplt, struct work_struct *work) 724 { 725 return queue_work(cplt->wq, work); 726 } 727 728 /** 729 * ssam_cplt_submit_event() - Submit an event to the completion system. 730 * @cplt: The completion system. 731 * @item: The event item to submit. 732 * 733 * Submits the event to the completion system by queuing it on the event item 734 * queue and queuing the respective event queue work item on the completion 735 * workqueue, which will eventually complete the event. 736 * 737 * Return: Returns zero on success, %-EINVAL if there is no event queue that 738 * can handle the given event item. 739 */ 740 static int ssam_cplt_submit_event(struct ssam_cplt *cplt, 741 struct ssam_event_item *item) 742 { 743 struct ssam_event_queue *evq; 744 745 evq = ssam_cplt_get_event_queue(cplt, item->event.target_id, item->rqid); 746 if (!evq) 747 return -EINVAL; 748 749 ssam_event_queue_push(evq, item); 750 ssam_cplt_submit(cplt, &evq->work); 751 return 0; 752 } 753 754 /** 755 * ssam_cplt_flush() - Flush the completion system. 756 * @cplt: The completion system. 757 * 758 * Flush the completion system by waiting until all currently submitted work 759 * items have been completed. 760 * 761 * Note: This function does not guarantee that all events will have been 762 * handled once this call terminates. In case of a larger number of 763 * to-be-completed events, the event queue work function may re-schedule its 764 * work item, which this flush operation will ignore. 765 * 766 * This operation is only intended to, during normal operation prior to 767 * shutdown, try to complete most events and requests to get them out of the 768 * system while the system is still fully operational. It does not aim to 769 * provide any guarantee that all of them have been handled. 770 */ 771 static void ssam_cplt_flush(struct ssam_cplt *cplt) 772 { 773 flush_workqueue(cplt->wq); 774 } 775 776 static void ssam_event_queue_work_fn(struct work_struct *work) 777 { 778 struct ssam_event_queue *queue; 779 struct ssam_event_item *item; 780 struct ssam_nf *nf; 781 struct device *dev; 782 unsigned int iterations = SSAM_CPLT_WQ_BATCH; 783 784 queue = container_of(work, struct ssam_event_queue, work); 785 nf = &queue->cplt->event.notif; 786 dev = queue->cplt->dev; 787 788 /* Limit number of processed events to avoid livelocking. */ 789 do { 790 item = ssam_event_queue_pop(queue); 791 if (!item) 792 return; 793 794 ssam_nf_call(nf, dev, item->rqid, &item->event); 795 ssam_event_item_free(item); 796 } while (--iterations); 797 798 if (!ssam_event_queue_is_empty(queue)) 799 ssam_cplt_submit(queue->cplt, &queue->work); 800 } 801 802 /** 803 * ssam_event_queue_init() - Initialize an event queue. 804 * @cplt: The completion system on which the queue resides. 805 * @evq: The event queue to initialize. 806 */ 807 static void ssam_event_queue_init(struct ssam_cplt *cplt, 808 struct ssam_event_queue *evq) 809 { 810 evq->cplt = cplt; 811 spin_lock_init(&evq->lock); 812 INIT_LIST_HEAD(&evq->head); 813 INIT_WORK(&evq->work, ssam_event_queue_work_fn); 814 } 815 816 /** 817 * ssam_cplt_init() - Initialize completion system. 818 * @cplt: The completion system to initialize. 819 * @dev: The device used for logging. 820 */ 821 static int ssam_cplt_init(struct ssam_cplt *cplt, struct device *dev) 822 { 823 struct ssam_event_target *target; 824 int status, c, i; 825 826 cplt->dev = dev; 827 828 cplt->wq = alloc_workqueue(SSAM_CPLT_WQ_NAME, WQ_UNBOUND | WQ_MEM_RECLAIM, 0); 829 if (!cplt->wq) 830 return -ENOMEM; 831 832 for (c = 0; c < ARRAY_SIZE(cplt->event.target); c++) { 833 target = &cplt->event.target[c]; 834 835 for (i = 0; i < ARRAY_SIZE(target->queue); i++) 836 ssam_event_queue_init(cplt, &target->queue[i]); 837 } 838 839 status = ssam_nf_init(&cplt->event.notif); 840 if (status) 841 destroy_workqueue(cplt->wq); 842 843 return status; 844 } 845 846 /** 847 * ssam_cplt_destroy() - Deinitialize the completion system. 848 * @cplt: The completion system to deinitialize. 849 * 850 * Deinitialize the given completion system and ensure that all pending, i.e. 851 * yet-to-be-completed, event items and requests have been handled. 852 */ 853 static void ssam_cplt_destroy(struct ssam_cplt *cplt) 854 { 855 /* 856 * Note: destroy_workqueue ensures that all currently queued work will 857 * be fully completed and the workqueue drained. This means that this 858 * call will inherently also free any queued ssam_event_items, thus we 859 * don't have to take care of that here explicitly. 860 */ 861 destroy_workqueue(cplt->wq); 862 ssam_nf_destroy(&cplt->event.notif); 863 } 864 865 866 /* -- Main SSAM device structures. ------------------------------------------ */ 867 868 /** 869 * ssam_controller_device() - Get the &struct device associated with this 870 * controller. 871 * @c: The controller for which to get the device. 872 * 873 * Return: Returns the &struct device associated with this controller, 874 * providing its lower-level transport. 875 */ 876 struct device *ssam_controller_device(struct ssam_controller *c) 877 { 878 return ssh_rtl_get_device(&c->rtl); 879 } 880 EXPORT_SYMBOL_GPL(ssam_controller_device); 881 882 static void __ssam_controller_release(struct kref *kref) 883 { 884 struct ssam_controller *ctrl = to_ssam_controller(kref, kref); 885 886 /* 887 * The lock-call here is to satisfy lockdep. At this point we really 888 * expect this to be the last remaining reference to the controller. 889 * Anything else is a bug. 890 */ 891 ssam_controller_lock(ctrl); 892 ssam_controller_destroy(ctrl); 893 ssam_controller_unlock(ctrl); 894 895 kfree(ctrl); 896 } 897 898 /** 899 * ssam_controller_get() - Increment reference count of controller. 900 * @c: The controller. 901 * 902 * Return: Returns the controller provided as input. 903 */ 904 struct ssam_controller *ssam_controller_get(struct ssam_controller *c) 905 { 906 if (c) 907 kref_get(&c->kref); 908 return c; 909 } 910 EXPORT_SYMBOL_GPL(ssam_controller_get); 911 912 /** 913 * ssam_controller_put() - Decrement reference count of controller. 914 * @c: The controller. 915 */ 916 void ssam_controller_put(struct ssam_controller *c) 917 { 918 if (c) 919 kref_put(&c->kref, __ssam_controller_release); 920 } 921 EXPORT_SYMBOL_GPL(ssam_controller_put); 922 923 /** 924 * ssam_controller_statelock() - Lock the controller against state transitions. 925 * @c: The controller to lock. 926 * 927 * Lock the controller against state transitions. Holding this lock guarantees 928 * that the controller will not transition between states, i.e. if the 929 * controller is in state "started", when this lock has been acquired, it will 930 * remain in this state at least until the lock has been released. 931 * 932 * Multiple clients may concurrently hold this lock. In other words: The 933 * ``statelock`` functions represent the read-lock part of a r/w-semaphore. 934 * Actions causing state transitions of the controller must be executed while 935 * holding the write-part of this r/w-semaphore (see ssam_controller_lock() 936 * and ssam_controller_unlock() for that). 937 * 938 * See ssam_controller_stateunlock() for the corresponding unlock function. 939 */ 940 void ssam_controller_statelock(struct ssam_controller *c) 941 { 942 down_read(&c->lock); 943 } 944 EXPORT_SYMBOL_GPL(ssam_controller_statelock); 945 946 /** 947 * ssam_controller_stateunlock() - Unlock controller state transitions. 948 * @c: The controller to unlock. 949 * 950 * See ssam_controller_statelock() for the corresponding lock function. 951 */ 952 void ssam_controller_stateunlock(struct ssam_controller *c) 953 { 954 up_read(&c->lock); 955 } 956 EXPORT_SYMBOL_GPL(ssam_controller_stateunlock); 957 958 /** 959 * ssam_controller_lock() - Acquire the main controller lock. 960 * @c: The controller to lock. 961 * 962 * This lock must be held for any state transitions, including transition to 963 * suspend/resumed states and during shutdown. See ssam_controller_statelock() 964 * for more details on controller locking. 965 * 966 * See ssam_controller_unlock() for the corresponding unlock function. 967 */ 968 void ssam_controller_lock(struct ssam_controller *c) 969 { 970 down_write(&c->lock); 971 } 972 973 /* 974 * ssam_controller_unlock() - Release the main controller lock. 975 * @c: The controller to unlock. 976 * 977 * See ssam_controller_lock() for the corresponding lock function. 978 */ 979 void ssam_controller_unlock(struct ssam_controller *c) 980 { 981 up_write(&c->lock); 982 } 983 984 static void ssam_handle_event(struct ssh_rtl *rtl, 985 const struct ssh_command *cmd, 986 const struct ssam_span *data) 987 { 988 struct ssam_controller *ctrl = to_ssam_controller(rtl, rtl); 989 struct ssam_event_item *item; 990 991 item = ssam_event_item_alloc(data->len, GFP_KERNEL); 992 if (!item) 993 return; 994 995 item->rqid = get_unaligned_le16(&cmd->rqid); 996 item->event.target_category = cmd->tc; 997 item->event.target_id = cmd->sid; 998 item->event.command_id = cmd->cid; 999 item->event.instance_id = cmd->iid; 1000 memcpy(&item->event.data[0], data->ptr, data->len); 1001 1002 if (WARN_ON(ssam_cplt_submit_event(&ctrl->cplt, item))) 1003 ssam_event_item_free(item); 1004 } 1005 1006 static const struct ssh_rtl_ops ssam_rtl_ops = { 1007 .handle_event = ssam_handle_event, 1008 }; 1009 1010 static bool ssam_notifier_is_empty(struct ssam_controller *ctrl); 1011 static void ssam_notifier_unregister_all(struct ssam_controller *ctrl); 1012 1013 #define SSAM_SSH_DSM_REVISION 0 1014 1015 /* d5e383e1-d892-4a76-89fc-f6aaae7ed5b5 */ 1016 static const guid_t SSAM_SSH_DSM_GUID = 1017 GUID_INIT(0xd5e383e1, 0xd892, 0x4a76, 1018 0x89, 0xfc, 0xf6, 0xaa, 0xae, 0x7e, 0xd5, 0xb5); 1019 1020 enum ssh_dsm_fn { 1021 SSH_DSM_FN_SSH_POWER_PROFILE = 0x05, 1022 SSH_DSM_FN_SCREEN_ON_SLEEP_IDLE_TIMEOUT = 0x06, 1023 SSH_DSM_FN_SCREEN_OFF_SLEEP_IDLE_TIMEOUT = 0x07, 1024 SSH_DSM_FN_D3_CLOSES_HANDLE = 0x08, 1025 SSH_DSM_FN_SSH_BUFFER_SIZE = 0x09, 1026 }; 1027 1028 static int ssam_dsm_get_functions(acpi_handle handle, u64 *funcs) 1029 { 1030 union acpi_object *obj; 1031 u64 mask = 0; 1032 int i; 1033 1034 *funcs = 0; 1035 1036 /* 1037 * The _DSM function is only present on newer models. It is not 1038 * present on 5th and 6th generation devices (i.e. up to and including 1039 * Surface Pro 6, Surface Laptop 2, Surface Book 2). 1040 * 1041 * If the _DSM is not present, indicate that no function is supported. 1042 * This will result in default values being set. 1043 */ 1044 if (!acpi_has_method(handle, "_DSM")) 1045 return 0; 1046 1047 obj = acpi_evaluate_dsm_typed(handle, &SSAM_SSH_DSM_GUID, 1048 SSAM_SSH_DSM_REVISION, 0, NULL, 1049 ACPI_TYPE_BUFFER); 1050 if (!obj) 1051 return -EIO; 1052 1053 for (i = 0; i < obj->buffer.length && i < 8; i++) 1054 mask |= (((u64)obj->buffer.pointer[i]) << (i * 8)); 1055 1056 if (mask & BIT(0)) 1057 *funcs = mask; 1058 1059 ACPI_FREE(obj); 1060 return 0; 1061 } 1062 1063 static int ssam_dsm_load_u32(acpi_handle handle, u64 funcs, u64 func, u32 *ret) 1064 { 1065 union acpi_object *obj; 1066 u64 val; 1067 1068 if (!(funcs & BIT_ULL(func))) 1069 return 0; /* Not supported, leave *ret at its default value */ 1070 1071 obj = acpi_evaluate_dsm_typed(handle, &SSAM_SSH_DSM_GUID, 1072 SSAM_SSH_DSM_REVISION, func, NULL, 1073 ACPI_TYPE_INTEGER); 1074 if (!obj) 1075 return -EIO; 1076 1077 val = obj->integer.value; 1078 ACPI_FREE(obj); 1079 1080 if (val > U32_MAX) 1081 return -ERANGE; 1082 1083 *ret = val; 1084 return 0; 1085 } 1086 1087 /** 1088 * ssam_controller_caps_load_from_acpi() - Load controller capabilities from 1089 * ACPI _DSM. 1090 * @handle: The handle of the ACPI controller/SSH device. 1091 * @caps: Where to store the capabilities in. 1092 * 1093 * Initializes the given controller capabilities with default values, then 1094 * checks and, if the respective _DSM functions are available, loads the 1095 * actual capabilities from the _DSM. 1096 * 1097 * Return: Returns zero on success, a negative error code on failure. 1098 */ 1099 static 1100 int ssam_controller_caps_load_from_acpi(acpi_handle handle, 1101 struct ssam_controller_caps *caps) 1102 { 1103 u32 d3_closes_handle = false; 1104 u64 funcs; 1105 int status; 1106 1107 /* Set defaults. */ 1108 caps->ssh_power_profile = U32_MAX; 1109 caps->screen_on_sleep_idle_timeout = U32_MAX; 1110 caps->screen_off_sleep_idle_timeout = U32_MAX; 1111 caps->d3_closes_handle = false; 1112 caps->ssh_buffer_size = U32_MAX; 1113 1114 /* Pre-load supported DSM functions. */ 1115 status = ssam_dsm_get_functions(handle, &funcs); 1116 if (status) 1117 return status; 1118 1119 /* Load actual values from ACPI, if present. */ 1120 status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_SSH_POWER_PROFILE, 1121 &caps->ssh_power_profile); 1122 if (status) 1123 return status; 1124 1125 status = ssam_dsm_load_u32(handle, funcs, 1126 SSH_DSM_FN_SCREEN_ON_SLEEP_IDLE_TIMEOUT, 1127 &caps->screen_on_sleep_idle_timeout); 1128 if (status) 1129 return status; 1130 1131 status = ssam_dsm_load_u32(handle, funcs, 1132 SSH_DSM_FN_SCREEN_OFF_SLEEP_IDLE_TIMEOUT, 1133 &caps->screen_off_sleep_idle_timeout); 1134 if (status) 1135 return status; 1136 1137 status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_D3_CLOSES_HANDLE, 1138 &d3_closes_handle); 1139 if (status) 1140 return status; 1141 1142 caps->d3_closes_handle = !!d3_closes_handle; 1143 1144 status = ssam_dsm_load_u32(handle, funcs, SSH_DSM_FN_SSH_BUFFER_SIZE, 1145 &caps->ssh_buffer_size); 1146 if (status) 1147 return status; 1148 1149 return 0; 1150 } 1151 1152 /** 1153 * ssam_controller_init() - Initialize SSAM controller. 1154 * @ctrl: The controller to initialize. 1155 * @serdev: The serial device representing the underlying data transport. 1156 * 1157 * Initializes the given controller. Does neither start receiver nor 1158 * transmitter threads. After this call, the controller has to be hooked up to 1159 * the serdev core separately via &struct serdev_device_ops, relaying calls to 1160 * ssam_controller_receive_buf() and ssam_controller_write_wakeup(). Once the 1161 * controller has been hooked up, transmitter and receiver threads may be 1162 * started via ssam_controller_start(). These setup steps need to be completed 1163 * before controller can be used for requests. 1164 */ 1165 int ssam_controller_init(struct ssam_controller *ctrl, 1166 struct serdev_device *serdev) 1167 { 1168 acpi_handle handle = ACPI_HANDLE(&serdev->dev); 1169 int status; 1170 1171 init_rwsem(&ctrl->lock); 1172 kref_init(&ctrl->kref); 1173 1174 status = ssam_controller_caps_load_from_acpi(handle, &ctrl->caps); 1175 if (status) 1176 return status; 1177 1178 dev_dbg(&serdev->dev, 1179 "device capabilities:\n" 1180 " ssh_power_profile: %u\n" 1181 " ssh_buffer_size: %u\n" 1182 " screen_on_sleep_idle_timeout: %u\n" 1183 " screen_off_sleep_idle_timeout: %u\n" 1184 " d3_closes_handle: %u\n", 1185 ctrl->caps.ssh_power_profile, 1186 ctrl->caps.ssh_buffer_size, 1187 ctrl->caps.screen_on_sleep_idle_timeout, 1188 ctrl->caps.screen_off_sleep_idle_timeout, 1189 ctrl->caps.d3_closes_handle); 1190 1191 ssh_seq_reset(&ctrl->counter.seq); 1192 ssh_rqid_reset(&ctrl->counter.rqid); 1193 1194 /* Initialize event/request completion system. */ 1195 status = ssam_cplt_init(&ctrl->cplt, &serdev->dev); 1196 if (status) 1197 return status; 1198 1199 /* Initialize request and packet transport layers. */ 1200 status = ssh_rtl_init(&ctrl->rtl, serdev, &ssam_rtl_ops); 1201 if (status) { 1202 ssam_cplt_destroy(&ctrl->cplt); 1203 return status; 1204 } 1205 1206 /* 1207 * Set state via write_once even though we expect to be in an 1208 * exclusive context, due to smoke-testing in 1209 * ssam_request_sync_submit(). 1210 */ 1211 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_INITIALIZED); 1212 return 0; 1213 } 1214 1215 /** 1216 * ssam_controller_start() - Start the receiver and transmitter threads of the 1217 * controller. 1218 * @ctrl: The controller. 1219 * 1220 * Note: When this function is called, the controller should be properly 1221 * hooked up to the serdev core via &struct serdev_device_ops. Please refer 1222 * to ssam_controller_init() for more details on controller initialization. 1223 * 1224 * This function must be called with the main controller lock held (i.e. by 1225 * calling ssam_controller_lock()). 1226 */ 1227 int ssam_controller_start(struct ssam_controller *ctrl) 1228 { 1229 int status; 1230 1231 lockdep_assert_held_write(&ctrl->lock); 1232 1233 if (ctrl->state != SSAM_CONTROLLER_INITIALIZED) 1234 return -EINVAL; 1235 1236 status = ssh_rtl_start(&ctrl->rtl); 1237 if (status) 1238 return status; 1239 1240 /* 1241 * Set state via write_once even though we expect to be locked/in an 1242 * exclusive context, due to smoke-testing in 1243 * ssam_request_sync_submit(). 1244 */ 1245 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STARTED); 1246 return 0; 1247 } 1248 1249 /* 1250 * SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT - Timeout for flushing requests during 1251 * shutdown. 1252 * 1253 * Chosen to be larger than one full request timeout, including packets timing 1254 * out. This value should give ample time to complete any outstanding requests 1255 * during normal operation and account for the odd package timeout. 1256 */ 1257 #define SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT msecs_to_jiffies(5000) 1258 1259 /** 1260 * ssam_controller_shutdown() - Shut down the controller. 1261 * @ctrl: The controller. 1262 * 1263 * Shuts down the controller by flushing all pending requests and stopping the 1264 * transmitter and receiver threads. All requests submitted after this call 1265 * will fail with %-ESHUTDOWN. While it is discouraged to do so, this function 1266 * is safe to use in parallel with ongoing request submission. 1267 * 1268 * In the course of this shutdown procedure, all currently registered 1269 * notifiers will be unregistered. It is, however, strongly recommended to not 1270 * rely on this behavior, and instead the party registering the notifier 1271 * should unregister it before the controller gets shut down, e.g. via the 1272 * SSAM bus which guarantees client devices to be removed before a shutdown. 1273 * 1274 * Note that events may still be pending after this call, but, due to the 1275 * notifiers being unregistered, these events will be dropped when the 1276 * controller is subsequently destroyed via ssam_controller_destroy(). 1277 * 1278 * This function must be called with the main controller lock held (i.e. by 1279 * calling ssam_controller_lock()). 1280 */ 1281 void ssam_controller_shutdown(struct ssam_controller *ctrl) 1282 { 1283 enum ssam_controller_state s = ctrl->state; 1284 int status; 1285 1286 lockdep_assert_held_write(&ctrl->lock); 1287 1288 if (s == SSAM_CONTROLLER_UNINITIALIZED || s == SSAM_CONTROLLER_STOPPED) 1289 return; 1290 1291 /* 1292 * Try to flush pending events and requests while everything still 1293 * works. Note: There may still be packets and/or requests in the 1294 * system after this call (e.g. via control packets submitted by the 1295 * packet transport layer or flush timeout / failure, ...). Those will 1296 * be handled with the ssh_rtl_shutdown() call below. 1297 */ 1298 status = ssh_rtl_flush(&ctrl->rtl, SSAM_CTRL_SHUTDOWN_FLUSH_TIMEOUT); 1299 if (status) { 1300 ssam_err(ctrl, "failed to flush request transport layer: %d\n", 1301 status); 1302 } 1303 1304 /* Try to flush all currently completing requests and events. */ 1305 ssam_cplt_flush(&ctrl->cplt); 1306 1307 /* 1308 * We expect all notifiers to have been removed by the respective client 1309 * driver that set them up at this point. If this warning occurs, some 1310 * client driver has not done that... 1311 */ 1312 WARN_ON(!ssam_notifier_is_empty(ctrl)); 1313 1314 /* 1315 * Nevertheless, we should still take care of drivers that don't behave 1316 * well. Thus disable all enabled events, unregister all notifiers. 1317 */ 1318 ssam_notifier_unregister_all(ctrl); 1319 1320 /* 1321 * Cancel remaining requests. Ensure no new ones can be queued and stop 1322 * threads. 1323 */ 1324 ssh_rtl_shutdown(&ctrl->rtl); 1325 1326 /* 1327 * Set state via write_once even though we expect to be locked/in an 1328 * exclusive context, due to smoke-testing in 1329 * ssam_request_sync_submit(). 1330 */ 1331 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STOPPED); 1332 ctrl->rtl.ptl.serdev = NULL; 1333 } 1334 1335 /** 1336 * ssam_controller_destroy() - Destroy the controller and free its resources. 1337 * @ctrl: The controller. 1338 * 1339 * Ensures that all resources associated with the controller get freed. This 1340 * function should only be called after the controller has been stopped via 1341 * ssam_controller_shutdown(). In general, this function should not be called 1342 * directly. The only valid place to call this function directly is during 1343 * initialization, before the controller has been fully initialized and passed 1344 * to other processes. This function is called automatically when the 1345 * reference count of the controller reaches zero. 1346 * 1347 * This function must be called with the main controller lock held (i.e. by 1348 * calling ssam_controller_lock()). 1349 */ 1350 void ssam_controller_destroy(struct ssam_controller *ctrl) 1351 { 1352 lockdep_assert_held_write(&ctrl->lock); 1353 1354 if (ctrl->state == SSAM_CONTROLLER_UNINITIALIZED) 1355 return; 1356 1357 WARN_ON(ctrl->state != SSAM_CONTROLLER_STOPPED); 1358 1359 /* 1360 * Note: New events could still have been received after the previous 1361 * flush in ssam_controller_shutdown, before the request transport layer 1362 * has been shut down. At this point, after the shutdown, we can be sure 1363 * that no new events will be queued. The call to ssam_cplt_destroy will 1364 * ensure that those remaining are being completed and freed. 1365 */ 1366 1367 /* Actually free resources. */ 1368 ssam_cplt_destroy(&ctrl->cplt); 1369 ssh_rtl_destroy(&ctrl->rtl); 1370 1371 /* 1372 * Set state via write_once even though we expect to be locked/in an 1373 * exclusive context, due to smoke-testing in 1374 * ssam_request_sync_submit(). 1375 */ 1376 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_UNINITIALIZED); 1377 } 1378 1379 /** 1380 * ssam_controller_suspend() - Suspend the controller. 1381 * @ctrl: The controller to suspend. 1382 * 1383 * Marks the controller as suspended. Note that display-off and D0-exit 1384 * notifications have to be sent manually before transitioning the controller 1385 * into the suspended state via this function. 1386 * 1387 * See ssam_controller_resume() for the corresponding resume function. 1388 * 1389 * Return: Returns %-EINVAL if the controller is currently not in the 1390 * "started" state. 1391 */ 1392 int ssam_controller_suspend(struct ssam_controller *ctrl) 1393 { 1394 ssam_controller_lock(ctrl); 1395 1396 if (ctrl->state != SSAM_CONTROLLER_STARTED) { 1397 ssam_controller_unlock(ctrl); 1398 return -EINVAL; 1399 } 1400 1401 ssam_dbg(ctrl, "pm: suspending controller\n"); 1402 1403 /* 1404 * Set state via write_once even though we're locked, due to 1405 * smoke-testing in ssam_request_sync_submit(). 1406 */ 1407 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_SUSPENDED); 1408 1409 ssam_controller_unlock(ctrl); 1410 return 0; 1411 } 1412 1413 /** 1414 * ssam_controller_resume() - Resume the controller from suspend. 1415 * @ctrl: The controller to resume. 1416 * 1417 * Resume the controller from the suspended state it was put into via 1418 * ssam_controller_suspend(). This function does not issue display-on and 1419 * D0-entry notifications. If required, those have to be sent manually after 1420 * this call. 1421 * 1422 * Return: Returns %-EINVAL if the controller is currently not suspended. 1423 */ 1424 int ssam_controller_resume(struct ssam_controller *ctrl) 1425 { 1426 ssam_controller_lock(ctrl); 1427 1428 if (ctrl->state != SSAM_CONTROLLER_SUSPENDED) { 1429 ssam_controller_unlock(ctrl); 1430 return -EINVAL; 1431 } 1432 1433 ssam_dbg(ctrl, "pm: resuming controller\n"); 1434 1435 /* 1436 * Set state via write_once even though we're locked, due to 1437 * smoke-testing in ssam_request_sync_submit(). 1438 */ 1439 WRITE_ONCE(ctrl->state, SSAM_CONTROLLER_STARTED); 1440 1441 ssam_controller_unlock(ctrl); 1442 return 0; 1443 } 1444 1445 1446 /* -- Top-level request interface ------------------------------------------- */ 1447 1448 /** 1449 * ssam_request_write_data() - Construct and write SAM request message to 1450 * buffer. 1451 * @buf: The buffer to write the data to. 1452 * @ctrl: The controller via which the request will be sent. 1453 * @spec: The request data and specification. 1454 * 1455 * Constructs a SAM/SSH request message and writes it to the provided buffer. 1456 * The request and transport counters, specifically RQID and SEQ, will be set 1457 * in this call. These counters are obtained from the controller. It is thus 1458 * only valid to send the resulting message via the controller specified here. 1459 * 1460 * For calculation of the required buffer size, refer to the 1461 * SSH_COMMAND_MESSAGE_LENGTH() macro. 1462 * 1463 * Return: Returns the number of bytes used in the buffer on success. Returns 1464 * %-EINVAL if the payload length provided in the request specification is too 1465 * large (larger than %SSH_COMMAND_MAX_PAYLOAD_SIZE) or if the provided buffer 1466 * is too small. 1467 */ 1468 ssize_t ssam_request_write_data(struct ssam_span *buf, 1469 struct ssam_controller *ctrl, 1470 const struct ssam_request *spec) 1471 { 1472 struct msgbuf msgb; 1473 u16 rqid; 1474 u8 seq; 1475 1476 if (spec->length > SSH_COMMAND_MAX_PAYLOAD_SIZE) 1477 return -EINVAL; 1478 1479 if (SSH_COMMAND_MESSAGE_LENGTH(spec->length) > buf->len) 1480 return -EINVAL; 1481 1482 msgb_init(&msgb, buf->ptr, buf->len); 1483 seq = ssh_seq_next(&ctrl->counter.seq); 1484 rqid = ssh_rqid_next(&ctrl->counter.rqid); 1485 msgb_push_cmd(&msgb, seq, rqid, spec); 1486 1487 return msgb_bytes_used(&msgb); 1488 } 1489 EXPORT_SYMBOL_GPL(ssam_request_write_data); 1490 1491 static void ssam_request_sync_complete(struct ssh_request *rqst, 1492 const struct ssh_command *cmd, 1493 const struct ssam_span *data, int status) 1494 { 1495 struct ssh_rtl *rtl = ssh_request_rtl(rqst); 1496 struct ssam_request_sync *r; 1497 1498 r = container_of(rqst, struct ssam_request_sync, base); 1499 r->status = status; 1500 1501 if (r->resp) 1502 r->resp->length = 0; 1503 1504 if (status) { 1505 rtl_dbg_cond(rtl, "rsp: request failed: %d\n", status); 1506 return; 1507 } 1508 1509 if (!data) /* Handle requests without a response. */ 1510 return; 1511 1512 if (!r->resp || !r->resp->pointer) { 1513 if (data->len) 1514 rtl_warn(rtl, "rsp: no response buffer provided, dropping data\n"); 1515 return; 1516 } 1517 1518 if (data->len > r->resp->capacity) { 1519 rtl_err(rtl, 1520 "rsp: response buffer too small, capacity: %zu bytes, got: %zu bytes\n", 1521 r->resp->capacity, data->len); 1522 r->status = -ENOSPC; 1523 return; 1524 } 1525 1526 r->resp->length = data->len; 1527 memcpy(r->resp->pointer, data->ptr, data->len); 1528 } 1529 1530 static void ssam_request_sync_release(struct ssh_request *rqst) 1531 { 1532 complete_all(&container_of(rqst, struct ssam_request_sync, base)->comp); 1533 } 1534 1535 static const struct ssh_request_ops ssam_request_sync_ops = { 1536 .release = ssam_request_sync_release, 1537 .complete = ssam_request_sync_complete, 1538 }; 1539 1540 /** 1541 * ssam_request_sync_alloc() - Allocate a synchronous request. 1542 * @payload_len: The length of the request payload. 1543 * @flags: Flags used for allocation. 1544 * @rqst: Where to store the pointer to the allocated request. 1545 * @buffer: Where to store the buffer descriptor for the message buffer of 1546 * the request. 1547 * 1548 * Allocates a synchronous request with corresponding message buffer. The 1549 * request still needs to be initialized ssam_request_sync_init() before 1550 * it can be submitted, and the message buffer data must still be set to the 1551 * returned buffer via ssam_request_sync_set_data() after it has been filled, 1552 * if need be with adjusted message length. 1553 * 1554 * After use, the request and its corresponding message buffer should be freed 1555 * via ssam_request_sync_free(). The buffer must not be freed separately. 1556 * 1557 * Return: Returns zero on success, %-ENOMEM if the request could not be 1558 * allocated. 1559 */ 1560 int ssam_request_sync_alloc(size_t payload_len, gfp_t flags, 1561 struct ssam_request_sync **rqst, 1562 struct ssam_span *buffer) 1563 { 1564 size_t msglen = SSH_COMMAND_MESSAGE_LENGTH(payload_len); 1565 1566 *rqst = kzalloc(sizeof(**rqst) + msglen, flags); 1567 if (!*rqst) 1568 return -ENOMEM; 1569 1570 buffer->ptr = (u8 *)(*rqst + 1); 1571 buffer->len = msglen; 1572 1573 return 0; 1574 } 1575 EXPORT_SYMBOL_GPL(ssam_request_sync_alloc); 1576 1577 /** 1578 * ssam_request_sync_free() - Free a synchronous request. 1579 * @rqst: The request to be freed. 1580 * 1581 * Free a synchronous request and its corresponding buffer allocated with 1582 * ssam_request_sync_alloc(). Do not use for requests allocated on the stack 1583 * or via any other function. 1584 * 1585 * Warning: The caller must ensure that the request is not in use any more. 1586 * I.e. the caller must ensure that it has the only reference to the request 1587 * and the request is not currently pending. This means that the caller has 1588 * either never submitted the request, request submission has failed, or the 1589 * caller has waited until the submitted request has been completed via 1590 * ssam_request_sync_wait(). 1591 */ 1592 void ssam_request_sync_free(struct ssam_request_sync *rqst) 1593 { 1594 kfree(rqst); 1595 } 1596 EXPORT_SYMBOL_GPL(ssam_request_sync_free); 1597 1598 /** 1599 * ssam_request_sync_init() - Initialize a synchronous request struct. 1600 * @rqst: The request to initialize. 1601 * @flags: The request flags. 1602 * 1603 * Initializes the given request struct. Does not initialize the request 1604 * message data. This has to be done explicitly after this call via 1605 * ssam_request_sync_set_data() and the actual message data has to be written 1606 * via ssam_request_write_data(). 1607 * 1608 * Return: Returns zero on success or %-EINVAL if the given flags are invalid. 1609 */ 1610 int ssam_request_sync_init(struct ssam_request_sync *rqst, 1611 enum ssam_request_flags flags) 1612 { 1613 int status; 1614 1615 status = ssh_request_init(&rqst->base, flags, &ssam_request_sync_ops); 1616 if (status) 1617 return status; 1618 1619 init_completion(&rqst->comp); 1620 rqst->resp = NULL; 1621 rqst->status = 0; 1622 1623 return 0; 1624 } 1625 EXPORT_SYMBOL_GPL(ssam_request_sync_init); 1626 1627 /** 1628 * ssam_request_sync_submit() - Submit a synchronous request. 1629 * @ctrl: The controller with which to submit the request. 1630 * @rqst: The request to submit. 1631 * 1632 * Submit a synchronous request. The request has to be initialized and 1633 * properly set up, including response buffer (may be %NULL if no response is 1634 * expected) and command message data. This function does not wait for the 1635 * request to be completed. 1636 * 1637 * If this function succeeds, ssam_request_sync_wait() must be used to ensure 1638 * that the request has been completed before the response data can be 1639 * accessed and/or the request can be freed. On failure, the request may 1640 * immediately be freed. 1641 * 1642 * This function may only be used if the controller is active, i.e. has been 1643 * initialized and not suspended. 1644 */ 1645 int ssam_request_sync_submit(struct ssam_controller *ctrl, 1646 struct ssam_request_sync *rqst) 1647 { 1648 int status; 1649 1650 /* 1651 * This is only a superficial check. In general, the caller needs to 1652 * ensure that the controller is initialized and is not (and does not 1653 * get) suspended during use, i.e. until the request has been completed 1654 * (if _absolutely_ necessary, by use of ssam_controller_statelock/ 1655 * ssam_controller_stateunlock, but something like ssam_client_link 1656 * should be preferred as this needs to last until the request has been 1657 * completed). 1658 * 1659 * Note that it is actually safe to use this function while the 1660 * controller is in the process of being shut down (as ssh_rtl_submit 1661 * is safe with regards to this), but it is generally discouraged to do 1662 * so. 1663 */ 1664 if (WARN_ON(READ_ONCE(ctrl->state) != SSAM_CONTROLLER_STARTED)) { 1665 ssh_request_put(&rqst->base); 1666 return -ENODEV; 1667 } 1668 1669 status = ssh_rtl_submit(&ctrl->rtl, &rqst->base); 1670 ssh_request_put(&rqst->base); 1671 1672 return status; 1673 } 1674 EXPORT_SYMBOL_GPL(ssam_request_sync_submit); 1675 1676 /** 1677 * ssam_request_do_sync() - Execute a synchronous request. 1678 * @ctrl: The controller via which the request will be submitted. 1679 * @spec: The request specification and payload. 1680 * @rsp: The response buffer. 1681 * 1682 * Allocates a synchronous request with its message data buffer on the heap 1683 * via ssam_request_sync_alloc(), fully initializes it via the provided 1684 * request specification, submits it, and finally waits for its completion 1685 * before freeing it and returning its status. 1686 * 1687 * Return: Returns the status of the request or any failure during setup. 1688 */ 1689 int ssam_request_do_sync(struct ssam_controller *ctrl, 1690 const struct ssam_request *spec, 1691 struct ssam_response *rsp) 1692 { 1693 struct ssam_request_sync *rqst; 1694 struct ssam_span buf; 1695 ssize_t len; 1696 int status; 1697 1698 status = ssam_request_sync_alloc(spec->length, GFP_KERNEL, &rqst, &buf); 1699 if (status) 1700 return status; 1701 1702 status = ssam_request_sync_init(rqst, spec->flags); 1703 if (status) { 1704 ssam_request_sync_free(rqst); 1705 return status; 1706 } 1707 1708 ssam_request_sync_set_resp(rqst, rsp); 1709 1710 len = ssam_request_write_data(&buf, ctrl, spec); 1711 if (len < 0) { 1712 ssam_request_sync_free(rqst); 1713 return len; 1714 } 1715 1716 ssam_request_sync_set_data(rqst, buf.ptr, len); 1717 1718 status = ssam_request_sync_submit(ctrl, rqst); 1719 if (!status) 1720 status = ssam_request_sync_wait(rqst); 1721 1722 ssam_request_sync_free(rqst); 1723 return status; 1724 } 1725 EXPORT_SYMBOL_GPL(ssam_request_do_sync); 1726 1727 /** 1728 * ssam_request_do_sync_with_buffer() - Execute a synchronous request with the 1729 * provided buffer as back-end for the message buffer. 1730 * @ctrl: The controller via which the request will be submitted. 1731 * @spec: The request specification and payload. 1732 * @rsp: The response buffer. 1733 * @buf: The buffer for the request message data. 1734 * 1735 * Allocates a synchronous request struct on the stack, fully initializes it 1736 * using the provided buffer as message data buffer, submits it, and then 1737 * waits for its completion before returning its status. The 1738 * SSH_COMMAND_MESSAGE_LENGTH() macro can be used to compute the required 1739 * message buffer size. 1740 * 1741 * This function does essentially the same as ssam_request_do_sync(), but 1742 * instead of dynamically allocating the request and message data buffer, it 1743 * uses the provided message data buffer and stores the (small) request struct 1744 * on the heap. 1745 * 1746 * Return: Returns the status of the request or any failure during setup. 1747 */ 1748 int ssam_request_do_sync_with_buffer(struct ssam_controller *ctrl, 1749 const struct ssam_request *spec, 1750 struct ssam_response *rsp, 1751 struct ssam_span *buf) 1752 { 1753 struct ssam_request_sync rqst; 1754 ssize_t len; 1755 int status; 1756 1757 status = ssam_request_sync_init(&rqst, spec->flags); 1758 if (status) 1759 return status; 1760 1761 ssam_request_sync_set_resp(&rqst, rsp); 1762 1763 len = ssam_request_write_data(buf, ctrl, spec); 1764 if (len < 0) 1765 return len; 1766 1767 ssam_request_sync_set_data(&rqst, buf->ptr, len); 1768 1769 status = ssam_request_sync_submit(ctrl, &rqst); 1770 if (!status) 1771 status = ssam_request_sync_wait(&rqst); 1772 1773 return status; 1774 } 1775 EXPORT_SYMBOL_GPL(ssam_request_do_sync_with_buffer); 1776 1777 1778 /* -- Internal SAM requests. ------------------------------------------------ */ 1779 1780 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_get_firmware_version, __le32, { 1781 .target_category = SSAM_SSH_TC_SAM, 1782 .target_id = SSAM_SSH_TID_SAM, 1783 .command_id = 0x13, 1784 .instance_id = 0x00, 1785 }); 1786 1787 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_display_off, u8, { 1788 .target_category = SSAM_SSH_TC_SAM, 1789 .target_id = SSAM_SSH_TID_SAM, 1790 .command_id = 0x15, 1791 .instance_id = 0x00, 1792 }); 1793 1794 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_display_on, u8, { 1795 .target_category = SSAM_SSH_TC_SAM, 1796 .target_id = SSAM_SSH_TID_SAM, 1797 .command_id = 0x16, 1798 .instance_id = 0x00, 1799 }); 1800 1801 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_d0_exit, u8, { 1802 .target_category = SSAM_SSH_TC_SAM, 1803 .target_id = SSAM_SSH_TID_SAM, 1804 .command_id = 0x33, 1805 .instance_id = 0x00, 1806 }); 1807 1808 SSAM_DEFINE_SYNC_REQUEST_R(ssam_ssh_notif_d0_entry, u8, { 1809 .target_category = SSAM_SSH_TC_SAM, 1810 .target_id = SSAM_SSH_TID_SAM, 1811 .command_id = 0x34, 1812 .instance_id = 0x00, 1813 }); 1814 1815 /** 1816 * struct ssh_notification_params - Command payload to enable/disable SSH 1817 * notifications. 1818 * @target_category: The target category for which notifications should be 1819 * enabled/disabled. 1820 * @flags: Flags determining how notifications are being sent. 1821 * @request_id: The request ID that is used to send these notifications. 1822 * @instance_id: The specific instance in the given target category for 1823 * which notifications should be enabled. 1824 */ 1825 struct ssh_notification_params { 1826 u8 target_category; 1827 u8 flags; 1828 __le16 request_id; 1829 u8 instance_id; 1830 } __packed; 1831 1832 static_assert(sizeof(struct ssh_notification_params) == 5); 1833 1834 static int __ssam_ssh_event_request(struct ssam_controller *ctrl, 1835 struct ssam_event_registry reg, u8 cid, 1836 struct ssam_event_id id, u8 flags) 1837 { 1838 struct ssh_notification_params params; 1839 struct ssam_request rqst; 1840 struct ssam_response result; 1841 int status; 1842 1843 u16 rqid = ssh_tc_to_rqid(id.target_category); 1844 u8 buf = 0; 1845 1846 /* Only allow RQIDs that lie within the event spectrum. */ 1847 if (!ssh_rqid_is_event(rqid)) 1848 return -EINVAL; 1849 1850 params.target_category = id.target_category; 1851 params.instance_id = id.instance; 1852 params.flags = flags; 1853 put_unaligned_le16(rqid, ¶ms.request_id); 1854 1855 rqst.target_category = reg.target_category; 1856 rqst.target_id = reg.target_id; 1857 rqst.command_id = cid; 1858 rqst.instance_id = 0x00; 1859 rqst.flags = SSAM_REQUEST_HAS_RESPONSE; 1860 rqst.length = sizeof(params); 1861 rqst.payload = (u8 *)¶ms; 1862 1863 result.capacity = sizeof(buf); 1864 result.length = 0; 1865 result.pointer = &buf; 1866 1867 status = ssam_retry(ssam_request_do_sync_onstack, ctrl, &rqst, &result, 1868 sizeof(params)); 1869 1870 return status < 0 ? status : buf; 1871 } 1872 1873 /** 1874 * ssam_ssh_event_enable() - Enable SSH event. 1875 * @ctrl: The controller for which to enable the event. 1876 * @reg: The event registry describing what request to use for enabling and 1877 * disabling the event. 1878 * @id: The event identifier. 1879 * @flags: The event flags. 1880 * 1881 * Enables the specified event on the EC. This function does not manage 1882 * reference counting of enabled events and is basically only a wrapper for 1883 * the raw EC request. If the specified event is already enabled, the EC will 1884 * ignore this request. 1885 * 1886 * Return: Returns the status of the executed SAM request (zero on success and 1887 * negative on direct failure) or %-EPROTO if the request response indicates a 1888 * failure. 1889 */ 1890 static int ssam_ssh_event_enable(struct ssam_controller *ctrl, 1891 struct ssam_event_registry reg, 1892 struct ssam_event_id id, u8 flags) 1893 { 1894 int status; 1895 1896 status = __ssam_ssh_event_request(ctrl, reg, reg.cid_enable, id, flags); 1897 1898 if (status < 0 && status != -EINVAL) { 1899 ssam_err(ctrl, 1900 "failed to enable event source (tc: %#04x, iid: %#04x, reg: %#04x)\n", 1901 id.target_category, id.instance, reg.target_category); 1902 } 1903 1904 if (status > 0) { 1905 ssam_err(ctrl, 1906 "unexpected result while enabling event source: %#04x (tc: %#04x, iid: %#04x, reg: %#04x)\n", 1907 status, id.target_category, id.instance, reg.target_category); 1908 return -EPROTO; 1909 } 1910 1911 return status; 1912 } 1913 1914 /** 1915 * ssam_ssh_event_disable() - Disable SSH event. 1916 * @ctrl: The controller for which to disable the event. 1917 * @reg: The event registry describing what request to use for enabling and 1918 * disabling the event (must be same as used when enabling the event). 1919 * @id: The event identifier. 1920 * @flags: The event flags (likely ignored for disabling of events). 1921 * 1922 * Disables the specified event on the EC. This function does not manage 1923 * reference counting of enabled events and is basically only a wrapper for 1924 * the raw EC request. If the specified event is already disabled, the EC will 1925 * ignore this request. 1926 * 1927 * Return: Returns the status of the executed SAM request (zero on success and 1928 * negative on direct failure) or %-EPROTO if the request response indicates a 1929 * failure. 1930 */ 1931 static int ssam_ssh_event_disable(struct ssam_controller *ctrl, 1932 struct ssam_event_registry reg, 1933 struct ssam_event_id id, u8 flags) 1934 { 1935 int status; 1936 1937 status = __ssam_ssh_event_request(ctrl, reg, reg.cid_disable, id, flags); 1938 1939 if (status < 0 && status != -EINVAL) { 1940 ssam_err(ctrl, 1941 "failed to disable event source (tc: %#04x, iid: %#04x, reg: %#04x)\n", 1942 id.target_category, id.instance, reg.target_category); 1943 } 1944 1945 if (status > 0) { 1946 ssam_err(ctrl, 1947 "unexpected result while disabling event source: %#04x (tc: %#04x, iid: %#04x, reg: %#04x)\n", 1948 status, id.target_category, id.instance, reg.target_category); 1949 return -EPROTO; 1950 } 1951 1952 return status; 1953 } 1954 1955 1956 /* -- Wrappers for internal SAM requests. ----------------------------------- */ 1957 1958 /** 1959 * ssam_get_firmware_version() - Get the SAM/EC firmware version. 1960 * @ctrl: The controller. 1961 * @version: Where to store the version number. 1962 * 1963 * Return: Returns zero on success or the status of the executed SAM request 1964 * if that request failed. 1965 */ 1966 int ssam_get_firmware_version(struct ssam_controller *ctrl, u32 *version) 1967 { 1968 __le32 __version; 1969 int status; 1970 1971 status = ssam_retry(ssam_ssh_get_firmware_version, ctrl, &__version); 1972 if (status) 1973 return status; 1974 1975 *version = le32_to_cpu(__version); 1976 return 0; 1977 } 1978 1979 /** 1980 * ssam_ctrl_notif_display_off() - Notify EC that the display has been turned 1981 * off. 1982 * @ctrl: The controller. 1983 * 1984 * Notify the EC that the display has been turned off and the driver may enter 1985 * a lower-power state. This will prevent events from being sent directly. 1986 * Rather, the EC signals an event by pulling the wakeup GPIO high for as long 1987 * as there are pending events. The events then need to be manually released, 1988 * one by one, via the GPIO callback request. All pending events accumulated 1989 * during this state can also be released by issuing the display-on 1990 * notification, e.g. via ssam_ctrl_notif_display_on(), which will also reset 1991 * the GPIO. 1992 * 1993 * On some devices, specifically ones with an integrated keyboard, the keyboard 1994 * backlight will be turned off by this call. 1995 * 1996 * This function will only send the display-off notification command if 1997 * display notifications are supported by the EC. Currently all known devices 1998 * support these notifications. 1999 * 2000 * Use ssam_ctrl_notif_display_on() to reverse the effects of this function. 2001 * 2002 * Return: Returns zero on success or if no request has been executed, the 2003 * status of the executed SAM request if that request failed, or %-EPROTO if 2004 * an unexpected response has been received. 2005 */ 2006 int ssam_ctrl_notif_display_off(struct ssam_controller *ctrl) 2007 { 2008 int status; 2009 u8 response; 2010 2011 ssam_dbg(ctrl, "pm: notifying display off\n"); 2012 2013 status = ssam_retry(ssam_ssh_notif_display_off, ctrl, &response); 2014 if (status) 2015 return status; 2016 2017 if (response != 0) { 2018 ssam_err(ctrl, "unexpected response from display-off notification: %#04x\n", 2019 response); 2020 return -EPROTO; 2021 } 2022 2023 return 0; 2024 } 2025 2026 /** 2027 * ssam_ctrl_notif_display_on() - Notify EC that the display has been turned on. 2028 * @ctrl: The controller. 2029 * 2030 * Notify the EC that the display has been turned back on and the driver has 2031 * exited its lower-power state. This notification is the counterpart to the 2032 * display-off notification sent via ssam_ctrl_notif_display_off() and will 2033 * reverse its effects, including resetting events to their default behavior. 2034 * 2035 * This function will only send the display-on notification command if display 2036 * notifications are supported by the EC. Currently all known devices support 2037 * these notifications. 2038 * 2039 * See ssam_ctrl_notif_display_off() for more details. 2040 * 2041 * Return: Returns zero on success or if no request has been executed, the 2042 * status of the executed SAM request if that request failed, or %-EPROTO if 2043 * an unexpected response has been received. 2044 */ 2045 int ssam_ctrl_notif_display_on(struct ssam_controller *ctrl) 2046 { 2047 int status; 2048 u8 response; 2049 2050 ssam_dbg(ctrl, "pm: notifying display on\n"); 2051 2052 status = ssam_retry(ssam_ssh_notif_display_on, ctrl, &response); 2053 if (status) 2054 return status; 2055 2056 if (response != 0) { 2057 ssam_err(ctrl, "unexpected response from display-on notification: %#04x\n", 2058 response); 2059 return -EPROTO; 2060 } 2061 2062 return 0; 2063 } 2064 2065 /** 2066 * ssam_ctrl_notif_d0_exit() - Notify EC that the driver/device exits the D0 2067 * power state. 2068 * @ctrl: The controller 2069 * 2070 * Notifies the EC that the driver prepares to exit the D0 power state in 2071 * favor of a lower-power state. Exact effects of this function related to the 2072 * EC are currently unknown. 2073 * 2074 * This function will only send the D0-exit notification command if D0-state 2075 * notifications are supported by the EC. Only newer Surface generations 2076 * support these notifications. 2077 * 2078 * Use ssam_ctrl_notif_d0_entry() to reverse the effects of this function. 2079 * 2080 * Return: Returns zero on success or if no request has been executed, the 2081 * status of the executed SAM request if that request failed, or %-EPROTO if 2082 * an unexpected response has been received. 2083 */ 2084 int ssam_ctrl_notif_d0_exit(struct ssam_controller *ctrl) 2085 { 2086 int status; 2087 u8 response; 2088 2089 if (!ctrl->caps.d3_closes_handle) 2090 return 0; 2091 2092 ssam_dbg(ctrl, "pm: notifying D0 exit\n"); 2093 2094 status = ssam_retry(ssam_ssh_notif_d0_exit, ctrl, &response); 2095 if (status) 2096 return status; 2097 2098 if (response != 0) { 2099 ssam_err(ctrl, "unexpected response from D0-exit notification: %#04x\n", 2100 response); 2101 return -EPROTO; 2102 } 2103 2104 return 0; 2105 } 2106 2107 /** 2108 * ssam_ctrl_notif_d0_entry() - Notify EC that the driver/device enters the D0 2109 * power state. 2110 * @ctrl: The controller 2111 * 2112 * Notifies the EC that the driver has exited a lower-power state and entered 2113 * the D0 power state. Exact effects of this function related to the EC are 2114 * currently unknown. 2115 * 2116 * This function will only send the D0-entry notification command if D0-state 2117 * notifications are supported by the EC. Only newer Surface generations 2118 * support these notifications. 2119 * 2120 * See ssam_ctrl_notif_d0_exit() for more details. 2121 * 2122 * Return: Returns zero on success or if no request has been executed, the 2123 * status of the executed SAM request if that request failed, or %-EPROTO if 2124 * an unexpected response has been received. 2125 */ 2126 int ssam_ctrl_notif_d0_entry(struct ssam_controller *ctrl) 2127 { 2128 int status; 2129 u8 response; 2130 2131 if (!ctrl->caps.d3_closes_handle) 2132 return 0; 2133 2134 ssam_dbg(ctrl, "pm: notifying D0 entry\n"); 2135 2136 status = ssam_retry(ssam_ssh_notif_d0_entry, ctrl, &response); 2137 if (status) 2138 return status; 2139 2140 if (response != 0) { 2141 ssam_err(ctrl, "unexpected response from D0-entry notification: %#04x\n", 2142 response); 2143 return -EPROTO; 2144 } 2145 2146 return 0; 2147 } 2148 2149 2150 /* -- Top-level event registry interface. ----------------------------------- */ 2151 2152 /** 2153 * ssam_nf_refcount_enable() - Enable event for reference count entry if it has 2154 * not already been enabled. 2155 * @ctrl: The controller to enable the event on. 2156 * @entry: The reference count entry for the event to be enabled. 2157 * @flags: The flags used for enabling the event on the EC. 2158 * 2159 * Enable the event associated with the given reference count entry if the 2160 * reference count equals one, i.e. the event has not previously been enabled. 2161 * If the event has already been enabled (i.e. reference count not equal to 2162 * one), check that the flags used for enabling match and warn about this if 2163 * they do not. 2164 * 2165 * This does not modify the reference count itself, which is done with 2166 * ssam_nf_refcount_inc() / ssam_nf_refcount_dec(). 2167 * 2168 * Note: ``nf->lock`` must be held when calling this function. 2169 * 2170 * Return: Returns zero on success. If the event is enabled by this call, 2171 * returns the status of the event-enable EC command. 2172 */ 2173 static int ssam_nf_refcount_enable(struct ssam_controller *ctrl, 2174 struct ssam_nf_refcount_entry *entry, u8 flags) 2175 { 2176 const struct ssam_event_registry reg = entry->key.reg; 2177 const struct ssam_event_id id = entry->key.id; 2178 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2179 int status; 2180 2181 lockdep_assert_held(&nf->lock); 2182 2183 ssam_dbg(ctrl, "enabling event (reg: %#04x, tc: %#04x, iid: %#04x, rc: %d)\n", 2184 reg.target_category, id.target_category, id.instance, entry->refcount); 2185 2186 if (entry->refcount == 1) { 2187 status = ssam_ssh_event_enable(ctrl, reg, id, flags); 2188 if (status) 2189 return status; 2190 2191 entry->flags = flags; 2192 2193 } else if (entry->flags != flags) { 2194 ssam_warn(ctrl, 2195 "inconsistent flags when enabling event: got %#04x, expected %#04x (reg: %#04x, tc: %#04x, iid: %#04x)\n", 2196 flags, entry->flags, reg.target_category, id.target_category, 2197 id.instance); 2198 } 2199 2200 return 0; 2201 } 2202 2203 /** 2204 * ssam_nf_refcount_disable_free() - Disable event for reference count entry if 2205 * it is no longer in use and free the corresponding entry. 2206 * @ctrl: The controller to disable the event on. 2207 * @entry: The reference count entry for the event to be disabled. 2208 * @flags: The flags used for enabling the event on the EC. 2209 * @ec: Flag specifying if the event should actually be disabled on the EC. 2210 * 2211 * If ``ec`` equals ``true`` and the reference count equals zero (i.e. the 2212 * event is no longer requested by any client), the specified event will be 2213 * disabled on the EC via the corresponding request. 2214 * 2215 * If ``ec`` equals ``false``, no request will be sent to the EC and the event 2216 * can be considered in a detached state (i.e. no longer used but still 2217 * enabled). Disabling an event via this method may be required for 2218 * hot-removable devices, where event disable requests may time out after the 2219 * device has been physically removed. 2220 * 2221 * In both cases, if the reference count equals zero, the corresponding 2222 * reference count entry will be freed. The reference count entry must not be 2223 * used any more after a call to this function. 2224 * 2225 * Also checks if the flags used for disabling the event match the flags used 2226 * for enabling the event and warns if they do not (regardless of reference 2227 * count). 2228 * 2229 * This does not modify the reference count itself, which is done with 2230 * ssam_nf_refcount_inc() / ssam_nf_refcount_dec(). 2231 * 2232 * Note: ``nf->lock`` must be held when calling this function. 2233 * 2234 * Return: Returns zero on success. If the event is disabled by this call, 2235 * returns the status of the event-enable EC command. 2236 */ 2237 static int ssam_nf_refcount_disable_free(struct ssam_controller *ctrl, 2238 struct ssam_nf_refcount_entry *entry, u8 flags, bool ec) 2239 { 2240 const struct ssam_event_registry reg = entry->key.reg; 2241 const struct ssam_event_id id = entry->key.id; 2242 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2243 int status = 0; 2244 2245 lockdep_assert_held(&nf->lock); 2246 2247 ssam_dbg(ctrl, "%s event (reg: %#04x, tc: %#04x, iid: %#04x, rc: %d)\n", 2248 ec ? "disabling" : "detaching", reg.target_category, id.target_category, 2249 id.instance, entry->refcount); 2250 2251 if (entry->flags != flags) { 2252 ssam_warn(ctrl, 2253 "inconsistent flags when disabling event: got %#04x, expected %#04x (reg: %#04x, tc: %#04x, iid: %#04x)\n", 2254 flags, entry->flags, reg.target_category, id.target_category, 2255 id.instance); 2256 } 2257 2258 if (ec && entry->refcount == 0) { 2259 status = ssam_ssh_event_disable(ctrl, reg, id, flags); 2260 kfree(entry); 2261 } 2262 2263 return status; 2264 } 2265 2266 /** 2267 * ssam_notifier_register() - Register an event notifier. 2268 * @ctrl: The controller to register the notifier on. 2269 * @n: The event notifier to register. 2270 * 2271 * Register an event notifier. Increment the usage counter of the associated 2272 * SAM event if the notifier is not marked as an observer. If the event is not 2273 * marked as an observer and is currently not enabled, it will be enabled 2274 * during this call. If the notifier is marked as an observer, no attempt will 2275 * be made at enabling any event and no reference count will be modified. 2276 * 2277 * Notifiers marked as observers do not need to be associated with one specific 2278 * event, i.e. as long as no event matching is performed, only the event target 2279 * category needs to be set. 2280 * 2281 * Return: Returns zero on success, %-ENOSPC if there have already been 2282 * %INT_MAX notifiers for the event ID/type associated with the notifier block 2283 * registered, %-ENOMEM if the corresponding event entry could not be 2284 * allocated. If this is the first time that a notifier block is registered 2285 * for the specific associated event, returns the status of the event-enable 2286 * EC-command. 2287 */ 2288 int ssam_notifier_register(struct ssam_controller *ctrl, struct ssam_event_notifier *n) 2289 { 2290 u16 rqid = ssh_tc_to_rqid(n->event.id.target_category); 2291 struct ssam_nf_refcount_entry *entry = NULL; 2292 struct ssam_nf_head *nf_head; 2293 struct ssam_nf *nf; 2294 int status; 2295 2296 if (!ssh_rqid_is_event(rqid)) 2297 return -EINVAL; 2298 2299 nf = &ctrl->cplt.event.notif; 2300 nf_head = &nf->head[ssh_rqid_to_event(rqid)]; 2301 2302 mutex_lock(&nf->lock); 2303 2304 if (!(n->flags & SSAM_EVENT_NOTIFIER_OBSERVER)) { 2305 entry = ssam_nf_refcount_inc(nf, n->event.reg, n->event.id); 2306 if (IS_ERR(entry)) { 2307 mutex_unlock(&nf->lock); 2308 return PTR_ERR(entry); 2309 } 2310 } 2311 2312 status = ssam_nfblk_insert(nf_head, &n->base); 2313 if (status) { 2314 if (entry) 2315 ssam_nf_refcount_dec_free(nf, n->event.reg, n->event.id); 2316 2317 mutex_unlock(&nf->lock); 2318 return status; 2319 } 2320 2321 if (entry) { 2322 status = ssam_nf_refcount_enable(ctrl, entry, n->event.flags); 2323 if (status) { 2324 ssam_nfblk_remove(&n->base); 2325 ssam_nf_refcount_dec_free(nf, n->event.reg, n->event.id); 2326 mutex_unlock(&nf->lock); 2327 synchronize_srcu(&nf_head->srcu); 2328 return status; 2329 } 2330 } 2331 2332 mutex_unlock(&nf->lock); 2333 return 0; 2334 } 2335 EXPORT_SYMBOL_GPL(ssam_notifier_register); 2336 2337 /** 2338 * __ssam_notifier_unregister() - Unregister an event notifier. 2339 * @ctrl: The controller the notifier has been registered on. 2340 * @n: The event notifier to unregister. 2341 * @disable: Whether to disable the corresponding event on the EC. 2342 * 2343 * Unregister an event notifier. Decrement the usage counter of the associated 2344 * SAM event if the notifier is not marked as an observer. If the usage counter 2345 * reaches zero and ``disable`` equals ``true``, the event will be disabled. 2346 * 2347 * Useful for hot-removable devices, where communication may fail once the 2348 * device has been physically removed. In that case, specifying ``disable`` as 2349 * ``false`` avoids communication with the EC. 2350 * 2351 * Return: Returns zero on success, %-ENOENT if the given notifier block has 2352 * not been registered on the controller. If the given notifier block was the 2353 * last one associated with its specific event, returns the status of the 2354 * event-disable EC-command. 2355 */ 2356 int __ssam_notifier_unregister(struct ssam_controller *ctrl, struct ssam_event_notifier *n, 2357 bool disable) 2358 { 2359 u16 rqid = ssh_tc_to_rqid(n->event.id.target_category); 2360 struct ssam_nf_refcount_entry *entry; 2361 struct ssam_nf_head *nf_head; 2362 struct ssam_nf *nf; 2363 int status = 0; 2364 2365 if (!ssh_rqid_is_event(rqid)) 2366 return -EINVAL; 2367 2368 nf = &ctrl->cplt.event.notif; 2369 nf_head = &nf->head[ssh_rqid_to_event(rqid)]; 2370 2371 mutex_lock(&nf->lock); 2372 2373 if (!ssam_nfblk_find(nf_head, &n->base)) { 2374 mutex_unlock(&nf->lock); 2375 return -ENOENT; 2376 } 2377 2378 /* 2379 * If this is an observer notifier, do not attempt to disable the 2380 * event, just remove it. 2381 */ 2382 if (!(n->flags & SSAM_EVENT_NOTIFIER_OBSERVER)) { 2383 entry = ssam_nf_refcount_dec(nf, n->event.reg, n->event.id); 2384 if (WARN_ON(!entry)) { 2385 /* 2386 * If this does not return an entry, there's a logic 2387 * error somewhere: The notifier block is registered, 2388 * but the event refcount entry is not there. Remove 2389 * the notifier block anyways. 2390 */ 2391 status = -ENOENT; 2392 goto remove; 2393 } 2394 2395 status = ssam_nf_refcount_disable_free(ctrl, entry, n->event.flags, disable); 2396 } 2397 2398 remove: 2399 ssam_nfblk_remove(&n->base); 2400 mutex_unlock(&nf->lock); 2401 synchronize_srcu(&nf_head->srcu); 2402 2403 return status; 2404 } 2405 EXPORT_SYMBOL_GPL(__ssam_notifier_unregister); 2406 2407 /** 2408 * ssam_controller_event_enable() - Enable the specified event. 2409 * @ctrl: The controller to enable the event for. 2410 * @reg: The event registry to use for enabling the event. 2411 * @id: The event ID specifying the event to be enabled. 2412 * @flags: The SAM event flags used for enabling the event. 2413 * 2414 * Increment the event reference count of the specified event. If the event has 2415 * not been enabled previously, it will be enabled by this call. 2416 * 2417 * Note: In general, ssam_notifier_register() with a non-observer notifier 2418 * should be preferred for enabling/disabling events, as this will guarantee 2419 * proper ordering and event forwarding in case of errors during event 2420 * enabling/disabling. 2421 * 2422 * Return: Returns zero on success, %-ENOSPC if the reference count for the 2423 * specified event has reached its maximum, %-ENOMEM if the corresponding event 2424 * entry could not be allocated. If this is the first time that this event has 2425 * been enabled (i.e. the reference count was incremented from zero to one by 2426 * this call), returns the status of the event-enable EC-command. 2427 */ 2428 int ssam_controller_event_enable(struct ssam_controller *ctrl, 2429 struct ssam_event_registry reg, 2430 struct ssam_event_id id, u8 flags) 2431 { 2432 u16 rqid = ssh_tc_to_rqid(id.target_category); 2433 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2434 struct ssam_nf_refcount_entry *entry; 2435 int status; 2436 2437 if (!ssh_rqid_is_event(rqid)) 2438 return -EINVAL; 2439 2440 mutex_lock(&nf->lock); 2441 2442 entry = ssam_nf_refcount_inc(nf, reg, id); 2443 if (IS_ERR(entry)) { 2444 mutex_unlock(&nf->lock); 2445 return PTR_ERR(entry); 2446 } 2447 2448 status = ssam_nf_refcount_enable(ctrl, entry, flags); 2449 if (status) { 2450 ssam_nf_refcount_dec_free(nf, reg, id); 2451 mutex_unlock(&nf->lock); 2452 return status; 2453 } 2454 2455 mutex_unlock(&nf->lock); 2456 return 0; 2457 } 2458 EXPORT_SYMBOL_GPL(ssam_controller_event_enable); 2459 2460 /** 2461 * ssam_controller_event_disable() - Disable the specified event. 2462 * @ctrl: The controller to disable the event for. 2463 * @reg: The event registry to use for disabling the event. 2464 * @id: The event ID specifying the event to be disabled. 2465 * @flags: The flags used when enabling the event. 2466 * 2467 * Decrement the reference count of the specified event. If the reference count 2468 * reaches zero, the event will be disabled. 2469 * 2470 * Note: In general, ssam_notifier_register()/ssam_notifier_unregister() with a 2471 * non-observer notifier should be preferred for enabling/disabling events, as 2472 * this will guarantee proper ordering and event forwarding in case of errors 2473 * during event enabling/disabling. 2474 * 2475 * Return: Returns zero on success, %-ENOENT if the given event has not been 2476 * enabled on the controller. If the reference count of the event reaches zero 2477 * during this call, returns the status of the event-disable EC-command. 2478 */ 2479 int ssam_controller_event_disable(struct ssam_controller *ctrl, 2480 struct ssam_event_registry reg, 2481 struct ssam_event_id id, u8 flags) 2482 { 2483 u16 rqid = ssh_tc_to_rqid(id.target_category); 2484 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2485 struct ssam_nf_refcount_entry *entry; 2486 int status; 2487 2488 if (!ssh_rqid_is_event(rqid)) 2489 return -EINVAL; 2490 2491 mutex_lock(&nf->lock); 2492 2493 entry = ssam_nf_refcount_dec(nf, reg, id); 2494 if (!entry) { 2495 mutex_unlock(&nf->lock); 2496 return -ENOENT; 2497 } 2498 2499 status = ssam_nf_refcount_disable_free(ctrl, entry, flags, true); 2500 2501 mutex_unlock(&nf->lock); 2502 return status; 2503 } 2504 EXPORT_SYMBOL_GPL(ssam_controller_event_disable); 2505 2506 /** 2507 * ssam_notifier_disable_registered() - Disable events for all registered 2508 * notifiers. 2509 * @ctrl: The controller for which to disable the notifiers/events. 2510 * 2511 * Disables events for all currently registered notifiers. In case of an error 2512 * (EC command failing), all previously disabled events will be restored and 2513 * the error code returned. 2514 * 2515 * This function is intended to disable all events prior to hibernation entry. 2516 * See ssam_notifier_restore_registered() to restore/re-enable all events 2517 * disabled with this function. 2518 * 2519 * Note that this function will not disable events for notifiers registered 2520 * after calling this function. It should thus be made sure that no new 2521 * notifiers are going to be added after this call and before the corresponding 2522 * call to ssam_notifier_restore_registered(). 2523 * 2524 * Return: Returns zero on success. In case of failure returns the error code 2525 * returned by the failed EC command to disable an event. 2526 */ 2527 int ssam_notifier_disable_registered(struct ssam_controller *ctrl) 2528 { 2529 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2530 struct rb_node *n; 2531 int status; 2532 2533 mutex_lock(&nf->lock); 2534 for (n = rb_first(&nf->refcount); n; n = rb_next(n)) { 2535 struct ssam_nf_refcount_entry *e; 2536 2537 e = rb_entry(n, struct ssam_nf_refcount_entry, node); 2538 status = ssam_ssh_event_disable(ctrl, e->key.reg, 2539 e->key.id, e->flags); 2540 if (status) 2541 goto err; 2542 } 2543 mutex_unlock(&nf->lock); 2544 2545 return 0; 2546 2547 err: 2548 for (n = rb_prev(n); n; n = rb_prev(n)) { 2549 struct ssam_nf_refcount_entry *e; 2550 2551 e = rb_entry(n, struct ssam_nf_refcount_entry, node); 2552 ssam_ssh_event_enable(ctrl, e->key.reg, e->key.id, e->flags); 2553 } 2554 mutex_unlock(&nf->lock); 2555 2556 return status; 2557 } 2558 2559 /** 2560 * ssam_notifier_restore_registered() - Restore/re-enable events for all 2561 * registered notifiers. 2562 * @ctrl: The controller for which to restore the notifiers/events. 2563 * 2564 * Restores/re-enables all events for which notifiers have been registered on 2565 * the given controller. In case of a failure, the error is logged and the 2566 * function continues to try and enable the remaining events. 2567 * 2568 * This function is intended to restore/re-enable all registered events after 2569 * hibernation. See ssam_notifier_disable_registered() for the counter part 2570 * disabling the events and more details. 2571 */ 2572 void ssam_notifier_restore_registered(struct ssam_controller *ctrl) 2573 { 2574 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2575 struct rb_node *n; 2576 2577 mutex_lock(&nf->lock); 2578 for (n = rb_first(&nf->refcount); n; n = rb_next(n)) { 2579 struct ssam_nf_refcount_entry *e; 2580 2581 e = rb_entry(n, struct ssam_nf_refcount_entry, node); 2582 2583 /* Ignore errors, will get logged in call. */ 2584 ssam_ssh_event_enable(ctrl, e->key.reg, e->key.id, e->flags); 2585 } 2586 mutex_unlock(&nf->lock); 2587 } 2588 2589 /** 2590 * ssam_notifier_is_empty() - Check if there are any registered notifiers. 2591 * @ctrl: The controller to check on. 2592 * 2593 * Return: Returns %true if there are currently no notifiers registered on the 2594 * controller, %false otherwise. 2595 */ 2596 static bool ssam_notifier_is_empty(struct ssam_controller *ctrl) 2597 { 2598 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2599 bool result; 2600 2601 mutex_lock(&nf->lock); 2602 result = ssam_nf_refcount_empty(nf); 2603 mutex_unlock(&nf->lock); 2604 2605 return result; 2606 } 2607 2608 /** 2609 * ssam_notifier_unregister_all() - Unregister all currently registered 2610 * notifiers. 2611 * @ctrl: The controller to unregister the notifiers on. 2612 * 2613 * Unregisters all currently registered notifiers. This function is used to 2614 * ensure that all notifiers will be unregistered and associated 2615 * entries/resources freed when the controller is being shut down. 2616 */ 2617 static void ssam_notifier_unregister_all(struct ssam_controller *ctrl) 2618 { 2619 struct ssam_nf *nf = &ctrl->cplt.event.notif; 2620 struct ssam_nf_refcount_entry *e, *n; 2621 2622 mutex_lock(&nf->lock); 2623 rbtree_postorder_for_each_entry_safe(e, n, &nf->refcount, node) { 2624 /* Ignore errors, will get logged in call. */ 2625 ssam_ssh_event_disable(ctrl, e->key.reg, e->key.id, e->flags); 2626 kfree(e); 2627 } 2628 nf->refcount = RB_ROOT; 2629 mutex_unlock(&nf->lock); 2630 } 2631 2632 2633 /* -- Wakeup IRQ. ----------------------------------------------------------- */ 2634 2635 static irqreturn_t ssam_irq_handle(int irq, void *dev_id) 2636 { 2637 struct ssam_controller *ctrl = dev_id; 2638 2639 ssam_dbg(ctrl, "pm: wake irq triggered\n"); 2640 2641 /* 2642 * Note: Proper wakeup detection is currently unimplemented. 2643 * When the EC is in display-off or any other non-D0 state, it 2644 * does not send events/notifications to the host. Instead it 2645 * signals that there are events available via the wakeup IRQ. 2646 * This driver is responsible for calling back to the EC to 2647 * release these events one-by-one. 2648 * 2649 * This IRQ should not cause a full system resume by its own. 2650 * Instead, events should be handled by their respective subsystem 2651 * drivers, which in turn should signal whether a full system 2652 * resume should be performed. 2653 * 2654 * TODO: Send GPIO callback command repeatedly to EC until callback 2655 * returns 0x00. Return flag of callback is "has more events". 2656 * Each time the command is sent, one event is "released". Once 2657 * all events have been released (return = 0x00), the GPIO is 2658 * re-armed. Detect wakeup events during this process, go back to 2659 * sleep if no wakeup event has been received. 2660 */ 2661 2662 return IRQ_HANDLED; 2663 } 2664 2665 /** 2666 * ssam_irq_setup() - Set up SAM EC wakeup-GPIO interrupt. 2667 * @ctrl: The controller for which the IRQ should be set up. 2668 * 2669 * Set up an IRQ for the wakeup-GPIO pin of the SAM EC. This IRQ can be used 2670 * to wake the device from a low power state. 2671 * 2672 * Note that this IRQ can only be triggered while the EC is in the display-off 2673 * state. In this state, events are not sent to the host in the usual way. 2674 * Instead the wakeup-GPIO gets pulled to "high" as long as there are pending 2675 * events and these events need to be released one-by-one via the GPIO 2676 * callback request, either until there are no events left and the GPIO is 2677 * reset, or all at once by transitioning the EC out of the display-off state, 2678 * which will also clear the GPIO. 2679 * 2680 * Not all events, however, should trigger a full system wakeup. Instead the 2681 * driver should, if necessary, inspect and forward each event to the 2682 * corresponding subsystem, which in turn should decide if the system needs to 2683 * be woken up. This logic has not been implemented yet, thus wakeup by this 2684 * IRQ should be disabled by default to avoid spurious wake-ups, caused, for 2685 * example, by the remaining battery percentage changing. Refer to comments in 2686 * this function and comments in the corresponding IRQ handler for more 2687 * details on how this should be implemented. 2688 * 2689 * See also ssam_ctrl_notif_display_off() and ssam_ctrl_notif_display_off() 2690 * for functions to transition the EC into and out of the display-off state as 2691 * well as more details on it. 2692 * 2693 * The IRQ is disabled by default and has to be enabled before it can wake up 2694 * the device from suspend via ssam_irq_arm_for_wakeup(). On teardown, the IRQ 2695 * should be freed via ssam_irq_free(). 2696 */ 2697 int ssam_irq_setup(struct ssam_controller *ctrl) 2698 { 2699 struct device *dev = ssam_controller_device(ctrl); 2700 struct gpio_desc *gpiod; 2701 int irq; 2702 int status; 2703 2704 /* 2705 * The actual GPIO interrupt is declared in ACPI as TRIGGER_HIGH. 2706 * However, the GPIO line only gets reset by sending the GPIO callback 2707 * command to SAM (or alternatively the display-on notification). As 2708 * proper handling for this interrupt is not implemented yet, leaving 2709 * the IRQ at TRIGGER_HIGH would cause an IRQ storm (as the callback 2710 * never gets sent and thus the line never gets reset). To avoid this, 2711 * mark the IRQ as TRIGGER_RISING for now, only creating a single 2712 * interrupt, and let the SAM resume callback during the controller 2713 * resume process clear it. 2714 */ 2715 const int irqf = IRQF_ONESHOT | IRQF_TRIGGER_RISING | IRQF_NO_AUTOEN; 2716 2717 gpiod = gpiod_get(dev, "ssam_wakeup-int", GPIOD_ASIS); 2718 if (IS_ERR(gpiod)) 2719 return PTR_ERR(gpiod); 2720 2721 irq = gpiod_to_irq(gpiod); 2722 gpiod_put(gpiod); 2723 2724 if (irq < 0) 2725 return irq; 2726 2727 status = request_threaded_irq(irq, NULL, ssam_irq_handle, irqf, 2728 "ssam_wakeup", ctrl); 2729 if (status) 2730 return status; 2731 2732 ctrl->irq.num = irq; 2733 return 0; 2734 } 2735 2736 /** 2737 * ssam_irq_free() - Free SAM EC wakeup-GPIO interrupt. 2738 * @ctrl: The controller for which the IRQ should be freed. 2739 * 2740 * Free the wakeup-GPIO IRQ previously set-up via ssam_irq_setup(). 2741 */ 2742 void ssam_irq_free(struct ssam_controller *ctrl) 2743 { 2744 free_irq(ctrl->irq.num, ctrl); 2745 ctrl->irq.num = -1; 2746 } 2747 2748 /** 2749 * ssam_irq_arm_for_wakeup() - Arm the EC IRQ for wakeup, if enabled. 2750 * @ctrl: The controller for which the IRQ should be armed. 2751 * 2752 * Sets up the IRQ so that it can be used to wake the device. Specifically, 2753 * this function enables the irq and then, if the device is allowed to wake up 2754 * the system, calls enable_irq_wake(). See ssam_irq_disarm_wakeup() for the 2755 * corresponding function to disable the IRQ. 2756 * 2757 * This function is intended to arm the IRQ before entering S2idle suspend. 2758 * 2759 * Note: calls to ssam_irq_arm_for_wakeup() and ssam_irq_disarm_wakeup() must 2760 * be balanced. 2761 */ 2762 int ssam_irq_arm_for_wakeup(struct ssam_controller *ctrl) 2763 { 2764 struct device *dev = ssam_controller_device(ctrl); 2765 int status; 2766 2767 enable_irq(ctrl->irq.num); 2768 if (device_may_wakeup(dev)) { 2769 status = enable_irq_wake(ctrl->irq.num); 2770 if (status) { 2771 ssam_err(ctrl, "failed to enable wake IRQ: %d\n", status); 2772 disable_irq(ctrl->irq.num); 2773 return status; 2774 } 2775 2776 ctrl->irq.wakeup_enabled = true; 2777 } else { 2778 ctrl->irq.wakeup_enabled = false; 2779 } 2780 2781 return 0; 2782 } 2783 2784 /** 2785 * ssam_irq_disarm_wakeup() - Disarm the wakeup IRQ. 2786 * @ctrl: The controller for which the IRQ should be disarmed. 2787 * 2788 * Disarm the IRQ previously set up for wake via ssam_irq_arm_for_wakeup(). 2789 * 2790 * This function is intended to disarm the IRQ after exiting S2idle suspend. 2791 * 2792 * Note: calls to ssam_irq_arm_for_wakeup() and ssam_irq_disarm_wakeup() must 2793 * be balanced. 2794 */ 2795 void ssam_irq_disarm_wakeup(struct ssam_controller *ctrl) 2796 { 2797 int status; 2798 2799 if (ctrl->irq.wakeup_enabled) { 2800 status = disable_irq_wake(ctrl->irq.num); 2801 if (status) 2802 ssam_err(ctrl, "failed to disable wake IRQ: %d\n", status); 2803 2804 ctrl->irq.wakeup_enabled = false; 2805 } 2806 disable_irq(ctrl->irq.num); 2807 } 2808