xref: /linux/drivers/platform/chrome/cros_ec_lpc.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 // LPC interface for ChromeOS Embedded Controller
3 //
4 // Copyright (C) 2012-2015 Google, Inc
5 //
6 // This driver uses the ChromeOS EC byte-level message-based protocol for
7 // communicating the keyboard state (which keys are pressed) from a keyboard EC
8 // to the AP over some bus (such as i2c, lpc, spi).  The EC does debouncing,
9 // but everything else (including deghosting) is done here.  The main
10 // motivation for this is to keep the EC firmware as simple as possible, since
11 // it cannot be easily upgraded and EC flash/IRAM space is relatively
12 // expensive.
13 
14 #include <linux/acpi.h>
15 #include <linux/dmi.h>
16 #include <linux/delay.h>
17 #include <linux/io.h>
18 #include <linux/interrupt.h>
19 #include <linux/kobject.h>
20 #include <linux/module.h>
21 #include <linux/platform_data/cros_ec_commands.h>
22 #include <linux/platform_data/cros_ec_proto.h>
23 #include <linux/platform_device.h>
24 #include <linux/printk.h>
25 #include <linux/reboot.h>
26 #include <linux/suspend.h>
27 
28 #include "cros_ec.h"
29 #include "cros_ec_lpc_mec.h"
30 
31 #define DRV_NAME "cros_ec_lpcs"
32 #define ACPI_DRV_NAME "GOOG0004"
33 
34 /* True if ACPI device is present */
35 static bool cros_ec_lpc_acpi_device_found;
36 
37 /*
38  * Indicates that lpc_driver_data.quirk_mmio_memory_base should
39  * be used as the base port for EC mapped memory.
40  */
41 #define CROS_EC_LPC_QUIRK_REMAP_MEMORY              BIT(0)
42 
43 /**
44  * struct lpc_driver_data - driver data attached to a DMI device ID to indicate
45  *                          hardware quirks.
46  * @quirks: a bitfield composed of quirks from CROS_EC_LPC_QUIRK_*
47  * @quirk_mmio_memory_base: The first I/O port addressing EC mapped memory (used
48  *                          when quirk ...REMAP_MEMORY is set.)
49  */
50 struct lpc_driver_data {
51 	u32 quirks;
52 	u16 quirk_mmio_memory_base;
53 };
54 
55 /**
56  * struct cros_ec_lpc - LPC device-specific data
57  * @mmio_memory_base: The first I/O port addressing EC mapped memory.
58  */
59 struct cros_ec_lpc {
60 	u16 mmio_memory_base;
61 };
62 
63 /**
64  * struct lpc_driver_ops - LPC driver operations
65  * @read: Copy length bytes from EC address offset into buffer dest. Returns
66  *        the 8-bit checksum of all bytes read.
67  * @write: Copy length bytes from buffer msg into EC address offset. Returns
68  *         the 8-bit checksum of all bytes written.
69  */
70 struct lpc_driver_ops {
71 	u8 (*read)(unsigned int offset, unsigned int length, u8 *dest);
72 	u8 (*write)(unsigned int offset, unsigned int length, const u8 *msg);
73 };
74 
75 static struct lpc_driver_ops cros_ec_lpc_ops = { };
76 
77 /*
78  * A generic instance of the read function of struct lpc_driver_ops, used for
79  * the LPC EC.
80  */
81 static u8 cros_ec_lpc_read_bytes(unsigned int offset, unsigned int length,
82 				 u8 *dest)
83 {
84 	int sum = 0;
85 	int i;
86 
87 	for (i = 0; i < length; ++i) {
88 		dest[i] = inb(offset + i);
89 		sum += dest[i];
90 	}
91 
92 	/* Return checksum of all bytes read */
93 	return sum;
94 }
95 
96 /*
97  * A generic instance of the write function of struct lpc_driver_ops, used for
98  * the LPC EC.
99  */
100 static u8 cros_ec_lpc_write_bytes(unsigned int offset, unsigned int length,
101 				  const u8 *msg)
102 {
103 	int sum = 0;
104 	int i;
105 
106 	for (i = 0; i < length; ++i) {
107 		outb(msg[i], offset + i);
108 		sum += msg[i];
109 	}
110 
111 	/* Return checksum of all bytes written */
112 	return sum;
113 }
114 
115 /*
116  * An instance of the read function of struct lpc_driver_ops, used for the
117  * MEC variant of LPC EC.
118  */
119 static u8 cros_ec_lpc_mec_read_bytes(unsigned int offset, unsigned int length,
120 				     u8 *dest)
121 {
122 	int in_range = cros_ec_lpc_mec_in_range(offset, length);
123 
124 	if (in_range < 0)
125 		return 0;
126 
127 	return in_range ?
128 		cros_ec_lpc_io_bytes_mec(MEC_IO_READ,
129 					 offset - EC_HOST_CMD_REGION0,
130 					 length, dest) :
131 		cros_ec_lpc_read_bytes(offset, length, dest);
132 }
133 
134 /*
135  * An instance of the write function of struct lpc_driver_ops, used for the
136  * MEC variant of LPC EC.
137  */
138 static u8 cros_ec_lpc_mec_write_bytes(unsigned int offset, unsigned int length,
139 				      const u8 *msg)
140 {
141 	int in_range = cros_ec_lpc_mec_in_range(offset, length);
142 
143 	if (in_range < 0)
144 		return 0;
145 
146 	return in_range ?
147 		cros_ec_lpc_io_bytes_mec(MEC_IO_WRITE,
148 					 offset - EC_HOST_CMD_REGION0,
149 					 length, (u8 *)msg) :
150 		cros_ec_lpc_write_bytes(offset, length, msg);
151 }
152 
153 static int ec_response_timed_out(void)
154 {
155 	unsigned long one_second = jiffies + HZ;
156 	u8 data;
157 
158 	usleep_range(200, 300);
159 	do {
160 		if (!(cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_CMD, 1, &data) &
161 		    EC_LPC_STATUS_BUSY_MASK))
162 			return 0;
163 		usleep_range(100, 200);
164 	} while (time_before(jiffies, one_second));
165 
166 	return 1;
167 }
168 
169 static int cros_ec_pkt_xfer_lpc(struct cros_ec_device *ec,
170 				struct cros_ec_command *msg)
171 {
172 	struct ec_host_response response;
173 	u8 sum;
174 	int ret = 0;
175 	u8 *dout;
176 
177 	ret = cros_ec_prepare_tx(ec, msg);
178 	if (ret < 0)
179 		goto done;
180 
181 	/* Write buffer */
182 	cros_ec_lpc_ops.write(EC_LPC_ADDR_HOST_PACKET, ret, ec->dout);
183 
184 	/* Here we go */
185 	sum = EC_COMMAND_PROTOCOL_3;
186 	cros_ec_lpc_ops.write(EC_LPC_ADDR_HOST_CMD, 1, &sum);
187 
188 	if (ec_response_timed_out()) {
189 		dev_warn(ec->dev, "EC response timed out\n");
190 		ret = -EIO;
191 		goto done;
192 	}
193 
194 	/* Check result */
195 	msg->result = cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_DATA, 1, &sum);
196 	ret = cros_ec_check_result(ec, msg);
197 	if (ret)
198 		goto done;
199 
200 	/* Read back response */
201 	dout = (u8 *)&response;
202 	sum = cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_PACKET, sizeof(response),
203 				   dout);
204 
205 	msg->result = response.result;
206 
207 	if (response.data_len > msg->insize) {
208 		dev_err(ec->dev,
209 			"packet too long (%d bytes, expected %d)",
210 			response.data_len, msg->insize);
211 		ret = -EMSGSIZE;
212 		goto done;
213 	}
214 
215 	/* Read response and process checksum */
216 	sum += cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_PACKET +
217 				    sizeof(response), response.data_len,
218 				    msg->data);
219 
220 	if (sum) {
221 		dev_err(ec->dev,
222 			"bad packet checksum %02x\n",
223 			response.checksum);
224 		ret = -EBADMSG;
225 		goto done;
226 	}
227 
228 	/* Return actual amount of data received */
229 	ret = response.data_len;
230 done:
231 	return ret;
232 }
233 
234 static int cros_ec_cmd_xfer_lpc(struct cros_ec_device *ec,
235 				struct cros_ec_command *msg)
236 {
237 	struct ec_lpc_host_args args;
238 	u8 sum;
239 	int ret = 0;
240 
241 	if (msg->outsize > EC_PROTO2_MAX_PARAM_SIZE ||
242 	    msg->insize > EC_PROTO2_MAX_PARAM_SIZE) {
243 		dev_err(ec->dev,
244 			"invalid buffer sizes (out %d, in %d)\n",
245 			msg->outsize, msg->insize);
246 		return -EINVAL;
247 	}
248 
249 	/* Now actually send the command to the EC and get the result */
250 	args.flags = EC_HOST_ARGS_FLAG_FROM_HOST;
251 	args.command_version = msg->version;
252 	args.data_size = msg->outsize;
253 
254 	/* Initialize checksum */
255 	sum = msg->command + args.flags + args.command_version + args.data_size;
256 
257 	/* Copy data and update checksum */
258 	sum += cros_ec_lpc_ops.write(EC_LPC_ADDR_HOST_PARAM, msg->outsize,
259 				     msg->data);
260 
261 	/* Finalize checksum and write args */
262 	args.checksum = sum;
263 	cros_ec_lpc_ops.write(EC_LPC_ADDR_HOST_ARGS, sizeof(args),
264 			      (u8 *)&args);
265 
266 	/* Here we go */
267 	sum = msg->command;
268 	cros_ec_lpc_ops.write(EC_LPC_ADDR_HOST_CMD, 1, &sum);
269 
270 	if (ec_response_timed_out()) {
271 		dev_warn(ec->dev, "EC response timed out\n");
272 		ret = -EIO;
273 		goto done;
274 	}
275 
276 	/* Check result */
277 	msg->result = cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_DATA, 1, &sum);
278 	ret = cros_ec_check_result(ec, msg);
279 	if (ret)
280 		goto done;
281 
282 	/* Read back args */
283 	cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_ARGS, sizeof(args), (u8 *)&args);
284 
285 	if (args.data_size > msg->insize) {
286 		dev_err(ec->dev,
287 			"packet too long (%d bytes, expected %d)",
288 			args.data_size, msg->insize);
289 		ret = -ENOSPC;
290 		goto done;
291 	}
292 
293 	/* Start calculating response checksum */
294 	sum = msg->command + args.flags + args.command_version + args.data_size;
295 
296 	/* Read response and update checksum */
297 	sum += cros_ec_lpc_ops.read(EC_LPC_ADDR_HOST_PARAM, args.data_size,
298 				    msg->data);
299 
300 	/* Verify checksum */
301 	if (args.checksum != sum) {
302 		dev_err(ec->dev,
303 			"bad packet checksum, expected %02x, got %02x\n",
304 			args.checksum, sum);
305 		ret = -EBADMSG;
306 		goto done;
307 	}
308 
309 	/* Return actual amount of data received */
310 	ret = args.data_size;
311 done:
312 	return ret;
313 }
314 
315 /* Returns num bytes read, or negative on error. Doesn't need locking. */
316 static int cros_ec_lpc_readmem(struct cros_ec_device *ec, unsigned int offset,
317 			       unsigned int bytes, void *dest)
318 {
319 	struct cros_ec_lpc *ec_lpc = ec->priv;
320 	int i = offset;
321 	char *s = dest;
322 	int cnt = 0;
323 
324 	if (offset >= EC_MEMMAP_SIZE - bytes)
325 		return -EINVAL;
326 
327 	/* fixed length */
328 	if (bytes) {
329 		cros_ec_lpc_ops.read(ec_lpc->mmio_memory_base + offset, bytes, s);
330 		return bytes;
331 	}
332 
333 	/* string */
334 	for (; i < EC_MEMMAP_SIZE; i++, s++) {
335 		cros_ec_lpc_ops.read(ec_lpc->mmio_memory_base + i, 1, s);
336 		cnt++;
337 		if (!*s)
338 			break;
339 	}
340 
341 	return cnt;
342 }
343 
344 static void cros_ec_lpc_acpi_notify(acpi_handle device, u32 value, void *data)
345 {
346 	static const char *env[] = { "ERROR=PANIC", NULL };
347 	struct cros_ec_device *ec_dev = data;
348 	bool ec_has_more_events;
349 	int ret;
350 
351 	ec_dev->last_event_time = cros_ec_get_time_ns();
352 
353 	if (value == ACPI_NOTIFY_CROS_EC_PANIC) {
354 		dev_emerg(ec_dev->dev, "CrOS EC Panic Reported. Shutdown is imminent!");
355 		blocking_notifier_call_chain(&ec_dev->panic_notifier, 0, ec_dev);
356 		kobject_uevent_env(&ec_dev->dev->kobj, KOBJ_CHANGE, (char **)env);
357 		/* Begin orderly shutdown. EC will force reset after a short period. */
358 		hw_protection_shutdown("CrOS EC Panic", -1);
359 		/* Do not query for other events after a panic is reported */
360 		return;
361 	}
362 
363 	if (ec_dev->mkbp_event_supported)
364 		do {
365 			ret = cros_ec_get_next_event(ec_dev, NULL,
366 						     &ec_has_more_events);
367 			if (ret > 0)
368 				blocking_notifier_call_chain(
369 						&ec_dev->event_notifier, 0,
370 						ec_dev);
371 		} while (ec_has_more_events);
372 
373 	if (value == ACPI_NOTIFY_DEVICE_WAKE)
374 		pm_system_wakeup();
375 }
376 
377 static int cros_ec_lpc_probe(struct platform_device *pdev)
378 {
379 	struct device *dev = &pdev->dev;
380 	struct acpi_device *adev;
381 	acpi_status status;
382 	struct cros_ec_device *ec_dev;
383 	struct cros_ec_lpc *ec_lpc;
384 	struct lpc_driver_data *driver_data;
385 	u8 buf[2] = {};
386 	int irq, ret;
387 	u32 quirks;
388 
389 	ec_lpc = devm_kzalloc(dev, sizeof(*ec_lpc), GFP_KERNEL);
390 	if (!ec_lpc)
391 		return -ENOMEM;
392 
393 	ec_lpc->mmio_memory_base = EC_LPC_ADDR_MEMMAP;
394 
395 	driver_data = platform_get_drvdata(pdev);
396 	if (driver_data) {
397 		quirks = driver_data->quirks;
398 
399 		if (quirks)
400 			dev_info(dev, "loaded with quirks %8.08x\n", quirks);
401 
402 		if (quirks & CROS_EC_LPC_QUIRK_REMAP_MEMORY)
403 			ec_lpc->mmio_memory_base = driver_data->quirk_mmio_memory_base;
404 	}
405 
406 	/*
407 	 * The Framework Laptop (and possibly other non-ChromeOS devices)
408 	 * only exposes the eight I/O ports that are required for the Microchip EC.
409 	 * Requesting a larger reservation will fail.
410 	 */
411 	if (!devm_request_region(dev, EC_HOST_CMD_REGION0,
412 				 EC_HOST_CMD_MEC_REGION_SIZE, dev_name(dev))) {
413 		dev_err(dev, "couldn't reserve MEC region\n");
414 		return -EBUSY;
415 	}
416 
417 	cros_ec_lpc_mec_init(EC_HOST_CMD_REGION0,
418 			     EC_LPC_ADDR_MEMMAP + EC_MEMMAP_SIZE);
419 
420 	/*
421 	 * Read the mapped ID twice, the first one is assuming the
422 	 * EC is a Microchip Embedded Controller (MEC) variant, if the
423 	 * protocol fails, fallback to the non MEC variant and try to
424 	 * read again the ID.
425 	 */
426 	cros_ec_lpc_ops.read = cros_ec_lpc_mec_read_bytes;
427 	cros_ec_lpc_ops.write = cros_ec_lpc_mec_write_bytes;
428 	cros_ec_lpc_ops.read(EC_LPC_ADDR_MEMMAP + EC_MEMMAP_ID, 2, buf);
429 	if (buf[0] != 'E' || buf[1] != 'C') {
430 		if (!devm_request_region(dev, ec_lpc->mmio_memory_base, EC_MEMMAP_SIZE,
431 					 dev_name(dev))) {
432 			dev_err(dev, "couldn't reserve memmap region\n");
433 			return -EBUSY;
434 		}
435 
436 		/* Re-assign read/write operations for the non MEC variant */
437 		cros_ec_lpc_ops.read = cros_ec_lpc_read_bytes;
438 		cros_ec_lpc_ops.write = cros_ec_lpc_write_bytes;
439 		cros_ec_lpc_ops.read(ec_lpc->mmio_memory_base + EC_MEMMAP_ID, 2,
440 				     buf);
441 		if (buf[0] != 'E' || buf[1] != 'C') {
442 			dev_err(dev, "EC ID not detected\n");
443 			return -ENODEV;
444 		}
445 
446 		/* Reserve the remaining I/O ports required by the non-MEC protocol. */
447 		if (!devm_request_region(dev, EC_HOST_CMD_REGION0 + EC_HOST_CMD_MEC_REGION_SIZE,
448 					 EC_HOST_CMD_REGION_SIZE - EC_HOST_CMD_MEC_REGION_SIZE,
449 					 dev_name(dev))) {
450 			dev_err(dev, "couldn't reserve remainder of region0\n");
451 			return -EBUSY;
452 		}
453 		if (!devm_request_region(dev, EC_HOST_CMD_REGION1,
454 					 EC_HOST_CMD_REGION_SIZE, dev_name(dev))) {
455 			dev_err(dev, "couldn't reserve region1\n");
456 			return -EBUSY;
457 		}
458 	}
459 
460 	ec_dev = devm_kzalloc(dev, sizeof(*ec_dev), GFP_KERNEL);
461 	if (!ec_dev)
462 		return -ENOMEM;
463 
464 	platform_set_drvdata(pdev, ec_dev);
465 	ec_dev->dev = dev;
466 	ec_dev->phys_name = dev_name(dev);
467 	ec_dev->cmd_xfer = cros_ec_cmd_xfer_lpc;
468 	ec_dev->pkt_xfer = cros_ec_pkt_xfer_lpc;
469 	ec_dev->cmd_readmem = cros_ec_lpc_readmem;
470 	ec_dev->din_size = sizeof(struct ec_host_response) +
471 			   sizeof(struct ec_response_get_protocol_info);
472 	ec_dev->dout_size = sizeof(struct ec_host_request);
473 	ec_dev->priv = ec_lpc;
474 
475 	/*
476 	 * Some boards do not have an IRQ allotted for cros_ec_lpc,
477 	 * which makes ENXIO an expected (and safe) scenario.
478 	 */
479 	irq = platform_get_irq_optional(pdev, 0);
480 	if (irq > 0)
481 		ec_dev->irq = irq;
482 	else if (irq != -ENXIO) {
483 		dev_err(dev, "couldn't retrieve IRQ number (%d)\n", irq);
484 		return irq;
485 	}
486 
487 	ret = cros_ec_register(ec_dev);
488 	if (ret) {
489 		dev_err(dev, "couldn't register ec_dev (%d)\n", ret);
490 		return ret;
491 	}
492 
493 	/*
494 	 * Connect a notify handler to process MKBP messages if we have a
495 	 * companion ACPI device.
496 	 */
497 	adev = ACPI_COMPANION(dev);
498 	if (adev) {
499 		status = acpi_install_notify_handler(adev->handle,
500 						     ACPI_ALL_NOTIFY,
501 						     cros_ec_lpc_acpi_notify,
502 						     ec_dev);
503 		if (ACPI_FAILURE(status))
504 			dev_warn(dev, "Failed to register notifier %08x\n",
505 				 status);
506 	}
507 
508 	return 0;
509 }
510 
511 static void cros_ec_lpc_remove(struct platform_device *pdev)
512 {
513 	struct cros_ec_device *ec_dev = platform_get_drvdata(pdev);
514 	struct acpi_device *adev;
515 
516 	adev = ACPI_COMPANION(&pdev->dev);
517 	if (adev)
518 		acpi_remove_notify_handler(adev->handle, ACPI_ALL_NOTIFY,
519 					   cros_ec_lpc_acpi_notify);
520 
521 	cros_ec_unregister(ec_dev);
522 }
523 
524 static const struct acpi_device_id cros_ec_lpc_acpi_device_ids[] = {
525 	{ ACPI_DRV_NAME, 0 },
526 	{ }
527 };
528 MODULE_DEVICE_TABLE(acpi, cros_ec_lpc_acpi_device_ids);
529 
530 static const struct lpc_driver_data framework_laptop_amd_lpc_driver_data __initconst = {
531 	.quirks = CROS_EC_LPC_QUIRK_REMAP_MEMORY,
532 	.quirk_mmio_memory_base = 0xE00,
533 };
534 
535 static const struct dmi_system_id cros_ec_lpc_dmi_table[] __initconst = {
536 	{
537 		/*
538 		 * Today all Chromebooks/boxes ship with Google_* as version and
539 		 * coreboot as bios vendor. No other systems with this
540 		 * combination are known to date.
541 		 */
542 		.matches = {
543 			DMI_MATCH(DMI_BIOS_VENDOR, "coreboot"),
544 			DMI_MATCH(DMI_BIOS_VERSION, "Google_"),
545 		},
546 	},
547 	{
548 		/*
549 		 * If the box is running custom coreboot firmware then the
550 		 * DMI BIOS version string will not be matched by "Google_",
551 		 * but the system vendor string will still be matched by
552 		 * "GOOGLE".
553 		 */
554 		.matches = {
555 			DMI_MATCH(DMI_BIOS_VENDOR, "coreboot"),
556 			DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"),
557 		},
558 	},
559 	{
560 		/* x86-link, the Chromebook Pixel. */
561 		.matches = {
562 			DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"),
563 			DMI_MATCH(DMI_PRODUCT_NAME, "Link"),
564 		},
565 	},
566 	{
567 		/* x86-samus, the Chromebook Pixel 2. */
568 		.matches = {
569 			DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"),
570 			DMI_MATCH(DMI_PRODUCT_NAME, "Samus"),
571 		},
572 	},
573 	{
574 		/* x86-peppy, the Acer C720 Chromebook. */
575 		.matches = {
576 			DMI_MATCH(DMI_SYS_VENDOR, "Acer"),
577 			DMI_MATCH(DMI_PRODUCT_NAME, "Peppy"),
578 		},
579 	},
580 	{
581 		/* x86-glimmer, the Lenovo Thinkpad Yoga 11e. */
582 		.matches = {
583 			DMI_MATCH(DMI_SYS_VENDOR, "GOOGLE"),
584 			DMI_MATCH(DMI_PRODUCT_NAME, "Glimmer"),
585 		},
586 	},
587 	/* A small number of non-Chromebook/box machines also use the ChromeOS EC */
588 	{
589 		/* the Framework Laptop 13 (AMD Ryzen) and 16 (AMD Ryzen) */
590 		.matches = {
591 			DMI_MATCH(DMI_SYS_VENDOR, "Framework"),
592 			DMI_MATCH(DMI_PRODUCT_NAME, "AMD Ryzen"),
593 			DMI_MATCH(DMI_PRODUCT_FAMILY, "Laptop"),
594 		},
595 		.driver_data = (void *)&framework_laptop_amd_lpc_driver_data,
596 	},
597 	{
598 		/* the Framework Laptop (Intel 11th, 12th, 13th Generation) */
599 		.matches = {
600 			DMI_MATCH(DMI_SYS_VENDOR, "Framework"),
601 			DMI_MATCH(DMI_PRODUCT_NAME, "Laptop"),
602 		},
603 	},
604 	{ /* sentinel */ }
605 };
606 MODULE_DEVICE_TABLE(dmi, cros_ec_lpc_dmi_table);
607 
608 #ifdef CONFIG_PM_SLEEP
609 static int cros_ec_lpc_prepare(struct device *dev)
610 {
611 	struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
612 	return cros_ec_suspend_prepare(ec_dev);
613 }
614 
615 static void cros_ec_lpc_complete(struct device *dev)
616 {
617 	struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
618 	cros_ec_resume_complete(ec_dev);
619 }
620 
621 static int cros_ec_lpc_suspend_late(struct device *dev)
622 {
623 	struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
624 
625 	return cros_ec_suspend_late(ec_dev);
626 }
627 
628 static int cros_ec_lpc_resume_early(struct device *dev)
629 {
630 	struct cros_ec_device *ec_dev = dev_get_drvdata(dev);
631 
632 	return cros_ec_resume_early(ec_dev);
633 }
634 #endif
635 
636 static const struct dev_pm_ops cros_ec_lpc_pm_ops = {
637 #ifdef CONFIG_PM_SLEEP
638 	.prepare = cros_ec_lpc_prepare,
639 	.complete = cros_ec_lpc_complete,
640 #endif
641 	SET_LATE_SYSTEM_SLEEP_PM_OPS(cros_ec_lpc_suspend_late, cros_ec_lpc_resume_early)
642 };
643 
644 static struct platform_driver cros_ec_lpc_driver = {
645 	.driver = {
646 		.name = DRV_NAME,
647 		.acpi_match_table = cros_ec_lpc_acpi_device_ids,
648 		.pm = &cros_ec_lpc_pm_ops,
649 		/*
650 		 * ACPI child devices may probe before us, and they racily
651 		 * check our drvdata pointer. Force synchronous probe until
652 		 * those races are resolved.
653 		 */
654 		.probe_type = PROBE_FORCE_SYNCHRONOUS,
655 	},
656 	.probe = cros_ec_lpc_probe,
657 	.remove_new = cros_ec_lpc_remove,
658 };
659 
660 static struct platform_device cros_ec_lpc_device = {
661 	.name = DRV_NAME
662 };
663 
664 static acpi_status cros_ec_lpc_parse_device(acpi_handle handle, u32 level,
665 					    void *context, void **retval)
666 {
667 	*(bool *)context = true;
668 	return AE_CTRL_TERMINATE;
669 }
670 
671 static int __init cros_ec_lpc_init(void)
672 {
673 	int ret;
674 	acpi_status status;
675 	const struct dmi_system_id *dmi_match;
676 
677 	status = acpi_get_devices(ACPI_DRV_NAME, cros_ec_lpc_parse_device,
678 				  &cros_ec_lpc_acpi_device_found, NULL);
679 	if (ACPI_FAILURE(status))
680 		pr_warn(DRV_NAME ": Looking for %s failed\n", ACPI_DRV_NAME);
681 
682 	dmi_match = dmi_first_match(cros_ec_lpc_dmi_table);
683 
684 	if (!cros_ec_lpc_acpi_device_found && !dmi_match) {
685 		pr_err(DRV_NAME ": unsupported system.\n");
686 		return -ENODEV;
687 	}
688 
689 	/* Register the driver */
690 	ret = platform_driver_register(&cros_ec_lpc_driver);
691 	if (ret) {
692 		pr_err(DRV_NAME ": can't register driver: %d\n", ret);
693 		return ret;
694 	}
695 
696 	if (!cros_ec_lpc_acpi_device_found) {
697 		/* Pass the DMI match's driver data down to the platform device */
698 		platform_set_drvdata(&cros_ec_lpc_device, dmi_match->driver_data);
699 
700 		/* Register the device, and it'll get hooked up automatically */
701 		ret = platform_device_register(&cros_ec_lpc_device);
702 		if (ret) {
703 			pr_err(DRV_NAME ": can't register device: %d\n", ret);
704 			platform_driver_unregister(&cros_ec_lpc_driver);
705 		}
706 	}
707 
708 	return ret;
709 }
710 
711 static void __exit cros_ec_lpc_exit(void)
712 {
713 	if (!cros_ec_lpc_acpi_device_found)
714 		platform_device_unregister(&cros_ec_lpc_device);
715 	platform_driver_unregister(&cros_ec_lpc_driver);
716 }
717 
718 module_init(cros_ec_lpc_init);
719 module_exit(cros_ec_lpc_exit);
720 
721 MODULE_LICENSE("GPL");
722 MODULE_DESCRIPTION("ChromeOS EC LPC driver");
723