xref: /linux/drivers/platform/chrome/cros_ec_spi.c (revision 1517d90cfafe0f95fd7863d04e1596f7beb7dfa8)
1 // SPDX-License-Identifier: GPL-2.0
2 // SPI interface for ChromeOS Embedded Controller
3 //
4 // Copyright (C) 2012 Google, Inc
5 
6 #include <linux/delay.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/of.h>
10 #include <linux/platform_data/cros_ec_commands.h>
11 #include <linux/platform_data/cros_ec_proto.h>
12 #include <linux/platform_device.h>
13 #include <linux/slab.h>
14 #include <linux/spi/spi.h>
15 #include <uapi/linux/sched/types.h>
16 
17 /* The header byte, which follows the preamble */
18 #define EC_MSG_HEADER			0xec
19 
20 /*
21  * Number of EC preamble bytes we read at a time. Since it takes
22  * about 400-500us for the EC to respond there is not a lot of
23  * point in tuning this. If the EC could respond faster then
24  * we could increase this so that might expect the preamble and
25  * message to occur in a single transaction. However, the maximum
26  * SPI transfer size is 256 bytes, so at 5MHz we need a response
27  * time of perhaps <320us (200 bytes / 1600 bits).
28  */
29 #define EC_MSG_PREAMBLE_COUNT		32
30 
31 /*
32  * Allow for a long time for the EC to respond.  We support i2c
33  * tunneling and support fairly long messages for the tunnel (249
34  * bytes long at the moment).  If we're talking to a 100 kHz device
35  * on the other end and need to transfer ~256 bytes, then we need:
36  *  10 us/bit * ~10 bits/byte * ~256 bytes = ~25ms
37  *
38  * We'll wait 8 times that to handle clock stretching and other
39  * paranoia.  Note that some battery gas gauge ICs claim to have a
40  * clock stretch of 144ms in rare situations.  That's incentive for
41  * not directly passing i2c through, but it's too late for that for
42  * existing hardware.
43  *
44  * It's pretty unlikely that we'll really see a 249 byte tunnel in
45  * anything other than testing.  If this was more common we might
46  * consider having slow commands like this require a GET_STATUS
47  * wait loop.  The 'flash write' command would be another candidate
48  * for this, clocking in at 2-3ms.
49  */
50 #define EC_MSG_DEADLINE_MS		200
51 
52 /*
53   * Time between raising the SPI chip select (for the end of a
54   * transaction) and dropping it again (for the next transaction).
55   * If we go too fast, the EC will miss the transaction. We know that we
56   * need at least 70 us with the 16 MHz STM32 EC, so go with 200 us to be
57   * safe.
58   */
59 #define EC_SPI_RECOVERY_TIME_NS	(200 * 1000)
60 
61 /**
62  * struct cros_ec_spi - information about a SPI-connected EC
63  *
64  * @spi: SPI device we are connected to
65  * @last_transfer_ns: time that we last finished a transfer.
66  * @start_of_msg_delay: used to set the delay_usecs on the spi_transfer that
67  *      is sent when we want to turn on CS at the start of a transaction.
68  * @end_of_msg_delay: used to set the delay_usecs on the spi_transfer that
69  *      is sent when we want to turn off CS at the end of a transaction.
70  * @high_pri_worker: Used to schedule high priority work.
71  */
72 struct cros_ec_spi {
73 	struct spi_device *spi;
74 	s64 last_transfer_ns;
75 	unsigned int start_of_msg_delay;
76 	unsigned int end_of_msg_delay;
77 	struct kthread_worker *high_pri_worker;
78 };
79 
80 typedef int (*cros_ec_xfer_fn_t) (struct cros_ec_device *ec_dev,
81 				  struct cros_ec_command *ec_msg);
82 
83 /**
84  * struct cros_ec_xfer_work_params - params for our high priority workers
85  *
86  * @work: The work_struct needed to queue work
87  * @fn: The function to use to transfer
88  * @ec_dev: ChromeOS EC device
89  * @ec_msg: Message to transfer
90  * @ret: The return value of the function
91  */
92 
93 struct cros_ec_xfer_work_params {
94 	struct kthread_work work;
95 	cros_ec_xfer_fn_t fn;
96 	struct cros_ec_device *ec_dev;
97 	struct cros_ec_command *ec_msg;
98 	int ret;
99 };
100 
101 static void debug_packet(struct device *dev, const char *name, u8 *ptr,
102 			 int len)
103 {
104 #ifdef DEBUG
105 	int i;
106 
107 	dev_dbg(dev, "%s: ", name);
108 	for (i = 0; i < len; i++)
109 		pr_cont(" %02x", ptr[i]);
110 
111 	pr_cont("\n");
112 #endif
113 }
114 
115 static int terminate_request(struct cros_ec_device *ec_dev)
116 {
117 	struct cros_ec_spi *ec_spi = ec_dev->priv;
118 	struct spi_message msg;
119 	struct spi_transfer trans;
120 	int ret;
121 
122 	/*
123 	 * Turn off CS, possibly adding a delay to ensure the rising edge
124 	 * doesn't come too soon after the end of the data.
125 	 */
126 	spi_message_init(&msg);
127 	memset(&trans, 0, sizeof(trans));
128 	trans.delay_usecs = ec_spi->end_of_msg_delay;
129 	spi_message_add_tail(&trans, &msg);
130 
131 	ret = spi_sync_locked(ec_spi->spi, &msg);
132 
133 	/* Reset end-of-response timer */
134 	ec_spi->last_transfer_ns = ktime_get_ns();
135 	if (ret < 0) {
136 		dev_err(ec_dev->dev,
137 			"cs-deassert spi transfer failed: %d\n",
138 			ret);
139 	}
140 
141 	return ret;
142 }
143 
144 /**
145  * receive_n_bytes - receive n bytes from the EC.
146  *
147  * Assumes buf is a pointer into the ec_dev->din buffer
148  */
149 static int receive_n_bytes(struct cros_ec_device *ec_dev, u8 *buf, int n)
150 {
151 	struct cros_ec_spi *ec_spi = ec_dev->priv;
152 	struct spi_transfer trans;
153 	struct spi_message msg;
154 	int ret;
155 
156 	BUG_ON(buf - ec_dev->din + n > ec_dev->din_size);
157 
158 	memset(&trans, 0, sizeof(trans));
159 	trans.cs_change = 1;
160 	trans.rx_buf = buf;
161 	trans.len = n;
162 
163 	spi_message_init(&msg);
164 	spi_message_add_tail(&trans, &msg);
165 	ret = spi_sync_locked(ec_spi->spi, &msg);
166 	if (ret < 0)
167 		dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
168 
169 	return ret;
170 }
171 
172 /**
173  * cros_ec_spi_receive_packet - Receive a packet from the EC.
174  *
175  * This function has two phases: reading the preamble bytes (since if we read
176  * data from the EC before it is ready to send, we just get preamble) and
177  * reading the actual message.
178  *
179  * The received data is placed into ec_dev->din.
180  *
181  * @ec_dev: ChromeOS EC device
182  * @need_len: Number of message bytes we need to read
183  */
184 static int cros_ec_spi_receive_packet(struct cros_ec_device *ec_dev,
185 				      int need_len)
186 {
187 	struct ec_host_response *response;
188 	u8 *ptr, *end;
189 	int ret;
190 	unsigned long deadline;
191 	int todo;
192 
193 	BUG_ON(ec_dev->din_size < EC_MSG_PREAMBLE_COUNT);
194 
195 	/* Receive data until we see the header byte */
196 	deadline = jiffies + msecs_to_jiffies(EC_MSG_DEADLINE_MS);
197 	while (true) {
198 		unsigned long start_jiffies = jiffies;
199 
200 		ret = receive_n_bytes(ec_dev,
201 				      ec_dev->din,
202 				      EC_MSG_PREAMBLE_COUNT);
203 		if (ret < 0)
204 			return ret;
205 
206 		ptr = ec_dev->din;
207 		for (end = ptr + EC_MSG_PREAMBLE_COUNT; ptr != end; ptr++) {
208 			if (*ptr == EC_SPI_FRAME_START) {
209 				dev_dbg(ec_dev->dev, "msg found at %zd\n",
210 					ptr - ec_dev->din);
211 				break;
212 			}
213 		}
214 		if (ptr != end)
215 			break;
216 
217 		/*
218 		 * Use the time at the start of the loop as a timeout.  This
219 		 * gives us one last shot at getting the transfer and is useful
220 		 * in case we got context switched out for a while.
221 		 */
222 		if (time_after(start_jiffies, deadline)) {
223 			dev_warn(ec_dev->dev, "EC failed to respond in time\n");
224 			return -ETIMEDOUT;
225 		}
226 	}
227 
228 	/*
229 	 * ptr now points to the header byte. Copy any valid data to the
230 	 * start of our buffer
231 	 */
232 	todo = end - ++ptr;
233 	BUG_ON(todo < 0 || todo > ec_dev->din_size);
234 	todo = min(todo, need_len);
235 	memmove(ec_dev->din, ptr, todo);
236 	ptr = ec_dev->din + todo;
237 	dev_dbg(ec_dev->dev, "need %d, got %d bytes from preamble\n",
238 		need_len, todo);
239 	need_len -= todo;
240 
241 	/* If the entire response struct wasn't read, get the rest of it. */
242 	if (todo < sizeof(*response)) {
243 		ret = receive_n_bytes(ec_dev, ptr, sizeof(*response) - todo);
244 		if (ret < 0)
245 			return -EBADMSG;
246 		ptr += (sizeof(*response) - todo);
247 		todo = sizeof(*response);
248 	}
249 
250 	response = (struct ec_host_response *)ec_dev->din;
251 
252 	/* Abort if data_len is too large. */
253 	if (response->data_len > ec_dev->din_size)
254 		return -EMSGSIZE;
255 
256 	/* Receive data until we have it all */
257 	while (need_len > 0) {
258 		/*
259 		 * We can't support transfers larger than the SPI FIFO size
260 		 * unless we have DMA. We don't have DMA on the ISP SPI ports
261 		 * for Exynos. We need a way of asking SPI driver for
262 		 * maximum-supported transfer size.
263 		 */
264 		todo = min(need_len, 256);
265 		dev_dbg(ec_dev->dev, "loop, todo=%d, need_len=%d, ptr=%zd\n",
266 			todo, need_len, ptr - ec_dev->din);
267 
268 		ret = receive_n_bytes(ec_dev, ptr, todo);
269 		if (ret < 0)
270 			return ret;
271 
272 		ptr += todo;
273 		need_len -= todo;
274 	}
275 
276 	dev_dbg(ec_dev->dev, "loop done, ptr=%zd\n", ptr - ec_dev->din);
277 
278 	return 0;
279 }
280 
281 /**
282  * cros_ec_spi_receive_response - Receive a response from the EC.
283  *
284  * This function has two phases: reading the preamble bytes (since if we read
285  * data from the EC before it is ready to send, we just get preamble) and
286  * reading the actual message.
287  *
288  * The received data is placed into ec_dev->din.
289  *
290  * @ec_dev: ChromeOS EC device
291  * @need_len: Number of message bytes we need to read
292  */
293 static int cros_ec_spi_receive_response(struct cros_ec_device *ec_dev,
294 					int need_len)
295 {
296 	u8 *ptr, *end;
297 	int ret;
298 	unsigned long deadline;
299 	int todo;
300 
301 	BUG_ON(ec_dev->din_size < EC_MSG_PREAMBLE_COUNT);
302 
303 	/* Receive data until we see the header byte */
304 	deadline = jiffies + msecs_to_jiffies(EC_MSG_DEADLINE_MS);
305 	while (true) {
306 		unsigned long start_jiffies = jiffies;
307 
308 		ret = receive_n_bytes(ec_dev,
309 				      ec_dev->din,
310 				      EC_MSG_PREAMBLE_COUNT);
311 		if (ret < 0)
312 			return ret;
313 
314 		ptr = ec_dev->din;
315 		for (end = ptr + EC_MSG_PREAMBLE_COUNT; ptr != end; ptr++) {
316 			if (*ptr == EC_SPI_FRAME_START) {
317 				dev_dbg(ec_dev->dev, "msg found at %zd\n",
318 					ptr - ec_dev->din);
319 				break;
320 			}
321 		}
322 		if (ptr != end)
323 			break;
324 
325 		/*
326 		 * Use the time at the start of the loop as a timeout.  This
327 		 * gives us one last shot at getting the transfer and is useful
328 		 * in case we got context switched out for a while.
329 		 */
330 		if (time_after(start_jiffies, deadline)) {
331 			dev_warn(ec_dev->dev, "EC failed to respond in time\n");
332 			return -ETIMEDOUT;
333 		}
334 	}
335 
336 	/*
337 	 * ptr now points to the header byte. Copy any valid data to the
338 	 * start of our buffer
339 	 */
340 	todo = end - ++ptr;
341 	BUG_ON(todo < 0 || todo > ec_dev->din_size);
342 	todo = min(todo, need_len);
343 	memmove(ec_dev->din, ptr, todo);
344 	ptr = ec_dev->din + todo;
345 	dev_dbg(ec_dev->dev, "need %d, got %d bytes from preamble\n",
346 		 need_len, todo);
347 	need_len -= todo;
348 
349 	/* Receive data until we have it all */
350 	while (need_len > 0) {
351 		/*
352 		 * We can't support transfers larger than the SPI FIFO size
353 		 * unless we have DMA. We don't have DMA on the ISP SPI ports
354 		 * for Exynos. We need a way of asking SPI driver for
355 		 * maximum-supported transfer size.
356 		 */
357 		todo = min(need_len, 256);
358 		dev_dbg(ec_dev->dev, "loop, todo=%d, need_len=%d, ptr=%zd\n",
359 			todo, need_len, ptr - ec_dev->din);
360 
361 		ret = receive_n_bytes(ec_dev, ptr, todo);
362 		if (ret < 0)
363 			return ret;
364 
365 		debug_packet(ec_dev->dev, "interim", ptr, todo);
366 		ptr += todo;
367 		need_len -= todo;
368 	}
369 
370 	dev_dbg(ec_dev->dev, "loop done, ptr=%zd\n", ptr - ec_dev->din);
371 
372 	return 0;
373 }
374 
375 /**
376  * do_cros_ec_pkt_xfer_spi - Transfer a packet over SPI and receive the reply
377  *
378  * @ec_dev: ChromeOS EC device
379  * @ec_msg: Message to transfer
380  */
381 static int do_cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
382 				   struct cros_ec_command *ec_msg)
383 {
384 	struct ec_host_response *response;
385 	struct cros_ec_spi *ec_spi = ec_dev->priv;
386 	struct spi_transfer trans, trans_delay;
387 	struct spi_message msg;
388 	int i, len;
389 	u8 *ptr;
390 	u8 *rx_buf;
391 	u8 sum;
392 	u8 rx_byte;
393 	int ret = 0, final_ret;
394 	unsigned long delay;
395 
396 	len = cros_ec_prepare_tx(ec_dev, ec_msg);
397 	dev_dbg(ec_dev->dev, "prepared, len=%d\n", len);
398 
399 	/* If it's too soon to do another transaction, wait */
400 	delay = ktime_get_ns() - ec_spi->last_transfer_ns;
401 	if (delay < EC_SPI_RECOVERY_TIME_NS)
402 		ndelay(EC_SPI_RECOVERY_TIME_NS - delay);
403 
404 	rx_buf = kzalloc(len, GFP_KERNEL);
405 	if (!rx_buf)
406 		return -ENOMEM;
407 
408 	spi_bus_lock(ec_spi->spi->master);
409 
410 	/*
411 	 * Leave a gap between CS assertion and clocking of data to allow the
412 	 * EC time to wakeup.
413 	 */
414 	spi_message_init(&msg);
415 	if (ec_spi->start_of_msg_delay) {
416 		memset(&trans_delay, 0, sizeof(trans_delay));
417 		trans_delay.delay_usecs = ec_spi->start_of_msg_delay;
418 		spi_message_add_tail(&trans_delay, &msg);
419 	}
420 
421 	/* Transmit phase - send our message */
422 	memset(&trans, 0, sizeof(trans));
423 	trans.tx_buf = ec_dev->dout;
424 	trans.rx_buf = rx_buf;
425 	trans.len = len;
426 	trans.cs_change = 1;
427 	spi_message_add_tail(&trans, &msg);
428 	ret = spi_sync_locked(ec_spi->spi, &msg);
429 
430 	/* Get the response */
431 	if (!ret) {
432 		/* Verify that EC can process command */
433 		for (i = 0; i < len; i++) {
434 			rx_byte = rx_buf[i];
435 			/*
436 			 * Seeing the PAST_END, RX_BAD_DATA, or NOT_READY
437 			 * markers are all signs that the EC didn't fully
438 			 * receive our command. e.g., if the EC is flashing
439 			 * itself, it can't respond to any commands and instead
440 			 * clocks out EC_SPI_PAST_END from its SPI hardware
441 			 * buffer. Similar occurrences can happen if the AP is
442 			 * too slow to clock out data after asserting CS -- the
443 			 * EC will abort and fill its buffer with
444 			 * EC_SPI_RX_BAD_DATA.
445 			 *
446 			 * In all cases, these errors should be safe to retry.
447 			 * Report -EAGAIN and let the caller decide what to do
448 			 * about that.
449 			 */
450 			if (rx_byte == EC_SPI_PAST_END  ||
451 			    rx_byte == EC_SPI_RX_BAD_DATA ||
452 			    rx_byte == EC_SPI_NOT_READY) {
453 				ret = -EAGAIN;
454 				break;
455 			}
456 		}
457 	}
458 
459 	if (!ret)
460 		ret = cros_ec_spi_receive_packet(ec_dev,
461 				ec_msg->insize + sizeof(*response));
462 	else if (ret != -EAGAIN)
463 		dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
464 
465 	final_ret = terminate_request(ec_dev);
466 
467 	spi_bus_unlock(ec_spi->spi->master);
468 
469 	if (!ret)
470 		ret = final_ret;
471 	if (ret < 0)
472 		goto exit;
473 
474 	ptr = ec_dev->din;
475 
476 	/* check response error code */
477 	response = (struct ec_host_response *)ptr;
478 	ec_msg->result = response->result;
479 
480 	ret = cros_ec_check_result(ec_dev, ec_msg);
481 	if (ret)
482 		goto exit;
483 
484 	len = response->data_len;
485 	sum = 0;
486 	if (len > ec_msg->insize) {
487 		dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)",
488 			len, ec_msg->insize);
489 		ret = -EMSGSIZE;
490 		goto exit;
491 	}
492 
493 	for (i = 0; i < sizeof(*response); i++)
494 		sum += ptr[i];
495 
496 	/* copy response packet payload and compute checksum */
497 	memcpy(ec_msg->data, ptr + sizeof(*response), len);
498 	for (i = 0; i < len; i++)
499 		sum += ec_msg->data[i];
500 
501 	if (sum) {
502 		dev_err(ec_dev->dev,
503 			"bad packet checksum, calculated %x\n",
504 			sum);
505 		ret = -EBADMSG;
506 		goto exit;
507 	}
508 
509 	ret = len;
510 exit:
511 	kfree(rx_buf);
512 	if (ec_msg->command == EC_CMD_REBOOT_EC)
513 		msleep(EC_REBOOT_DELAY_MS);
514 
515 	return ret;
516 }
517 
518 /**
519  * do_cros_ec_cmd_xfer_spi - Transfer a message over SPI and receive the reply
520  *
521  * @ec_dev: ChromeOS EC device
522  * @ec_msg: Message to transfer
523  */
524 static int do_cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
525 				   struct cros_ec_command *ec_msg)
526 {
527 	struct cros_ec_spi *ec_spi = ec_dev->priv;
528 	struct spi_transfer trans;
529 	struct spi_message msg;
530 	int i, len;
531 	u8 *ptr;
532 	u8 *rx_buf;
533 	u8 rx_byte;
534 	int sum;
535 	int ret = 0, final_ret;
536 	unsigned long delay;
537 
538 	len = cros_ec_prepare_tx(ec_dev, ec_msg);
539 	dev_dbg(ec_dev->dev, "prepared, len=%d\n", len);
540 
541 	/* If it's too soon to do another transaction, wait */
542 	delay = ktime_get_ns() - ec_spi->last_transfer_ns;
543 	if (delay < EC_SPI_RECOVERY_TIME_NS)
544 		ndelay(EC_SPI_RECOVERY_TIME_NS - delay);
545 
546 	rx_buf = kzalloc(len, GFP_KERNEL);
547 	if (!rx_buf)
548 		return -ENOMEM;
549 
550 	spi_bus_lock(ec_spi->spi->master);
551 
552 	/* Transmit phase - send our message */
553 	debug_packet(ec_dev->dev, "out", ec_dev->dout, len);
554 	memset(&trans, 0, sizeof(trans));
555 	trans.tx_buf = ec_dev->dout;
556 	trans.rx_buf = rx_buf;
557 	trans.len = len;
558 	trans.cs_change = 1;
559 	spi_message_init(&msg);
560 	spi_message_add_tail(&trans, &msg);
561 	ret = spi_sync_locked(ec_spi->spi, &msg);
562 
563 	/* Get the response */
564 	if (!ret) {
565 		/* Verify that EC can process command */
566 		for (i = 0; i < len; i++) {
567 			rx_byte = rx_buf[i];
568 			/* See comments in cros_ec_pkt_xfer_spi() */
569 			if (rx_byte == EC_SPI_PAST_END  ||
570 			    rx_byte == EC_SPI_RX_BAD_DATA ||
571 			    rx_byte == EC_SPI_NOT_READY) {
572 				ret = -EAGAIN;
573 				break;
574 			}
575 		}
576 	}
577 
578 	if (!ret)
579 		ret = cros_ec_spi_receive_response(ec_dev,
580 				ec_msg->insize + EC_MSG_TX_PROTO_BYTES);
581 	else if (ret != -EAGAIN)
582 		dev_err(ec_dev->dev, "spi transfer failed: %d\n", ret);
583 
584 	final_ret = terminate_request(ec_dev);
585 
586 	spi_bus_unlock(ec_spi->spi->master);
587 
588 	if (!ret)
589 		ret = final_ret;
590 	if (ret < 0)
591 		goto exit;
592 
593 	ptr = ec_dev->din;
594 
595 	/* check response error code */
596 	ec_msg->result = ptr[0];
597 	ret = cros_ec_check_result(ec_dev, ec_msg);
598 	if (ret)
599 		goto exit;
600 
601 	len = ptr[1];
602 	sum = ptr[0] + ptr[1];
603 	if (len > ec_msg->insize) {
604 		dev_err(ec_dev->dev, "packet too long (%d bytes, expected %d)",
605 			len, ec_msg->insize);
606 		ret = -ENOSPC;
607 		goto exit;
608 	}
609 
610 	/* copy response packet payload and compute checksum */
611 	for (i = 0; i < len; i++) {
612 		sum += ptr[i + 2];
613 		if (ec_msg->insize)
614 			ec_msg->data[i] = ptr[i + 2];
615 	}
616 	sum &= 0xff;
617 
618 	debug_packet(ec_dev->dev, "in", ptr, len + 3);
619 
620 	if (sum != ptr[len + 2]) {
621 		dev_err(ec_dev->dev,
622 			"bad packet checksum, expected %02x, got %02x\n",
623 			sum, ptr[len + 2]);
624 		ret = -EBADMSG;
625 		goto exit;
626 	}
627 
628 	ret = len;
629 exit:
630 	kfree(rx_buf);
631 	if (ec_msg->command == EC_CMD_REBOOT_EC)
632 		msleep(EC_REBOOT_DELAY_MS);
633 
634 	return ret;
635 }
636 
637 static void cros_ec_xfer_high_pri_work(struct kthread_work *work)
638 {
639 	struct cros_ec_xfer_work_params *params;
640 
641 	params = container_of(work, struct cros_ec_xfer_work_params, work);
642 	params->ret = params->fn(params->ec_dev, params->ec_msg);
643 }
644 
645 static int cros_ec_xfer_high_pri(struct cros_ec_device *ec_dev,
646 				 struct cros_ec_command *ec_msg,
647 				 cros_ec_xfer_fn_t fn)
648 {
649 	struct cros_ec_spi *ec_spi = ec_dev->priv;
650 	struct cros_ec_xfer_work_params params = {
651 		.work = KTHREAD_WORK_INIT(params.work,
652 					  cros_ec_xfer_high_pri_work),
653 		.ec_dev = ec_dev,
654 		.ec_msg = ec_msg,
655 		.fn = fn,
656 	};
657 
658 	/*
659 	 * This looks a bit ridiculous.  Why do the work on a
660 	 * different thread if we're just going to block waiting for
661 	 * the thread to finish?  The key here is that the thread is
662 	 * running at high priority but the calling context might not
663 	 * be.  We need to be at high priority to avoid getting
664 	 * context switched out for too long and the EC giving up on
665 	 * the transfer.
666 	 */
667 	kthread_queue_work(ec_spi->high_pri_worker, &params.work);
668 	kthread_flush_work(&params.work);
669 
670 	return params.ret;
671 }
672 
673 static int cros_ec_pkt_xfer_spi(struct cros_ec_device *ec_dev,
674 				struct cros_ec_command *ec_msg)
675 {
676 	return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_pkt_xfer_spi);
677 }
678 
679 static int cros_ec_cmd_xfer_spi(struct cros_ec_device *ec_dev,
680 				struct cros_ec_command *ec_msg)
681 {
682 	return cros_ec_xfer_high_pri(ec_dev, ec_msg, do_cros_ec_cmd_xfer_spi);
683 }
684 
685 static void cros_ec_spi_dt_probe(struct cros_ec_spi *ec_spi, struct device *dev)
686 {
687 	struct device_node *np = dev->of_node;
688 	u32 val;
689 	int ret;
690 
691 	ret = of_property_read_u32(np, "google,cros-ec-spi-pre-delay", &val);
692 	if (!ret)
693 		ec_spi->start_of_msg_delay = val;
694 
695 	ret = of_property_read_u32(np, "google,cros-ec-spi-msg-delay", &val);
696 	if (!ret)
697 		ec_spi->end_of_msg_delay = val;
698 }
699 
700 static void cros_ec_spi_high_pri_release(void *worker)
701 {
702 	kthread_destroy_worker(worker);
703 }
704 
705 static int cros_ec_spi_devm_high_pri_alloc(struct device *dev,
706 					   struct cros_ec_spi *ec_spi)
707 {
708 	struct sched_param sched_priority = {
709 		.sched_priority = MAX_RT_PRIO / 2,
710 	};
711 	int err;
712 
713 	ec_spi->high_pri_worker =
714 		kthread_create_worker(0, "cros_ec_spi_high_pri");
715 
716 	if (IS_ERR(ec_spi->high_pri_worker)) {
717 		err = PTR_ERR(ec_spi->high_pri_worker);
718 		dev_err(dev, "Can't create cros_ec high pri worker: %d\n", err);
719 		return err;
720 	}
721 
722 	err = devm_add_action_or_reset(dev, cros_ec_spi_high_pri_release,
723 				       ec_spi->high_pri_worker);
724 	if (err)
725 		return err;
726 
727 	err = sched_setscheduler_nocheck(ec_spi->high_pri_worker->task,
728 					 SCHED_FIFO, &sched_priority);
729 	if (err)
730 		dev_err(dev, "Can't set cros_ec high pri priority: %d\n", err);
731 	return err;
732 }
733 
734 static int cros_ec_spi_probe(struct spi_device *spi)
735 {
736 	struct device *dev = &spi->dev;
737 	struct cros_ec_device *ec_dev;
738 	struct cros_ec_spi *ec_spi;
739 	int err;
740 
741 	spi->bits_per_word = 8;
742 	spi->mode = SPI_MODE_0;
743 	spi->rt = true;
744 	err = spi_setup(spi);
745 	if (err < 0)
746 		return err;
747 
748 	ec_spi = devm_kzalloc(dev, sizeof(*ec_spi), GFP_KERNEL);
749 	if (ec_spi == NULL)
750 		return -ENOMEM;
751 	ec_spi->spi = spi;
752 	ec_dev = devm_kzalloc(dev, sizeof(*ec_dev), GFP_KERNEL);
753 	if (!ec_dev)
754 		return -ENOMEM;
755 
756 	/* Check for any DT properties */
757 	cros_ec_spi_dt_probe(ec_spi, dev);
758 
759 	spi_set_drvdata(spi, ec_dev);
760 	ec_dev->dev = dev;
761 	ec_dev->priv = ec_spi;
762 	ec_dev->irq = spi->irq;
763 	ec_dev->cmd_xfer = cros_ec_cmd_xfer_spi;
764 	ec_dev->pkt_xfer = cros_ec_pkt_xfer_spi;
765 	ec_dev->phys_name = dev_name(&ec_spi->spi->dev);
766 	ec_dev->din_size = EC_MSG_PREAMBLE_COUNT +
767 			   sizeof(struct ec_host_response) +
768 			   sizeof(struct ec_response_get_protocol_info);
769 	ec_dev->dout_size = sizeof(struct ec_host_request);
770 
771 	ec_spi->last_transfer_ns = ktime_get_ns();
772 
773 	err = cros_ec_spi_devm_high_pri_alloc(dev, ec_spi);
774 	if (err)
775 		return err;
776 
777 	err = cros_ec_register(ec_dev);
778 	if (err) {
779 		dev_err(dev, "cannot register EC\n");
780 		return err;
781 	}
782 
783 	device_init_wakeup(&spi->dev, true);
784 
785 	return 0;
786 }
787 
788 static int cros_ec_spi_remove(struct spi_device *spi)
789 {
790 	struct cros_ec_device *ec_dev = spi_get_drvdata(spi);
791 
792 	return cros_ec_unregister(ec_dev);
793 }
794 
795 #ifdef CONFIG_PM_SLEEP
796 static int cros_ec_spi_suspend(struct device *dev)
797 {
798 	struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
799 
800 	return cros_ec_suspend(ec_dev);
801 }
802 
803 static int cros_ec_spi_resume(struct device *dev)
804 {
805 	struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
806 
807 	return cros_ec_resume(ec_dev);
808 }
809 #endif
810 
811 static SIMPLE_DEV_PM_OPS(cros_ec_spi_pm_ops, cros_ec_spi_suspend,
812 			 cros_ec_spi_resume);
813 
814 static const struct of_device_id cros_ec_spi_of_match[] = {
815 	{ .compatible = "google,cros-ec-spi", },
816 	{ /* sentinel */ },
817 };
818 MODULE_DEVICE_TABLE(of, cros_ec_spi_of_match);
819 
820 static const struct spi_device_id cros_ec_spi_id[] = {
821 	{ "cros-ec-spi", 0 },
822 	{ }
823 };
824 MODULE_DEVICE_TABLE(spi, cros_ec_spi_id);
825 
826 static struct spi_driver cros_ec_driver_spi = {
827 	.driver	= {
828 		.name	= "cros-ec-spi",
829 		.of_match_table = cros_ec_spi_of_match,
830 		.pm	= &cros_ec_spi_pm_ops,
831 	},
832 	.probe		= cros_ec_spi_probe,
833 	.remove		= cros_ec_spi_remove,
834 	.id_table	= cros_ec_spi_id,
835 };
836 
837 module_spi_driver(cros_ec_driver_spi);
838 
839 MODULE_LICENSE("GPL v2");
840 MODULE_DESCRIPTION("SPI interface for ChromeOS Embedded Controller");
841