1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2013, Sony Mobile Communications AB. 4 * Copyright (c) 2013, The Linux Foundation. All rights reserved. 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/err.h> 9 #include <linux/gpio/driver.h> 10 #include <linux/interrupt.h> 11 #include <linux/io.h> 12 #include <linux/log2.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/platform_device.h> 16 #include <linux/pm.h> 17 #include <linux/firmware/qcom/qcom_scm.h> 18 #include <linux/reboot.h> 19 #include <linux/seq_file.h> 20 #include <linux/slab.h> 21 #include <linux/spinlock.h> 22 23 #include <linux/pinctrl/machine.h> 24 #include <linux/pinctrl/pinconf-generic.h> 25 #include <linux/pinctrl/pinconf.h> 26 #include <linux/pinctrl/pinmux.h> 27 28 #include <linux/soc/qcom/irq.h> 29 30 #include "../core.h" 31 #include "../pinconf.h" 32 #include "../pinctrl-utils.h" 33 34 #include "pinctrl-msm.h" 35 36 #define MAX_NR_GPIO 300 37 #define MAX_NR_TILES 4 38 #define PS_HOLD_OFFSET 0x820 39 40 /** 41 * struct msm_pinctrl - state for a pinctrl-msm device 42 * @dev: device handle. 43 * @pctrl: pinctrl handle. 44 * @chip: gpiochip handle. 45 * @desc: pin controller descriptor 46 * @restart_nb: restart notifier block. 47 * @irq: parent irq for the TLMM irq_chip. 48 * @intr_target_use_scm: route irq to application cpu using scm calls 49 * @lock: Spinlock to protect register resources as well 50 * as msm_pinctrl data structures. 51 * @enabled_irqs: Bitmap of currently enabled irqs. 52 * @dual_edge_irqs: Bitmap of irqs that need sw emulated dual edge 53 * detection. 54 * @skip_wake_irqs: Skip IRQs that are handled by wakeup interrupt controller 55 * @disabled_for_mux: These IRQs were disabled because we muxed away. 56 * @ever_gpio: This bit is set the first time we mux a pin to gpio_func. 57 * @soc: Reference to soc_data of platform specific data. 58 * @regs: Base addresses for the TLMM tiles. 59 * @phys_base: Physical base address 60 */ 61 struct msm_pinctrl { 62 struct device *dev; 63 struct pinctrl_dev *pctrl; 64 struct gpio_chip chip; 65 struct pinctrl_desc desc; 66 struct notifier_block restart_nb; 67 68 int irq; 69 70 bool intr_target_use_scm; 71 72 raw_spinlock_t lock; 73 74 DECLARE_BITMAP(dual_edge_irqs, MAX_NR_GPIO); 75 DECLARE_BITMAP(enabled_irqs, MAX_NR_GPIO); 76 DECLARE_BITMAP(skip_wake_irqs, MAX_NR_GPIO); 77 DECLARE_BITMAP(disabled_for_mux, MAX_NR_GPIO); 78 DECLARE_BITMAP(ever_gpio, MAX_NR_GPIO); 79 80 const struct msm_pinctrl_soc_data *soc; 81 void __iomem *regs[MAX_NR_TILES]; 82 u32 phys_base[MAX_NR_TILES]; 83 }; 84 85 #define MSM_ACCESSOR(name) \ 86 static u32 msm_readl_##name(struct msm_pinctrl *pctrl, \ 87 const struct msm_pingroup *g) \ 88 { \ 89 return readl(pctrl->regs[g->tile] + g->name##_reg); \ 90 } \ 91 static void msm_writel_##name(u32 val, struct msm_pinctrl *pctrl, \ 92 const struct msm_pingroup *g) \ 93 { \ 94 writel(val, pctrl->regs[g->tile] + g->name##_reg); \ 95 } 96 97 MSM_ACCESSOR(ctl) 98 MSM_ACCESSOR(io) 99 MSM_ACCESSOR(intr_cfg) 100 MSM_ACCESSOR(intr_status) 101 MSM_ACCESSOR(intr_target) 102 103 static void msm_ack_intr_status(struct msm_pinctrl *pctrl, 104 const struct msm_pingroup *g) 105 { 106 u32 val = g->intr_ack_high ? BIT(g->intr_status_bit) : 0; 107 108 msm_writel_intr_status(val, pctrl, g); 109 } 110 111 static int msm_get_groups_count(struct pinctrl_dev *pctldev) 112 { 113 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 114 115 return pctrl->soc->ngroups; 116 } 117 118 static const char *msm_get_group_name(struct pinctrl_dev *pctldev, 119 unsigned group) 120 { 121 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 122 123 return pctrl->soc->groups[group].grp.name; 124 } 125 126 static int msm_get_group_pins(struct pinctrl_dev *pctldev, 127 unsigned group, 128 const unsigned **pins, 129 unsigned *num_pins) 130 { 131 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 132 133 *pins = pctrl->soc->groups[group].grp.pins; 134 *num_pins = pctrl->soc->groups[group].grp.npins; 135 return 0; 136 } 137 138 static const struct pinctrl_ops msm_pinctrl_ops = { 139 .get_groups_count = msm_get_groups_count, 140 .get_group_name = msm_get_group_name, 141 .get_group_pins = msm_get_group_pins, 142 .dt_node_to_map = pinconf_generic_dt_node_to_map_group, 143 .dt_free_map = pinctrl_utils_free_map, 144 }; 145 146 static int msm_pinmux_request(struct pinctrl_dev *pctldev, unsigned offset) 147 { 148 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 149 struct gpio_chip *chip = &pctrl->chip; 150 151 return gpiochip_line_is_valid(chip, offset) ? 0 : -EINVAL; 152 } 153 154 static int msm_get_functions_count(struct pinctrl_dev *pctldev) 155 { 156 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 157 158 return pctrl->soc->nfunctions; 159 } 160 161 static const char *msm_get_function_name(struct pinctrl_dev *pctldev, 162 unsigned function) 163 { 164 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 165 166 return pctrl->soc->functions[function].name; 167 } 168 169 static int msm_get_function_groups(struct pinctrl_dev *pctldev, 170 unsigned function, 171 const char * const **groups, 172 unsigned * const num_groups) 173 { 174 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 175 176 *groups = pctrl->soc->functions[function].groups; 177 *num_groups = pctrl->soc->functions[function].ngroups; 178 return 0; 179 } 180 181 static int msm_pinmux_set_mux(struct pinctrl_dev *pctldev, 182 unsigned function, 183 unsigned group) 184 { 185 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 186 struct gpio_chip *gc = &pctrl->chip; 187 unsigned int irq = irq_find_mapping(gc->irq.domain, group); 188 struct irq_data *d = irq_get_irq_data(irq); 189 unsigned int gpio_func = pctrl->soc->gpio_func; 190 unsigned int egpio_func = pctrl->soc->egpio_func; 191 const struct msm_pingroup *g; 192 unsigned long flags; 193 u32 val, mask; 194 int i; 195 196 g = &pctrl->soc->groups[group]; 197 mask = GENMASK(g->mux_bit + order_base_2(g->nfuncs) - 1, g->mux_bit); 198 199 for (i = 0; i < g->nfuncs; i++) { 200 if (g->funcs[i] == function) 201 break; 202 } 203 204 if (WARN_ON(i == g->nfuncs)) 205 return -EINVAL; 206 207 /* 208 * If an GPIO interrupt is setup on this pin then we need special 209 * handling. Specifically interrupt detection logic will still see 210 * the pin twiddle even when we're muxed away. 211 * 212 * When we see a pin with an interrupt setup on it then we'll disable 213 * (mask) interrupts on it when we mux away until we mux back. Note 214 * that disable_irq() refcounts and interrupts are disabled as long as 215 * at least one disable_irq() has been called. 216 */ 217 if (d && i != gpio_func && 218 !test_and_set_bit(d->hwirq, pctrl->disabled_for_mux)) 219 disable_irq(irq); 220 221 raw_spin_lock_irqsave(&pctrl->lock, flags); 222 223 val = msm_readl_ctl(pctrl, g); 224 225 /* 226 * If this is the first time muxing to GPIO and the direction is 227 * output, make sure that we're not going to be glitching the pin 228 * by reading the current state of the pin and setting it as the 229 * output. 230 */ 231 if (i == gpio_func && (val & BIT(g->oe_bit)) && 232 !test_and_set_bit(group, pctrl->ever_gpio)) { 233 u32 io_val = msm_readl_io(pctrl, g); 234 235 if (io_val & BIT(g->in_bit)) { 236 if (!(io_val & BIT(g->out_bit))) 237 msm_writel_io(io_val | BIT(g->out_bit), pctrl, g); 238 } else { 239 if (io_val & BIT(g->out_bit)) 240 msm_writel_io(io_val & ~BIT(g->out_bit), pctrl, g); 241 } 242 } 243 244 if (egpio_func && i == egpio_func) { 245 if (val & BIT(g->egpio_present)) 246 val &= ~BIT(g->egpio_enable); 247 } else { 248 val &= ~mask; 249 val |= i << g->mux_bit; 250 /* Claim ownership of pin if egpio capable */ 251 if (egpio_func && val & BIT(g->egpio_present)) 252 val |= BIT(g->egpio_enable); 253 } 254 255 msm_writel_ctl(val, pctrl, g); 256 257 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 258 259 if (d && i == gpio_func && 260 test_and_clear_bit(d->hwirq, pctrl->disabled_for_mux)) { 261 /* 262 * Clear interrupts detected while not GPIO since we only 263 * masked things. 264 */ 265 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 266 irq_chip_set_parent_state(d, IRQCHIP_STATE_PENDING, false); 267 else 268 msm_ack_intr_status(pctrl, g); 269 270 enable_irq(irq); 271 } 272 273 return 0; 274 } 275 276 static int msm_pinmux_request_gpio(struct pinctrl_dev *pctldev, 277 struct pinctrl_gpio_range *range, 278 unsigned offset) 279 { 280 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 281 const struct msm_pingroup *g = &pctrl->soc->groups[offset]; 282 283 /* No funcs? Probably ACPI so can't do anything here */ 284 if (!g->nfuncs) 285 return 0; 286 287 return msm_pinmux_set_mux(pctldev, g->funcs[pctrl->soc->gpio_func], offset); 288 } 289 290 static const struct pinmux_ops msm_pinmux_ops = { 291 .request = msm_pinmux_request, 292 .get_functions_count = msm_get_functions_count, 293 .get_function_name = msm_get_function_name, 294 .get_function_groups = msm_get_function_groups, 295 .gpio_request_enable = msm_pinmux_request_gpio, 296 .set_mux = msm_pinmux_set_mux, 297 }; 298 299 static int msm_config_reg(struct msm_pinctrl *pctrl, 300 const struct msm_pingroup *g, 301 unsigned param, 302 unsigned *mask, 303 unsigned *bit) 304 { 305 switch (param) { 306 case PIN_CONFIG_BIAS_DISABLE: 307 case PIN_CONFIG_BIAS_PULL_DOWN: 308 case PIN_CONFIG_BIAS_BUS_HOLD: 309 case PIN_CONFIG_BIAS_PULL_UP: 310 *bit = g->pull_bit; 311 *mask = 3; 312 if (g->i2c_pull_bit) 313 *mask |= BIT(g->i2c_pull_bit) >> *bit; 314 break; 315 case PIN_CONFIG_DRIVE_OPEN_DRAIN: 316 *bit = g->od_bit; 317 *mask = 1; 318 break; 319 case PIN_CONFIG_DRIVE_STRENGTH: 320 *bit = g->drv_bit; 321 *mask = 7; 322 break; 323 case PIN_CONFIG_OUTPUT: 324 case PIN_CONFIG_INPUT_ENABLE: 325 case PIN_CONFIG_OUTPUT_ENABLE: 326 *bit = g->oe_bit; 327 *mask = 1; 328 break; 329 default: 330 return -ENOTSUPP; 331 } 332 333 return 0; 334 } 335 336 #define MSM_NO_PULL 0 337 #define MSM_PULL_DOWN 1 338 #define MSM_KEEPER 2 339 #define MSM_PULL_UP_NO_KEEPER 2 340 #define MSM_PULL_UP 3 341 #define MSM_I2C_STRONG_PULL_UP 2200 342 343 static unsigned msm_regval_to_drive(u32 val) 344 { 345 return (val + 1) * 2; 346 } 347 348 static int msm_config_group_get(struct pinctrl_dev *pctldev, 349 unsigned int group, 350 unsigned long *config) 351 { 352 const struct msm_pingroup *g; 353 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 354 unsigned param = pinconf_to_config_param(*config); 355 unsigned mask; 356 unsigned arg; 357 unsigned bit; 358 int ret; 359 u32 val; 360 361 g = &pctrl->soc->groups[group]; 362 363 ret = msm_config_reg(pctrl, g, param, &mask, &bit); 364 if (ret < 0) 365 return ret; 366 367 val = msm_readl_ctl(pctrl, g); 368 arg = (val >> bit) & mask; 369 370 /* Convert register value to pinconf value */ 371 switch (param) { 372 case PIN_CONFIG_BIAS_DISABLE: 373 if (arg != MSM_NO_PULL) 374 return -EINVAL; 375 arg = 1; 376 break; 377 case PIN_CONFIG_BIAS_PULL_DOWN: 378 if (arg != MSM_PULL_DOWN) 379 return -EINVAL; 380 arg = 1; 381 break; 382 case PIN_CONFIG_BIAS_BUS_HOLD: 383 if (pctrl->soc->pull_no_keeper) 384 return -ENOTSUPP; 385 386 if (arg != MSM_KEEPER) 387 return -EINVAL; 388 arg = 1; 389 break; 390 case PIN_CONFIG_BIAS_PULL_UP: 391 if (pctrl->soc->pull_no_keeper) 392 arg = arg == MSM_PULL_UP_NO_KEEPER; 393 else if (arg & BIT(g->i2c_pull_bit)) 394 arg = MSM_I2C_STRONG_PULL_UP; 395 else 396 arg = arg == MSM_PULL_UP; 397 if (!arg) 398 return -EINVAL; 399 break; 400 case PIN_CONFIG_DRIVE_OPEN_DRAIN: 401 /* Pin is not open-drain */ 402 if (!arg) 403 return -EINVAL; 404 arg = 1; 405 break; 406 case PIN_CONFIG_DRIVE_STRENGTH: 407 arg = msm_regval_to_drive(arg); 408 break; 409 case PIN_CONFIG_OUTPUT: 410 /* Pin is not output */ 411 if (!arg) 412 return -EINVAL; 413 414 val = msm_readl_io(pctrl, g); 415 arg = !!(val & BIT(g->in_bit)); 416 break; 417 case PIN_CONFIG_OUTPUT_ENABLE: 418 if (!arg) 419 return -EINVAL; 420 break; 421 default: 422 return -ENOTSUPP; 423 } 424 425 *config = pinconf_to_config_packed(param, arg); 426 427 return 0; 428 } 429 430 static int msm_config_group_set(struct pinctrl_dev *pctldev, 431 unsigned group, 432 unsigned long *configs, 433 unsigned num_configs) 434 { 435 const struct msm_pingroup *g; 436 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 437 unsigned long flags; 438 unsigned param; 439 unsigned mask; 440 unsigned arg; 441 unsigned bit; 442 int ret; 443 u32 val; 444 int i; 445 446 g = &pctrl->soc->groups[group]; 447 448 for (i = 0; i < num_configs; i++) { 449 param = pinconf_to_config_param(configs[i]); 450 arg = pinconf_to_config_argument(configs[i]); 451 452 ret = msm_config_reg(pctrl, g, param, &mask, &bit); 453 if (ret < 0) 454 return ret; 455 456 /* Convert pinconf values to register values */ 457 switch (param) { 458 case PIN_CONFIG_BIAS_DISABLE: 459 arg = MSM_NO_PULL; 460 break; 461 case PIN_CONFIG_BIAS_PULL_DOWN: 462 arg = MSM_PULL_DOWN; 463 break; 464 case PIN_CONFIG_BIAS_BUS_HOLD: 465 if (pctrl->soc->pull_no_keeper) 466 return -ENOTSUPP; 467 468 arg = MSM_KEEPER; 469 break; 470 case PIN_CONFIG_BIAS_PULL_UP: 471 if (pctrl->soc->pull_no_keeper) 472 arg = MSM_PULL_UP_NO_KEEPER; 473 else if (g->i2c_pull_bit && arg == MSM_I2C_STRONG_PULL_UP) 474 arg = BIT(g->i2c_pull_bit) | MSM_PULL_UP; 475 else 476 arg = MSM_PULL_UP; 477 break; 478 case PIN_CONFIG_DRIVE_OPEN_DRAIN: 479 arg = 1; 480 break; 481 case PIN_CONFIG_DRIVE_STRENGTH: 482 /* Check for invalid values */ 483 if (arg > 16 || arg < 2 || (arg % 2) != 0) 484 arg = -1; 485 else 486 arg = (arg / 2) - 1; 487 break; 488 case PIN_CONFIG_OUTPUT: 489 /* set output value */ 490 raw_spin_lock_irqsave(&pctrl->lock, flags); 491 val = msm_readl_io(pctrl, g); 492 if (arg) 493 val |= BIT(g->out_bit); 494 else 495 val &= ~BIT(g->out_bit); 496 msm_writel_io(val, pctrl, g); 497 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 498 499 /* enable output */ 500 arg = 1; 501 break; 502 case PIN_CONFIG_INPUT_ENABLE: 503 /* 504 * According to pinctrl documentation this should 505 * actually be a no-op. 506 * 507 * The docs are explicit that "this does not affect 508 * the pin's ability to drive output" but what we do 509 * here is to modify the output enable bit. Thus, to 510 * follow the docs we should remove that. 511 * 512 * The docs say that we should enable any relevant 513 * input buffer, but TLMM there is no input buffer that 514 * can be enabled/disabled. It's always on. 515 * 516 * The points above, explain why this _should_ be a 517 * no-op. However, for historical reasons and to 518 * support old device trees, we'll violate the docs 519 * and still affect the output. 520 * 521 * It should further be noted that this old historical 522 * behavior actually overrides arg to 0. That means 523 * that "input-enable" and "input-disable" in a device 524 * tree would _both_ disable the output. We'll 525 * continue to preserve this behavior as well since 526 * we have no other use for this attribute. 527 */ 528 arg = 0; 529 break; 530 case PIN_CONFIG_OUTPUT_ENABLE: 531 arg = !!arg; 532 break; 533 default: 534 dev_err(pctrl->dev, "Unsupported config parameter: %x\n", 535 param); 536 return -EINVAL; 537 } 538 539 /* Range-check user-supplied value */ 540 if (arg & ~mask) { 541 dev_err(pctrl->dev, "config %x: %x is invalid\n", param, arg); 542 return -EINVAL; 543 } 544 545 raw_spin_lock_irqsave(&pctrl->lock, flags); 546 val = msm_readl_ctl(pctrl, g); 547 val &= ~(mask << bit); 548 val |= arg << bit; 549 msm_writel_ctl(val, pctrl, g); 550 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 551 } 552 553 return 0; 554 } 555 556 static const struct pinconf_ops msm_pinconf_ops = { 557 .is_generic = true, 558 .pin_config_group_get = msm_config_group_get, 559 .pin_config_group_set = msm_config_group_set, 560 }; 561 562 static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset) 563 { 564 const struct msm_pingroup *g; 565 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 566 unsigned long flags; 567 u32 val; 568 569 g = &pctrl->soc->groups[offset]; 570 571 raw_spin_lock_irqsave(&pctrl->lock, flags); 572 573 val = msm_readl_ctl(pctrl, g); 574 val &= ~BIT(g->oe_bit); 575 msm_writel_ctl(val, pctrl, g); 576 577 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 578 579 return 0; 580 } 581 582 static int msm_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value) 583 { 584 const struct msm_pingroup *g; 585 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 586 unsigned long flags; 587 u32 val; 588 589 g = &pctrl->soc->groups[offset]; 590 591 raw_spin_lock_irqsave(&pctrl->lock, flags); 592 593 val = msm_readl_io(pctrl, g); 594 if (value) 595 val |= BIT(g->out_bit); 596 else 597 val &= ~BIT(g->out_bit); 598 msm_writel_io(val, pctrl, g); 599 600 val = msm_readl_ctl(pctrl, g); 601 val |= BIT(g->oe_bit); 602 msm_writel_ctl(val, pctrl, g); 603 604 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 605 606 return 0; 607 } 608 609 static int msm_gpio_get_direction(struct gpio_chip *chip, unsigned int offset) 610 { 611 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 612 const struct msm_pingroup *g; 613 u32 val; 614 615 g = &pctrl->soc->groups[offset]; 616 617 val = msm_readl_ctl(pctrl, g); 618 619 return val & BIT(g->oe_bit) ? GPIO_LINE_DIRECTION_OUT : 620 GPIO_LINE_DIRECTION_IN; 621 } 622 623 static int msm_gpio_get(struct gpio_chip *chip, unsigned offset) 624 { 625 const struct msm_pingroup *g; 626 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 627 u32 val; 628 629 g = &pctrl->soc->groups[offset]; 630 631 val = msm_readl_io(pctrl, g); 632 return !!(val & BIT(g->in_bit)); 633 } 634 635 static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int value) 636 { 637 const struct msm_pingroup *g; 638 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 639 unsigned long flags; 640 u32 val; 641 642 g = &pctrl->soc->groups[offset]; 643 644 raw_spin_lock_irqsave(&pctrl->lock, flags); 645 646 val = msm_readl_io(pctrl, g); 647 if (value) 648 val |= BIT(g->out_bit); 649 else 650 val &= ~BIT(g->out_bit); 651 msm_writel_io(val, pctrl, g); 652 653 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 654 } 655 656 #ifdef CONFIG_DEBUG_FS 657 658 static void msm_gpio_dbg_show_one(struct seq_file *s, 659 struct pinctrl_dev *pctldev, 660 struct gpio_chip *chip, 661 unsigned offset, 662 unsigned gpio) 663 { 664 const struct msm_pingroup *g; 665 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 666 unsigned func; 667 int is_out; 668 int drive; 669 int pull; 670 int val; 671 int egpio_enable; 672 u32 ctl_reg, io_reg; 673 674 static const char * const pulls_keeper[] = { 675 "no pull", 676 "pull down", 677 "keeper", 678 "pull up" 679 }; 680 681 static const char * const pulls_no_keeper[] = { 682 "no pull", 683 "pull down", 684 "pull up", 685 }; 686 687 if (!gpiochip_line_is_valid(chip, offset)) 688 return; 689 690 g = &pctrl->soc->groups[offset]; 691 ctl_reg = msm_readl_ctl(pctrl, g); 692 io_reg = msm_readl_io(pctrl, g); 693 694 is_out = !!(ctl_reg & BIT(g->oe_bit)); 695 func = (ctl_reg >> g->mux_bit) & 7; 696 drive = (ctl_reg >> g->drv_bit) & 7; 697 pull = (ctl_reg >> g->pull_bit) & 3; 698 egpio_enable = 0; 699 if (pctrl->soc->egpio_func && ctl_reg & BIT(g->egpio_present)) 700 egpio_enable = !(ctl_reg & BIT(g->egpio_enable)); 701 702 if (is_out) 703 val = !!(io_reg & BIT(g->out_bit)); 704 else 705 val = !!(io_reg & BIT(g->in_bit)); 706 707 if (egpio_enable) { 708 seq_printf(s, " %-8s: egpio\n", g->grp.name); 709 return; 710 } 711 712 seq_printf(s, " %-8s: %-3s", g->grp.name, is_out ? "out" : "in"); 713 seq_printf(s, " %-4s func%d", val ? "high" : "low", func); 714 seq_printf(s, " %dmA", msm_regval_to_drive(drive)); 715 if (pctrl->soc->pull_no_keeper) 716 seq_printf(s, " %s", pulls_no_keeper[pull]); 717 else 718 seq_printf(s, " %s", pulls_keeper[pull]); 719 seq_puts(s, "\n"); 720 } 721 722 static void msm_gpio_dbg_show(struct seq_file *s, struct gpio_chip *chip) 723 { 724 unsigned gpio = chip->base; 725 unsigned i; 726 727 for (i = 0; i < chip->ngpio; i++, gpio++) 728 msm_gpio_dbg_show_one(s, NULL, chip, i, gpio); 729 } 730 731 #else 732 #define msm_gpio_dbg_show NULL 733 #endif 734 735 static int msm_gpio_init_valid_mask(struct gpio_chip *gc, 736 unsigned long *valid_mask, 737 unsigned int ngpios) 738 { 739 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 740 int ret; 741 unsigned int len, i; 742 const int *reserved = pctrl->soc->reserved_gpios; 743 u16 *tmp; 744 745 /* Remove driver-provided reserved GPIOs from valid_mask */ 746 if (reserved) { 747 for (i = 0; reserved[i] >= 0; i++) { 748 if (i >= ngpios || reserved[i] >= ngpios) { 749 dev_err(pctrl->dev, "invalid list of reserved GPIOs\n"); 750 return -EINVAL; 751 } 752 clear_bit(reserved[i], valid_mask); 753 } 754 755 return 0; 756 } 757 758 /* The number of GPIOs in the ACPI tables */ 759 len = ret = device_property_count_u16(pctrl->dev, "gpios"); 760 if (ret < 0) 761 return 0; 762 763 if (ret > ngpios) 764 return -EINVAL; 765 766 tmp = kmalloc_array(len, sizeof(*tmp), GFP_KERNEL); 767 if (!tmp) 768 return -ENOMEM; 769 770 ret = device_property_read_u16_array(pctrl->dev, "gpios", tmp, len); 771 if (ret < 0) { 772 dev_err(pctrl->dev, "could not read list of GPIOs\n"); 773 goto out; 774 } 775 776 bitmap_zero(valid_mask, ngpios); 777 for (i = 0; i < len; i++) 778 set_bit(tmp[i], valid_mask); 779 780 out: 781 kfree(tmp); 782 return ret; 783 } 784 785 static const struct gpio_chip msm_gpio_template = { 786 .direction_input = msm_gpio_direction_input, 787 .direction_output = msm_gpio_direction_output, 788 .get_direction = msm_gpio_get_direction, 789 .get = msm_gpio_get, 790 .set = msm_gpio_set, 791 .request = gpiochip_generic_request, 792 .free = gpiochip_generic_free, 793 .dbg_show = msm_gpio_dbg_show, 794 }; 795 796 /* For dual-edge interrupts in software, since some hardware has no 797 * such support: 798 * 799 * At appropriate moments, this function may be called to flip the polarity 800 * settings of both-edge irq lines to try and catch the next edge. 801 * 802 * The attempt is considered successful if: 803 * - the status bit goes high, indicating that an edge was caught, or 804 * - the input value of the gpio doesn't change during the attempt. 805 * If the value changes twice during the process, that would cause the first 806 * test to fail but would force the second, as two opposite 807 * transitions would cause a detection no matter the polarity setting. 808 * 809 * The do-loop tries to sledge-hammer closed the timing hole between 810 * the initial value-read and the polarity-write - if the line value changes 811 * during that window, an interrupt is lost, the new polarity setting is 812 * incorrect, and the first success test will fail, causing a retry. 813 * 814 * Algorithm comes from Google's msmgpio driver. 815 */ 816 static void msm_gpio_update_dual_edge_pos(struct msm_pinctrl *pctrl, 817 const struct msm_pingroup *g, 818 struct irq_data *d) 819 { 820 int loop_limit = 100; 821 unsigned val, val2, intstat; 822 unsigned pol; 823 824 do { 825 val = msm_readl_io(pctrl, g) & BIT(g->in_bit); 826 827 pol = msm_readl_intr_cfg(pctrl, g); 828 pol ^= BIT(g->intr_polarity_bit); 829 msm_writel_intr_cfg(pol, pctrl, g); 830 831 val2 = msm_readl_io(pctrl, g) & BIT(g->in_bit); 832 intstat = msm_readl_intr_status(pctrl, g); 833 if (intstat || (val == val2)) 834 return; 835 } while (loop_limit-- > 0); 836 dev_err(pctrl->dev, "dual-edge irq failed to stabilize, %#08x != %#08x\n", 837 val, val2); 838 } 839 840 static void msm_gpio_irq_mask(struct irq_data *d) 841 { 842 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 843 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 844 const struct msm_pingroup *g; 845 unsigned long flags; 846 u32 val; 847 848 if (d->parent_data) 849 irq_chip_mask_parent(d); 850 851 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) 852 return; 853 854 g = &pctrl->soc->groups[d->hwirq]; 855 856 raw_spin_lock_irqsave(&pctrl->lock, flags); 857 858 val = msm_readl_intr_cfg(pctrl, g); 859 /* 860 * There are two bits that control interrupt forwarding to the CPU. The 861 * RAW_STATUS_EN bit causes the level or edge sensed on the line to be 862 * latched into the interrupt status register when the hardware detects 863 * an irq that it's configured for (either edge for edge type or level 864 * for level type irq). The 'non-raw' status enable bit causes the 865 * hardware to assert the summary interrupt to the CPU if the latched 866 * status bit is set. There's a bug though, the edge detection logic 867 * seems to have a problem where toggling the RAW_STATUS_EN bit may 868 * cause the status bit to latch spuriously when there isn't any edge 869 * so we can't touch that bit for edge type irqs and we have to keep 870 * the bit set anyway so that edges are latched while the line is masked. 871 * 872 * To make matters more complicated, leaving the RAW_STATUS_EN bit 873 * enabled all the time causes level interrupts to re-latch into the 874 * status register because the level is still present on the line after 875 * we ack it. We clear the raw status enable bit during mask here and 876 * set the bit on unmask so the interrupt can't latch into the hardware 877 * while it's masked. 878 */ 879 if (irqd_get_trigger_type(d) & IRQ_TYPE_LEVEL_MASK) 880 val &= ~BIT(g->intr_raw_status_bit); 881 882 val &= ~BIT(g->intr_enable_bit); 883 msm_writel_intr_cfg(val, pctrl, g); 884 885 clear_bit(d->hwirq, pctrl->enabled_irqs); 886 887 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 888 } 889 890 static void msm_gpio_irq_unmask(struct irq_data *d) 891 { 892 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 893 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 894 const struct msm_pingroup *g; 895 unsigned long flags; 896 u32 val; 897 898 if (d->parent_data) 899 irq_chip_unmask_parent(d); 900 901 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) 902 return; 903 904 g = &pctrl->soc->groups[d->hwirq]; 905 906 raw_spin_lock_irqsave(&pctrl->lock, flags); 907 908 val = msm_readl_intr_cfg(pctrl, g); 909 val |= BIT(g->intr_raw_status_bit); 910 val |= BIT(g->intr_enable_bit); 911 msm_writel_intr_cfg(val, pctrl, g); 912 913 set_bit(d->hwirq, pctrl->enabled_irqs); 914 915 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 916 } 917 918 static void msm_gpio_irq_enable(struct irq_data *d) 919 { 920 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 921 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 922 923 gpiochip_enable_irq(gc, d->hwirq); 924 925 if (d->parent_data) 926 irq_chip_enable_parent(d); 927 928 if (!test_bit(d->hwirq, pctrl->skip_wake_irqs)) 929 msm_gpio_irq_unmask(d); 930 } 931 932 static void msm_gpio_irq_disable(struct irq_data *d) 933 { 934 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 935 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 936 937 if (d->parent_data) 938 irq_chip_disable_parent(d); 939 940 if (!test_bit(d->hwirq, pctrl->skip_wake_irqs)) 941 msm_gpio_irq_mask(d); 942 943 gpiochip_disable_irq(gc, d->hwirq); 944 } 945 946 /** 947 * msm_gpio_update_dual_edge_parent() - Prime next edge for IRQs handled by parent. 948 * @d: The irq dta. 949 * 950 * This is much like msm_gpio_update_dual_edge_pos() but for IRQs that are 951 * normally handled by the parent irqchip. The logic here is slightly 952 * different due to what's easy to do with our parent, but in principle it's 953 * the same. 954 */ 955 static void msm_gpio_update_dual_edge_parent(struct irq_data *d) 956 { 957 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 958 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 959 const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq]; 960 int loop_limit = 100; 961 unsigned int val; 962 unsigned int type; 963 964 /* Read the value and make a guess about what edge we need to catch */ 965 val = msm_readl_io(pctrl, g) & BIT(g->in_bit); 966 type = val ? IRQ_TYPE_EDGE_FALLING : IRQ_TYPE_EDGE_RISING; 967 968 do { 969 /* Set the parent to catch the next edge */ 970 irq_chip_set_type_parent(d, type); 971 972 /* 973 * Possibly the line changed between when we last read "val" 974 * (and decided what edge we needed) and when set the edge. 975 * If the value didn't change (or changed and then changed 976 * back) then we're done. 977 */ 978 val = msm_readl_io(pctrl, g) & BIT(g->in_bit); 979 if (type == IRQ_TYPE_EDGE_RISING) { 980 if (!val) 981 return; 982 type = IRQ_TYPE_EDGE_FALLING; 983 } else if (type == IRQ_TYPE_EDGE_FALLING) { 984 if (val) 985 return; 986 type = IRQ_TYPE_EDGE_RISING; 987 } 988 } while (loop_limit-- > 0); 989 dev_warn_once(pctrl->dev, "dual-edge irq failed to stabilize\n"); 990 } 991 992 static void msm_gpio_irq_ack(struct irq_data *d) 993 { 994 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 995 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 996 const struct msm_pingroup *g; 997 unsigned long flags; 998 999 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) { 1000 if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) 1001 msm_gpio_update_dual_edge_parent(d); 1002 return; 1003 } 1004 1005 g = &pctrl->soc->groups[d->hwirq]; 1006 1007 raw_spin_lock_irqsave(&pctrl->lock, flags); 1008 1009 msm_ack_intr_status(pctrl, g); 1010 1011 if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) 1012 msm_gpio_update_dual_edge_pos(pctrl, g, d); 1013 1014 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 1015 } 1016 1017 static void msm_gpio_irq_eoi(struct irq_data *d) 1018 { 1019 d = d->parent_data; 1020 1021 if (d) 1022 d->chip->irq_eoi(d); 1023 } 1024 1025 static bool msm_gpio_needs_dual_edge_parent_workaround(struct irq_data *d, 1026 unsigned int type) 1027 { 1028 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1029 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1030 1031 return type == IRQ_TYPE_EDGE_BOTH && 1032 pctrl->soc->wakeirq_dual_edge_errata && d->parent_data && 1033 test_bit(d->hwirq, pctrl->skip_wake_irqs); 1034 } 1035 1036 static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int type) 1037 { 1038 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1039 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1040 const struct msm_pingroup *g; 1041 u32 intr_target_mask = GENMASK(2, 0); 1042 unsigned long flags; 1043 bool was_enabled; 1044 u32 val; 1045 1046 if (msm_gpio_needs_dual_edge_parent_workaround(d, type)) { 1047 set_bit(d->hwirq, pctrl->dual_edge_irqs); 1048 irq_set_handler_locked(d, handle_fasteoi_ack_irq); 1049 msm_gpio_update_dual_edge_parent(d); 1050 return 0; 1051 } 1052 1053 if (d->parent_data) 1054 irq_chip_set_type_parent(d, type); 1055 1056 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) { 1057 clear_bit(d->hwirq, pctrl->dual_edge_irqs); 1058 irq_set_handler_locked(d, handle_fasteoi_irq); 1059 return 0; 1060 } 1061 1062 g = &pctrl->soc->groups[d->hwirq]; 1063 1064 raw_spin_lock_irqsave(&pctrl->lock, flags); 1065 1066 /* 1067 * For hw without possibility of detecting both edges 1068 */ 1069 if (g->intr_detection_width == 1 && type == IRQ_TYPE_EDGE_BOTH) 1070 set_bit(d->hwirq, pctrl->dual_edge_irqs); 1071 else 1072 clear_bit(d->hwirq, pctrl->dual_edge_irqs); 1073 1074 /* Route interrupts to application cpu. 1075 * With intr_target_use_scm interrupts are routed to 1076 * application cpu using scm calls. 1077 */ 1078 if (g->intr_target_width) 1079 intr_target_mask = GENMASK(g->intr_target_width - 1, 0); 1080 1081 if (pctrl->intr_target_use_scm) { 1082 u32 addr = pctrl->phys_base[0] + g->intr_target_reg; 1083 int ret; 1084 1085 qcom_scm_io_readl(addr, &val); 1086 val &= ~(intr_target_mask << g->intr_target_bit); 1087 val |= g->intr_target_kpss_val << g->intr_target_bit; 1088 1089 ret = qcom_scm_io_writel(addr, val); 1090 if (ret) 1091 dev_err(pctrl->dev, 1092 "Failed routing %lu interrupt to Apps proc", 1093 d->hwirq); 1094 } else { 1095 val = msm_readl_intr_target(pctrl, g); 1096 val &= ~(intr_target_mask << g->intr_target_bit); 1097 val |= g->intr_target_kpss_val << g->intr_target_bit; 1098 msm_writel_intr_target(val, pctrl, g); 1099 } 1100 1101 /* Update configuration for gpio. 1102 * RAW_STATUS_EN is left on for all gpio irqs. Due to the 1103 * internal circuitry of TLMM, toggling the RAW_STATUS 1104 * could cause the INTR_STATUS to be set for EDGE interrupts. 1105 */ 1106 val = msm_readl_intr_cfg(pctrl, g); 1107 was_enabled = val & BIT(g->intr_raw_status_bit); 1108 val |= BIT(g->intr_raw_status_bit); 1109 if (g->intr_detection_width == 2) { 1110 val &= ~(3 << g->intr_detection_bit); 1111 val &= ~(1 << g->intr_polarity_bit); 1112 switch (type) { 1113 case IRQ_TYPE_EDGE_RISING: 1114 val |= 1 << g->intr_detection_bit; 1115 val |= BIT(g->intr_polarity_bit); 1116 break; 1117 case IRQ_TYPE_EDGE_FALLING: 1118 val |= 2 << g->intr_detection_bit; 1119 val |= BIT(g->intr_polarity_bit); 1120 break; 1121 case IRQ_TYPE_EDGE_BOTH: 1122 val |= 3 << g->intr_detection_bit; 1123 val |= BIT(g->intr_polarity_bit); 1124 break; 1125 case IRQ_TYPE_LEVEL_LOW: 1126 break; 1127 case IRQ_TYPE_LEVEL_HIGH: 1128 val |= BIT(g->intr_polarity_bit); 1129 break; 1130 } 1131 } else if (g->intr_detection_width == 1) { 1132 val &= ~(1 << g->intr_detection_bit); 1133 val &= ~(1 << g->intr_polarity_bit); 1134 switch (type) { 1135 case IRQ_TYPE_EDGE_RISING: 1136 val |= BIT(g->intr_detection_bit); 1137 val |= BIT(g->intr_polarity_bit); 1138 break; 1139 case IRQ_TYPE_EDGE_FALLING: 1140 val |= BIT(g->intr_detection_bit); 1141 break; 1142 case IRQ_TYPE_EDGE_BOTH: 1143 val |= BIT(g->intr_detection_bit); 1144 val |= BIT(g->intr_polarity_bit); 1145 break; 1146 case IRQ_TYPE_LEVEL_LOW: 1147 break; 1148 case IRQ_TYPE_LEVEL_HIGH: 1149 val |= BIT(g->intr_polarity_bit); 1150 break; 1151 } 1152 } else { 1153 BUG(); 1154 } 1155 msm_writel_intr_cfg(val, pctrl, g); 1156 1157 /* 1158 * The first time we set RAW_STATUS_EN it could trigger an interrupt. 1159 * Clear the interrupt. This is safe because we have 1160 * IRQCHIP_SET_TYPE_MASKED. 1161 */ 1162 if (!was_enabled) 1163 msm_ack_intr_status(pctrl, g); 1164 1165 if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) 1166 msm_gpio_update_dual_edge_pos(pctrl, g, d); 1167 1168 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 1169 1170 if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH)) 1171 irq_set_handler_locked(d, handle_level_irq); 1172 else if (type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING)) 1173 irq_set_handler_locked(d, handle_edge_irq); 1174 1175 return 0; 1176 } 1177 1178 static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on) 1179 { 1180 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1181 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1182 1183 /* 1184 * While they may not wake up when the TLMM is powered off, 1185 * some GPIOs would like to wakeup the system from suspend 1186 * when TLMM is powered on. To allow that, enable the GPIO 1187 * summary line to be wakeup capable at GIC. 1188 */ 1189 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 1190 return irq_chip_set_wake_parent(d, on); 1191 1192 return irq_set_irq_wake(pctrl->irq, on); 1193 } 1194 1195 static int msm_gpio_irq_reqres(struct irq_data *d) 1196 { 1197 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1198 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1199 int ret; 1200 1201 if (!try_module_get(gc->owner)) 1202 return -ENODEV; 1203 1204 ret = msm_pinmux_request_gpio(pctrl->pctrl, NULL, d->hwirq); 1205 if (ret) 1206 goto out; 1207 msm_gpio_direction_input(gc, d->hwirq); 1208 1209 if (gpiochip_lock_as_irq(gc, d->hwirq)) { 1210 dev_err(gc->parent, 1211 "unable to lock HW IRQ %lu for IRQ\n", 1212 d->hwirq); 1213 ret = -EINVAL; 1214 goto out; 1215 } 1216 1217 /* 1218 * The disable / clear-enable workaround we do in msm_pinmux_set_mux() 1219 * only works if disable is not lazy since we only clear any bogus 1220 * interrupt in hardware. Explicitly mark the interrupt as UNLAZY. 1221 */ 1222 irq_set_status_flags(d->irq, IRQ_DISABLE_UNLAZY); 1223 1224 return 0; 1225 out: 1226 module_put(gc->owner); 1227 return ret; 1228 } 1229 1230 static void msm_gpio_irq_relres(struct irq_data *d) 1231 { 1232 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1233 1234 gpiochip_unlock_as_irq(gc, d->hwirq); 1235 module_put(gc->owner); 1236 } 1237 1238 static int msm_gpio_irq_set_affinity(struct irq_data *d, 1239 const struct cpumask *dest, bool force) 1240 { 1241 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1242 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1243 1244 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 1245 return irq_chip_set_affinity_parent(d, dest, force); 1246 1247 return -EINVAL; 1248 } 1249 1250 static int msm_gpio_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1251 { 1252 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1253 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1254 1255 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 1256 return irq_chip_set_vcpu_affinity_parent(d, vcpu_info); 1257 1258 return -EINVAL; 1259 } 1260 1261 static void msm_gpio_irq_handler(struct irq_desc *desc) 1262 { 1263 struct gpio_chip *gc = irq_desc_get_handler_data(desc); 1264 const struct msm_pingroup *g; 1265 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1266 struct irq_chip *chip = irq_desc_get_chip(desc); 1267 int handled = 0; 1268 u32 val; 1269 int i; 1270 1271 chained_irq_enter(chip, desc); 1272 1273 /* 1274 * Each pin has it's own IRQ status register, so use 1275 * enabled_irq bitmap to limit the number of reads. 1276 */ 1277 for_each_set_bit(i, pctrl->enabled_irqs, pctrl->chip.ngpio) { 1278 g = &pctrl->soc->groups[i]; 1279 val = msm_readl_intr_status(pctrl, g); 1280 if (val & BIT(g->intr_status_bit)) { 1281 generic_handle_domain_irq(gc->irq.domain, i); 1282 handled++; 1283 } 1284 } 1285 1286 /* No interrupts were flagged */ 1287 if (handled == 0) 1288 handle_bad_irq(desc); 1289 1290 chained_irq_exit(chip, desc); 1291 } 1292 1293 static int msm_gpio_wakeirq(struct gpio_chip *gc, 1294 unsigned int child, 1295 unsigned int child_type, 1296 unsigned int *parent, 1297 unsigned int *parent_type) 1298 { 1299 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1300 const struct msm_gpio_wakeirq_map *map; 1301 int i; 1302 1303 *parent = GPIO_NO_WAKE_IRQ; 1304 *parent_type = IRQ_TYPE_EDGE_RISING; 1305 1306 for (i = 0; i < pctrl->soc->nwakeirq_map; i++) { 1307 map = &pctrl->soc->wakeirq_map[i]; 1308 if (map->gpio == child) { 1309 *parent = map->wakeirq; 1310 break; 1311 } 1312 } 1313 1314 return 0; 1315 } 1316 1317 static bool msm_gpio_needs_valid_mask(struct msm_pinctrl *pctrl) 1318 { 1319 if (pctrl->soc->reserved_gpios) 1320 return true; 1321 1322 return device_property_count_u16(pctrl->dev, "gpios") > 0; 1323 } 1324 1325 static const struct irq_chip msm_gpio_irq_chip = { 1326 .name = "msmgpio", 1327 .irq_enable = msm_gpio_irq_enable, 1328 .irq_disable = msm_gpio_irq_disable, 1329 .irq_mask = msm_gpio_irq_mask, 1330 .irq_unmask = msm_gpio_irq_unmask, 1331 .irq_ack = msm_gpio_irq_ack, 1332 .irq_eoi = msm_gpio_irq_eoi, 1333 .irq_set_type = msm_gpio_irq_set_type, 1334 .irq_set_wake = msm_gpio_irq_set_wake, 1335 .irq_request_resources = msm_gpio_irq_reqres, 1336 .irq_release_resources = msm_gpio_irq_relres, 1337 .irq_set_affinity = msm_gpio_irq_set_affinity, 1338 .irq_set_vcpu_affinity = msm_gpio_irq_set_vcpu_affinity, 1339 .flags = (IRQCHIP_MASK_ON_SUSPEND | 1340 IRQCHIP_SET_TYPE_MASKED | 1341 IRQCHIP_ENABLE_WAKEUP_ON_SUSPEND | 1342 IRQCHIP_IMMUTABLE), 1343 }; 1344 1345 static int msm_gpio_init(struct msm_pinctrl *pctrl) 1346 { 1347 struct gpio_chip *chip; 1348 struct gpio_irq_chip *girq; 1349 int i, ret; 1350 unsigned gpio, ngpio = pctrl->soc->ngpios; 1351 struct device_node *np; 1352 bool skip; 1353 1354 if (WARN_ON(ngpio > MAX_NR_GPIO)) 1355 return -EINVAL; 1356 1357 chip = &pctrl->chip; 1358 chip->base = -1; 1359 chip->ngpio = ngpio; 1360 chip->label = dev_name(pctrl->dev); 1361 chip->parent = pctrl->dev; 1362 chip->owner = THIS_MODULE; 1363 if (msm_gpio_needs_valid_mask(pctrl)) 1364 chip->init_valid_mask = msm_gpio_init_valid_mask; 1365 1366 np = of_parse_phandle(pctrl->dev->of_node, "wakeup-parent", 0); 1367 if (np) { 1368 chip->irq.parent_domain = irq_find_matching_host(np, 1369 DOMAIN_BUS_WAKEUP); 1370 of_node_put(np); 1371 if (!chip->irq.parent_domain) 1372 return -EPROBE_DEFER; 1373 chip->irq.child_to_parent_hwirq = msm_gpio_wakeirq; 1374 /* 1375 * Let's skip handling the GPIOs, if the parent irqchip 1376 * is handling the direct connect IRQ of the GPIO. 1377 */ 1378 skip = irq_domain_qcom_handle_wakeup(chip->irq.parent_domain); 1379 for (i = 0; skip && i < pctrl->soc->nwakeirq_map; i++) { 1380 gpio = pctrl->soc->wakeirq_map[i].gpio; 1381 set_bit(gpio, pctrl->skip_wake_irqs); 1382 } 1383 } 1384 1385 girq = &chip->irq; 1386 gpio_irq_chip_set_chip(girq, &msm_gpio_irq_chip); 1387 girq->parent_handler = msm_gpio_irq_handler; 1388 girq->fwnode = dev_fwnode(pctrl->dev); 1389 girq->num_parents = 1; 1390 girq->parents = devm_kcalloc(pctrl->dev, 1, sizeof(*girq->parents), 1391 GFP_KERNEL); 1392 if (!girq->parents) 1393 return -ENOMEM; 1394 girq->default_type = IRQ_TYPE_NONE; 1395 girq->handler = handle_bad_irq; 1396 girq->parents[0] = pctrl->irq; 1397 1398 ret = gpiochip_add_data(&pctrl->chip, pctrl); 1399 if (ret) { 1400 dev_err(pctrl->dev, "Failed register gpiochip\n"); 1401 return ret; 1402 } 1403 1404 /* 1405 * For DeviceTree-supported systems, the gpio core checks the 1406 * pinctrl's device node for the "gpio-ranges" property. 1407 * If it is present, it takes care of adding the pin ranges 1408 * for the driver. In this case the driver can skip ahead. 1409 * 1410 * In order to remain compatible with older, existing DeviceTree 1411 * files which don't set the "gpio-ranges" property or systems that 1412 * utilize ACPI the driver has to call gpiochip_add_pin_range(). 1413 */ 1414 if (!of_property_read_bool(pctrl->dev->of_node, "gpio-ranges")) { 1415 ret = gpiochip_add_pin_range(&pctrl->chip, 1416 dev_name(pctrl->dev), 0, 0, chip->ngpio); 1417 if (ret) { 1418 dev_err(pctrl->dev, "Failed to add pin range\n"); 1419 gpiochip_remove(&pctrl->chip); 1420 return ret; 1421 } 1422 } 1423 1424 return 0; 1425 } 1426 1427 static int msm_ps_hold_restart(struct notifier_block *nb, unsigned long action, 1428 void *data) 1429 { 1430 struct msm_pinctrl *pctrl = container_of(nb, struct msm_pinctrl, restart_nb); 1431 1432 writel(0, pctrl->regs[0] + PS_HOLD_OFFSET); 1433 mdelay(1000); 1434 return NOTIFY_DONE; 1435 } 1436 1437 static struct msm_pinctrl *poweroff_pctrl; 1438 1439 static void msm_ps_hold_poweroff(void) 1440 { 1441 msm_ps_hold_restart(&poweroff_pctrl->restart_nb, 0, NULL); 1442 } 1443 1444 static void msm_pinctrl_setup_pm_reset(struct msm_pinctrl *pctrl) 1445 { 1446 int i; 1447 const struct pinfunction *func = pctrl->soc->functions; 1448 1449 for (i = 0; i < pctrl->soc->nfunctions; i++) 1450 if (!strcmp(func[i].name, "ps_hold")) { 1451 pctrl->restart_nb.notifier_call = msm_ps_hold_restart; 1452 pctrl->restart_nb.priority = 128; 1453 if (register_restart_handler(&pctrl->restart_nb)) 1454 dev_err(pctrl->dev, 1455 "failed to setup restart handler.\n"); 1456 poweroff_pctrl = pctrl; 1457 pm_power_off = msm_ps_hold_poweroff; 1458 break; 1459 } 1460 } 1461 1462 static __maybe_unused int msm_pinctrl_suspend(struct device *dev) 1463 { 1464 struct msm_pinctrl *pctrl = dev_get_drvdata(dev); 1465 1466 return pinctrl_force_sleep(pctrl->pctrl); 1467 } 1468 1469 static __maybe_unused int msm_pinctrl_resume(struct device *dev) 1470 { 1471 struct msm_pinctrl *pctrl = dev_get_drvdata(dev); 1472 1473 return pinctrl_force_default(pctrl->pctrl); 1474 } 1475 1476 SIMPLE_DEV_PM_OPS(msm_pinctrl_dev_pm_ops, msm_pinctrl_suspend, 1477 msm_pinctrl_resume); 1478 1479 EXPORT_SYMBOL(msm_pinctrl_dev_pm_ops); 1480 1481 int msm_pinctrl_probe(struct platform_device *pdev, 1482 const struct msm_pinctrl_soc_data *soc_data) 1483 { 1484 struct msm_pinctrl *pctrl; 1485 struct resource *res; 1486 int ret; 1487 int i; 1488 1489 pctrl = devm_kzalloc(&pdev->dev, sizeof(*pctrl), GFP_KERNEL); 1490 if (!pctrl) 1491 return -ENOMEM; 1492 1493 pctrl->dev = &pdev->dev; 1494 pctrl->soc = soc_data; 1495 pctrl->chip = msm_gpio_template; 1496 pctrl->intr_target_use_scm = of_device_is_compatible( 1497 pctrl->dev->of_node, 1498 "qcom,ipq8064-pinctrl"); 1499 1500 raw_spin_lock_init(&pctrl->lock); 1501 1502 if (soc_data->tiles) { 1503 for (i = 0; i < soc_data->ntiles; i++) { 1504 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 1505 soc_data->tiles[i]); 1506 pctrl->regs[i] = devm_ioremap_resource(&pdev->dev, res); 1507 if (IS_ERR(pctrl->regs[i])) 1508 return PTR_ERR(pctrl->regs[i]); 1509 } 1510 } else { 1511 pctrl->regs[0] = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1512 if (IS_ERR(pctrl->regs[0])) 1513 return PTR_ERR(pctrl->regs[0]); 1514 1515 pctrl->phys_base[0] = res->start; 1516 } 1517 1518 msm_pinctrl_setup_pm_reset(pctrl); 1519 1520 pctrl->irq = platform_get_irq(pdev, 0); 1521 if (pctrl->irq < 0) 1522 return pctrl->irq; 1523 1524 pctrl->desc.owner = THIS_MODULE; 1525 pctrl->desc.pctlops = &msm_pinctrl_ops; 1526 pctrl->desc.pmxops = &msm_pinmux_ops; 1527 pctrl->desc.confops = &msm_pinconf_ops; 1528 pctrl->desc.name = dev_name(&pdev->dev); 1529 pctrl->desc.pins = pctrl->soc->pins; 1530 pctrl->desc.npins = pctrl->soc->npins; 1531 1532 pctrl->pctrl = devm_pinctrl_register(&pdev->dev, &pctrl->desc, pctrl); 1533 if (IS_ERR(pctrl->pctrl)) { 1534 dev_err(&pdev->dev, "Couldn't register pinctrl driver\n"); 1535 return PTR_ERR(pctrl->pctrl); 1536 } 1537 1538 ret = msm_gpio_init(pctrl); 1539 if (ret) 1540 return ret; 1541 1542 platform_set_drvdata(pdev, pctrl); 1543 1544 dev_dbg(&pdev->dev, "Probed Qualcomm pinctrl driver\n"); 1545 1546 return 0; 1547 } 1548 EXPORT_SYMBOL(msm_pinctrl_probe); 1549 1550 void msm_pinctrl_remove(struct platform_device *pdev) 1551 { 1552 struct msm_pinctrl *pctrl = platform_get_drvdata(pdev); 1553 1554 gpiochip_remove(&pctrl->chip); 1555 1556 unregister_restart_handler(&pctrl->restart_nb); 1557 } 1558 EXPORT_SYMBOL(msm_pinctrl_remove); 1559 1560 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. TLMM driver"); 1561 MODULE_LICENSE("GPL v2"); 1562