xref: /linux/drivers/platform/chrome/cros_ec_spi.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 // SPI interface for ChromeOS Embedded Controller
3 //
4 // Copyright (C) 2012 Google, Inc
5 
6 #include <linux/delay.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/of.h>
10 #include <linux/platform_data/cros_ec_commands.h>
11 #include <linux/platform_data/cros_ec_proto.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
14 #include <linux/spi/spi.h>
15 #include <uapi/linux/sched/types.h>
16 
17 #include "cros_ec.h"
18 
19 /* The header byte, which follows the preamble */
20 #define EC_MSG_HEADER			0xec
21 
22 /*
23  * Number of EC preamble bytes we read at a time. Since it takes
24  * about 400-500us for the EC to respond there is not a lot of
25  * point in tuning this. If the EC could respond faster then
26  * we could increase this so that might expect the preamble and
27  * message to occur in a single transaction. However, the maximum
28  * SPI transfer size is 256 bytes, so at 5MHz we need a response
29  * time of perhaps <320us (200 bytes / 1600 bits).
30  */
31 #define EC_MSG_PREAMBLE_COUNT		32
32 
33 /*
34  * Allow for a long time for the EC to respond.  We support i2c
35  * tunneling and support fairly long messages for the tunnel (249
36  * bytes long at the moment).  If we're talking to a 100 kHz device
37  * on the other end and need to transfer ~256 bytes, then we need:
38  *  10 us/bit * ~10 bits/byte * ~256 bytes = ~25ms
39  *
40  * We'll wait 8 times that to handle clock stretching and other
41  * paranoia.  Note that some battery gas gauge ICs claim to have a
42  * clock stretch of 144ms in rare situations.  That's incentive for
43  * not directly passing i2c through, but it's too late for that for
44  * existing hardware.
45  *
46  * It's pretty unlikely that we'll really see a 249 byte tunnel in
47  * anything other than testing.  If this was more common we might
48  * consider having slow commands like this require a GET_STATUS
49  * wait loop.  The 'flash write' command would be another candidate
50  * for this, clocking in at 2-3ms.
51  */
52 #define EC_MSG_DEADLINE_MS		200
53 
54 /*
55   * Time between raising the SPI chip select (for the end of a
56   * transaction) and dropping it again (for the next transaction).
57   * If we go too fast, the EC will miss the transaction. We know that we
58   * need at least 70 us with the 16 MHz STM32 EC, so go with 200 us to be
59   * safe.
60   */
61 #define EC_SPI_RECOVERY_TIME_NS	(200 * 1000)
62 
63 /**
64  * struct cros_ec_spi - information about a SPI-connected EC
65  *
66  * @spi: SPI device we are connected to
67  * @last_transfer_ns: time that we last finished a transfer.
68  * @start_of_msg_delay: used to set the delay_usecs on the spi_transfer that
69  *      is sent when we want to turn on CS at the start of a transaction.
70  * @end_of_msg_delay: used to set the delay_usecs on the spi_transfer that
71  *      is sent when we want to turn off CS at the end of a transaction.
72  * @high_pri_worker: Used to schedule high priority work.
73  */
74 struct cros_ec_spi {
75 	struct spi_device *spi;
76 	s64 last_transfer_ns;
77 	unsigned int start_of_msg_delay;
78 	unsigned int end_of_msg_delay;
79 	struct kthread_worker *high_pri_worker;
80 };
81 
82 typedef int (*cros_ec_xfer_fn_t) (struct cros_ec_device *ec_dev,
83 				  struct cros_ec_command *ec_msg);
84 
85 /**
86  * struct cros_ec_xfer_work_params - params for our high priority workers
87  *
88  * @work: The work_struct needed to queue work
89  * @fn: The function to use to transfer
90  * @ec_dev: ChromeOS EC device
91  * @ec_msg: Message to transfer
92  * @ret: The return value of the function
93  */
94 
95 struct cros_ec_xfer_work_params {
96 	struct kthread_work work;
97 	cros_ec_xfer_fn_t fn;
98 	struct cros_ec_device *ec_dev;
99 	struct cros_ec_command *ec_msg;
100 	int ret;
101 };
102 
103 static void debug_packet(struct device *dev, const char *name, u8 *ptr,
104 			 int len)
105 {
106 #ifdef DEBUG
107 	dev_dbg(dev, "%s: %*ph\n", name, len, ptr);
108 #endif
109 }
110 
111 static int terminate_request(struct cros_ec_device *ec_dev)
112 {
113 	struct cros_ec_spi *ec_spi = ec_dev->priv;
114 	struct spi_message msg;
115 	struct spi_transfer trans;
116 	int ret;
117 
118 	/*
119 	 * Turn off CS, possibly adding a delay to ensure the rising edge
120 	 * doesn't come too soon after the end of the data.
121 	 */
122 	spi_message_init(&msg);
123 	memset(&trans, 0, sizeof(trans));
124 	trans.delay.value = ec_spi->end_of_msg_delay;
125 	trans.delay.unit = SPI_DELAY_UNIT_USECS;
126 	spi_message_add_tail(&trans, &msg);
127 
128 	ret = spi_sync_locked(ec_spi->spi, &msg);
129 
130 	/* Reset end-of-response timer */
131 	ec_spi->last_transfer_ns = ktime_get_ns();
132 	if (ret < 0) {
133 		dev_err(ec_dev->dev,
134 			"cs-deassert spi transfer failed: %d\n",
135 			ret);
136 	}
137 
138 	return ret;
139 }
140 
141 /**
142  * receive_n_bytes - receive n bytes from the EC.
143  *
144  * Assumes buf is a pointer into the ec_dev->din buffer
145  *
146  * @ec_dev: ChromeOS EC device.
147  * @buf: Pointer to the buffer receiving the data.
148  * @n: Number of bytes received.
149  */
150 static int receive_n_bytes(struct cros_ec_device *ec_dev, u8 *buf, int n)
151 {
152 	struct cros_ec_spi *ec_spi = ec_dev->priv;
153 	struct spi_transfer trans;
154 	struct spi_message msg;
155 	int ret;
156 
157 	if (buf - ec_dev->din + n > ec_dev->din_size)
158 		return -EINVAL;
159 
160 	memset(&trans, 0, sizeof(trans));
161 	trans.cs_change = 1;
162 	trans.rx_buf = buf;
163 	trans.len = n;
164 
165 	spi_message_init(&msg);
166 	spi_message_add_tail(&trans, &msg);
167 	ret = spi_sync_locked(ec_spi->spi, &msg);
168 	if (ret < 0)
169 		dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
170 
171 	return ret;
172 }
173 
174 /**
175  * cros_ec_spi_receive_packet - Receive a packet from the EC.
176  *
177  * This function has two phases: reading the preamble bytes (since if we read
178  * data from the EC before it is ready to send, we just get preamble) and
179  * reading the actual message.
180  *
181  * The received data is placed into ec_dev->din.
182  *
183  * @ec_dev: ChromeOS EC device
184  * @need_len: Number of message bytes we need to read
185  */
186 static int cros_ec_spi_receive_packet(struct cros_ec_device *ec_dev,
187 				      int need_len)
188 {
189 	struct ec_host_response *response;
190 	u8 *ptr, *end;
191 	int ret;
192 	unsigned long deadline;
193 	int todo;
194 
195 	if (ec_dev->din_size < EC_MSG_PREAMBLE_COUNT)
196 		return -EINVAL;
197 
198 	/* Receive data until we see the header byte */
199 	deadline = jiffies + msecs_to_jiffies(EC_MSG_DEADLINE_MS);
200 	while (true) {
201 		unsigned long start_jiffies = jiffies;
202 
203 		ret = receive_n_bytes(ec_dev,
204 				      ec_dev->din,
205 				      EC_MSG_PREAMBLE_COUNT);
206 		if (ret < 0)
207 			return ret;
208 
209 		ptr = ec_dev->din;
210 		for (end = ptr + EC_MSG_PREAMBLE_COUNT; ptr != end; ptr++) {
211 			if (*ptr == EC_SPI_FRAME_START) {
212 				dev_dbg(ec_dev->dev, "msg found at %zd\n",
213 					ptr - ec_dev->din);
214 				break;
215 			}
216 		}
217 		if (ptr != end)
218 			break;
219 
220 		/*
221 		 * Use the time at the start of the loop as a timeout.  This
222 		 * gives us one last shot at getting the transfer and is useful
223 		 * in case we got context switched out for a while.
224 		 */
225 		if (time_after(start_jiffies, deadline)) {
226 			dev_warn(ec_dev->dev, "EC failed to respond in time\n");
227 			return -ETIMEDOUT;
228 		}
229 	}
230 
231 	/*
232 	 * ptr now points to the header byte. Copy any valid data to the
233 	 * start of our buffer
234 	 */
235 	todo = end - ++ptr;
236 	todo = min(todo, need_len);
237 	memmove(ec_dev->din, ptr, todo);
238 	ptr = ec_dev->din + todo;
239 	dev_dbg(ec_dev->dev, "need %d, got %d bytes from preamble\n",
240 		need_len, todo);
241 	need_len -= todo;
242 
243 	/* If the entire response struct wasn't read, get the rest of it. */
244 	if (todo < sizeof(*response)) {
245 		ret = receive_n_bytes(ec_dev, ptr, sizeof(*response) - todo);
246 		if (ret < 0)
247 			return -EBADMSG;
248 		ptr += (sizeof(*response) - todo);
249 		todo = sizeof(*response);
250 	}
251 
252 	response = (struct ec_host_response *)ec_dev->din;
253 
254 	/* Abort if data_len is too large. */
255 	if (response->data_len > ec_dev->din_size)
256 		return -EMSGSIZE;
257 
258 	/* Receive data until we have it all */
259 	while (need_len > 0) {
260 		/*
261 		 * We can't support transfers larger than the SPI FIFO size
262 		 * unless we have DMA. We don't have DMA on the ISP SPI ports
263 		 * for Exynos. We need a way of asking SPI driver for
264 		 * maximum-supported transfer size.
265 		 */
266 		todo = min(need_len, 256);
267 		dev_dbg(ec_dev->dev, "loop, todo=%d, need_len=%d, ptr=%zd\n",
268 			todo, need_len, ptr - ec_dev->din);
269 
270 		ret = receive_n_bytes(ec_dev, ptr, todo);
271 		if (ret < 0)
272 			return ret;
273 
274 		ptr += todo;
275 		need_len -= todo;
276 	}
277 
278 	dev_dbg(ec_dev->dev, "loop done, ptr=%zd\n", ptr - ec_dev->din);
279 
280 	return 0;
281 }
282 
283 /**
284  * cros_ec_spi_receive_response - Receive a response from the EC.
285  *
286  * This function has two phases: reading the preamble bytes (since if we read
287  * data from the EC before it is ready to send, we just get preamble) and
288  * reading the actual message.
289  *
290  * The received data is placed into ec_dev->din.
291  *
292  * @ec_dev: ChromeOS EC device
293  * @need_len: Number of message bytes we need to read
294  */
295 static int cros_ec_spi_receive_response(struct cros_ec_device *ec_dev,
296 					int need_len)
297 {
298 	u8 *ptr, *end;
299 	int ret;
300 	unsigned long deadline;
301 	int todo;
302 
303 	if (ec_dev->din_size < EC_MSG_PREAMBLE_COUNT)
304 		return -EINVAL;
305 
306 	/* Receive data until we see the header byte */
307 	deadline = jiffies + msecs_to_jiffies(EC_MSG_DEADLINE_MS);
308 	while (true) {
309 		unsigned long start_jiffies = jiffies;
310 
311 		ret = receive_n_bytes(ec_dev,
312 				      ec_dev->din,
313 				      EC_MSG_PREAMBLE_COUNT);
314 		if (ret < 0)
315 			return ret;
316 
317 		ptr = ec_dev->din;
318 		for (end = ptr + EC_MSG_PREAMBLE_COUNT; ptr != end; ptr++) {
319 			if (*ptr == EC_SPI_FRAME_START) {
320 				dev_dbg(ec_dev->dev, "msg found at %zd\n",
321 					ptr - ec_dev->din);
322 				break;
323 			}
324 		}
325 		if (ptr != end)
326 			break;
327 
328 		/*
329 		 * Use the time at the start of the loop as a timeout.  This
330 		 * gives us one last shot at getting the transfer and is useful
331 		 * in case we got context switched out for a while.
332 		 */
333 		if (time_after(start_jiffies, deadline)) {
334 			dev_warn(ec_dev->dev, "EC failed to respond in time\n");
335 			return -ETIMEDOUT;
336 		}
337 	}
338 
339 	/*
340 	 * ptr now points to the header byte. Copy any valid data to the
341 	 * start of our buffer
342 	 */
343 	todo = end - ++ptr;
344 	todo = min(todo, need_len);
345 	memmove(ec_dev->din, ptr, todo);
346 	ptr = ec_dev->din + todo;
347 	dev_dbg(ec_dev->dev, "need %d, got %d bytes from preamble\n",
348 		 need_len, todo);
349 	need_len -= todo;
350 
351 	/* Receive data until we have it all */
352 	while (need_len > 0) {
353 		/*
354 		 * We can't support transfers larger than the SPI FIFO size
355 		 * unless we have DMA. We don't have DMA on the ISP SPI ports
356 		 * for Exynos. We need a way of asking SPI driver for
357 		 * maximum-supported transfer size.
358 		 */
359 		todo = min(need_len, 256);
360 		dev_dbg(ec_dev->dev, "loop, todo=%d, need_len=%d, ptr=%zd\n",
361 			todo, need_len, ptr - ec_dev->din);
362 
363 		ret = receive_n_bytes(ec_dev, ptr, todo);
364 		if (ret < 0)
365 			return ret;
366 
367 		debug_packet(ec_dev->dev, "interim", ptr, todo);
368 		ptr += todo;
369 		need_len -= todo;
370 	}
371 
372 	dev_dbg(ec_dev->dev, "loop done, ptr=%zd\n", ptr - ec_dev->din);
373 
374 	return 0;
375 }
376 
377 /**
378  * do_cros_ec_pkt_xfer_spi - Transfer a packet over SPI and receive the reply
379  *
380  * @ec_dev: ChromeOS EC device
381  * @ec_msg: Message to transfer
382  */
383 static int do_cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
384 				   struct cros_ec_command *ec_msg)
385 {
386 	struct ec_host_response *response;
387 	struct cros_ec_spi *ec_spi = ec_dev->priv;
388 	struct spi_transfer trans, trans_delay;
389 	struct spi_message msg;
390 	int i, len;
391 	u8 *ptr;
392 	u8 *rx_buf;
393 	u8 sum;
394 	u8 rx_byte;
395 	int ret = 0, final_ret;
396 	unsigned long delay;
397 
398 	len = cros_ec_prepare_tx(ec_dev, ec_msg);
399 	if (len < 0)
400 		return len;
401 	dev_dbg(ec_dev->dev, "prepared, len=%d\n", len);
402 
403 	/* If it's too soon to do another transaction, wait */
404 	delay = ktime_get_ns() - ec_spi->last_transfer_ns;
405 	if (delay < EC_SPI_RECOVERY_TIME_NS)
406 		ndelay(EC_SPI_RECOVERY_TIME_NS - delay);
407 
408 	rx_buf = kzalloc(len, GFP_KERNEL);
409 	if (!rx_buf)
410 		return -ENOMEM;
411 
412 	spi_bus_lock(ec_spi->spi->controller);
413 
414 	/*
415 	 * Leave a gap between CS assertion and clocking of data to allow the
416 	 * EC time to wakeup.
417 	 */
418 	spi_message_init(&msg);
419 	if (ec_spi->start_of_msg_delay) {
420 		memset(&trans_delay, 0, sizeof(trans_delay));
421 		trans_delay.delay.value = ec_spi->start_of_msg_delay;
422 		trans_delay.delay.unit = SPI_DELAY_UNIT_USECS;
423 		spi_message_add_tail(&trans_delay, &msg);
424 	}
425 
426 	/* Transmit phase - send our message */
427 	memset(&trans, 0, sizeof(trans));
428 	trans.tx_buf = ec_dev->dout;
429 	trans.rx_buf = rx_buf;
430 	trans.len = len;
431 	trans.cs_change = 1;
432 	spi_message_add_tail(&trans, &msg);
433 	ret = spi_sync_locked(ec_spi->spi, &msg);
434 
435 	/* Get the response */
436 	if (!ret) {
437 		/* Verify that EC can process command */
438 		for (i = 0; i < len; i++) {
439 			rx_byte = rx_buf[i];
440 			/*
441 			 * Seeing the PAST_END, RX_BAD_DATA, or NOT_READY
442 			 * markers are all signs that the EC didn't fully
443 			 * receive our command. e.g., if the EC is flashing
444 			 * itself, it can't respond to any commands and instead
445 			 * clocks out EC_SPI_PAST_END from its SPI hardware
446 			 * buffer. Similar occurrences can happen if the AP is
447 			 * too slow to clock out data after asserting CS -- the
448 			 * EC will abort and fill its buffer with
449 			 * EC_SPI_RX_BAD_DATA.
450 			 *
451 			 * In all cases, these errors should be safe to retry.
452 			 * Report -EAGAIN and let the caller decide what to do
453 			 * about that.
454 			 */
455 			if (rx_byte == EC_SPI_PAST_END  ||
456 			    rx_byte == EC_SPI_RX_BAD_DATA ||
457 			    rx_byte == EC_SPI_NOT_READY) {
458 				ret = -EAGAIN;
459 				break;
460 			}
461 		}
462 	}
463 
464 	if (!ret)
465 		ret = cros_ec_spi_receive_packet(ec_dev,
466 				ec_msg->insize + sizeof(*response));
467 	else if (ret != -EAGAIN)
468 		dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
469 
470 	final_ret = terminate_request(ec_dev);
471 
472 	spi_bus_unlock(ec_spi->spi->controller);
473 
474 	if (!ret)
475 		ret = final_ret;
476 	if (ret < 0)
477 		goto exit;
478 
479 	ptr = ec_dev->din;
480 
481 	/* check response error code */
482 	response = (struct ec_host_response *)ptr;
483 	ec_msg->result = response->result;
484 
485 	ret = cros_ec_check_result(ec_dev, ec_msg);
486 	if (ret)
487 		goto exit;
488 
489 	len = response->data_len;
490 	sum = 0;
491 	if (len > ec_msg->insize) {
492 		dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)",
493 			len, ec_msg->insize);
494 		ret = -EMSGSIZE;
495 		goto exit;
496 	}
497 
498 	for (i = 0; i < sizeof(*response); i++)
499 		sum += ptr[i];
500 
501 	/* copy response packet payload and compute checksum */
502 	memcpy(ec_msg->data, ptr + sizeof(*response), len);
503 	for (i = 0; i < len; i++)
504 		sum += ec_msg->data[i];
505 
506 	if (sum) {
507 		dev_err(ec_dev->dev,
508 			"bad packet checksum, calculated %x\n",
509 			sum);
510 		ret = -EBADMSG;
511 		goto exit;
512 	}
513 
514 	ret = len;
515 exit:
516 	kfree(rx_buf);
517 	if (ec_msg->command == EC_CMD_REBOOT_EC)
518 		msleep(EC_REBOOT_DELAY_MS);
519 
520 	return ret;
521 }
522 
523 /**
524  * do_cros_ec_cmd_xfer_spi - Transfer a message over SPI and receive the reply
525  *
526  * @ec_dev: ChromeOS EC device
527  * @ec_msg: Message to transfer
528  */
529 static int do_cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
530 				   struct cros_ec_command *ec_msg)
531 {
532 	struct cros_ec_spi *ec_spi = ec_dev->priv;
533 	struct spi_transfer trans;
534 	struct spi_message msg;
535 	int i, len;
536 	u8 *ptr;
537 	u8 *rx_buf;
538 	u8 rx_byte;
539 	int sum;
540 	int ret = 0, final_ret;
541 	unsigned long delay;
542 
543 	len = cros_ec_prepare_tx(ec_dev, ec_msg);
544 	if (len < 0)
545 		return len;
546 	dev_dbg(ec_dev->dev, "prepared, len=%d\n", len);
547 
548 	/* If it's too soon to do another transaction, wait */
549 	delay = ktime_get_ns() - ec_spi->last_transfer_ns;
550 	if (delay < EC_SPI_RECOVERY_TIME_NS)
551 		ndelay(EC_SPI_RECOVERY_TIME_NS - delay);
552 
553 	rx_buf = kzalloc(len, GFP_KERNEL);
554 	if (!rx_buf)
555 		return -ENOMEM;
556 
557 	spi_bus_lock(ec_spi->spi->controller);
558 
559 	/* Transmit phase - send our message */
560 	debug_packet(ec_dev->dev, "out", ec_dev->dout, len);
561 	memset(&trans, 0, sizeof(trans));
562 	trans.tx_buf = ec_dev->dout;
563 	trans.rx_buf = rx_buf;
564 	trans.len = len;
565 	trans.cs_change = 1;
566 	spi_message_init(&msg);
567 	spi_message_add_tail(&trans, &msg);
568 	ret = spi_sync_locked(ec_spi->spi, &msg);
569 
570 	/* Get the response */
571 	if (!ret) {
572 		/* Verify that EC can process command */
573 		for (i = 0; i < len; i++) {
574 			rx_byte = rx_buf[i];
575 			/* See comments in cros_ec_pkt_xfer_spi() */
576 			if (rx_byte == EC_SPI_PAST_END  ||
577 			    rx_byte == EC_SPI_RX_BAD_DATA ||
578 			    rx_byte == EC_SPI_NOT_READY) {
579 				ret = -EAGAIN;
580 				break;
581 			}
582 		}
583 	}
584 
585 	if (!ret)
586 		ret = cros_ec_spi_receive_response(ec_dev,
587 				ec_msg->insize + EC_MSG_TX_PROTO_BYTES);
588 	else if (ret != -EAGAIN)
589 		dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
590 
591 	final_ret = terminate_request(ec_dev);
592 
593 	spi_bus_unlock(ec_spi->spi->controller);
594 
595 	if (!ret)
596 		ret = final_ret;
597 	if (ret < 0)
598 		goto exit;
599 
600 	ptr = ec_dev->din;
601 
602 	/* check response error code */
603 	ec_msg->result = ptr[0];
604 	ret = cros_ec_check_result(ec_dev, ec_msg);
605 	if (ret)
606 		goto exit;
607 
608 	len = ptr[1];
609 	sum = ptr[0] + ptr[1];
610 	if (len > ec_msg->insize) {
611 		dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)",
612 			len, ec_msg->insize);
613 		ret = -ENOSPC;
614 		goto exit;
615 	}
616 
617 	/* copy response packet payload and compute checksum */
618 	for (i = 0; i < len; i++) {
619 		sum += ptr[i + 2];
620 		if (ec_msg->insize)
621 			ec_msg->data[i] = ptr[i + 2];
622 	}
623 	sum &= 0xff;
624 
625 	debug_packet(ec_dev->dev, "in", ptr, len + 3);
626 
627 	if (sum != ptr[len + 2]) {
628 		dev_err(ec_dev->dev,
629 			"bad packet checksum, expected %02x, got %02x\n",
630 			sum, ptr[len + 2]);
631 		ret = -EBADMSG;
632 		goto exit;
633 	}
634 
635 	ret = len;
636 exit:
637 	kfree(rx_buf);
638 	if (ec_msg->command == EC_CMD_REBOOT_EC)
639 		msleep(EC_REBOOT_DELAY_MS);
640 
641 	return ret;
642 }
643 
644 static void cros_ec_xfer_high_pri_work(struct kthread_work *work)
645 {
646 	struct cros_ec_xfer_work_params *params;
647 
648 	params = container_of(work, struct cros_ec_xfer_work_params, work);
649 	params->ret = params->fn(params->ec_dev, params->ec_msg);
650 }
651 
652 static int cros_ec_xfer_high_pri(struct cros_ec_device *ec_dev,
653 				 struct cros_ec_command *ec_msg,
654 				 cros_ec_xfer_fn_t fn)
655 {
656 	struct cros_ec_spi *ec_spi = ec_dev->priv;
657 	struct cros_ec_xfer_work_params params = {
658 		.work = KTHREAD_WORK_INIT(params.work,
659 					  cros_ec_xfer_high_pri_work),
660 		.ec_dev = ec_dev,
661 		.ec_msg = ec_msg,
662 		.fn = fn,
663 	};
664 
665 	/*
666 	 * This looks a bit ridiculous.  Why do the work on a
667 	 * different thread if we're just going to block waiting for
668 	 * the thread to finish?  The key here is that the thread is
669 	 * running at high priority but the calling context might not
670 	 * be.  We need to be at high priority to avoid getting
671 	 * context switched out for too long and the EC giving up on
672 	 * the transfer.
673 	 */
674 	kthread_queue_work(ec_spi->high_pri_worker, &params.work);
675 	kthread_flush_work(&params.work);
676 
677 	return params.ret;
678 }
679 
680 static int cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
681 				struct cros_ec_command *ec_msg)
682 {
683 	return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_pkt_xfer_spi);
684 }
685 
686 static int cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
687 				struct cros_ec_command *ec_msg)
688 {
689 	return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_cmd_xfer_spi);
690 }
691 
692 static void cros_ec_spi_dt_probe(struct cros_ec_spi *ec_spi, struct device *dev)
693 {
694 	struct device_node *np = dev->of_node;
695 	u32 val;
696 	int ret;
697 
698 	ret = of_property_read_u32(np, "google,cros-ec-spi-pre-delay", &val);
699 	if (!ret)
700 		ec_spi->start_of_msg_delay = val;
701 
702 	ret = of_property_read_u32(np, "google,cros-ec-spi-msg-delay", &val);
703 	if (!ret)
704 		ec_spi->end_of_msg_delay = val;
705 }
706 
707 static void cros_ec_spi_high_pri_release(void *worker)
708 {
709 	kthread_destroy_worker(worker);
710 }
711 
712 static int cros_ec_spi_devm_high_pri_alloc(struct device *dev,
713 					   struct cros_ec_spi *ec_spi)
714 {
715 	int err;
716 
717 	ec_spi->high_pri_worker =
718 		kthread_create_worker(0, "cros_ec_spi_high_pri");
719 
720 	if (IS_ERR(ec_spi->high_pri_worker)) {
721 		err = PTR_ERR(ec_spi->high_pri_worker);
722 		dev_err(dev, "Can't create cros_ec high pri worker: %d\n", err);
723 		return err;
724 	}
725 
726 	err = devm_add_action_or_reset(dev, cros_ec_spi_high_pri_release,
727 				       ec_spi->high_pri_worker);
728 	if (err)
729 		return err;
730 
731 	sched_set_fifo(ec_spi->high_pri_worker->task);
732 
733 	return 0;
734 }
735 
736 static int cros_ec_spi_probe(struct spi_device *spi)
737 {
738 	struct device *dev = &spi->dev;
739 	struct cros_ec_device *ec_dev;
740 	struct cros_ec_spi *ec_spi;
741 	int err;
742 
743 	spi->rt = true;
744 	err = spi_setup(spi);
745 	if (err < 0)
746 		return err;
747 
748 	ec_spi = devm_kzalloc(dev, sizeof(*ec_spi), GFP_KERNEL);
749 	if (ec_spi == NULL)
750 		return -ENOMEM;
751 	ec_spi->spi = spi;
752 	ec_dev = devm_kzalloc(dev, sizeof(*ec_dev), GFP_KERNEL);
753 	if (!ec_dev)
754 		return -ENOMEM;
755 
756 	/* Check for any DT properties */
757 	cros_ec_spi_dt_probe(ec_spi, dev);
758 
759 	spi_set_drvdata(spi, ec_dev);
760 	ec_dev->dev = dev;
761 	ec_dev->priv = ec_spi;
762 	ec_dev->irq = spi->irq;
763 	ec_dev->cmd_xfer = cros_ec_cmd_xfer_spi;
764 	ec_dev->pkt_xfer = cros_ec_pkt_xfer_spi;
765 	ec_dev->phys_name = dev_name(&ec_spi->spi->dev);
766 	ec_dev->din_size = EC_MSG_PREAMBLE_COUNT +
767 			   sizeof(struct ec_host_response) +
768 			   sizeof(struct ec_response_get_protocol_info);
769 	ec_dev->dout_size = sizeof(struct ec_host_request);
770 
771 	ec_spi->last_transfer_ns = ktime_get_ns();
772 
773 	err = cros_ec_spi_devm_high_pri_alloc(dev, ec_spi);
774 	if (err)
775 		return err;
776 
777 	err = cros_ec_register(ec_dev);
778 	if (err) {
779 		dev_err(dev, "cannot register EC\n");
780 		return err;
781 	}
782 
783 	device_init_wakeup(&spi->dev, true);
784 
785 	return 0;
786 }
787 
788 static void cros_ec_spi_remove(struct spi_device *spi)
789 {
790 	struct cros_ec_device *ec_dev = spi_get_drvdata(spi);
791 
792 	cros_ec_unregister(ec_dev);
793 }
794 
795 #ifdef CONFIG_PM_SLEEP
796 static int cros_ec_spi_suspend(struct device *dev)
797 {
798 	struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
799 
800 	return cros_ec_suspend(ec_dev);
801 }
802 
803 static int cros_ec_spi_resume(struct device *dev)
804 {
805 	struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
806 
807 	return cros_ec_resume(ec_dev);
808 }
809 #endif
810 
811 static SIMPLE_DEV_PM_OPS(cros_ec_spi_pm_ops, cros_ec_spi_suspend,
812 			 cros_ec_spi_resume);
813 
814 static const struct of_device_id cros_ec_spi_of_match[] = {
815 	{ .compatible = "google,cros-ec-spi", },
816 	{ /* sentinel */ },
817 };
818 MODULE_DEVICE_TABLE(of, cros_ec_spi_of_match);
819 
820 static const struct spi_device_id cros_ec_spi_id[] = {
821 	{ "cros-ec-spi", 0 },
822 	{ }
823 };
824 MODULE_DEVICE_TABLE(spi, cros_ec_spi_id);
825 
826 static struct spi_driver cros_ec_driver_spi = {
827 	.driver	= {
828 		.name	= "cros-ec-spi",
829 		.of_match_table = cros_ec_spi_of_match,
830 		.pm	= &cros_ec_spi_pm_ops,
831 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
832 	},
833 	.probe		= cros_ec_spi_probe,
834 	.remove		= cros_ec_spi_remove,
835 	.id_table	= cros_ec_spi_id,
836 };
837 
838 module_spi_driver(cros_ec_driver_spi);
839 
840 MODULE_LICENSE("GPL v2");
841 MODULE_DESCRIPTION("SPI interface for ChromeOS Embedded Controller");
842