xref: /linux/drivers/pinctrl/qcom/pinctrl-msm.c (revision 9ad8d22f2f3fad7a366c9772362795ef6d6a2d51)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2013, Sony Mobile Communications AB.
4  * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/err.h>
9 #include <linux/gpio/driver.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/log2.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm.h>
17 #include <linux/firmware/qcom/qcom_scm.h>
18 #include <linux/reboot.h>
19 #include <linux/seq_file.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
22 
23 #include <linux/pinctrl/machine.h>
24 #include <linux/pinctrl/pinconf-generic.h>
25 #include <linux/pinctrl/pinconf.h>
26 #include <linux/pinctrl/pinmux.h>
27 
28 #include <linux/soc/qcom/irq.h>
29 
30 #include "../core.h"
31 #include "../pinconf.h"
32 #include "../pinctrl-utils.h"
33 
34 #include "pinctrl-msm.h"
35 
36 #define MAX_NR_GPIO 300
37 #define MAX_NR_TILES 4
38 #define PS_HOLD_OFFSET 0x820
39 
40 /**
41  * struct msm_pinctrl - state for a pinctrl-msm device
42  * @dev:            device handle.
43  * @pctrl:          pinctrl handle.
44  * @chip:           gpiochip handle.
45  * @desc:           pin controller descriptor
46  * @restart_nb:     restart notifier block.
47  * @irq:            parent irq for the TLMM irq_chip.
48  * @intr_target_use_scm: route irq to application cpu using scm calls
49  * @lock:           Spinlock to protect register resources as well
50  *                  as msm_pinctrl data structures.
51  * @enabled_irqs:   Bitmap of currently enabled irqs.
52  * @dual_edge_irqs: Bitmap of irqs that need sw emulated dual edge
53  *                  detection.
54  * @skip_wake_irqs: Skip IRQs that are handled by wakeup interrupt controller
55  * @disabled_for_mux: These IRQs were disabled because we muxed away.
56  * @ever_gpio:      This bit is set the first time we mux a pin to gpio_func.
57  * @soc:            Reference to soc_data of platform specific data.
58  * @regs:           Base addresses for the TLMM tiles.
59  * @phys_base:      Physical base address
60  */
61 struct msm_pinctrl {
62 	struct device *dev;
63 	struct pinctrl_dev *pctrl;
64 	struct gpio_chip chip;
65 	struct pinctrl_desc desc;
66 	struct notifier_block restart_nb;
67 
68 	int irq;
69 
70 	bool intr_target_use_scm;
71 
72 	raw_spinlock_t lock;
73 
74 	DECLARE_BITMAP(dual_edge_irqs, MAX_NR_GPIO);
75 	DECLARE_BITMAP(enabled_irqs, MAX_NR_GPIO);
76 	DECLARE_BITMAP(skip_wake_irqs, MAX_NR_GPIO);
77 	DECLARE_BITMAP(disabled_for_mux, MAX_NR_GPIO);
78 	DECLARE_BITMAP(ever_gpio, MAX_NR_GPIO);
79 
80 	const struct msm_pinctrl_soc_data *soc;
81 	void __iomem *regs[MAX_NR_TILES];
82 	u32 phys_base[MAX_NR_TILES];
83 };
84 
85 #define MSM_ACCESSOR(name) \
86 static u32 msm_readl_##name(struct msm_pinctrl *pctrl, \
87 			    const struct msm_pingroup *g) \
88 { \
89 	return readl(pctrl->regs[g->tile] + g->name##_reg); \
90 } \
91 static void msm_writel_##name(u32 val, struct msm_pinctrl *pctrl, \
92 			      const struct msm_pingroup *g) \
93 { \
94 	writel(val, pctrl->regs[g->tile] + g->name##_reg); \
95 }
96 
97 MSM_ACCESSOR(ctl)
98 MSM_ACCESSOR(io)
99 MSM_ACCESSOR(intr_cfg)
100 MSM_ACCESSOR(intr_status)
101 MSM_ACCESSOR(intr_target)
102 
103 static void msm_ack_intr_status(struct msm_pinctrl *pctrl,
104 				const struct msm_pingroup *g)
105 {
106 	u32 val = g->intr_ack_high ? BIT(g->intr_status_bit) : 0;
107 
108 	msm_writel_intr_status(val, pctrl, g);
109 }
110 
111 static int msm_get_groups_count(struct pinctrl_dev *pctldev)
112 {
113 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
114 
115 	return pctrl->soc->ngroups;
116 }
117 
118 static const char *msm_get_group_name(struct pinctrl_dev *pctldev,
119 				      unsigned group)
120 {
121 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
122 
123 	return pctrl->soc->groups[group].grp.name;
124 }
125 
126 static int msm_get_group_pins(struct pinctrl_dev *pctldev,
127 			      unsigned group,
128 			      const unsigned **pins,
129 			      unsigned *num_pins)
130 {
131 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
132 
133 	*pins = pctrl->soc->groups[group].grp.pins;
134 	*num_pins = pctrl->soc->groups[group].grp.npins;
135 	return 0;
136 }
137 
138 static const struct pinctrl_ops msm_pinctrl_ops = {
139 	.get_groups_count	= msm_get_groups_count,
140 	.get_group_name		= msm_get_group_name,
141 	.get_group_pins		= msm_get_group_pins,
142 	.dt_node_to_map		= pinconf_generic_dt_node_to_map_group,
143 	.dt_free_map		= pinctrl_utils_free_map,
144 };
145 
146 static int msm_pinmux_request(struct pinctrl_dev *pctldev, unsigned offset)
147 {
148 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
149 	struct gpio_chip *chip = &pctrl->chip;
150 
151 	return gpiochip_line_is_valid(chip, offset) ? 0 : -EINVAL;
152 }
153 
154 static int msm_get_functions_count(struct pinctrl_dev *pctldev)
155 {
156 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
157 
158 	return pctrl->soc->nfunctions;
159 }
160 
161 static const char *msm_get_function_name(struct pinctrl_dev *pctldev,
162 					 unsigned function)
163 {
164 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
165 
166 	return pctrl->soc->functions[function].name;
167 }
168 
169 static int msm_get_function_groups(struct pinctrl_dev *pctldev,
170 				   unsigned function,
171 				   const char * const **groups,
172 				   unsigned * const num_groups)
173 {
174 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
175 
176 	*groups = pctrl->soc->functions[function].groups;
177 	*num_groups = pctrl->soc->functions[function].ngroups;
178 	return 0;
179 }
180 
181 static int msm_pinmux_set_mux(struct pinctrl_dev *pctldev,
182 			      unsigned function,
183 			      unsigned group)
184 {
185 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
186 	struct gpio_chip *gc = &pctrl->chip;
187 	unsigned int irq = irq_find_mapping(gc->irq.domain, group);
188 	struct irq_data *d = irq_get_irq_data(irq);
189 	unsigned int gpio_func = pctrl->soc->gpio_func;
190 	unsigned int egpio_func = pctrl->soc->egpio_func;
191 	const struct msm_pingroup *g;
192 	unsigned long flags;
193 	u32 val, mask;
194 	int i;
195 
196 	g = &pctrl->soc->groups[group];
197 	mask = GENMASK(g->mux_bit + order_base_2(g->nfuncs) - 1, g->mux_bit);
198 
199 	for (i = 0; i < g->nfuncs; i++) {
200 		if (g->funcs[i] == function)
201 			break;
202 	}
203 
204 	if (WARN_ON(i == g->nfuncs))
205 		return -EINVAL;
206 
207 	/*
208 	 * If an GPIO interrupt is setup on this pin then we need special
209 	 * handling.  Specifically interrupt detection logic will still see
210 	 * the pin twiddle even when we're muxed away.
211 	 *
212 	 * When we see a pin with an interrupt setup on it then we'll disable
213 	 * (mask) interrupts on it when we mux away until we mux back.  Note
214 	 * that disable_irq() refcounts and interrupts are disabled as long as
215 	 * at least one disable_irq() has been called.
216 	 */
217 	if (d && i != gpio_func &&
218 	    !test_and_set_bit(d->hwirq, pctrl->disabled_for_mux))
219 		disable_irq(irq);
220 
221 	raw_spin_lock_irqsave(&pctrl->lock, flags);
222 
223 	val = msm_readl_ctl(pctrl, g);
224 
225 	/*
226 	 * If this is the first time muxing to GPIO and the direction is
227 	 * output, make sure that we're not going to be glitching the pin
228 	 * by reading the current state of the pin and setting it as the
229 	 * output.
230 	 */
231 	if (i == gpio_func && (val & BIT(g->oe_bit)) &&
232 	    !test_and_set_bit(group, pctrl->ever_gpio)) {
233 		u32 io_val = msm_readl_io(pctrl, g);
234 
235 		if (io_val & BIT(g->in_bit)) {
236 			if (!(io_val & BIT(g->out_bit)))
237 				msm_writel_io(io_val | BIT(g->out_bit), pctrl, g);
238 		} else {
239 			if (io_val & BIT(g->out_bit))
240 				msm_writel_io(io_val & ~BIT(g->out_bit), pctrl, g);
241 		}
242 	}
243 
244 	if (egpio_func && i == egpio_func) {
245 		if (val & BIT(g->egpio_present))
246 			val &= ~BIT(g->egpio_enable);
247 	} else {
248 		val &= ~mask;
249 		val |= i << g->mux_bit;
250 		/* Claim ownership of pin if egpio capable */
251 		if (egpio_func && val & BIT(g->egpio_present))
252 			val |= BIT(g->egpio_enable);
253 	}
254 
255 	msm_writel_ctl(val, pctrl, g);
256 
257 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
258 
259 	if (d && i == gpio_func &&
260 	    test_and_clear_bit(d->hwirq, pctrl->disabled_for_mux)) {
261 		/*
262 		 * Clear interrupts detected while not GPIO since we only
263 		 * masked things.
264 		 */
265 		if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
266 			irq_chip_set_parent_state(d, IRQCHIP_STATE_PENDING, false);
267 		else
268 			msm_ack_intr_status(pctrl, g);
269 
270 		enable_irq(irq);
271 	}
272 
273 	return 0;
274 }
275 
276 static int msm_pinmux_request_gpio(struct pinctrl_dev *pctldev,
277 				   struct pinctrl_gpio_range *range,
278 				   unsigned offset)
279 {
280 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
281 	const struct msm_pingroup *g = &pctrl->soc->groups[offset];
282 
283 	/* No funcs? Probably ACPI so can't do anything here */
284 	if (!g->nfuncs)
285 		return 0;
286 
287 	return msm_pinmux_set_mux(pctldev, g->funcs[pctrl->soc->gpio_func], offset);
288 }
289 
290 static const struct pinmux_ops msm_pinmux_ops = {
291 	.request		= msm_pinmux_request,
292 	.get_functions_count	= msm_get_functions_count,
293 	.get_function_name	= msm_get_function_name,
294 	.get_function_groups	= msm_get_function_groups,
295 	.gpio_request_enable	= msm_pinmux_request_gpio,
296 	.set_mux		= msm_pinmux_set_mux,
297 };
298 
299 static int msm_config_reg(struct msm_pinctrl *pctrl,
300 			  const struct msm_pingroup *g,
301 			  unsigned param,
302 			  unsigned *mask,
303 			  unsigned *bit)
304 {
305 	switch (param) {
306 	case PIN_CONFIG_BIAS_DISABLE:
307 	case PIN_CONFIG_BIAS_PULL_DOWN:
308 	case PIN_CONFIG_BIAS_BUS_HOLD:
309 	case PIN_CONFIG_BIAS_PULL_UP:
310 		*bit = g->pull_bit;
311 		*mask = 3;
312 		if (g->i2c_pull_bit)
313 			*mask |= BIT(g->i2c_pull_bit) >> *bit;
314 		break;
315 	case PIN_CONFIG_DRIVE_OPEN_DRAIN:
316 		*bit = g->od_bit;
317 		*mask = 1;
318 		break;
319 	case PIN_CONFIG_DRIVE_STRENGTH:
320 		*bit = g->drv_bit;
321 		*mask = 7;
322 		break;
323 	case PIN_CONFIG_OUTPUT:
324 	case PIN_CONFIG_INPUT_ENABLE:
325 	case PIN_CONFIG_OUTPUT_ENABLE:
326 		*bit = g->oe_bit;
327 		*mask = 1;
328 		break;
329 	default:
330 		return -ENOTSUPP;
331 	}
332 
333 	return 0;
334 }
335 
336 #define MSM_NO_PULL		0
337 #define MSM_PULL_DOWN		1
338 #define MSM_KEEPER		2
339 #define MSM_PULL_UP_NO_KEEPER	2
340 #define MSM_PULL_UP		3
341 #define MSM_I2C_STRONG_PULL_UP	2200
342 
343 static unsigned msm_regval_to_drive(u32 val)
344 {
345 	return (val + 1) * 2;
346 }
347 
348 static int msm_config_group_get(struct pinctrl_dev *pctldev,
349 				unsigned int group,
350 				unsigned long *config)
351 {
352 	const struct msm_pingroup *g;
353 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
354 	unsigned param = pinconf_to_config_param(*config);
355 	unsigned mask;
356 	unsigned arg;
357 	unsigned bit;
358 	int ret;
359 	u32 val;
360 
361 	/* Pin information can only be requested from valid pin groups */
362 	if (!gpiochip_line_is_valid(&pctrl->chip, group))
363 		return -EINVAL;
364 
365 	g = &pctrl->soc->groups[group];
366 
367 	ret = msm_config_reg(pctrl, g, param, &mask, &bit);
368 	if (ret < 0)
369 		return ret;
370 
371 	val = msm_readl_ctl(pctrl, g);
372 	arg = (val >> bit) & mask;
373 
374 	/* Convert register value to pinconf value */
375 	switch (param) {
376 	case PIN_CONFIG_BIAS_DISABLE:
377 		if (arg != MSM_NO_PULL)
378 			return -EINVAL;
379 		arg = 1;
380 		break;
381 	case PIN_CONFIG_BIAS_PULL_DOWN:
382 		if (arg != MSM_PULL_DOWN)
383 			return -EINVAL;
384 		arg = 1;
385 		break;
386 	case PIN_CONFIG_BIAS_BUS_HOLD:
387 		if (pctrl->soc->pull_no_keeper)
388 			return -ENOTSUPP;
389 
390 		if (arg != MSM_KEEPER)
391 			return -EINVAL;
392 		arg = 1;
393 		break;
394 	case PIN_CONFIG_BIAS_PULL_UP:
395 		if (pctrl->soc->pull_no_keeper)
396 			arg = arg == MSM_PULL_UP_NO_KEEPER;
397 		else if (arg & BIT(g->i2c_pull_bit))
398 			arg = MSM_I2C_STRONG_PULL_UP;
399 		else
400 			arg = arg == MSM_PULL_UP;
401 		if (!arg)
402 			return -EINVAL;
403 		break;
404 	case PIN_CONFIG_DRIVE_OPEN_DRAIN:
405 		/* Pin is not open-drain */
406 		if (!arg)
407 			return -EINVAL;
408 		arg = 1;
409 		break;
410 	case PIN_CONFIG_DRIVE_STRENGTH:
411 		arg = msm_regval_to_drive(arg);
412 		break;
413 	case PIN_CONFIG_OUTPUT:
414 		/* Pin is not output */
415 		if (!arg)
416 			return -EINVAL;
417 
418 		val = msm_readl_io(pctrl, g);
419 		arg = !!(val & BIT(g->in_bit));
420 		break;
421 	case PIN_CONFIG_OUTPUT_ENABLE:
422 		if (!arg)
423 			return -EINVAL;
424 		break;
425 	default:
426 		return -ENOTSUPP;
427 	}
428 
429 	*config = pinconf_to_config_packed(param, arg);
430 
431 	return 0;
432 }
433 
434 static int msm_config_group_set(struct pinctrl_dev *pctldev,
435 				unsigned group,
436 				unsigned long *configs,
437 				unsigned num_configs)
438 {
439 	const struct msm_pingroup *g;
440 	struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
441 	unsigned long flags;
442 	unsigned param;
443 	unsigned mask;
444 	unsigned arg;
445 	unsigned bit;
446 	int ret;
447 	u32 val;
448 	int i;
449 
450 	g = &pctrl->soc->groups[group];
451 
452 	for (i = 0; i < num_configs; i++) {
453 		param = pinconf_to_config_param(configs[i]);
454 		arg = pinconf_to_config_argument(configs[i]);
455 
456 		ret = msm_config_reg(pctrl, g, param, &mask, &bit);
457 		if (ret < 0)
458 			return ret;
459 
460 		/* Convert pinconf values to register values */
461 		switch (param) {
462 		case PIN_CONFIG_BIAS_DISABLE:
463 			arg = MSM_NO_PULL;
464 			break;
465 		case PIN_CONFIG_BIAS_PULL_DOWN:
466 			arg = MSM_PULL_DOWN;
467 			break;
468 		case PIN_CONFIG_BIAS_BUS_HOLD:
469 			if (pctrl->soc->pull_no_keeper)
470 				return -ENOTSUPP;
471 
472 			arg = MSM_KEEPER;
473 			break;
474 		case PIN_CONFIG_BIAS_PULL_UP:
475 			if (pctrl->soc->pull_no_keeper)
476 				arg = MSM_PULL_UP_NO_KEEPER;
477 			else if (g->i2c_pull_bit && arg == MSM_I2C_STRONG_PULL_UP)
478 				arg = BIT(g->i2c_pull_bit) | MSM_PULL_UP;
479 			else
480 				arg = MSM_PULL_UP;
481 			break;
482 		case PIN_CONFIG_DRIVE_OPEN_DRAIN:
483 			arg = 1;
484 			break;
485 		case PIN_CONFIG_DRIVE_STRENGTH:
486 			/* Check for invalid values */
487 			if (arg > 16 || arg < 2 || (arg % 2) != 0)
488 				arg = -1;
489 			else
490 				arg = (arg / 2) - 1;
491 			break;
492 		case PIN_CONFIG_OUTPUT:
493 			/* set output value */
494 			raw_spin_lock_irqsave(&pctrl->lock, flags);
495 			val = msm_readl_io(pctrl, g);
496 			if (arg)
497 				val |= BIT(g->out_bit);
498 			else
499 				val &= ~BIT(g->out_bit);
500 			msm_writel_io(val, pctrl, g);
501 			raw_spin_unlock_irqrestore(&pctrl->lock, flags);
502 
503 			/* enable output */
504 			arg = 1;
505 			break;
506 		case PIN_CONFIG_INPUT_ENABLE:
507 			/*
508 			 * According to pinctrl documentation this should
509 			 * actually be a no-op.
510 			 *
511 			 * The docs are explicit that "this does not affect
512 			 * the pin's ability to drive output" but what we do
513 			 * here is to modify the output enable bit. Thus, to
514 			 * follow the docs we should remove that.
515 			 *
516 			 * The docs say that we should enable any relevant
517 			 * input buffer, but TLMM there is no input buffer that
518 			 * can be enabled/disabled. It's always on.
519 			 *
520 			 * The points above, explain why this _should_ be a
521 			 * no-op. However, for historical reasons and to
522 			 * support old device trees, we'll violate the docs
523 			 * and still affect the output.
524 			 *
525 			 * It should further be noted that this old historical
526 			 * behavior actually overrides arg to 0. That means
527 			 * that "input-enable" and "input-disable" in a device
528 			 * tree would _both_ disable the output. We'll
529 			 * continue to preserve this behavior as well since
530 			 * we have no other use for this attribute.
531 			 */
532 			arg = 0;
533 			break;
534 		case PIN_CONFIG_OUTPUT_ENABLE:
535 			arg = !!arg;
536 			break;
537 		default:
538 			dev_err(pctrl->dev, "Unsupported config parameter: %x\n",
539 				param);
540 			return -EINVAL;
541 		}
542 
543 		/* Range-check user-supplied value */
544 		if (arg & ~mask) {
545 			dev_err(pctrl->dev, "config %x: %x is invalid\n", param, arg);
546 			return -EINVAL;
547 		}
548 
549 		raw_spin_lock_irqsave(&pctrl->lock, flags);
550 		val = msm_readl_ctl(pctrl, g);
551 		val &= ~(mask << bit);
552 		val |= arg << bit;
553 		msm_writel_ctl(val, pctrl, g);
554 		raw_spin_unlock_irqrestore(&pctrl->lock, flags);
555 	}
556 
557 	return 0;
558 }
559 
560 static const struct pinconf_ops msm_pinconf_ops = {
561 	.is_generic		= true,
562 	.pin_config_group_get	= msm_config_group_get,
563 	.pin_config_group_set	= msm_config_group_set,
564 };
565 
566 static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
567 {
568 	const struct msm_pingroup *g;
569 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
570 	unsigned long flags;
571 	u32 val;
572 
573 	g = &pctrl->soc->groups[offset];
574 
575 	raw_spin_lock_irqsave(&pctrl->lock, flags);
576 
577 	val = msm_readl_ctl(pctrl, g);
578 	val &= ~BIT(g->oe_bit);
579 	msm_writel_ctl(val, pctrl, g);
580 
581 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
582 
583 	return 0;
584 }
585 
586 static int msm_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value)
587 {
588 	const struct msm_pingroup *g;
589 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
590 	unsigned long flags;
591 	u32 val;
592 
593 	g = &pctrl->soc->groups[offset];
594 
595 	raw_spin_lock_irqsave(&pctrl->lock, flags);
596 
597 	val = msm_readl_io(pctrl, g);
598 	if (value)
599 		val |= BIT(g->out_bit);
600 	else
601 		val &= ~BIT(g->out_bit);
602 	msm_writel_io(val, pctrl, g);
603 
604 	val = msm_readl_ctl(pctrl, g);
605 	val |= BIT(g->oe_bit);
606 	msm_writel_ctl(val, pctrl, g);
607 
608 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
609 
610 	return 0;
611 }
612 
613 static int msm_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
614 {
615 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
616 	const struct msm_pingroup *g;
617 	u32 val;
618 
619 	g = &pctrl->soc->groups[offset];
620 
621 	val = msm_readl_ctl(pctrl, g);
622 
623 	return val & BIT(g->oe_bit) ? GPIO_LINE_DIRECTION_OUT :
624 				      GPIO_LINE_DIRECTION_IN;
625 }
626 
627 static int msm_gpio_get(struct gpio_chip *chip, unsigned offset)
628 {
629 	const struct msm_pingroup *g;
630 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
631 	u32 val;
632 
633 	g = &pctrl->soc->groups[offset];
634 
635 	val = msm_readl_io(pctrl, g);
636 	return !!(val & BIT(g->in_bit));
637 }
638 
639 static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
640 {
641 	const struct msm_pingroup *g;
642 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
643 	unsigned long flags;
644 	u32 val;
645 
646 	g = &pctrl->soc->groups[offset];
647 
648 	raw_spin_lock_irqsave(&pctrl->lock, flags);
649 
650 	val = msm_readl_io(pctrl, g);
651 	if (value)
652 		val |= BIT(g->out_bit);
653 	else
654 		val &= ~BIT(g->out_bit);
655 	msm_writel_io(val, pctrl, g);
656 
657 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
658 }
659 
660 #ifdef CONFIG_DEBUG_FS
661 
662 static void msm_gpio_dbg_show_one(struct seq_file *s,
663 				  struct pinctrl_dev *pctldev,
664 				  struct gpio_chip *chip,
665 				  unsigned offset,
666 				  unsigned gpio)
667 {
668 	const struct msm_pingroup *g;
669 	struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
670 	unsigned func;
671 	int is_out;
672 	int drive;
673 	int pull;
674 	int val;
675 	int egpio_enable;
676 	u32 ctl_reg, io_reg;
677 
678 	static const char * const pulls_keeper[] = {
679 		"no pull",
680 		"pull down",
681 		"keeper",
682 		"pull up"
683 	};
684 
685 	static const char * const pulls_no_keeper[] = {
686 		"no pull",
687 		"pull down",
688 		"pull up",
689 	};
690 
691 	if (!gpiochip_line_is_valid(chip, offset))
692 		return;
693 
694 	g = &pctrl->soc->groups[offset];
695 	ctl_reg = msm_readl_ctl(pctrl, g);
696 	io_reg = msm_readl_io(pctrl, g);
697 
698 	is_out = !!(ctl_reg & BIT(g->oe_bit));
699 	func = (ctl_reg >> g->mux_bit) & 7;
700 	drive = (ctl_reg >> g->drv_bit) & 7;
701 	pull = (ctl_reg >> g->pull_bit) & 3;
702 	egpio_enable = 0;
703 	if (pctrl->soc->egpio_func && ctl_reg & BIT(g->egpio_present))
704 		egpio_enable = !(ctl_reg & BIT(g->egpio_enable));
705 
706 	if (is_out)
707 		val = !!(io_reg & BIT(g->out_bit));
708 	else
709 		val = !!(io_reg & BIT(g->in_bit));
710 
711 	if (egpio_enable) {
712 		seq_printf(s, " %-8s: egpio\n", g->grp.name);
713 		return;
714 	}
715 
716 	seq_printf(s, " %-8s: %-3s", g->grp.name, is_out ? "out" : "in");
717 	seq_printf(s, " %-4s func%d", val ? "high" : "low", func);
718 	seq_printf(s, " %dmA", msm_regval_to_drive(drive));
719 	if (pctrl->soc->pull_no_keeper)
720 		seq_printf(s, " %s", pulls_no_keeper[pull]);
721 	else
722 		seq_printf(s, " %s", pulls_keeper[pull]);
723 	seq_puts(s, "\n");
724 }
725 
726 static void msm_gpio_dbg_show(struct seq_file *s, struct gpio_chip *chip)
727 {
728 	unsigned gpio = chip->base;
729 	unsigned i;
730 
731 	for (i = 0; i < chip->ngpio; i++, gpio++)
732 		msm_gpio_dbg_show_one(s, NULL, chip, i, gpio);
733 }
734 
735 #else
736 #define msm_gpio_dbg_show NULL
737 #endif
738 
739 static int msm_gpio_init_valid_mask(struct gpio_chip *gc,
740 				    unsigned long *valid_mask,
741 				    unsigned int ngpios)
742 {
743 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
744 	int ret;
745 	unsigned int len, i;
746 	const int *reserved = pctrl->soc->reserved_gpios;
747 	u16 *tmp;
748 
749 	/* Remove driver-provided reserved GPIOs from valid_mask */
750 	if (reserved) {
751 		for (i = 0; reserved[i] >= 0; i++) {
752 			if (i >= ngpios || reserved[i] >= ngpios) {
753 				dev_err(pctrl->dev, "invalid list of reserved GPIOs\n");
754 				return -EINVAL;
755 			}
756 			clear_bit(reserved[i], valid_mask);
757 		}
758 
759 		return 0;
760 	}
761 
762 	/* The number of GPIOs in the ACPI tables */
763 	len = ret = device_property_count_u16(pctrl->dev, "gpios");
764 	if (ret < 0)
765 		return 0;
766 
767 	if (ret > ngpios)
768 		return -EINVAL;
769 
770 	tmp = kmalloc_array(len, sizeof(*tmp), GFP_KERNEL);
771 	if (!tmp)
772 		return -ENOMEM;
773 
774 	ret = device_property_read_u16_array(pctrl->dev, "gpios", tmp, len);
775 	if (ret < 0) {
776 		dev_err(pctrl->dev, "could not read list of GPIOs\n");
777 		goto out;
778 	}
779 
780 	bitmap_zero(valid_mask, ngpios);
781 	for (i = 0; i < len; i++)
782 		set_bit(tmp[i], valid_mask);
783 
784 out:
785 	kfree(tmp);
786 	return ret;
787 }
788 
789 static const struct gpio_chip msm_gpio_template = {
790 	.direction_input  = msm_gpio_direction_input,
791 	.direction_output = msm_gpio_direction_output,
792 	.get_direction    = msm_gpio_get_direction,
793 	.get              = msm_gpio_get,
794 	.set              = msm_gpio_set,
795 	.request          = gpiochip_generic_request,
796 	.free             = gpiochip_generic_free,
797 	.dbg_show         = msm_gpio_dbg_show,
798 };
799 
800 /* For dual-edge interrupts in software, since some hardware has no
801  * such support:
802  *
803  * At appropriate moments, this function may be called to flip the polarity
804  * settings of both-edge irq lines to try and catch the next edge.
805  *
806  * The attempt is considered successful if:
807  * - the status bit goes high, indicating that an edge was caught, or
808  * - the input value of the gpio doesn't change during the attempt.
809  * If the value changes twice during the process, that would cause the first
810  * test to fail but would force the second, as two opposite
811  * transitions would cause a detection no matter the polarity setting.
812  *
813  * The do-loop tries to sledge-hammer closed the timing hole between
814  * the initial value-read and the polarity-write - if the line value changes
815  * during that window, an interrupt is lost, the new polarity setting is
816  * incorrect, and the first success test will fail, causing a retry.
817  *
818  * Algorithm comes from Google's msmgpio driver.
819  */
820 static void msm_gpio_update_dual_edge_pos(struct msm_pinctrl *pctrl,
821 					  const struct msm_pingroup *g,
822 					  struct irq_data *d)
823 {
824 	int loop_limit = 100;
825 	unsigned val, val2, intstat;
826 	unsigned pol;
827 
828 	do {
829 		val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
830 
831 		pol = msm_readl_intr_cfg(pctrl, g);
832 		pol ^= BIT(g->intr_polarity_bit);
833 		msm_writel_intr_cfg(pol, pctrl, g);
834 
835 		val2 = msm_readl_io(pctrl, g) & BIT(g->in_bit);
836 		intstat = msm_readl_intr_status(pctrl, g);
837 		if (intstat || (val == val2))
838 			return;
839 	} while (loop_limit-- > 0);
840 	dev_err(pctrl->dev, "dual-edge irq failed to stabilize, %#08x != %#08x\n",
841 		val, val2);
842 }
843 
844 static void msm_gpio_irq_mask(struct irq_data *d)
845 {
846 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
847 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
848 	const struct msm_pingroup *g;
849 	unsigned long flags;
850 	u32 val;
851 
852 	if (d->parent_data)
853 		irq_chip_mask_parent(d);
854 
855 	if (test_bit(d->hwirq, pctrl->skip_wake_irqs))
856 		return;
857 
858 	g = &pctrl->soc->groups[d->hwirq];
859 
860 	raw_spin_lock_irqsave(&pctrl->lock, flags);
861 
862 	val = msm_readl_intr_cfg(pctrl, g);
863 	/*
864 	 * There are two bits that control interrupt forwarding to the CPU. The
865 	 * RAW_STATUS_EN bit causes the level or edge sensed on the line to be
866 	 * latched into the interrupt status register when the hardware detects
867 	 * an irq that it's configured for (either edge for edge type or level
868 	 * for level type irq). The 'non-raw' status enable bit causes the
869 	 * hardware to assert the summary interrupt to the CPU if the latched
870 	 * status bit is set. There's a bug though, the edge detection logic
871 	 * seems to have a problem where toggling the RAW_STATUS_EN bit may
872 	 * cause the status bit to latch spuriously when there isn't any edge
873 	 * so we can't touch that bit for edge type irqs and we have to keep
874 	 * the bit set anyway so that edges are latched while the line is masked.
875 	 *
876 	 * To make matters more complicated, leaving the RAW_STATUS_EN bit
877 	 * enabled all the time causes level interrupts to re-latch into the
878 	 * status register because the level is still present on the line after
879 	 * we ack it. We clear the raw status enable bit during mask here and
880 	 * set the bit on unmask so the interrupt can't latch into the hardware
881 	 * while it's masked.
882 	 */
883 	if (irqd_get_trigger_type(d) & IRQ_TYPE_LEVEL_MASK)
884 		val &= ~BIT(g->intr_raw_status_bit);
885 
886 	val &= ~BIT(g->intr_enable_bit);
887 	msm_writel_intr_cfg(val, pctrl, g);
888 
889 	clear_bit(d->hwirq, pctrl->enabled_irqs);
890 
891 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
892 }
893 
894 static void msm_gpio_irq_unmask(struct irq_data *d)
895 {
896 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
897 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
898 	const struct msm_pingroup *g;
899 	unsigned long flags;
900 	u32 val;
901 
902 	if (d->parent_data)
903 		irq_chip_unmask_parent(d);
904 
905 	if (test_bit(d->hwirq, pctrl->skip_wake_irqs))
906 		return;
907 
908 	g = &pctrl->soc->groups[d->hwirq];
909 
910 	raw_spin_lock_irqsave(&pctrl->lock, flags);
911 
912 	val = msm_readl_intr_cfg(pctrl, g);
913 	val |= BIT(g->intr_raw_status_bit);
914 	val |= BIT(g->intr_enable_bit);
915 	msm_writel_intr_cfg(val, pctrl, g);
916 
917 	set_bit(d->hwirq, pctrl->enabled_irqs);
918 
919 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
920 }
921 
922 static void msm_gpio_irq_enable(struct irq_data *d)
923 {
924 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
925 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
926 
927 	gpiochip_enable_irq(gc, d->hwirq);
928 
929 	if (d->parent_data)
930 		irq_chip_enable_parent(d);
931 
932 	if (!test_bit(d->hwirq, pctrl->skip_wake_irqs))
933 		msm_gpio_irq_unmask(d);
934 }
935 
936 static void msm_gpio_irq_disable(struct irq_data *d)
937 {
938 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
939 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
940 
941 	if (d->parent_data)
942 		irq_chip_disable_parent(d);
943 
944 	if (!test_bit(d->hwirq, pctrl->skip_wake_irqs))
945 		msm_gpio_irq_mask(d);
946 
947 	gpiochip_disable_irq(gc, d->hwirq);
948 }
949 
950 /**
951  * msm_gpio_update_dual_edge_parent() - Prime next edge for IRQs handled by parent.
952  * @d: The irq dta.
953  *
954  * This is much like msm_gpio_update_dual_edge_pos() but for IRQs that are
955  * normally handled by the parent irqchip.  The logic here is slightly
956  * different due to what's easy to do with our parent, but in principle it's
957  * the same.
958  */
959 static void msm_gpio_update_dual_edge_parent(struct irq_data *d)
960 {
961 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
962 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
963 	const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq];
964 	int loop_limit = 100;
965 	unsigned int val;
966 	unsigned int type;
967 
968 	/* Read the value and make a guess about what edge we need to catch */
969 	val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
970 	type = val ? IRQ_TYPE_EDGE_FALLING : IRQ_TYPE_EDGE_RISING;
971 
972 	do {
973 		/* Set the parent to catch the next edge */
974 		irq_chip_set_type_parent(d, type);
975 
976 		/*
977 		 * Possibly the line changed between when we last read "val"
978 		 * (and decided what edge we needed) and when set the edge.
979 		 * If the value didn't change (or changed and then changed
980 		 * back) then we're done.
981 		 */
982 		val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
983 		if (type == IRQ_TYPE_EDGE_RISING) {
984 			if (!val)
985 				return;
986 			type = IRQ_TYPE_EDGE_FALLING;
987 		} else if (type == IRQ_TYPE_EDGE_FALLING) {
988 			if (val)
989 				return;
990 			type = IRQ_TYPE_EDGE_RISING;
991 		}
992 	} while (loop_limit-- > 0);
993 	dev_warn_once(pctrl->dev, "dual-edge irq failed to stabilize\n");
994 }
995 
996 static void msm_gpio_irq_ack(struct irq_data *d)
997 {
998 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
999 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1000 	const struct msm_pingroup *g;
1001 	unsigned long flags;
1002 
1003 	if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) {
1004 		if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
1005 			msm_gpio_update_dual_edge_parent(d);
1006 		return;
1007 	}
1008 
1009 	g = &pctrl->soc->groups[d->hwirq];
1010 
1011 	raw_spin_lock_irqsave(&pctrl->lock, flags);
1012 
1013 	msm_ack_intr_status(pctrl, g);
1014 
1015 	if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
1016 		msm_gpio_update_dual_edge_pos(pctrl, g, d);
1017 
1018 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
1019 }
1020 
1021 static void msm_gpio_irq_eoi(struct irq_data *d)
1022 {
1023 	d = d->parent_data;
1024 
1025 	if (d)
1026 		d->chip->irq_eoi(d);
1027 }
1028 
1029 static bool msm_gpio_needs_dual_edge_parent_workaround(struct irq_data *d,
1030 						       unsigned int type)
1031 {
1032 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1033 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1034 
1035 	return type == IRQ_TYPE_EDGE_BOTH &&
1036 	       pctrl->soc->wakeirq_dual_edge_errata && d->parent_data &&
1037 	       test_bit(d->hwirq, pctrl->skip_wake_irqs);
1038 }
1039 
1040 static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int type)
1041 {
1042 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1043 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1044 	const struct msm_pingroup *g;
1045 	u32 intr_target_mask = GENMASK(2, 0);
1046 	unsigned long flags;
1047 	bool was_enabled;
1048 	u32 val;
1049 
1050 	if (msm_gpio_needs_dual_edge_parent_workaround(d, type)) {
1051 		set_bit(d->hwirq, pctrl->dual_edge_irqs);
1052 		irq_set_handler_locked(d, handle_fasteoi_ack_irq);
1053 		msm_gpio_update_dual_edge_parent(d);
1054 		return 0;
1055 	}
1056 
1057 	if (d->parent_data)
1058 		irq_chip_set_type_parent(d, type);
1059 
1060 	if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) {
1061 		clear_bit(d->hwirq, pctrl->dual_edge_irqs);
1062 		irq_set_handler_locked(d, handle_fasteoi_irq);
1063 		return 0;
1064 	}
1065 
1066 	g = &pctrl->soc->groups[d->hwirq];
1067 
1068 	raw_spin_lock_irqsave(&pctrl->lock, flags);
1069 
1070 	/*
1071 	 * For hw without possibility of detecting both edges
1072 	 */
1073 	if (g->intr_detection_width == 1 && type == IRQ_TYPE_EDGE_BOTH)
1074 		set_bit(d->hwirq, pctrl->dual_edge_irqs);
1075 	else
1076 		clear_bit(d->hwirq, pctrl->dual_edge_irqs);
1077 
1078 	/* Route interrupts to application cpu.
1079 	 * With intr_target_use_scm interrupts are routed to
1080 	 * application cpu using scm calls.
1081 	 */
1082 	if (g->intr_target_width)
1083 		intr_target_mask = GENMASK(g->intr_target_width - 1, 0);
1084 
1085 	if (pctrl->intr_target_use_scm) {
1086 		u32 addr = pctrl->phys_base[0] + g->intr_target_reg;
1087 		int ret;
1088 
1089 		qcom_scm_io_readl(addr, &val);
1090 		val &= ~(intr_target_mask << g->intr_target_bit);
1091 		val |= g->intr_target_kpss_val << g->intr_target_bit;
1092 
1093 		ret = qcom_scm_io_writel(addr, val);
1094 		if (ret)
1095 			dev_err(pctrl->dev,
1096 				"Failed routing %lu interrupt to Apps proc",
1097 				d->hwirq);
1098 	} else {
1099 		val = msm_readl_intr_target(pctrl, g);
1100 		val &= ~(intr_target_mask << g->intr_target_bit);
1101 		val |= g->intr_target_kpss_val << g->intr_target_bit;
1102 		msm_writel_intr_target(val, pctrl, g);
1103 	}
1104 
1105 	/* Update configuration for gpio.
1106 	 * RAW_STATUS_EN is left on for all gpio irqs. Due to the
1107 	 * internal circuitry of TLMM, toggling the RAW_STATUS
1108 	 * could cause the INTR_STATUS to be set for EDGE interrupts.
1109 	 */
1110 	val = msm_readl_intr_cfg(pctrl, g);
1111 	was_enabled = val & BIT(g->intr_raw_status_bit);
1112 	val |= BIT(g->intr_raw_status_bit);
1113 	if (g->intr_detection_width == 2) {
1114 		val &= ~(3 << g->intr_detection_bit);
1115 		val &= ~(1 << g->intr_polarity_bit);
1116 		switch (type) {
1117 		case IRQ_TYPE_EDGE_RISING:
1118 			val |= 1 << g->intr_detection_bit;
1119 			val |= BIT(g->intr_polarity_bit);
1120 			break;
1121 		case IRQ_TYPE_EDGE_FALLING:
1122 			val |= 2 << g->intr_detection_bit;
1123 			val |= BIT(g->intr_polarity_bit);
1124 			break;
1125 		case IRQ_TYPE_EDGE_BOTH:
1126 			val |= 3 << g->intr_detection_bit;
1127 			val |= BIT(g->intr_polarity_bit);
1128 			break;
1129 		case IRQ_TYPE_LEVEL_LOW:
1130 			break;
1131 		case IRQ_TYPE_LEVEL_HIGH:
1132 			val |= BIT(g->intr_polarity_bit);
1133 			break;
1134 		}
1135 	} else if (g->intr_detection_width == 1) {
1136 		val &= ~(1 << g->intr_detection_bit);
1137 		val &= ~(1 << g->intr_polarity_bit);
1138 		switch (type) {
1139 		case IRQ_TYPE_EDGE_RISING:
1140 			val |= BIT(g->intr_detection_bit);
1141 			val |= BIT(g->intr_polarity_bit);
1142 			break;
1143 		case IRQ_TYPE_EDGE_FALLING:
1144 			val |= BIT(g->intr_detection_bit);
1145 			break;
1146 		case IRQ_TYPE_EDGE_BOTH:
1147 			val |= BIT(g->intr_detection_bit);
1148 			val |= BIT(g->intr_polarity_bit);
1149 			break;
1150 		case IRQ_TYPE_LEVEL_LOW:
1151 			break;
1152 		case IRQ_TYPE_LEVEL_HIGH:
1153 			val |= BIT(g->intr_polarity_bit);
1154 			break;
1155 		}
1156 	} else {
1157 		BUG();
1158 	}
1159 	msm_writel_intr_cfg(val, pctrl, g);
1160 
1161 	/*
1162 	 * The first time we set RAW_STATUS_EN it could trigger an interrupt.
1163 	 * Clear the interrupt.  This is safe because we have
1164 	 * IRQCHIP_SET_TYPE_MASKED.
1165 	 */
1166 	if (!was_enabled)
1167 		msm_ack_intr_status(pctrl, g);
1168 
1169 	if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
1170 		msm_gpio_update_dual_edge_pos(pctrl, g, d);
1171 
1172 	raw_spin_unlock_irqrestore(&pctrl->lock, flags);
1173 
1174 	if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH))
1175 		irq_set_handler_locked(d, handle_level_irq);
1176 	else if (type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING))
1177 		irq_set_handler_locked(d, handle_edge_irq);
1178 
1179 	return 0;
1180 }
1181 
1182 static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on)
1183 {
1184 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1185 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1186 
1187 	/*
1188 	 * While they may not wake up when the TLMM is powered off,
1189 	 * some GPIOs would like to wakeup the system from suspend
1190 	 * when TLMM is powered on. To allow that, enable the GPIO
1191 	 * summary line to be wakeup capable at GIC.
1192 	 */
1193 	if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
1194 		return irq_chip_set_wake_parent(d, on);
1195 
1196 	return irq_set_irq_wake(pctrl->irq, on);
1197 }
1198 
1199 static int msm_gpio_irq_reqres(struct irq_data *d)
1200 {
1201 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1202 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1203 	const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq];
1204 	unsigned long flags;
1205 	int ret;
1206 
1207 	if (!try_module_get(gc->owner))
1208 		return -ENODEV;
1209 
1210 	ret = msm_pinmux_request_gpio(pctrl->pctrl, NULL, d->hwirq);
1211 	if (ret)
1212 		goto out;
1213 	msm_gpio_direction_input(gc, d->hwirq);
1214 
1215 	if (gpiochip_lock_as_irq(gc, d->hwirq)) {
1216 		dev_err(gc->parent,
1217 			"unable to lock HW IRQ %lu for IRQ\n",
1218 			d->hwirq);
1219 		ret = -EINVAL;
1220 		goto out;
1221 	}
1222 
1223 	/*
1224 	 * The disable / clear-enable workaround we do in msm_pinmux_set_mux()
1225 	 * only works if disable is not lazy since we only clear any bogus
1226 	 * interrupt in hardware. Explicitly mark the interrupt as UNLAZY.
1227 	 */
1228 	irq_set_status_flags(d->irq, IRQ_DISABLE_UNLAZY);
1229 
1230 	/*
1231 	 * If the wakeup_enable bit is present and marked as available for the
1232 	 * requested GPIO, it should be enabled when the GPIO is marked as
1233 	 * wake irq in order to allow the interrupt event to be transfered to
1234 	 * the PDC HW.
1235 	 * While the name implies only the wakeup event, it's also required for
1236 	 * the interrupt event.
1237 	 */
1238 	if (test_bit(d->hwirq, pctrl->skip_wake_irqs) && g->intr_wakeup_present_bit) {
1239 		u32 intr_cfg;
1240 
1241 		raw_spin_lock_irqsave(&pctrl->lock, flags);
1242 
1243 		intr_cfg = msm_readl_intr_cfg(pctrl, g);
1244 		if (intr_cfg & BIT(g->intr_wakeup_present_bit)) {
1245 			intr_cfg |= BIT(g->intr_wakeup_enable_bit);
1246 			msm_writel_intr_cfg(intr_cfg, pctrl, g);
1247 		}
1248 
1249 		raw_spin_unlock_irqrestore(&pctrl->lock, flags);
1250 	}
1251 
1252 	return 0;
1253 out:
1254 	module_put(gc->owner);
1255 	return ret;
1256 }
1257 
1258 static void msm_gpio_irq_relres(struct irq_data *d)
1259 {
1260 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1261 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1262 	const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq];
1263 	unsigned long flags;
1264 
1265 	/* Disable the wakeup_enable bit if it has been set in msm_gpio_irq_reqres() */
1266 	if (test_bit(d->hwirq, pctrl->skip_wake_irqs) && g->intr_wakeup_present_bit) {
1267 		u32 intr_cfg;
1268 
1269 		raw_spin_lock_irqsave(&pctrl->lock, flags);
1270 
1271 		intr_cfg = msm_readl_intr_cfg(pctrl, g);
1272 		if (intr_cfg & BIT(g->intr_wakeup_present_bit)) {
1273 			intr_cfg &= ~BIT(g->intr_wakeup_enable_bit);
1274 			msm_writel_intr_cfg(intr_cfg, pctrl, g);
1275 		}
1276 
1277 		raw_spin_unlock_irqrestore(&pctrl->lock, flags);
1278 	}
1279 
1280 	gpiochip_unlock_as_irq(gc, d->hwirq);
1281 	module_put(gc->owner);
1282 }
1283 
1284 static int msm_gpio_irq_set_affinity(struct irq_data *d,
1285 				const struct cpumask *dest, bool force)
1286 {
1287 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1288 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1289 
1290 	if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
1291 		return irq_chip_set_affinity_parent(d, dest, force);
1292 
1293 	return -EINVAL;
1294 }
1295 
1296 static int msm_gpio_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1297 {
1298 	struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1299 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1300 
1301 	if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
1302 		return irq_chip_set_vcpu_affinity_parent(d, vcpu_info);
1303 
1304 	return -EINVAL;
1305 }
1306 
1307 static void msm_gpio_irq_handler(struct irq_desc *desc)
1308 {
1309 	struct gpio_chip *gc = irq_desc_get_handler_data(desc);
1310 	const struct msm_pingroup *g;
1311 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1312 	struct irq_chip *chip = irq_desc_get_chip(desc);
1313 	int handled = 0;
1314 	u32 val;
1315 	int i;
1316 
1317 	chained_irq_enter(chip, desc);
1318 
1319 	/*
1320 	 * Each pin has it's own IRQ status register, so use
1321 	 * enabled_irq bitmap to limit the number of reads.
1322 	 */
1323 	for_each_set_bit(i, pctrl->enabled_irqs, pctrl->chip.ngpio) {
1324 		g = &pctrl->soc->groups[i];
1325 		val = msm_readl_intr_status(pctrl, g);
1326 		if (val & BIT(g->intr_status_bit)) {
1327 			generic_handle_domain_irq(gc->irq.domain, i);
1328 			handled++;
1329 		}
1330 	}
1331 
1332 	/* No interrupts were flagged */
1333 	if (handled == 0)
1334 		handle_bad_irq(desc);
1335 
1336 	chained_irq_exit(chip, desc);
1337 }
1338 
1339 static int msm_gpio_wakeirq(struct gpio_chip *gc,
1340 			    unsigned int child,
1341 			    unsigned int child_type,
1342 			    unsigned int *parent,
1343 			    unsigned int *parent_type)
1344 {
1345 	struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1346 	const struct msm_gpio_wakeirq_map *map;
1347 	int i;
1348 
1349 	*parent = GPIO_NO_WAKE_IRQ;
1350 	*parent_type = IRQ_TYPE_EDGE_RISING;
1351 
1352 	for (i = 0; i < pctrl->soc->nwakeirq_map; i++) {
1353 		map = &pctrl->soc->wakeirq_map[i];
1354 		if (map->gpio == child) {
1355 			*parent = map->wakeirq;
1356 			break;
1357 		}
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 static bool msm_gpio_needs_valid_mask(struct msm_pinctrl *pctrl)
1364 {
1365 	if (pctrl->soc->reserved_gpios)
1366 		return true;
1367 
1368 	return device_property_count_u16(pctrl->dev, "gpios") > 0;
1369 }
1370 
1371 static const struct irq_chip msm_gpio_irq_chip = {
1372 	.name			= "msmgpio",
1373 	.irq_enable		= msm_gpio_irq_enable,
1374 	.irq_disable		= msm_gpio_irq_disable,
1375 	.irq_mask		= msm_gpio_irq_mask,
1376 	.irq_unmask		= msm_gpio_irq_unmask,
1377 	.irq_ack		= msm_gpio_irq_ack,
1378 	.irq_eoi		= msm_gpio_irq_eoi,
1379 	.irq_set_type		= msm_gpio_irq_set_type,
1380 	.irq_set_wake		= msm_gpio_irq_set_wake,
1381 	.irq_request_resources	= msm_gpio_irq_reqres,
1382 	.irq_release_resources	= msm_gpio_irq_relres,
1383 	.irq_set_affinity	= msm_gpio_irq_set_affinity,
1384 	.irq_set_vcpu_affinity	= msm_gpio_irq_set_vcpu_affinity,
1385 	.flags			= (IRQCHIP_MASK_ON_SUSPEND |
1386 				   IRQCHIP_SET_TYPE_MASKED |
1387 				   IRQCHIP_ENABLE_WAKEUP_ON_SUSPEND |
1388 				   IRQCHIP_IMMUTABLE),
1389 };
1390 
1391 static int msm_gpio_init(struct msm_pinctrl *pctrl)
1392 {
1393 	struct gpio_chip *chip;
1394 	struct gpio_irq_chip *girq;
1395 	int i, ret;
1396 	unsigned gpio, ngpio = pctrl->soc->ngpios;
1397 	struct device_node *np;
1398 	bool skip;
1399 
1400 	if (WARN_ON(ngpio > MAX_NR_GPIO))
1401 		return -EINVAL;
1402 
1403 	chip = &pctrl->chip;
1404 	chip->base = -1;
1405 	chip->ngpio = ngpio;
1406 	chip->label = dev_name(pctrl->dev);
1407 	chip->parent = pctrl->dev;
1408 	chip->owner = THIS_MODULE;
1409 	if (msm_gpio_needs_valid_mask(pctrl))
1410 		chip->init_valid_mask = msm_gpio_init_valid_mask;
1411 
1412 	np = of_parse_phandle(pctrl->dev->of_node, "wakeup-parent", 0);
1413 	if (np) {
1414 		chip->irq.parent_domain = irq_find_matching_host(np,
1415 						 DOMAIN_BUS_WAKEUP);
1416 		of_node_put(np);
1417 		if (!chip->irq.parent_domain)
1418 			return -EPROBE_DEFER;
1419 		chip->irq.child_to_parent_hwirq = msm_gpio_wakeirq;
1420 		/*
1421 		 * Let's skip handling the GPIOs, if the parent irqchip
1422 		 * is handling the direct connect IRQ of the GPIO.
1423 		 */
1424 		skip = irq_domain_qcom_handle_wakeup(chip->irq.parent_domain);
1425 		for (i = 0; skip && i < pctrl->soc->nwakeirq_map; i++) {
1426 			gpio = pctrl->soc->wakeirq_map[i].gpio;
1427 			set_bit(gpio, pctrl->skip_wake_irqs);
1428 		}
1429 	}
1430 
1431 	girq = &chip->irq;
1432 	gpio_irq_chip_set_chip(girq, &msm_gpio_irq_chip);
1433 	girq->parent_handler = msm_gpio_irq_handler;
1434 	girq->fwnode = dev_fwnode(pctrl->dev);
1435 	girq->num_parents = 1;
1436 	girq->parents = devm_kcalloc(pctrl->dev, 1, sizeof(*girq->parents),
1437 				     GFP_KERNEL);
1438 	if (!girq->parents)
1439 		return -ENOMEM;
1440 	girq->default_type = IRQ_TYPE_NONE;
1441 	girq->handler = handle_bad_irq;
1442 	girq->parents[0] = pctrl->irq;
1443 
1444 	ret = gpiochip_add_data(&pctrl->chip, pctrl);
1445 	if (ret) {
1446 		dev_err(pctrl->dev, "Failed register gpiochip\n");
1447 		return ret;
1448 	}
1449 
1450 	/*
1451 	 * For DeviceTree-supported systems, the gpio core checks the
1452 	 * pinctrl's device node for the "gpio-ranges" property.
1453 	 * If it is present, it takes care of adding the pin ranges
1454 	 * for the driver. In this case the driver can skip ahead.
1455 	 *
1456 	 * In order to remain compatible with older, existing DeviceTree
1457 	 * files which don't set the "gpio-ranges" property or systems that
1458 	 * utilize ACPI the driver has to call gpiochip_add_pin_range().
1459 	 */
1460 	if (!of_property_present(pctrl->dev->of_node, "gpio-ranges")) {
1461 		ret = gpiochip_add_pin_range(&pctrl->chip,
1462 			dev_name(pctrl->dev), 0, 0, chip->ngpio);
1463 		if (ret) {
1464 			dev_err(pctrl->dev, "Failed to add pin range\n");
1465 			gpiochip_remove(&pctrl->chip);
1466 			return ret;
1467 		}
1468 	}
1469 
1470 	return 0;
1471 }
1472 
1473 static int msm_ps_hold_restart(struct notifier_block *nb, unsigned long action,
1474 			       void *data)
1475 {
1476 	struct msm_pinctrl *pctrl = container_of(nb, struct msm_pinctrl, restart_nb);
1477 
1478 	writel(0, pctrl->regs[0] + PS_HOLD_OFFSET);
1479 	mdelay(1000);
1480 	return NOTIFY_DONE;
1481 }
1482 
1483 static struct msm_pinctrl *poweroff_pctrl;
1484 
1485 static void msm_ps_hold_poweroff(void)
1486 {
1487 	msm_ps_hold_restart(&poweroff_pctrl->restart_nb, 0, NULL);
1488 }
1489 
1490 static void msm_pinctrl_setup_pm_reset(struct msm_pinctrl *pctrl)
1491 {
1492 	int i;
1493 	const struct pinfunction *func = pctrl->soc->functions;
1494 
1495 	for (i = 0; i < pctrl->soc->nfunctions; i++)
1496 		if (!strcmp(func[i].name, "ps_hold")) {
1497 			pctrl->restart_nb.notifier_call = msm_ps_hold_restart;
1498 			pctrl->restart_nb.priority = 128;
1499 			if (register_restart_handler(&pctrl->restart_nb))
1500 				dev_err(pctrl->dev,
1501 					"failed to setup restart handler.\n");
1502 			poweroff_pctrl = pctrl;
1503 			pm_power_off = msm_ps_hold_poweroff;
1504 			break;
1505 		}
1506 }
1507 
1508 static __maybe_unused int msm_pinctrl_suspend(struct device *dev)
1509 {
1510 	struct msm_pinctrl *pctrl = dev_get_drvdata(dev);
1511 
1512 	return pinctrl_force_sleep(pctrl->pctrl);
1513 }
1514 
1515 static __maybe_unused int msm_pinctrl_resume(struct device *dev)
1516 {
1517 	struct msm_pinctrl *pctrl = dev_get_drvdata(dev);
1518 
1519 	return pinctrl_force_default(pctrl->pctrl);
1520 }
1521 
1522 SIMPLE_DEV_PM_OPS(msm_pinctrl_dev_pm_ops, msm_pinctrl_suspend,
1523 		  msm_pinctrl_resume);
1524 
1525 EXPORT_SYMBOL(msm_pinctrl_dev_pm_ops);
1526 
1527 int msm_pinctrl_probe(struct platform_device *pdev,
1528 		      const struct msm_pinctrl_soc_data *soc_data)
1529 {
1530 	struct msm_pinctrl *pctrl;
1531 	struct resource *res;
1532 	int ret;
1533 	int i;
1534 
1535 	pctrl = devm_kzalloc(&pdev->dev, sizeof(*pctrl), GFP_KERNEL);
1536 	if (!pctrl)
1537 		return -ENOMEM;
1538 
1539 	pctrl->dev = &pdev->dev;
1540 	pctrl->soc = soc_data;
1541 	pctrl->chip = msm_gpio_template;
1542 	pctrl->intr_target_use_scm = of_device_is_compatible(
1543 					pctrl->dev->of_node,
1544 					"qcom,ipq8064-pinctrl");
1545 
1546 	raw_spin_lock_init(&pctrl->lock);
1547 
1548 	if (soc_data->tiles) {
1549 		for (i = 0; i < soc_data->ntiles; i++) {
1550 			res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1551 							   soc_data->tiles[i]);
1552 			pctrl->regs[i] = devm_ioremap_resource(&pdev->dev, res);
1553 			if (IS_ERR(pctrl->regs[i]))
1554 				return PTR_ERR(pctrl->regs[i]);
1555 		}
1556 	} else {
1557 		pctrl->regs[0] = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1558 		if (IS_ERR(pctrl->regs[0]))
1559 			return PTR_ERR(pctrl->regs[0]);
1560 
1561 		pctrl->phys_base[0] = res->start;
1562 	}
1563 
1564 	msm_pinctrl_setup_pm_reset(pctrl);
1565 
1566 	pctrl->irq = platform_get_irq(pdev, 0);
1567 	if (pctrl->irq < 0)
1568 		return pctrl->irq;
1569 
1570 	pctrl->desc.owner = THIS_MODULE;
1571 	pctrl->desc.pctlops = &msm_pinctrl_ops;
1572 	pctrl->desc.pmxops = &msm_pinmux_ops;
1573 	pctrl->desc.confops = &msm_pinconf_ops;
1574 	pctrl->desc.name = dev_name(&pdev->dev);
1575 	pctrl->desc.pins = pctrl->soc->pins;
1576 	pctrl->desc.npins = pctrl->soc->npins;
1577 
1578 	pctrl->pctrl = devm_pinctrl_register(&pdev->dev, &pctrl->desc, pctrl);
1579 	if (IS_ERR(pctrl->pctrl)) {
1580 		dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
1581 		return PTR_ERR(pctrl->pctrl);
1582 	}
1583 
1584 	ret = msm_gpio_init(pctrl);
1585 	if (ret)
1586 		return ret;
1587 
1588 	platform_set_drvdata(pdev, pctrl);
1589 
1590 	dev_dbg(&pdev->dev, "Probed Qualcomm pinctrl driver\n");
1591 
1592 	return 0;
1593 }
1594 EXPORT_SYMBOL(msm_pinctrl_probe);
1595 
1596 void msm_pinctrl_remove(struct platform_device *pdev)
1597 {
1598 	struct msm_pinctrl *pctrl = platform_get_drvdata(pdev);
1599 
1600 	gpiochip_remove(&pctrl->chip);
1601 
1602 	unregister_restart_handler(&pctrl->restart_nb);
1603 }
1604 EXPORT_SYMBOL(msm_pinctrl_remove);
1605 
1606 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. TLMM driver");
1607 MODULE_LICENSE("GPL v2");
1608