1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for Chrome OS EC Sensor hub FIFO. 4 * 5 * Copyright 2020 Google LLC 6 */ 7 8 #include <linux/delay.h> 9 #include <linux/device.h> 10 #include <linux/iio/iio.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/platform_data/cros_ec_commands.h> 14 #include <linux/platform_data/cros_ec_proto.h> 15 #include <linux/platform_data/cros_ec_sensorhub.h> 16 #include <linux/platform_device.h> 17 #include <linux/sort.h> 18 #include <linux/slab.h> 19 20 #define CREATE_TRACE_POINTS 21 #include "cros_ec_sensorhub_trace.h" 22 23 /* Precision of fixed point for the m values from the filter */ 24 #define M_PRECISION BIT(23) 25 26 /* Only activate the filter once we have at least this many elements. */ 27 #define TS_HISTORY_THRESHOLD 8 28 29 /* 30 * If we don't have any history entries for this long, empty the filter to 31 * make sure there are no big discontinuities. 32 */ 33 #define TS_HISTORY_BORED_US 500000 34 35 /* To measure by how much the filter is overshooting, if it happens. */ 36 #define FUTURE_TS_ANALYTICS_COUNT_MAX 100 37 38 static inline int 39 cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub, 40 struct cros_ec_sensors_ring_sample *sample) 41 { 42 cros_ec_sensorhub_push_data_cb_t cb; 43 int id = sample->sensor_id; 44 struct iio_dev *indio_dev; 45 46 if (id >= sensorhub->sensor_num) 47 return -EINVAL; 48 49 cb = sensorhub->push_data[id].push_data_cb; 50 if (!cb) 51 return 0; 52 53 indio_dev = sensorhub->push_data[id].indio_dev; 54 55 if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) 56 return 0; 57 58 return cb(indio_dev, sample->vector, sample->timestamp); 59 } 60 61 /** 62 * cros_ec_sensorhub_register_push_data() - register the callback to the hub. 63 * 64 * @sensorhub : Sensor Hub object 65 * @sensor_num : The sensor the caller is interested in. 66 * @indio_dev : The iio device to use when a sample arrives. 67 * @cb : The callback to call when a sample arrives. 68 * 69 * The callback cb will be used by cros_ec_sensorhub_ring to distribute events 70 * from the EC. 71 * 72 * Return: 0 when callback is registered. 73 * EINVAL is the sensor number is invalid or the slot already used. 74 */ 75 int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub, 76 u8 sensor_num, 77 struct iio_dev *indio_dev, 78 cros_ec_sensorhub_push_data_cb_t cb) 79 { 80 if (sensor_num >= sensorhub->sensor_num) 81 return -EINVAL; 82 if (sensorhub->push_data[sensor_num].indio_dev) 83 return -EINVAL; 84 85 sensorhub->push_data[sensor_num].indio_dev = indio_dev; 86 sensorhub->push_data[sensor_num].push_data_cb = cb; 87 88 return 0; 89 } 90 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data); 91 92 void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub, 93 u8 sensor_num) 94 { 95 sensorhub->push_data[sensor_num].indio_dev = NULL; 96 sensorhub->push_data[sensor_num].push_data_cb = NULL; 97 } 98 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data); 99 100 /** 101 * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation 102 * for FIFO events. 103 * @sensorhub: Sensor Hub object 104 * @on: true when events are requested. 105 * 106 * To be called before sleeping or when no one is listening. 107 * Return: 0 on success, or an error when we can not communicate with the EC. 108 * 109 */ 110 int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub, 111 bool on) 112 { 113 int ret, i; 114 115 mutex_lock(&sensorhub->cmd_lock); 116 if (sensorhub->tight_timestamps) 117 for (i = 0; i < sensorhub->sensor_num; i++) 118 sensorhub->batch_state[i].last_len = 0; 119 120 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE; 121 sensorhub->params->fifo_int_enable.enable = on; 122 123 sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense); 124 sensorhub->msg->insize = sizeof(struct ec_response_motion_sense); 125 126 ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg); 127 mutex_unlock(&sensorhub->cmd_lock); 128 129 /* We expect to receive a payload of 4 bytes, ignore. */ 130 if (ret > 0) 131 ret = 0; 132 /* 133 * Some platforms (such as Smaug) don't support the FIFO_INT_ENABLE 134 * command and the interrupt is always enabled. In the case, it 135 * returns -EINVAL. 136 * 137 * N.B: there is no danger of -EINVAL meaning any other invalid 138 * parameter since fifo_int_enable.enable is a bool and can never 139 * be in an invalid range. 140 */ 141 else if (ret == -EINVAL) 142 ret = 0; 143 144 return ret; 145 } 146 147 static void cros_ec_sensor_ring_median_swap(s64 *a, s64 *b) 148 { 149 s64 tmp = *a; 150 *a = *b; 151 *b = tmp; 152 } 153 154 /* 155 * cros_ec_sensor_ring_median: Gets median of an array of numbers 156 * 157 * It's implemented using the quickselect algorithm, which achieves an 158 * average time complexity of O(n) the middle element. In the worst case, 159 * the runtime of quickselect could regress to O(n^2). To mitigate this, 160 * algorithms like median-of-medians exist, which can guarantee O(n) even 161 * in the worst case. However, these algorithms come with a higher 162 * overhead and are more complex to implement, making quickselect a 163 * pragmatic choice for our use case. 164 * 165 * Warning: the input array gets modified! 166 */ 167 static s64 cros_ec_sensor_ring_median(s64 *array, size_t length) 168 { 169 int lo = 0; 170 int hi = length - 1; 171 172 while (lo <= hi) { 173 int mid = lo + (hi - lo) / 2; 174 int pivot, i; 175 176 if (array[lo] > array[mid]) 177 cros_ec_sensor_ring_median_swap(&array[lo], &array[mid]); 178 if (array[lo] > array[hi]) 179 cros_ec_sensor_ring_median_swap(&array[lo], &array[hi]); 180 if (array[mid] < array[hi]) 181 cros_ec_sensor_ring_median_swap(&array[mid], &array[hi]); 182 183 pivot = array[hi]; 184 i = lo - 1; 185 186 for (int j = lo; j < hi; j++) 187 if (array[j] < pivot) 188 cros_ec_sensor_ring_median_swap(&array[++i], &array[j]); 189 190 /* The pivot's index corresponds to i+1. */ 191 cros_ec_sensor_ring_median_swap(&array[i + 1], &array[hi]); 192 if (i + 1 == length / 2) 193 return array[i + 1]; 194 if (i + 1 > length / 2) 195 hi = i; 196 else 197 lo = i + 2; 198 } 199 200 /* Should never reach here. */ 201 return -1; 202 } 203 204 /* 205 * IRQ Timestamp Filtering 206 * 207 * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event 208 * we have to calculate it's timestamp in the AP timebase. There are 3 time 209 * points: 210 * a - EC timebase, sensor event 211 * b - EC timebase, IRQ 212 * c - AP timebase, IRQ 213 * a' - what we want: sensor even in AP timebase 214 * 215 * While a and b are recorded at accurate times (due to the EC real time 216 * nature); c is pretty untrustworthy, even though it's recorded the 217 * first thing in ec_irq_handler(). There is a very good chance we'll get 218 * added latency due to: 219 * other irqs 220 * ddrfreq 221 * cpuidle 222 * 223 * Normally a' = c - b + a, but if we do that naive math any jitter in c 224 * will get coupled in a', which we don't want. We want a function 225 * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c. 226 * 227 * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis. 228 * The slope of the line won't be exactly 1, there will be some clock drift 229 * between the 2 chips for various reasons (mechanical stress, temperature, 230 * voltage). We need to extrapolate values for a future x, without trusting 231 * recent y values too much. 232 * 233 * We use a median filter for the slope, then another median filter for the 234 * y-intercept to calculate this function: 235 * dx[n] = x[n-1] - x[n] 236 * dy[n] = x[n-1] - x[n] 237 * m[n] = dy[n] / dx[n] 238 * median_m = median(m[n-k:n]) 239 * error[i] = y[n-i] - median_m * x[n-i] 240 * median_error = median(error[:k]) 241 * predicted_y = median_m * x + median_error 242 * 243 * Implementation differences from above: 244 * - Redefined y to be actually c - b, this gives us a lot more precision 245 * to do the math. (c-b)/b variations are more obvious than c/b variations. 246 * - Since we don't have floating point, any operations involving slope are 247 * done using fixed point math (*M_PRECISION) 248 * - Since x and y grow with time, we keep zeroing the graph (relative to 249 * the last sample), this way math involving *x[n-i] will not overflow 250 * - EC timestamps are kept in us, it improves the slope calculation precision 251 */ 252 253 /** 254 * cros_ec_sensor_ring_ts_filter_update() - Update filter history. 255 * 256 * @state: Filter information. 257 * @b: IRQ timestamp, EC timebase (us) 258 * @c: IRQ timestamp, AP timebase (ns) 259 * 260 * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter 261 * history. 262 */ 263 static void 264 cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state 265 *state, 266 s64 b, s64 c) 267 { 268 s64 x, y; 269 s64 dx, dy; 270 s64 m; /* stored as *M_PRECISION */ 271 s64 *m_history_copy = state->temp_buf; 272 s64 *error = state->temp_buf; 273 int i; 274 275 /* we trust b the most, that'll be our independent variable */ 276 x = b; 277 /* y is the offset between AP and EC times, in ns */ 278 y = c - b * 1000; 279 280 dx = (state->x_history[0] + state->x_offset) - x; 281 if (dx == 0) 282 return; /* we already have this irq in the history */ 283 dy = (state->y_history[0] + state->y_offset) - y; 284 m = div64_s64(dy * M_PRECISION, dx); 285 286 /* Empty filter if we haven't seen any action in a while. */ 287 if (-dx > TS_HISTORY_BORED_US) 288 state->history_len = 0; 289 290 /* Move everything over, also update offset to all absolute coords .*/ 291 for (i = state->history_len - 1; i >= 1; i--) { 292 state->x_history[i] = state->x_history[i - 1] + dx; 293 state->y_history[i] = state->y_history[i - 1] + dy; 294 295 state->m_history[i] = state->m_history[i - 1]; 296 /* 297 * Also use the same loop to copy m_history for future 298 * median extraction. 299 */ 300 m_history_copy[i] = state->m_history[i - 1]; 301 } 302 303 /* Store the x and y, but remember offset is actually last sample. */ 304 state->x_offset = x; 305 state->y_offset = y; 306 state->x_history[0] = 0; 307 state->y_history[0] = 0; 308 309 state->m_history[0] = m; 310 m_history_copy[0] = m; 311 312 if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE) 313 state->history_len++; 314 315 /* Precalculate things for the filter. */ 316 if (state->history_len > TS_HISTORY_THRESHOLD) { 317 state->median_m = 318 cros_ec_sensor_ring_median(m_history_copy, 319 state->history_len - 1); 320 321 /* 322 * Calculate y-intercepts as if m_median is the slope and 323 * points in the history are on the line. median_error will 324 * still be in the offset coordinate system. 325 */ 326 for (i = 0; i < state->history_len; i++) 327 error[i] = state->y_history[i] - 328 div_s64(state->median_m * state->x_history[i], 329 M_PRECISION); 330 state->median_error = 331 cros_ec_sensor_ring_median(error, state->history_len); 332 } else { 333 state->median_m = 0; 334 state->median_error = 0; 335 } 336 trace_cros_ec_sensorhub_filter(state, dx, dy); 337 } 338 339 /** 340 * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP 341 * timebase 342 * 343 * @state: filter information. 344 * @x: any ec timestamp (us): 345 * 346 * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase 347 * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ 348 * should have happened on the AP, with low jitter 349 * 350 * Note: The filter will only activate once state->history_len goes 351 * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a 352 * transform. 353 * 354 * How to derive the formula, starting from: 355 * f(x) = median_m * x + median_error 356 * That's the calculated AP - EC offset (at the x point in time) 357 * Undo the coordinate system transform: 358 * f(x) = median_m * (x - x_offset) + median_error + y_offset 359 * Remember to undo the "y = c - b * 1000" modification: 360 * f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000 361 * 362 * Return: timestamp in AP timebase (ns) 363 */ 364 static s64 365 cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state, 366 s64 x) 367 { 368 return div_s64(state->median_m * (x - state->x_offset), M_PRECISION) 369 + state->median_error + state->y_offset + x * 1000; 370 } 371 372 /* 373 * Since a and b were originally 32 bit values from the EC, 374 * they overflow relatively often, casting is not enough, so we need to 375 * add an offset. 376 */ 377 static void 378 cros_ec_sensor_ring_fix_overflow(s64 *ts, 379 const s64 overflow_period, 380 struct cros_ec_sensors_ec_overflow_state 381 *state) 382 { 383 s64 adjust; 384 385 *ts += state->offset; 386 if (abs(state->last - *ts) > (overflow_period / 2)) { 387 adjust = state->last > *ts ? overflow_period : -overflow_period; 388 state->offset += adjust; 389 *ts += adjust; 390 } 391 state->last = *ts; 392 } 393 394 static void 395 cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub 396 *sensorhub, 397 struct cros_ec_sensors_ring_sample 398 *sample) 399 { 400 const u8 sensor_id = sample->sensor_id; 401 402 /* If this event is earlier than one we saw before... */ 403 if (sensorhub->batch_state[sensor_id].newest_sensor_event > 404 sample->timestamp) 405 /* mark it for spreading. */ 406 sample->timestamp = 407 sensorhub->batch_state[sensor_id].last_ts; 408 else 409 sensorhub->batch_state[sensor_id].newest_sensor_event = 410 sample->timestamp; 411 } 412 413 /** 414 * cros_ec_sensor_ring_process_event() - Process one EC FIFO event 415 * 416 * @sensorhub: Sensor Hub object. 417 * @fifo_info: FIFO information from the EC (includes b point, EC timebase). 418 * @fifo_timestamp: EC IRQ, kernel timebase (aka c). 419 * @current_timestamp: calculated event timestamp, kernel timebase (aka a'). 420 * @in: incoming FIFO event from EC (includes a point, EC timebase). 421 * @out: outgoing event to user space (includes a'). 422 * 423 * Process one EC event, add it in the ring if necessary. 424 * 425 * Return: true if out event has been populated. 426 */ 427 static bool 428 cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub, 429 const struct ec_response_motion_sense_fifo_info 430 *fifo_info, 431 const ktime_t fifo_timestamp, 432 ktime_t *current_timestamp, 433 struct ec_response_motion_sensor_data *in, 434 struct cros_ec_sensors_ring_sample *out) 435 { 436 const s64 now = cros_ec_get_time_ns(); 437 int axis, async_flags; 438 439 /* Do not populate the filter based on asynchronous events. */ 440 async_flags = in->flags & 441 (MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH); 442 443 if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) { 444 s64 a = in->timestamp; 445 s64 b = fifo_info->timestamp; 446 s64 c = fifo_timestamp; 447 448 cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32, 449 &sensorhub->overflow_a); 450 cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32, 451 &sensorhub->overflow_b); 452 453 if (sensorhub->tight_timestamps) { 454 cros_ec_sensor_ring_ts_filter_update( 455 &sensorhub->filter, b, c); 456 *current_timestamp = cros_ec_sensor_ring_ts_filter( 457 &sensorhub->filter, a); 458 } else { 459 s64 new_timestamp; 460 461 /* 462 * Disable filtering since we might add more jitter 463 * if b is in a random point in time. 464 */ 465 new_timestamp = c - b * 1000 + a * 1000; 466 /* 467 * The timestamp can be stale if we had to use the fifo 468 * info timestamp. 469 */ 470 if (new_timestamp - *current_timestamp > 0) 471 *current_timestamp = new_timestamp; 472 } 473 trace_cros_ec_sensorhub_timestamp(in->timestamp, 474 fifo_info->timestamp, 475 fifo_timestamp, 476 *current_timestamp, 477 now); 478 } 479 480 if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) { 481 if (sensorhub->tight_timestamps) { 482 sensorhub->batch_state[in->sensor_num].last_len = 0; 483 sensorhub->batch_state[in->sensor_num].penul_len = 0; 484 } 485 /* 486 * ODR change is only useful for the sensor_ring, it does not 487 * convey information to clients. 488 */ 489 return false; 490 } 491 492 if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) { 493 out->sensor_id = in->sensor_num; 494 out->timestamp = *current_timestamp; 495 out->flag = in->flags; 496 if (sensorhub->tight_timestamps) 497 sensorhub->batch_state[out->sensor_id].last_len = 0; 498 /* 499 * No other payload information provided with 500 * flush ack. 501 */ 502 return true; 503 } 504 505 if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP) 506 /* If we just have a timestamp, skip this entry. */ 507 return false; 508 509 /* Regular sample */ 510 out->sensor_id = in->sensor_num; 511 trace_cros_ec_sensorhub_data(in->sensor_num, 512 fifo_info->timestamp, 513 fifo_timestamp, 514 *current_timestamp, 515 now); 516 517 if (*current_timestamp - now > 0) { 518 /* 519 * This fix is needed to overcome the timestamp filter putting 520 * events in the future. 521 */ 522 sensorhub->future_timestamp_total_ns += 523 *current_timestamp - now; 524 if (++sensorhub->future_timestamp_count == 525 FUTURE_TS_ANALYTICS_COUNT_MAX) { 526 s64 avg = div_s64(sensorhub->future_timestamp_total_ns, 527 sensorhub->future_timestamp_count); 528 dev_warn_ratelimited(sensorhub->dev, 529 "100 timestamps in the future, %lldns shaved on average\n", 530 avg); 531 sensorhub->future_timestamp_count = 0; 532 sensorhub->future_timestamp_total_ns = 0; 533 } 534 out->timestamp = now; 535 } else { 536 out->timestamp = *current_timestamp; 537 } 538 539 out->flag = in->flags; 540 for (axis = 0; axis < 3; axis++) 541 out->vector[axis] = in->data[axis]; 542 543 if (sensorhub->tight_timestamps) 544 cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out); 545 return true; 546 } 547 548 /* 549 * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to 550 * ringbuffer. 551 * 552 * This is the new spreading code, assumes every sample's timestamp 553 * precedes the sample. Run if tight_timestamps == true. 554 * 555 * Sometimes the EC receives only one interrupt (hence timestamp) for 556 * a batch of samples. Only the first sample will have the correct 557 * timestamp. So we must interpolate the other samples. 558 * We use the previous batch timestamp and our current batch timestamp 559 * as a way to calculate period, then spread the samples evenly. 560 * 561 * s0 int, 0ms 562 * s1 int, 10ms 563 * s2 int, 20ms 564 * 30ms point goes by, no interrupt, previous one is still asserted 565 * downloading s2 and s3 566 * s3 sample, 20ms (incorrect timestamp) 567 * s4 int, 40ms 568 * 569 * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch 570 * has 2 samples in them, we adjust the timestamp of s3. 571 * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have 572 * been part of a bigger batch things would have gotten a little 573 * more complicated. 574 * 575 * Note: we also assume another sensor sample doesn't break up a batch 576 * in 2 or more partitions. Example, there can't ever be a sync sensor 577 * in between S2 and S3. This simplifies the following code. 578 */ 579 static void 580 cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub, 581 unsigned long sensor_mask, 582 struct cros_ec_sensors_ring_sample *last_out) 583 { 584 struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start; 585 int id; 586 587 for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) { 588 for (batch_start = sensorhub->ring; batch_start < last_out; 589 batch_start = next_batch_start) { 590 /* 591 * For each batch (where all samples have the same 592 * timestamp). 593 */ 594 int batch_len, sample_idx; 595 struct cros_ec_sensors_ring_sample *batch_end = 596 batch_start; 597 struct cros_ec_sensors_ring_sample *s; 598 s64 batch_timestamp = batch_start->timestamp; 599 s64 sample_period; 600 601 /* 602 * Skip over batches that start with the sensor types 603 * we're not looking at right now. 604 */ 605 if (batch_start->sensor_id != id) { 606 next_batch_start = batch_start + 1; 607 continue; 608 } 609 610 /* 611 * Do not start a batch 612 * from a flush, as it happens asynchronously to the 613 * regular flow of events. 614 */ 615 if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) { 616 cros_sensorhub_send_sample(sensorhub, 617 batch_start); 618 next_batch_start = batch_start + 1; 619 continue; 620 } 621 622 if (batch_start->timestamp <= 623 sensorhub->batch_state[id].last_ts) { 624 batch_timestamp = 625 sensorhub->batch_state[id].last_ts; 626 batch_len = sensorhub->batch_state[id].last_len; 627 628 sample_idx = batch_len; 629 630 sensorhub->batch_state[id].last_ts = 631 sensorhub->batch_state[id].penul_ts; 632 sensorhub->batch_state[id].last_len = 633 sensorhub->batch_state[id].penul_len; 634 } else { 635 /* 636 * Push first sample in the batch to the, 637 * kfifo, it's guaranteed to be correct, the 638 * rest will follow later on. 639 */ 640 sample_idx = 1; 641 batch_len = 1; 642 cros_sensorhub_send_sample(sensorhub, 643 batch_start); 644 batch_start++; 645 } 646 647 /* Find all samples have the same timestamp. */ 648 for (s = batch_start; s < last_out; s++) { 649 if (s->sensor_id != id) 650 /* 651 * Skip over other sensor types that 652 * are interleaved, don't count them. 653 */ 654 continue; 655 if (s->timestamp != batch_timestamp) 656 /* we discovered the next batch */ 657 break; 658 if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) 659 /* break on flush packets */ 660 break; 661 batch_end = s; 662 batch_len++; 663 } 664 665 if (batch_len == 1) 666 goto done_with_this_batch; 667 668 /* Can we calculate period? */ 669 if (sensorhub->batch_state[id].last_len == 0) { 670 dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n", 671 id, batch_len - 1); 672 goto done_with_this_batch; 673 /* 674 * Note: we're dropping the rest of the samples 675 * in this batch since we have no idea where 676 * they're supposed to go without a period 677 * calculation. 678 */ 679 } 680 681 sample_period = div_s64(batch_timestamp - 682 sensorhub->batch_state[id].last_ts, 683 sensorhub->batch_state[id].last_len); 684 dev_dbg(sensorhub->dev, 685 "Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n", 686 batch_len, id, 687 sensorhub->batch_state[id].last_ts, 688 sensorhub->batch_state[id].last_len, 689 batch_timestamp, 690 sample_period); 691 692 /* 693 * Adjust timestamps of the samples then push them to 694 * kfifo. 695 */ 696 for (s = batch_start; s <= batch_end; s++) { 697 if (s->sensor_id != id) 698 /* 699 * Skip over other sensor types that 700 * are interleaved, don't change them. 701 */ 702 continue; 703 704 s->timestamp = batch_timestamp + 705 sample_period * sample_idx; 706 sample_idx++; 707 708 cros_sensorhub_send_sample(sensorhub, s); 709 } 710 711 done_with_this_batch: 712 sensorhub->batch_state[id].penul_ts = 713 sensorhub->batch_state[id].last_ts; 714 sensorhub->batch_state[id].penul_len = 715 sensorhub->batch_state[id].last_len; 716 717 sensorhub->batch_state[id].last_ts = 718 batch_timestamp; 719 sensorhub->batch_state[id].last_len = batch_len; 720 721 next_batch_start = batch_end + 1; 722 } 723 } 724 } 725 726 /* 727 * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then 728 * add to ringbuffer (legacy). 729 * 730 * Note: This assumes we're running old firmware, where timestamp 731 * is inserted after its sample(s)e. There can be several samples between 732 * timestamps, so several samples can have the same timestamp. 733 * 734 * timestamp | count 735 * ----------------- 736 * 1st sample --> TS1 | 1 737 * TS2 | 2 738 * TS2 | 3 739 * TS3 | 4 740 * last_out --> 741 * 742 * 743 * We spread time for the samples using period p = (current - TS1)/4. 744 * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp]. 745 * 746 */ 747 static void 748 cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub, 749 unsigned long sensor_mask, 750 s64 current_timestamp, 751 struct cros_ec_sensors_ring_sample 752 *last_out) 753 { 754 struct cros_ec_sensors_ring_sample *out; 755 int i; 756 757 for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) { 758 s64 timestamp; 759 int count = 0; 760 s64 time_period; 761 762 for (out = sensorhub->ring; out < last_out; out++) { 763 if (out->sensor_id != i) 764 continue; 765 766 /* Timestamp to start with */ 767 timestamp = out->timestamp; 768 out++; 769 count = 1; 770 break; 771 } 772 for (; out < last_out; out++) { 773 /* Find last sample. */ 774 if (out->sensor_id != i) 775 continue; 776 count++; 777 } 778 if (count == 0) 779 continue; 780 781 /* Spread uniformly between the first and last samples. */ 782 time_period = div_s64(current_timestamp - timestamp, count); 783 784 for (out = sensorhub->ring; out < last_out; out++) { 785 if (out->sensor_id != i) 786 continue; 787 timestamp += time_period; 788 out->timestamp = timestamp; 789 } 790 } 791 792 /* Push the event into the kfifo */ 793 for (out = sensorhub->ring; out < last_out; out++) 794 cros_sensorhub_send_sample(sensorhub, out); 795 } 796 797 /** 798 * cros_ec_sensorhub_ring_handler() - The trigger handler function 799 * 800 * @sensorhub: Sensor Hub object. 801 * 802 * Called by the notifier, process the EC sensor FIFO queue. 803 */ 804 static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub) 805 { 806 struct ec_response_motion_sense_fifo_info *fifo_info = 807 sensorhub->fifo_info; 808 struct cros_ec_dev *ec = sensorhub->ec; 809 ktime_t fifo_timestamp, current_timestamp; 810 int i, j, number_data, ret; 811 unsigned long sensor_mask = 0; 812 struct ec_response_motion_sensor_data *in; 813 struct cros_ec_sensors_ring_sample *out, *last_out; 814 815 mutex_lock(&sensorhub->cmd_lock); 816 817 /* Get FIFO information if there are lost vectors. */ 818 if (fifo_info->total_lost) { 819 int fifo_info_length = 820 sizeof(struct ec_response_motion_sense_fifo_info) + 821 sizeof(u16) * sensorhub->sensor_num; 822 823 /* Need to retrieve the number of lost vectors per sensor */ 824 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO; 825 sensorhub->msg->outsize = 1; 826 sensorhub->msg->insize = fifo_info_length; 827 828 if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0) 829 goto error; 830 831 memcpy(fifo_info, &sensorhub->resp->fifo_info, 832 fifo_info_length); 833 834 /* 835 * Update collection time, will not be as precise as the 836 * non-error case. 837 */ 838 fifo_timestamp = cros_ec_get_time_ns(); 839 } else { 840 fifo_timestamp = sensorhub->fifo_timestamp[ 841 CROS_EC_SENSOR_NEW_TS]; 842 } 843 844 if (fifo_info->count > sensorhub->fifo_size || 845 fifo_info->size != sensorhub->fifo_size) { 846 dev_warn(sensorhub->dev, 847 "Mismatch EC data: count %d, size %d - expected %d\n", 848 fifo_info->count, fifo_info->size, 849 sensorhub->fifo_size); 850 goto error; 851 } 852 853 /* Copy elements in the main fifo */ 854 current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS]; 855 out = sensorhub->ring; 856 for (i = 0; i < fifo_info->count; i += number_data) { 857 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ; 858 sensorhub->params->fifo_read.max_data_vector = 859 fifo_info->count - i; 860 sensorhub->msg->outsize = 861 sizeof(struct ec_params_motion_sense); 862 sensorhub->msg->insize = 863 sizeof(sensorhub->resp->fifo_read) + 864 sensorhub->params->fifo_read.max_data_vector * 865 sizeof(struct ec_response_motion_sensor_data); 866 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg); 867 if (ret < 0) { 868 dev_warn(sensorhub->dev, "Fifo error: %d\n", ret); 869 break; 870 } 871 number_data = sensorhub->resp->fifo_read.number_data; 872 if (number_data == 0) { 873 dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n"); 874 break; 875 } 876 if (number_data > fifo_info->count - i) { 877 dev_warn(sensorhub->dev, 878 "Invalid EC data: too many entry received: %d, expected %d\n", 879 number_data, fifo_info->count - i); 880 break; 881 } 882 if (out + number_data > 883 sensorhub->ring + fifo_info->count) { 884 dev_warn(sensorhub->dev, 885 "Too many samples: %d (%zd data) to %d entries for expected %d entries\n", 886 i, out - sensorhub->ring, i + number_data, 887 fifo_info->count); 888 break; 889 } 890 891 for (in = sensorhub->resp->fifo_read.data, j = 0; 892 j < number_data; j++, in++) { 893 if (cros_ec_sensor_ring_process_event( 894 sensorhub, fifo_info, 895 fifo_timestamp, 896 ¤t_timestamp, 897 in, out)) { 898 sensor_mask |= BIT(in->sensor_num); 899 out++; 900 } 901 } 902 } 903 mutex_unlock(&sensorhub->cmd_lock); 904 last_out = out; 905 906 if (out == sensorhub->ring) 907 /* Unexpected empty FIFO. */ 908 goto ring_handler_end; 909 910 /* 911 * Check if current_timestamp is ahead of the last sample. Normally, 912 * the EC appends a timestamp after the last sample, but if the AP 913 * is slow to respond to the IRQ, the EC may have added new samples. 914 * Use the FIFO info timestamp as last timestamp then. 915 */ 916 if (!sensorhub->tight_timestamps && 917 (last_out - 1)->timestamp == current_timestamp) 918 current_timestamp = fifo_timestamp; 919 920 /* Warn on lost samples. */ 921 if (fifo_info->total_lost) 922 for (i = 0; i < sensorhub->sensor_num; i++) { 923 if (fifo_info->lost[i]) { 924 dev_warn_ratelimited(sensorhub->dev, 925 "Sensor %d: lost: %d out of %d\n", 926 i, fifo_info->lost[i], 927 fifo_info->total_lost); 928 if (sensorhub->tight_timestamps) 929 sensorhub->batch_state[i].last_len = 0; 930 } 931 } 932 933 /* 934 * Spread samples in case of batching, then add them to the 935 * ringbuffer. 936 */ 937 if (sensorhub->tight_timestamps) 938 cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask, 939 last_out); 940 else 941 cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask, 942 current_timestamp, 943 last_out); 944 945 ring_handler_end: 946 sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp; 947 return; 948 949 error: 950 mutex_unlock(&sensorhub->cmd_lock); 951 } 952 953 static int cros_ec_sensorhub_event(struct notifier_block *nb, 954 unsigned long queued_during_suspend, 955 void *_notify) 956 { 957 struct cros_ec_sensorhub *sensorhub; 958 struct cros_ec_device *ec_dev; 959 960 sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier); 961 ec_dev = sensorhub->ec->ec_dev; 962 963 if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO) 964 return NOTIFY_DONE; 965 966 if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) { 967 dev_warn(ec_dev->dev, "Invalid fifo info size\n"); 968 return NOTIFY_DONE; 969 } 970 971 if (queued_during_suspend) 972 return NOTIFY_OK; 973 974 memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info, 975 sizeof(*sensorhub->fifo_info)); 976 sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] = 977 ec_dev->last_event_time; 978 cros_ec_sensorhub_ring_handler(sensorhub); 979 980 return NOTIFY_OK; 981 } 982 983 /** 984 * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC 985 * supports it. 986 * 987 * @sensorhub : Sensor Hub object. 988 * 989 * Return: 0 on success. 990 */ 991 int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub) 992 { 993 int fifo_info_length = 994 sizeof(struct ec_response_motion_sense_fifo_info) + 995 sizeof(u16) * sensorhub->sensor_num; 996 997 /* Allocate the array for lost events. */ 998 sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length, 999 GFP_KERNEL); 1000 if (!sensorhub->fifo_info) 1001 return -ENOMEM; 1002 1003 /* 1004 * Allocate the callback area based on the number of sensors. 1005 * Add one for the sensor ring. 1006 */ 1007 sensorhub->push_data = devm_kcalloc(sensorhub->dev, 1008 sensorhub->sensor_num, 1009 sizeof(*sensorhub->push_data), 1010 GFP_KERNEL); 1011 if (!sensorhub->push_data) 1012 return -ENOMEM; 1013 1014 sensorhub->tight_timestamps = cros_ec_check_features( 1015 sensorhub->ec, 1016 EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS); 1017 1018 if (sensorhub->tight_timestamps) { 1019 sensorhub->batch_state = devm_kcalloc(sensorhub->dev, 1020 sensorhub->sensor_num, 1021 sizeof(*sensorhub->batch_state), 1022 GFP_KERNEL); 1023 if (!sensorhub->batch_state) 1024 return -ENOMEM; 1025 } 1026 1027 return 0; 1028 } 1029 1030 /** 1031 * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC 1032 * supports it. 1033 * 1034 * @sensorhub : Sensor Hub object. 1035 * 1036 * Return: 0 on success. 1037 */ 1038 int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub) 1039 { 1040 struct cros_ec_dev *ec = sensorhub->ec; 1041 int ret; 1042 int fifo_info_length = 1043 sizeof(struct ec_response_motion_sense_fifo_info) + 1044 sizeof(u16) * sensorhub->sensor_num; 1045 1046 /* Retrieve FIFO information */ 1047 sensorhub->msg->version = 2; 1048 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO; 1049 sensorhub->msg->outsize = 1; 1050 sensorhub->msg->insize = fifo_info_length; 1051 1052 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg); 1053 if (ret < 0) 1054 return ret; 1055 1056 /* 1057 * Allocate the full fifo. We need to copy the whole FIFO to set 1058 * timestamps properly. 1059 */ 1060 sensorhub->fifo_size = sensorhub->resp->fifo_info.size; 1061 sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size, 1062 sizeof(*sensorhub->ring), GFP_KERNEL); 1063 if (!sensorhub->ring) 1064 return -ENOMEM; 1065 1066 sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = 1067 cros_ec_get_time_ns(); 1068 1069 /* Register the notifier that will act as a top half interrupt. */ 1070 sensorhub->notifier.notifier_call = cros_ec_sensorhub_event; 1071 ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier, 1072 &sensorhub->notifier); 1073 if (ret < 0) 1074 return ret; 1075 1076 /* Start collection samples. */ 1077 return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true); 1078 } 1079 1080 void cros_ec_sensorhub_ring_remove(void *arg) 1081 { 1082 struct cros_ec_sensorhub *sensorhub = arg; 1083 struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev; 1084 1085 /* Disable the ring, prevent EC interrupt to the AP for nothing. */ 1086 cros_ec_sensorhub_ring_fifo_enable(sensorhub, false); 1087 blocking_notifier_chain_unregister(&ec_dev->event_notifier, 1088 &sensorhub->notifier); 1089 } 1090