1 // SPDX-License-Identifier: GPL-2.0 2 // ChromeOS EC communication protocol helper functions 3 // 4 // Copyright (C) 2015 Google, Inc 5 6 #include <linux/delay.h> 7 #include <linux/device.h> 8 #include <linux/limits.h> 9 #include <linux/module.h> 10 #include <linux/platform_data/cros_ec_commands.h> 11 #include <linux/platform_data/cros_ec_proto.h> 12 #include <linux/slab.h> 13 #include <asm/unaligned.h> 14 15 #include "cros_ec_trace.h" 16 17 #define EC_COMMAND_RETRIES 50 18 19 static const int cros_ec_error_map[] = { 20 [EC_RES_INVALID_COMMAND] = -EOPNOTSUPP, 21 [EC_RES_ERROR] = -EIO, 22 [EC_RES_INVALID_PARAM] = -EINVAL, 23 [EC_RES_ACCESS_DENIED] = -EACCES, 24 [EC_RES_INVALID_RESPONSE] = -EPROTO, 25 [EC_RES_INVALID_VERSION] = -ENOPROTOOPT, 26 [EC_RES_INVALID_CHECKSUM] = -EBADMSG, 27 [EC_RES_IN_PROGRESS] = -EINPROGRESS, 28 [EC_RES_UNAVAILABLE] = -ENODATA, 29 [EC_RES_TIMEOUT] = -ETIMEDOUT, 30 [EC_RES_OVERFLOW] = -EOVERFLOW, 31 [EC_RES_INVALID_HEADER] = -EBADR, 32 [EC_RES_REQUEST_TRUNCATED] = -EBADR, 33 [EC_RES_RESPONSE_TOO_BIG] = -EFBIG, 34 [EC_RES_BUS_ERROR] = -EFAULT, 35 [EC_RES_BUSY] = -EBUSY, 36 [EC_RES_INVALID_HEADER_VERSION] = -EBADMSG, 37 [EC_RES_INVALID_HEADER_CRC] = -EBADMSG, 38 [EC_RES_INVALID_DATA_CRC] = -EBADMSG, 39 [EC_RES_DUP_UNAVAILABLE] = -ENODATA, 40 }; 41 42 static int cros_ec_map_error(uint32_t result) 43 { 44 int ret = 0; 45 46 if (result != EC_RES_SUCCESS) { 47 if (result < ARRAY_SIZE(cros_ec_error_map) && cros_ec_error_map[result]) 48 ret = cros_ec_error_map[result]; 49 else 50 ret = -EPROTO; 51 } 52 53 return ret; 54 } 55 56 static int prepare_tx(struct cros_ec_device *ec_dev, 57 struct cros_ec_command *msg) 58 { 59 struct ec_host_request *request; 60 u8 *out; 61 int i; 62 u8 csum = 0; 63 64 if (msg->outsize + sizeof(*request) > ec_dev->dout_size) 65 return -EINVAL; 66 67 out = ec_dev->dout; 68 request = (struct ec_host_request *)out; 69 request->struct_version = EC_HOST_REQUEST_VERSION; 70 request->checksum = 0; 71 request->command = msg->command; 72 request->command_version = msg->version; 73 request->reserved = 0; 74 request->data_len = msg->outsize; 75 76 for (i = 0; i < sizeof(*request); i++) 77 csum += out[i]; 78 79 /* Copy data and update checksum */ 80 memcpy(out + sizeof(*request), msg->data, msg->outsize); 81 for (i = 0; i < msg->outsize; i++) 82 csum += msg->data[i]; 83 84 request->checksum = -csum; 85 86 return sizeof(*request) + msg->outsize; 87 } 88 89 static int prepare_tx_legacy(struct cros_ec_device *ec_dev, 90 struct cros_ec_command *msg) 91 { 92 u8 *out; 93 u8 csum; 94 int i; 95 96 if (msg->outsize > EC_PROTO2_MAX_PARAM_SIZE) 97 return -EINVAL; 98 99 out = ec_dev->dout; 100 out[0] = EC_CMD_VERSION0 + msg->version; 101 out[1] = msg->command; 102 out[2] = msg->outsize; 103 csum = out[0] + out[1] + out[2]; 104 for (i = 0; i < msg->outsize; i++) 105 csum += out[EC_MSG_TX_HEADER_BYTES + i] = msg->data[i]; 106 out[EC_MSG_TX_HEADER_BYTES + msg->outsize] = csum; 107 108 return EC_MSG_TX_PROTO_BYTES + msg->outsize; 109 } 110 111 static int cros_ec_xfer_command(struct cros_ec_device *ec_dev, struct cros_ec_command *msg) 112 { 113 int ret; 114 int (*xfer_fxn)(struct cros_ec_device *ec, struct cros_ec_command *msg); 115 116 if (ec_dev->proto_version > 2) 117 xfer_fxn = ec_dev->pkt_xfer; 118 else 119 xfer_fxn = ec_dev->cmd_xfer; 120 121 if (!xfer_fxn) { 122 /* 123 * This error can happen if a communication error happened and 124 * the EC is trying to use protocol v2, on an underlying 125 * communication mechanism that does not support v2. 126 */ 127 dev_err_once(ec_dev->dev, "missing EC transfer API, cannot send command\n"); 128 return -EIO; 129 } 130 131 trace_cros_ec_request_start(msg); 132 ret = (*xfer_fxn)(ec_dev, msg); 133 trace_cros_ec_request_done(msg, ret); 134 135 return ret; 136 } 137 138 static int cros_ec_wait_until_complete(struct cros_ec_device *ec_dev, uint32_t *result) 139 { 140 struct { 141 struct cros_ec_command msg; 142 struct ec_response_get_comms_status status; 143 } __packed buf; 144 struct cros_ec_command *msg = &buf.msg; 145 struct ec_response_get_comms_status *status = &buf.status; 146 int ret = 0, i; 147 148 msg->version = 0; 149 msg->command = EC_CMD_GET_COMMS_STATUS; 150 msg->insize = sizeof(*status); 151 msg->outsize = 0; 152 153 /* Query the EC's status until it's no longer busy or we encounter an error. */ 154 for (i = 0; i < EC_COMMAND_RETRIES; ++i) { 155 usleep_range(10000, 11000); 156 157 ret = cros_ec_xfer_command(ec_dev, msg); 158 if (ret == -EAGAIN) 159 continue; 160 if (ret < 0) 161 return ret; 162 163 *result = msg->result; 164 if (msg->result != EC_RES_SUCCESS) 165 return ret; 166 167 if (ret == 0) { 168 ret = -EPROTO; 169 break; 170 } 171 172 if (!(status->flags & EC_COMMS_STATUS_PROCESSING)) 173 return ret; 174 } 175 176 if (i >= EC_COMMAND_RETRIES) 177 ret = -EAGAIN; 178 179 return ret; 180 } 181 182 static int cros_ec_send_command(struct cros_ec_device *ec_dev, struct cros_ec_command *msg) 183 { 184 int ret = cros_ec_xfer_command(ec_dev, msg); 185 186 if (msg->result == EC_RES_IN_PROGRESS) 187 ret = cros_ec_wait_until_complete(ec_dev, &msg->result); 188 189 return ret; 190 } 191 192 /** 193 * cros_ec_prepare_tx() - Prepare an outgoing message in the output buffer. 194 * @ec_dev: Device to register. 195 * @msg: Message to write. 196 * 197 * This is used by all ChromeOS EC drivers to prepare the outgoing message 198 * according to different protocol versions. 199 * 200 * Return: number of prepared bytes on success or negative error code. 201 */ 202 int cros_ec_prepare_tx(struct cros_ec_device *ec_dev, 203 struct cros_ec_command *msg) 204 { 205 if (ec_dev->proto_version > 2) 206 return prepare_tx(ec_dev, msg); 207 208 return prepare_tx_legacy(ec_dev, msg); 209 } 210 EXPORT_SYMBOL(cros_ec_prepare_tx); 211 212 /** 213 * cros_ec_check_result() - Check ec_msg->result. 214 * @ec_dev: EC device. 215 * @msg: Message to check. 216 * 217 * This is used by ChromeOS EC drivers to check the ec_msg->result for 218 * EC_RES_IN_PROGRESS and to warn about them. 219 * 220 * The function should not check for furthermore error codes. Otherwise, 221 * it would break the ABI. 222 * 223 * Return: -EAGAIN if ec_msg->result == EC_RES_IN_PROGRESS. Otherwise, 0. 224 */ 225 int cros_ec_check_result(struct cros_ec_device *ec_dev, 226 struct cros_ec_command *msg) 227 { 228 switch (msg->result) { 229 case EC_RES_SUCCESS: 230 return 0; 231 case EC_RES_IN_PROGRESS: 232 dev_dbg(ec_dev->dev, "command 0x%02x in progress\n", 233 msg->command); 234 return -EAGAIN; 235 default: 236 dev_dbg(ec_dev->dev, "command 0x%02x returned %d\n", 237 msg->command, msg->result); 238 return 0; 239 } 240 } 241 EXPORT_SYMBOL(cros_ec_check_result); 242 243 /** 244 * cros_ec_get_host_event_wake_mask 245 * 246 * Get the mask of host events that cause wake from suspend. 247 * 248 * @ec_dev: EC device to call 249 * @mask: result when function returns 0. 250 * 251 * LOCKING: 252 * the caller has ec_dev->lock mutex, or the caller knows there is 253 * no other command in progress. 254 */ 255 static int cros_ec_get_host_event_wake_mask(struct cros_ec_device *ec_dev, uint32_t *mask) 256 { 257 struct cros_ec_command *msg; 258 struct ec_response_host_event_mask *r; 259 int ret, mapped; 260 261 msg = kzalloc(sizeof(*msg) + sizeof(*r), GFP_KERNEL); 262 if (!msg) 263 return -ENOMEM; 264 265 msg->command = EC_CMD_HOST_EVENT_GET_WAKE_MASK; 266 msg->insize = sizeof(*r); 267 268 ret = cros_ec_send_command(ec_dev, msg); 269 if (ret < 0) 270 goto exit; 271 272 mapped = cros_ec_map_error(msg->result); 273 if (mapped) { 274 ret = mapped; 275 goto exit; 276 } 277 278 if (ret == 0) { 279 ret = -EPROTO; 280 goto exit; 281 } 282 283 r = (struct ec_response_host_event_mask *)msg->data; 284 *mask = r->mask; 285 ret = 0; 286 exit: 287 kfree(msg); 288 return ret; 289 } 290 291 static int cros_ec_get_proto_info(struct cros_ec_device *ec_dev, int devidx) 292 { 293 struct cros_ec_command *msg; 294 struct ec_response_get_protocol_info *info; 295 int ret, mapped; 296 297 ec_dev->proto_version = 3; 298 if (devidx > 0) 299 ec_dev->max_passthru = 0; 300 301 msg = kzalloc(sizeof(*msg) + sizeof(*info), GFP_KERNEL); 302 if (!msg) 303 return -ENOMEM; 304 305 msg->command = EC_CMD_PASSTHRU_OFFSET(devidx) | EC_CMD_GET_PROTOCOL_INFO; 306 msg->insize = sizeof(*info); 307 308 ret = cros_ec_send_command(ec_dev, msg); 309 /* 310 * Send command once again when timeout occurred. 311 * Fingerprint MCU (FPMCU) is restarted during system boot which 312 * introduces small window in which FPMCU won't respond for any 313 * messages sent by kernel. There is no need to wait before next 314 * attempt because we waited at least EC_MSG_DEADLINE_MS. 315 */ 316 if (ret == -ETIMEDOUT) 317 ret = cros_ec_send_command(ec_dev, msg); 318 319 if (ret < 0) { 320 dev_dbg(ec_dev->dev, 321 "failed to check for EC[%d] protocol version: %d\n", 322 devidx, ret); 323 goto exit; 324 } 325 326 mapped = cros_ec_map_error(msg->result); 327 if (mapped) { 328 ret = mapped; 329 goto exit; 330 } 331 332 if (ret == 0) { 333 ret = -EPROTO; 334 goto exit; 335 } 336 337 info = (struct ec_response_get_protocol_info *)msg->data; 338 339 switch (devidx) { 340 case CROS_EC_DEV_EC_INDEX: 341 ec_dev->max_request = info->max_request_packet_size - 342 sizeof(struct ec_host_request); 343 ec_dev->max_response = info->max_response_packet_size - 344 sizeof(struct ec_host_response); 345 ec_dev->proto_version = min(EC_HOST_REQUEST_VERSION, 346 fls(info->protocol_versions) - 1); 347 ec_dev->din_size = info->max_response_packet_size + EC_MAX_RESPONSE_OVERHEAD; 348 ec_dev->dout_size = info->max_request_packet_size + EC_MAX_REQUEST_OVERHEAD; 349 350 dev_dbg(ec_dev->dev, "using proto v%u\n", ec_dev->proto_version); 351 break; 352 case CROS_EC_DEV_PD_INDEX: 353 ec_dev->max_passthru = info->max_request_packet_size - 354 sizeof(struct ec_host_request); 355 356 dev_dbg(ec_dev->dev, "found PD chip\n"); 357 break; 358 default: 359 dev_dbg(ec_dev->dev, "unknown passthru index: %d\n", devidx); 360 break; 361 } 362 363 ret = 0; 364 exit: 365 kfree(msg); 366 return ret; 367 } 368 369 static int cros_ec_get_proto_info_legacy(struct cros_ec_device *ec_dev) 370 { 371 struct cros_ec_command *msg; 372 struct ec_params_hello *params; 373 struct ec_response_hello *response; 374 int ret, mapped; 375 376 ec_dev->proto_version = 2; 377 378 msg = kzalloc(sizeof(*msg) + max(sizeof(*params), sizeof(*response)), GFP_KERNEL); 379 if (!msg) 380 return -ENOMEM; 381 382 msg->command = EC_CMD_HELLO; 383 msg->insize = sizeof(*response); 384 msg->outsize = sizeof(*params); 385 386 params = (struct ec_params_hello *)msg->data; 387 params->in_data = 0xa0b0c0d0; 388 389 ret = cros_ec_send_command(ec_dev, msg); 390 if (ret < 0) { 391 dev_dbg(ec_dev->dev, "EC failed to respond to v2 hello: %d\n", ret); 392 goto exit; 393 } 394 395 mapped = cros_ec_map_error(msg->result); 396 if (mapped) { 397 ret = mapped; 398 dev_err(ec_dev->dev, "EC responded to v2 hello with error: %d\n", msg->result); 399 goto exit; 400 } 401 402 if (ret == 0) { 403 ret = -EPROTO; 404 goto exit; 405 } 406 407 response = (struct ec_response_hello *)msg->data; 408 if (response->out_data != 0xa1b2c3d4) { 409 dev_err(ec_dev->dev, 410 "EC responded to v2 hello with bad result: %u\n", 411 response->out_data); 412 ret = -EBADMSG; 413 goto exit; 414 } 415 416 ec_dev->max_request = EC_PROTO2_MAX_PARAM_SIZE; 417 ec_dev->max_response = EC_PROTO2_MAX_PARAM_SIZE; 418 ec_dev->max_passthru = 0; 419 ec_dev->pkt_xfer = NULL; 420 ec_dev->din_size = EC_PROTO2_MSG_BYTES; 421 ec_dev->dout_size = EC_PROTO2_MSG_BYTES; 422 423 dev_dbg(ec_dev->dev, "falling back to proto v2\n"); 424 ret = 0; 425 exit: 426 kfree(msg); 427 return ret; 428 } 429 430 /** 431 * cros_ec_get_host_command_version_mask 432 * 433 * Get the version mask of a given command. 434 * 435 * @ec_dev: EC device to call 436 * @cmd: command to get the version of. 437 * @mask: result when function returns 0. 438 * 439 * @return 0 on success, error code otherwise 440 * 441 * LOCKING: 442 * the caller has ec_dev->lock mutex or the caller knows there is 443 * no other command in progress. 444 */ 445 static int cros_ec_get_host_command_version_mask(struct cros_ec_device *ec_dev, u16 cmd, u32 *mask) 446 { 447 struct ec_params_get_cmd_versions *pver; 448 struct ec_response_get_cmd_versions *rver; 449 struct cros_ec_command *msg; 450 int ret, mapped; 451 452 msg = kmalloc(sizeof(*msg) + max(sizeof(*rver), sizeof(*pver)), 453 GFP_KERNEL); 454 if (!msg) 455 return -ENOMEM; 456 457 msg->version = 0; 458 msg->command = EC_CMD_GET_CMD_VERSIONS; 459 msg->insize = sizeof(*rver); 460 msg->outsize = sizeof(*pver); 461 462 pver = (struct ec_params_get_cmd_versions *)msg->data; 463 pver->cmd = cmd; 464 465 ret = cros_ec_send_command(ec_dev, msg); 466 if (ret < 0) 467 goto exit; 468 469 mapped = cros_ec_map_error(msg->result); 470 if (mapped) { 471 ret = mapped; 472 goto exit; 473 } 474 475 if (ret == 0) { 476 ret = -EPROTO; 477 goto exit; 478 } 479 480 rver = (struct ec_response_get_cmd_versions *)msg->data; 481 *mask = rver->version_mask; 482 ret = 0; 483 exit: 484 kfree(msg); 485 return ret; 486 } 487 488 /** 489 * cros_ec_query_all() - Query the protocol version supported by the 490 * ChromeOS EC. 491 * @ec_dev: Device to register. 492 * 493 * Return: 0 on success or negative error code. 494 */ 495 int cros_ec_query_all(struct cros_ec_device *ec_dev) 496 { 497 struct device *dev = ec_dev->dev; 498 u32 ver_mask; 499 int ret; 500 501 /* First try sending with proto v3. */ 502 if (!cros_ec_get_proto_info(ec_dev, CROS_EC_DEV_EC_INDEX)) { 503 /* Check for PD. */ 504 cros_ec_get_proto_info(ec_dev, CROS_EC_DEV_PD_INDEX); 505 } else { 506 /* Try querying with a v2 hello message. */ 507 ret = cros_ec_get_proto_info_legacy(ec_dev); 508 if (ret) { 509 /* 510 * It's possible for a test to occur too early when 511 * the EC isn't listening. If this happens, we'll 512 * test later when the first command is run. 513 */ 514 ec_dev->proto_version = EC_PROTO_VERSION_UNKNOWN; 515 dev_dbg(ec_dev->dev, "EC query failed: %d\n", ret); 516 return ret; 517 } 518 } 519 520 devm_kfree(dev, ec_dev->din); 521 devm_kfree(dev, ec_dev->dout); 522 523 ec_dev->din = devm_kzalloc(dev, ec_dev->din_size, GFP_KERNEL); 524 if (!ec_dev->din) { 525 ret = -ENOMEM; 526 goto exit; 527 } 528 529 ec_dev->dout = devm_kzalloc(dev, ec_dev->dout_size, GFP_KERNEL); 530 if (!ec_dev->dout) { 531 devm_kfree(dev, ec_dev->din); 532 ret = -ENOMEM; 533 goto exit; 534 } 535 536 /* Probe if MKBP event is supported */ 537 ret = cros_ec_get_host_command_version_mask(ec_dev, EC_CMD_GET_NEXT_EVENT, &ver_mask); 538 if (ret < 0 || ver_mask == 0) { 539 ec_dev->mkbp_event_supported = 0; 540 } else { 541 ec_dev->mkbp_event_supported = fls(ver_mask); 542 543 dev_dbg(ec_dev->dev, "MKBP support version %u\n", ec_dev->mkbp_event_supported - 1); 544 } 545 546 /* Probe if host sleep v1 is supported for S0ix failure detection. */ 547 ret = cros_ec_get_host_command_version_mask(ec_dev, EC_CMD_HOST_SLEEP_EVENT, &ver_mask); 548 ec_dev->host_sleep_v1 = (ret == 0 && (ver_mask & EC_VER_MASK(1))); 549 550 /* Get host event wake mask. */ 551 ret = cros_ec_get_host_event_wake_mask(ec_dev, &ec_dev->host_event_wake_mask); 552 if (ret < 0) { 553 /* 554 * If the EC doesn't support EC_CMD_HOST_EVENT_GET_WAKE_MASK, 555 * use a reasonable default. Note that we ignore various 556 * battery, AC status, and power-state events, because (a) 557 * those can be quite common (e.g., when sitting at full 558 * charge, on AC) and (b) these are not actionable wake events; 559 * if anything, we'd like to continue suspending (to save 560 * power), not wake up. 561 */ 562 ec_dev->host_event_wake_mask = U32_MAX & 563 ~(EC_HOST_EVENT_MASK(EC_HOST_EVENT_LID_CLOSED) | 564 EC_HOST_EVENT_MASK(EC_HOST_EVENT_AC_DISCONNECTED) | 565 EC_HOST_EVENT_MASK(EC_HOST_EVENT_BATTERY_LOW) | 566 EC_HOST_EVENT_MASK(EC_HOST_EVENT_BATTERY_CRITICAL) | 567 EC_HOST_EVENT_MASK(EC_HOST_EVENT_BATTERY) | 568 EC_HOST_EVENT_MASK(EC_HOST_EVENT_PD_MCU) | 569 EC_HOST_EVENT_MASK(EC_HOST_EVENT_BATTERY_STATUS)); 570 /* 571 * Old ECs may not support this command. Complain about all 572 * other errors. 573 */ 574 if (ret != -EOPNOTSUPP) 575 dev_err(ec_dev->dev, 576 "failed to retrieve wake mask: %d\n", ret); 577 } 578 579 ret = 0; 580 581 exit: 582 return ret; 583 } 584 EXPORT_SYMBOL(cros_ec_query_all); 585 586 /** 587 * cros_ec_cmd_xfer() - Send a command to the ChromeOS EC. 588 * @ec_dev: EC device. 589 * @msg: Message to write. 590 * 591 * Call this to send a command to the ChromeOS EC. This should be used instead 592 * of calling the EC's cmd_xfer() callback directly. This function does not 593 * convert EC command execution error codes to Linux error codes. Most 594 * in-kernel users will want to use cros_ec_cmd_xfer_status() instead since 595 * that function implements the conversion. 596 * 597 * Return: 598 * >0 - EC command was executed successfully. The return value is the number 599 * of bytes returned by the EC (excluding the header). 600 * =0 - EC communication was successful. EC command execution results are 601 * reported in msg->result. The result will be EC_RES_SUCCESS if the 602 * command was executed successfully or report an EC command execution 603 * error. 604 * <0 - EC communication error. Return value is the Linux error code. 605 */ 606 int cros_ec_cmd_xfer(struct cros_ec_device *ec_dev, struct cros_ec_command *msg) 607 { 608 int ret; 609 610 mutex_lock(&ec_dev->lock); 611 if (ec_dev->proto_version == EC_PROTO_VERSION_UNKNOWN) { 612 ret = cros_ec_query_all(ec_dev); 613 if (ret) { 614 dev_err(ec_dev->dev, 615 "EC version unknown and query failed; aborting command\n"); 616 mutex_unlock(&ec_dev->lock); 617 return ret; 618 } 619 } 620 621 if (msg->insize > ec_dev->max_response) { 622 dev_dbg(ec_dev->dev, "clamping message receive buffer\n"); 623 msg->insize = ec_dev->max_response; 624 } 625 626 if (msg->command < EC_CMD_PASSTHRU_OFFSET(CROS_EC_DEV_PD_INDEX)) { 627 if (msg->outsize > ec_dev->max_request) { 628 dev_err(ec_dev->dev, 629 "request of size %u is too big (max: %u)\n", 630 msg->outsize, 631 ec_dev->max_request); 632 mutex_unlock(&ec_dev->lock); 633 return -EMSGSIZE; 634 } 635 } else { 636 if (msg->outsize > ec_dev->max_passthru) { 637 dev_err(ec_dev->dev, 638 "passthru rq of size %u is too big (max: %u)\n", 639 msg->outsize, 640 ec_dev->max_passthru); 641 mutex_unlock(&ec_dev->lock); 642 return -EMSGSIZE; 643 } 644 } 645 646 ret = cros_ec_send_command(ec_dev, msg); 647 mutex_unlock(&ec_dev->lock); 648 649 return ret; 650 } 651 EXPORT_SYMBOL(cros_ec_cmd_xfer); 652 653 /** 654 * cros_ec_cmd_xfer_status() - Send a command to the ChromeOS EC. 655 * @ec_dev: EC device. 656 * @msg: Message to write. 657 * 658 * Call this to send a command to the ChromeOS EC. This should be used instead of calling the EC's 659 * cmd_xfer() callback directly. It returns success status only if both the command was transmitted 660 * successfully and the EC replied with success status. 661 * 662 * Return: 663 * >=0 - The number of bytes transferred. 664 * <0 - Linux error code 665 */ 666 int cros_ec_cmd_xfer_status(struct cros_ec_device *ec_dev, 667 struct cros_ec_command *msg) 668 { 669 int ret, mapped; 670 671 ret = cros_ec_cmd_xfer(ec_dev, msg); 672 if (ret < 0) 673 return ret; 674 675 mapped = cros_ec_map_error(msg->result); 676 if (mapped) { 677 dev_dbg(ec_dev->dev, "Command result (err: %d [%d])\n", 678 msg->result, mapped); 679 ret = mapped; 680 } 681 682 return ret; 683 } 684 EXPORT_SYMBOL(cros_ec_cmd_xfer_status); 685 686 static int get_next_event_xfer(struct cros_ec_device *ec_dev, 687 struct cros_ec_command *msg, 688 struct ec_response_get_next_event_v3 *event, 689 int version, uint32_t size) 690 { 691 int ret; 692 693 msg->version = version; 694 msg->command = EC_CMD_GET_NEXT_EVENT; 695 msg->insize = size; 696 msg->outsize = 0; 697 698 ret = cros_ec_cmd_xfer_status(ec_dev, msg); 699 if (ret > 0) { 700 ec_dev->event_size = ret - 1; 701 ec_dev->event_data = *event; 702 } 703 704 return ret; 705 } 706 707 static int get_next_event(struct cros_ec_device *ec_dev) 708 { 709 struct { 710 struct cros_ec_command msg; 711 struct ec_response_get_next_event_v3 event; 712 } __packed buf; 713 struct cros_ec_command *msg = &buf.msg; 714 struct ec_response_get_next_event_v3 *event = &buf.event; 715 int cmd_version = ec_dev->mkbp_event_supported - 1; 716 u32 size; 717 718 memset(msg, 0, sizeof(*msg)); 719 if (ec_dev->suspended) { 720 dev_dbg(ec_dev->dev, "Device suspended.\n"); 721 return -EHOSTDOWN; 722 } 723 724 if (cmd_version == 0) { 725 size = sizeof(struct ec_response_get_next_event); 726 } else if (cmd_version < 3) { 727 size = sizeof(struct ec_response_get_next_event_v1); 728 } else { 729 /* 730 * The max version we support is v3. So, we speak v3 even if the 731 * EC says it supports v4+. 732 */ 733 cmd_version = 3; 734 size = sizeof(struct ec_response_get_next_event_v3); 735 } 736 737 return get_next_event_xfer(ec_dev, msg, event, cmd_version, size); 738 } 739 740 static int get_keyboard_state_event(struct cros_ec_device *ec_dev) 741 { 742 u8 buffer[sizeof(struct cros_ec_command) + 743 sizeof(ec_dev->event_data.data)]; 744 struct cros_ec_command *msg = (struct cros_ec_command *)&buffer; 745 746 msg->version = 0; 747 msg->command = EC_CMD_MKBP_STATE; 748 msg->insize = sizeof(ec_dev->event_data.data); 749 msg->outsize = 0; 750 751 ec_dev->event_size = cros_ec_cmd_xfer_status(ec_dev, msg); 752 ec_dev->event_data.event_type = EC_MKBP_EVENT_KEY_MATRIX; 753 memcpy(&ec_dev->event_data.data, msg->data, 754 sizeof(ec_dev->event_data.data)); 755 756 return ec_dev->event_size; 757 } 758 759 /** 760 * cros_ec_get_next_event() - Fetch next event from the ChromeOS EC. 761 * @ec_dev: Device to fetch event from. 762 * @wake_event: Pointer to a bool set to true upon return if the event might be 763 * treated as a wake event. Ignored if null. 764 * @has_more_events: Pointer to bool set to true if more than one event is 765 * pending. 766 * Some EC will set this flag to indicate cros_ec_get_next_event() 767 * can be called multiple times in a row. 768 * It is an optimization to prevent issuing a EC command for 769 * nothing or wait for another interrupt from the EC to process 770 * the next message. 771 * Ignored if null. 772 * 773 * Return: negative error code on errors; 0 for no data; or else number of 774 * bytes received (i.e., an event was retrieved successfully). Event types are 775 * written out to @ec_dev->event_data.event_type on success. 776 */ 777 int cros_ec_get_next_event(struct cros_ec_device *ec_dev, 778 bool *wake_event, 779 bool *has_more_events) 780 { 781 u8 event_type; 782 u32 host_event; 783 int ret; 784 u32 ver_mask; 785 786 /* 787 * Default value for wake_event. 788 * Wake up on keyboard event, wake up for spurious interrupt or link 789 * error to the EC. 790 */ 791 if (wake_event) 792 *wake_event = true; 793 794 /* 795 * Default value for has_more_events. 796 * EC will raise another interrupt if AP does not process all events 797 * anyway. 798 */ 799 if (has_more_events) 800 *has_more_events = false; 801 802 if (!ec_dev->mkbp_event_supported) 803 return get_keyboard_state_event(ec_dev); 804 805 ret = get_next_event(ec_dev); 806 /* 807 * -ENOPROTOOPT is returned when EC returns EC_RES_INVALID_VERSION. 808 * This can occur when EC based device (e.g. Fingerprint MCU) jumps to 809 * the RO image which doesn't support newer version of the command. In 810 * this case we will attempt to update maximum supported version of the 811 * EC_CMD_GET_NEXT_EVENT. 812 */ 813 if (ret == -ENOPROTOOPT) { 814 dev_dbg(ec_dev->dev, 815 "GET_NEXT_EVENT returned invalid version error.\n"); 816 mutex_lock(&ec_dev->lock); 817 ret = cros_ec_get_host_command_version_mask(ec_dev, 818 EC_CMD_GET_NEXT_EVENT, 819 &ver_mask); 820 mutex_unlock(&ec_dev->lock); 821 if (ret < 0 || ver_mask == 0) 822 /* 823 * Do not change the MKBP supported version if we can't 824 * obtain supported version correctly. Please note that 825 * calling EC_CMD_GET_NEXT_EVENT returned 826 * EC_RES_INVALID_VERSION which means that the command 827 * is present. 828 */ 829 return -ENOPROTOOPT; 830 831 ec_dev->mkbp_event_supported = fls(ver_mask); 832 dev_dbg(ec_dev->dev, "MKBP support version changed to %u\n", 833 ec_dev->mkbp_event_supported - 1); 834 835 /* Try to get next event with new MKBP support version set. */ 836 ret = get_next_event(ec_dev); 837 } 838 839 if (ret <= 0) 840 return ret; 841 842 if (has_more_events) 843 *has_more_events = ec_dev->event_data.event_type & 844 EC_MKBP_HAS_MORE_EVENTS; 845 ec_dev->event_data.event_type &= EC_MKBP_EVENT_TYPE_MASK; 846 847 if (wake_event) { 848 event_type = ec_dev->event_data.event_type; 849 host_event = cros_ec_get_host_event(ec_dev); 850 851 /* 852 * Sensor events need to be parsed by the sensor sub-device. 853 * Defer them, and don't report the wakeup here. 854 */ 855 if (event_type == EC_MKBP_EVENT_SENSOR_FIFO) { 856 *wake_event = false; 857 } else if (host_event) { 858 /* rtc_update_irq() already handles wakeup events. */ 859 if (host_event & EC_HOST_EVENT_MASK(EC_HOST_EVENT_RTC)) 860 *wake_event = false; 861 /* Masked host-events should not count as wake events. */ 862 if (!(host_event & ec_dev->host_event_wake_mask)) 863 *wake_event = false; 864 } 865 } 866 867 return ret; 868 } 869 EXPORT_SYMBOL(cros_ec_get_next_event); 870 871 /** 872 * cros_ec_get_host_event() - Return a mask of event set by the ChromeOS EC. 873 * @ec_dev: Device to fetch event from. 874 * 875 * When MKBP is supported, when the EC raises an interrupt, we collect the 876 * events raised and call the functions in the ec notifier. This function 877 * is a helper to know which events are raised. 878 * 879 * Return: 0 on error or non-zero bitmask of one or more EC_HOST_EVENT_*. 880 */ 881 u32 cros_ec_get_host_event(struct cros_ec_device *ec_dev) 882 { 883 u32 host_event; 884 885 if (!ec_dev->mkbp_event_supported) 886 return 0; 887 888 if (ec_dev->event_data.event_type != EC_MKBP_EVENT_HOST_EVENT) 889 return 0; 890 891 if (ec_dev->event_size != sizeof(host_event)) { 892 dev_warn(ec_dev->dev, "Invalid host event size\n"); 893 return 0; 894 } 895 896 host_event = get_unaligned_le32(&ec_dev->event_data.data.host_event); 897 898 return host_event; 899 } 900 EXPORT_SYMBOL(cros_ec_get_host_event); 901 902 /** 903 * cros_ec_check_features() - Test for the presence of EC features 904 * 905 * @ec: EC device, does not have to be connected directly to the AP, 906 * can be daisy chained through another device. 907 * @feature: One of ec_feature_code bit. 908 * 909 * Call this function to test whether the ChromeOS EC supports a feature. 910 * 911 * Return: true if supported, false if not (or if an error was encountered). 912 */ 913 bool cros_ec_check_features(struct cros_ec_dev *ec, int feature) 914 { 915 struct ec_response_get_features *features = &ec->features; 916 int ret; 917 918 if (features->flags[0] == -1U && features->flags[1] == -1U) { 919 /* features bitmap not read yet */ 920 ret = cros_ec_cmd(ec->ec_dev, 0, EC_CMD_GET_FEATURES + ec->cmd_offset, 921 NULL, 0, features, sizeof(*features)); 922 if (ret < 0) { 923 dev_warn(ec->dev, "cannot get EC features: %d\n", ret); 924 memset(features, 0, sizeof(*features)); 925 } 926 927 dev_dbg(ec->dev, "EC features %08x %08x\n", 928 features->flags[0], features->flags[1]); 929 } 930 931 return !!(features->flags[feature / 32] & EC_FEATURE_MASK_0(feature)); 932 } 933 EXPORT_SYMBOL_GPL(cros_ec_check_features); 934 935 /** 936 * cros_ec_get_sensor_count() - Return the number of MEMS sensors supported. 937 * 938 * @ec: EC device, does not have to be connected directly to the AP, 939 * can be daisy chained through another device. 940 * Return: < 0 in case of error. 941 */ 942 int cros_ec_get_sensor_count(struct cros_ec_dev *ec) 943 { 944 /* 945 * Issue a command to get the number of sensor reported. 946 * If not supported, check for legacy mode. 947 */ 948 int ret, sensor_count; 949 struct ec_params_motion_sense *params; 950 struct ec_response_motion_sense *resp; 951 struct cros_ec_command *msg; 952 struct cros_ec_device *ec_dev = ec->ec_dev; 953 u8 status; 954 955 msg = kzalloc(sizeof(*msg) + max(sizeof(*params), sizeof(*resp)), 956 GFP_KERNEL); 957 if (!msg) 958 return -ENOMEM; 959 960 msg->version = 1; 961 msg->command = EC_CMD_MOTION_SENSE_CMD + ec->cmd_offset; 962 msg->outsize = sizeof(*params); 963 msg->insize = sizeof(*resp); 964 965 params = (struct ec_params_motion_sense *)msg->data; 966 params->cmd = MOTIONSENSE_CMD_DUMP; 967 968 ret = cros_ec_cmd_xfer_status(ec->ec_dev, msg); 969 if (ret < 0) { 970 sensor_count = ret; 971 } else { 972 resp = (struct ec_response_motion_sense *)msg->data; 973 sensor_count = resp->dump.sensor_count; 974 } 975 kfree(msg); 976 977 /* 978 * Check legacy mode: Let's find out if sensors are accessible 979 * via LPC interface. 980 */ 981 if (sensor_count < 0 && ec->cmd_offset == 0 && ec_dev->cmd_readmem) { 982 ret = ec_dev->cmd_readmem(ec_dev, EC_MEMMAP_ACC_STATUS, 983 1, &status); 984 if (ret >= 0 && 985 (status & EC_MEMMAP_ACC_STATUS_PRESENCE_BIT)) { 986 /* 987 * We have 2 sensors, one in the lid, one in the base. 988 */ 989 sensor_count = 2; 990 } else { 991 /* 992 * EC uses LPC interface and no sensors are presented. 993 */ 994 sensor_count = 0; 995 } 996 } 997 return sensor_count; 998 } 999 EXPORT_SYMBOL_GPL(cros_ec_get_sensor_count); 1000 1001 /** 1002 * cros_ec_cmd - Send a command to the EC. 1003 * 1004 * @ec_dev: EC device 1005 * @version: EC command version 1006 * @command: EC command 1007 * @outdata: EC command output data 1008 * @outsize: Size of outdata 1009 * @indata: EC command input data 1010 * @insize: Size of indata 1011 * 1012 * Return: >= 0 on success, negative error number on failure. 1013 */ 1014 int cros_ec_cmd(struct cros_ec_device *ec_dev, 1015 unsigned int version, 1016 int command, 1017 const void *outdata, 1018 size_t outsize, 1019 void *indata, 1020 size_t insize) 1021 { 1022 struct cros_ec_command *msg; 1023 int ret; 1024 1025 msg = kzalloc(sizeof(*msg) + max(insize, outsize), GFP_KERNEL); 1026 if (!msg) 1027 return -ENOMEM; 1028 1029 msg->version = version; 1030 msg->command = command; 1031 msg->outsize = outsize; 1032 msg->insize = insize; 1033 1034 if (outsize) 1035 memcpy(msg->data, outdata, outsize); 1036 1037 ret = cros_ec_cmd_xfer_status(ec_dev, msg); 1038 if (ret < 0) 1039 goto error; 1040 1041 if (insize) 1042 memcpy(indata, msg->data, insize); 1043 error: 1044 kfree(msg); 1045 return ret; 1046 } 1047 EXPORT_SYMBOL_GPL(cros_ec_cmd); 1048 1049 /** 1050 * cros_ec_cmd_readmem - Read from EC memory. 1051 * 1052 * @ec_dev: EC device 1053 * @offset: Is within EC_LPC_ADDR_MEMMAP region. 1054 * @size: Number of bytes to read. 1055 * @dest: EC command output data 1056 * 1057 * Return: >= 0 on success, negative error number on failure. 1058 */ 1059 int cros_ec_cmd_readmem(struct cros_ec_device *ec_dev, u8 offset, u8 size, void *dest) 1060 { 1061 struct ec_params_read_memmap params = {}; 1062 1063 if (!size) 1064 return -EINVAL; 1065 1066 if (ec_dev->cmd_readmem) 1067 return ec_dev->cmd_readmem(ec_dev, offset, size, dest); 1068 1069 params.offset = offset; 1070 params.size = size; 1071 return cros_ec_cmd(ec_dev, 0, EC_CMD_READ_MEMMAP, 1072 ¶ms, sizeof(params), dest, size); 1073 } 1074 EXPORT_SYMBOL_GPL(cros_ec_cmd_readmem); 1075 1076 /** 1077 * cros_ec_get_cmd_versions - Get supported version mask. 1078 * 1079 * @ec_dev: EC device 1080 * @cmd: Command to test 1081 * 1082 * Return: version mask on success, negative error number on failure. 1083 */ 1084 int cros_ec_get_cmd_versions(struct cros_ec_device *ec_dev, u16 cmd) 1085 { 1086 struct ec_params_get_cmd_versions req_v0; 1087 struct ec_params_get_cmd_versions_v1 req_v1; 1088 struct ec_response_get_cmd_versions resp; 1089 int ret; 1090 1091 if (cmd <= U8_MAX) { 1092 req_v0.cmd = cmd; 1093 ret = cros_ec_cmd(ec_dev, 0, EC_CMD_GET_CMD_VERSIONS, 1094 &req_v0, sizeof(req_v0), &resp, sizeof(resp)); 1095 } else { 1096 req_v1.cmd = cmd; 1097 ret = cros_ec_cmd(ec_dev, 1, EC_CMD_GET_CMD_VERSIONS, 1098 &req_v1, sizeof(req_v1), &resp, sizeof(resp)); 1099 } 1100 1101 if (ret == -EINVAL) 1102 return 0; /* Command not implemented */ 1103 else if (ret < 0) 1104 return ret; 1105 else 1106 return resp.version_mask; 1107 } 1108 EXPORT_SYMBOL_GPL(cros_ec_get_cmd_versions); 1109