1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2013, Sony Mobile Communications AB. 4 * Copyright (c) 2013, The Linux Foundation. All rights reserved. 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/err.h> 9 #include <linux/gpio/driver.h> 10 #include <linux/interrupt.h> 11 #include <linux/io.h> 12 #include <linux/log2.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/platform_device.h> 16 #include <linux/pm.h> 17 #include <linux/firmware/qcom/qcom_scm.h> 18 #include <linux/reboot.h> 19 #include <linux/seq_file.h> 20 #include <linux/slab.h> 21 #include <linux/spinlock.h> 22 #include <linux/string_choices.h> 23 24 #include <linux/pinctrl/machine.h> 25 #include <linux/pinctrl/pinconf-generic.h> 26 #include <linux/pinctrl/pinconf.h> 27 #include <linux/pinctrl/pinmux.h> 28 29 #include <linux/soc/qcom/irq.h> 30 31 #include "../core.h" 32 #include "../pinconf.h" 33 #include "../pinctrl-utils.h" 34 #include "../pinmux.h" 35 36 #include "pinctrl-msm.h" 37 38 #define MAX_NR_GPIO 300 39 #define MAX_NR_TILES 4 40 #define PS_HOLD_OFFSET 0x820 41 42 /** 43 * struct msm_pinctrl - state for a pinctrl-msm device 44 * @dev: device handle. 45 * @pctrl: pinctrl handle. 46 * @chip: gpiochip handle. 47 * @desc: pin controller descriptor 48 * @irq: parent irq for the TLMM irq_chip. 49 * @intr_target_use_scm: route irq to application cpu using scm calls 50 * @lock: Spinlock to protect register resources as well 51 * as msm_pinctrl data structures. 52 * @enabled_irqs: Bitmap of currently enabled irqs. 53 * @dual_edge_irqs: Bitmap of irqs that need sw emulated dual edge 54 * detection. 55 * @skip_wake_irqs: Skip IRQs that are handled by wakeup interrupt controller 56 * @disabled_for_mux: These IRQs were disabled because we muxed away. 57 * @ever_gpio: This bit is set the first time we mux a pin to gpio_func. 58 * @soc: Reference to soc_data of platform specific data. 59 * @regs: Base addresses for the TLMM tiles. 60 * @phys_base: Physical base address 61 */ 62 struct msm_pinctrl { 63 struct device *dev; 64 struct pinctrl_dev *pctrl; 65 struct gpio_chip chip; 66 struct pinctrl_desc desc; 67 68 int irq; 69 70 bool intr_target_use_scm; 71 72 raw_spinlock_t lock; 73 74 DECLARE_BITMAP(dual_edge_irqs, MAX_NR_GPIO); 75 DECLARE_BITMAP(enabled_irqs, MAX_NR_GPIO); 76 DECLARE_BITMAP(skip_wake_irqs, MAX_NR_GPIO); 77 DECLARE_BITMAP(disabled_for_mux, MAX_NR_GPIO); 78 DECLARE_BITMAP(ever_gpio, MAX_NR_GPIO); 79 80 const struct msm_pinctrl_soc_data *soc; 81 void __iomem *regs[MAX_NR_TILES]; 82 u32 phys_base[MAX_NR_TILES]; 83 }; 84 85 #define MSM_ACCESSOR(name) \ 86 static u32 msm_readl_##name(struct msm_pinctrl *pctrl, \ 87 const struct msm_pingroup *g) \ 88 { \ 89 return readl(pctrl->regs[g->tile] + g->name##_reg); \ 90 } \ 91 static void msm_writel_##name(u32 val, struct msm_pinctrl *pctrl, \ 92 const struct msm_pingroup *g) \ 93 { \ 94 writel(val, pctrl->regs[g->tile] + g->name##_reg); \ 95 } 96 97 MSM_ACCESSOR(ctl) 98 MSM_ACCESSOR(io) 99 MSM_ACCESSOR(intr_cfg) 100 MSM_ACCESSOR(intr_status) 101 MSM_ACCESSOR(intr_target) 102 103 static void msm_ack_intr_status(struct msm_pinctrl *pctrl, 104 const struct msm_pingroup *g) 105 { 106 u32 val = g->intr_ack_high ? BIT(g->intr_status_bit) : 0; 107 108 msm_writel_intr_status(val, pctrl, g); 109 } 110 111 static int msm_get_groups_count(struct pinctrl_dev *pctldev) 112 { 113 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 114 115 return pctrl->soc->ngroups; 116 } 117 118 static const char *msm_get_group_name(struct pinctrl_dev *pctldev, 119 unsigned group) 120 { 121 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 122 123 return pctrl->soc->groups[group].grp.name; 124 } 125 126 static int msm_get_group_pins(struct pinctrl_dev *pctldev, 127 unsigned group, 128 const unsigned **pins, 129 unsigned *num_pins) 130 { 131 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 132 133 *pins = pctrl->soc->groups[group].grp.pins; 134 *num_pins = pctrl->soc->groups[group].grp.npins; 135 return 0; 136 } 137 138 static const struct pinctrl_ops msm_pinctrl_ops = { 139 .get_groups_count = msm_get_groups_count, 140 .get_group_name = msm_get_group_name, 141 .get_group_pins = msm_get_group_pins, 142 .dt_node_to_map = pinconf_generic_dt_node_to_map_group, 143 .dt_free_map = pinctrl_utils_free_map, 144 }; 145 146 static int msm_pinmux_request(struct pinctrl_dev *pctldev, unsigned offset) 147 { 148 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 149 struct gpio_chip *chip = &pctrl->chip; 150 151 return gpiochip_line_is_valid(chip, offset) ? 0 : -EINVAL; 152 } 153 154 static int msm_pinmux_set_mux(struct pinctrl_dev *pctldev, 155 unsigned function, 156 unsigned group) 157 { 158 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 159 struct gpio_chip *gc = &pctrl->chip; 160 unsigned int irq = irq_find_mapping(gc->irq.domain, group); 161 struct irq_data *d = irq_get_irq_data(irq); 162 unsigned int gpio_func = pctrl->soc->gpio_func; 163 unsigned int egpio_func = pctrl->soc->egpio_func; 164 const struct msm_pingroup *g; 165 unsigned long flags; 166 u32 val, mask; 167 int i; 168 169 g = &pctrl->soc->groups[group]; 170 mask = GENMASK(g->mux_bit + order_base_2(g->nfuncs) - 1, g->mux_bit); 171 172 for (i = 0; i < g->nfuncs; i++) { 173 if (g->funcs[i] == function) 174 break; 175 } 176 177 if (WARN_ON(i == g->nfuncs)) 178 return -EINVAL; 179 180 /* 181 * If an GPIO interrupt is setup on this pin then we need special 182 * handling. Specifically interrupt detection logic will still see 183 * the pin twiddle even when we're muxed away. 184 * 185 * When we see a pin with an interrupt setup on it then we'll disable 186 * (mask) interrupts on it when we mux away until we mux back. Note 187 * that disable_irq() refcounts and interrupts are disabled as long as 188 * at least one disable_irq() has been called. 189 */ 190 if (d && i != gpio_func && 191 !test_and_set_bit(d->hwirq, pctrl->disabled_for_mux)) 192 disable_irq(irq); 193 194 raw_spin_lock_irqsave(&pctrl->lock, flags); 195 196 val = msm_readl_ctl(pctrl, g); 197 198 /* 199 * If this is the first time muxing to GPIO and the direction is 200 * output, make sure that we're not going to be glitching the pin 201 * by reading the current state of the pin and setting it as the 202 * output. 203 */ 204 if (i == gpio_func && (val & BIT(g->oe_bit)) && 205 !test_and_set_bit(group, pctrl->ever_gpio)) { 206 u32 io_val = msm_readl_io(pctrl, g); 207 208 if (io_val & BIT(g->in_bit)) { 209 if (!(io_val & BIT(g->out_bit))) 210 msm_writel_io(io_val | BIT(g->out_bit), pctrl, g); 211 } else { 212 if (io_val & BIT(g->out_bit)) 213 msm_writel_io(io_val & ~BIT(g->out_bit), pctrl, g); 214 } 215 } 216 217 if (egpio_func && i == egpio_func) { 218 if (val & BIT(g->egpio_present)) 219 val &= ~BIT(g->egpio_enable); 220 } else { 221 val &= ~mask; 222 val |= i << g->mux_bit; 223 /* Claim ownership of pin if egpio capable */ 224 if (egpio_func && val & BIT(g->egpio_present)) 225 val |= BIT(g->egpio_enable); 226 } 227 228 msm_writel_ctl(val, pctrl, g); 229 230 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 231 232 if (d && i == gpio_func && 233 test_and_clear_bit(d->hwirq, pctrl->disabled_for_mux)) { 234 /* 235 * Clear interrupts detected while not GPIO since we only 236 * masked things. 237 */ 238 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 239 irq_chip_set_parent_state(d, IRQCHIP_STATE_PENDING, false); 240 else 241 msm_ack_intr_status(pctrl, g); 242 243 enable_irq(irq); 244 } 245 246 return 0; 247 } 248 249 static int msm_pinmux_request_gpio(struct pinctrl_dev *pctldev, 250 struct pinctrl_gpio_range *range, 251 unsigned offset) 252 { 253 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 254 const struct msm_pingroup *g = &pctrl->soc->groups[offset]; 255 256 /* No funcs? Probably ACPI so can't do anything here */ 257 if (!g->nfuncs) 258 return 0; 259 260 return msm_pinmux_set_mux(pctldev, g->funcs[pctrl->soc->gpio_func], offset); 261 } 262 263 static const struct pinmux_ops msm_pinmux_ops = { 264 .request = msm_pinmux_request, 265 .get_functions_count = pinmux_generic_get_function_count, 266 .get_function_name = pinmux_generic_get_function_name, 267 .get_function_groups = pinmux_generic_get_function_groups, 268 .function_is_gpio = pinmux_generic_function_is_gpio, 269 .gpio_request_enable = msm_pinmux_request_gpio, 270 .set_mux = msm_pinmux_set_mux, 271 .strict = true, 272 }; 273 274 static int msm_config_reg(struct msm_pinctrl *pctrl, 275 const struct msm_pingroup *g, 276 unsigned param, 277 unsigned *mask, 278 unsigned *bit) 279 { 280 switch (param) { 281 case PIN_CONFIG_BIAS_DISABLE: 282 case PIN_CONFIG_BIAS_PULL_DOWN: 283 case PIN_CONFIG_BIAS_BUS_HOLD: 284 case PIN_CONFIG_BIAS_PULL_UP: 285 *bit = g->pull_bit; 286 *mask = 3; 287 if (g->i2c_pull_bit) 288 *mask |= BIT(g->i2c_pull_bit) >> *bit; 289 break; 290 case PIN_CONFIG_DRIVE_OPEN_DRAIN: 291 *bit = g->od_bit; 292 *mask = 1; 293 break; 294 case PIN_CONFIG_DRIVE_STRENGTH: 295 *bit = g->drv_bit; 296 *mask = 7; 297 break; 298 case PIN_CONFIG_LEVEL: 299 case PIN_CONFIG_INPUT_ENABLE: 300 case PIN_CONFIG_OUTPUT_ENABLE: 301 *bit = g->oe_bit; 302 *mask = 1; 303 break; 304 default: 305 return -ENOTSUPP; 306 } 307 308 return 0; 309 } 310 311 #define MSM_NO_PULL 0 312 #define MSM_PULL_DOWN 1 313 #define MSM_KEEPER 2 314 #define MSM_PULL_UP_NO_KEEPER 2 315 #define MSM_PULL_UP 3 316 #define MSM_I2C_STRONG_PULL_UP 2200 317 318 static unsigned msm_regval_to_drive(u32 val) 319 { 320 return (val + 1) * 2; 321 } 322 323 static int msm_config_group_get(struct pinctrl_dev *pctldev, 324 unsigned int group, 325 unsigned long *config) 326 { 327 const struct msm_pingroup *g; 328 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 329 unsigned param = pinconf_to_config_param(*config); 330 unsigned mask; 331 unsigned arg; 332 unsigned bit; 333 int ret; 334 u32 val; 335 336 /* Pin information can only be requested from valid pin groups */ 337 if (!gpiochip_line_is_valid(&pctrl->chip, group)) 338 return -EINVAL; 339 340 g = &pctrl->soc->groups[group]; 341 342 ret = msm_config_reg(pctrl, g, param, &mask, &bit); 343 if (ret < 0) 344 return ret; 345 346 val = msm_readl_ctl(pctrl, g); 347 arg = (val >> bit) & mask; 348 349 /* Convert register value to pinconf value */ 350 switch (param) { 351 case PIN_CONFIG_BIAS_DISABLE: 352 if (arg != MSM_NO_PULL) 353 return -EINVAL; 354 arg = 1; 355 break; 356 case PIN_CONFIG_BIAS_PULL_DOWN: 357 if (arg != MSM_PULL_DOWN) 358 return -EINVAL; 359 arg = 1; 360 break; 361 case PIN_CONFIG_BIAS_BUS_HOLD: 362 if (pctrl->soc->pull_no_keeper) 363 return -ENOTSUPP; 364 365 if (arg != MSM_KEEPER) 366 return -EINVAL; 367 arg = 1; 368 break; 369 case PIN_CONFIG_BIAS_PULL_UP: 370 if (pctrl->soc->pull_no_keeper) 371 arg = arg == MSM_PULL_UP_NO_KEEPER; 372 else if (arg & BIT(g->i2c_pull_bit)) 373 arg = MSM_I2C_STRONG_PULL_UP; 374 else 375 arg = arg == MSM_PULL_UP; 376 if (!arg) 377 return -EINVAL; 378 break; 379 case PIN_CONFIG_DRIVE_OPEN_DRAIN: 380 /* Pin is not open-drain */ 381 if (!arg) 382 return -EINVAL; 383 arg = 1; 384 break; 385 case PIN_CONFIG_DRIVE_STRENGTH: 386 arg = msm_regval_to_drive(arg); 387 break; 388 case PIN_CONFIG_LEVEL: 389 /* Pin is not output */ 390 if (!arg) 391 return -EINVAL; 392 393 val = msm_readl_io(pctrl, g); 394 arg = !!(val & BIT(g->in_bit)); 395 break; 396 case PIN_CONFIG_OUTPUT_ENABLE: 397 if (!arg) 398 return -EINVAL; 399 break; 400 default: 401 return -ENOTSUPP; 402 } 403 404 *config = pinconf_to_config_packed(param, arg); 405 406 return 0; 407 } 408 409 static int msm_config_group_set(struct pinctrl_dev *pctldev, 410 unsigned group, 411 unsigned long *configs, 412 unsigned num_configs) 413 { 414 const struct msm_pingroup *g; 415 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 416 unsigned long flags; 417 unsigned param; 418 unsigned mask; 419 unsigned arg; 420 unsigned bit; 421 int ret; 422 u32 val; 423 int i; 424 425 g = &pctrl->soc->groups[group]; 426 427 for (i = 0; i < num_configs; i++) { 428 param = pinconf_to_config_param(configs[i]); 429 arg = pinconf_to_config_argument(configs[i]); 430 431 ret = msm_config_reg(pctrl, g, param, &mask, &bit); 432 if (ret < 0) 433 return ret; 434 435 /* Convert pinconf values to register values */ 436 switch (param) { 437 case PIN_CONFIG_BIAS_DISABLE: 438 arg = MSM_NO_PULL; 439 break; 440 case PIN_CONFIG_BIAS_PULL_DOWN: 441 arg = MSM_PULL_DOWN; 442 break; 443 case PIN_CONFIG_BIAS_BUS_HOLD: 444 if (pctrl->soc->pull_no_keeper) 445 return -ENOTSUPP; 446 447 arg = MSM_KEEPER; 448 break; 449 case PIN_CONFIG_BIAS_PULL_UP: 450 if (pctrl->soc->pull_no_keeper) 451 arg = MSM_PULL_UP_NO_KEEPER; 452 else if (g->i2c_pull_bit && arg == MSM_I2C_STRONG_PULL_UP) 453 arg = BIT(g->i2c_pull_bit) | MSM_PULL_UP; 454 else 455 arg = MSM_PULL_UP; 456 break; 457 case PIN_CONFIG_DRIVE_OPEN_DRAIN: 458 arg = 1; 459 break; 460 case PIN_CONFIG_DRIVE_STRENGTH: 461 /* Check for invalid values */ 462 if (arg > 16 || arg < 2 || (arg % 2) != 0) 463 arg = -1; 464 else 465 arg = (arg / 2) - 1; 466 break; 467 case PIN_CONFIG_LEVEL: 468 /* set output value */ 469 raw_spin_lock_irqsave(&pctrl->lock, flags); 470 val = msm_readl_io(pctrl, g); 471 if (arg) 472 val |= BIT(g->out_bit); 473 else 474 val &= ~BIT(g->out_bit); 475 msm_writel_io(val, pctrl, g); 476 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 477 478 /* enable output */ 479 arg = 1; 480 break; 481 case PIN_CONFIG_INPUT_ENABLE: 482 /* 483 * According to pinctrl documentation this should 484 * actually be a no-op. 485 * 486 * The docs are explicit that "this does not affect 487 * the pin's ability to drive output" but what we do 488 * here is to modify the output enable bit. Thus, to 489 * follow the docs we should remove that. 490 * 491 * The docs say that we should enable any relevant 492 * input buffer, but TLMM there is no input buffer that 493 * can be enabled/disabled. It's always on. 494 * 495 * The points above, explain why this _should_ be a 496 * no-op. However, for historical reasons and to 497 * support old device trees, we'll violate the docs 498 * and still affect the output. 499 * 500 * It should further be noted that this old historical 501 * behavior actually overrides arg to 0. That means 502 * that "input-enable" and "input-disable" in a device 503 * tree would _both_ disable the output. We'll 504 * continue to preserve this behavior as well since 505 * we have no other use for this attribute. 506 */ 507 arg = 0; 508 break; 509 case PIN_CONFIG_OUTPUT_ENABLE: 510 arg = !!arg; 511 break; 512 default: 513 dev_err(pctrl->dev, "Unsupported config parameter: %x\n", 514 param); 515 return -EINVAL; 516 } 517 518 /* Range-check user-supplied value */ 519 if (arg & ~mask) { 520 dev_err(pctrl->dev, "config %x: %x is invalid\n", param, arg); 521 return -EINVAL; 522 } 523 524 raw_spin_lock_irqsave(&pctrl->lock, flags); 525 val = msm_readl_ctl(pctrl, g); 526 val &= ~(mask << bit); 527 val |= arg << bit; 528 msm_writel_ctl(val, pctrl, g); 529 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 530 } 531 532 return 0; 533 } 534 535 static const struct pinconf_ops msm_pinconf_ops = { 536 .is_generic = true, 537 .pin_config_group_get = msm_config_group_get, 538 .pin_config_group_set = msm_config_group_set, 539 }; 540 541 static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset) 542 { 543 const struct msm_pingroup *g; 544 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 545 unsigned long flags; 546 u32 val; 547 548 g = &pctrl->soc->groups[offset]; 549 550 raw_spin_lock_irqsave(&pctrl->lock, flags); 551 552 val = msm_readl_ctl(pctrl, g); 553 val &= ~BIT(g->oe_bit); 554 msm_writel_ctl(val, pctrl, g); 555 556 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 557 558 return 0; 559 } 560 561 static int msm_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value) 562 { 563 const struct msm_pingroup *g; 564 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 565 unsigned long flags; 566 u32 val; 567 568 g = &pctrl->soc->groups[offset]; 569 570 raw_spin_lock_irqsave(&pctrl->lock, flags); 571 572 val = msm_readl_io(pctrl, g); 573 if (value) 574 val |= BIT(g->out_bit); 575 else 576 val &= ~BIT(g->out_bit); 577 msm_writel_io(val, pctrl, g); 578 579 val = msm_readl_ctl(pctrl, g); 580 val |= BIT(g->oe_bit); 581 msm_writel_ctl(val, pctrl, g); 582 583 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 584 585 return 0; 586 } 587 588 static int msm_gpio_get_direction(struct gpio_chip *chip, unsigned int offset) 589 { 590 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 591 const struct msm_pingroup *g; 592 u32 val; 593 594 g = &pctrl->soc->groups[offset]; 595 596 val = msm_readl_ctl(pctrl, g); 597 598 return val & BIT(g->oe_bit) ? GPIO_LINE_DIRECTION_OUT : 599 GPIO_LINE_DIRECTION_IN; 600 } 601 602 static int msm_gpio_get(struct gpio_chip *chip, unsigned offset) 603 { 604 const struct msm_pingroup *g; 605 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 606 u32 val; 607 608 g = &pctrl->soc->groups[offset]; 609 610 val = msm_readl_io(pctrl, g); 611 return !!(val & BIT(g->in_bit)); 612 } 613 614 static int msm_gpio_set(struct gpio_chip *chip, unsigned int offset, int value) 615 { 616 const struct msm_pingroup *g; 617 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 618 unsigned long flags; 619 u32 val; 620 621 g = &pctrl->soc->groups[offset]; 622 623 raw_spin_lock_irqsave(&pctrl->lock, flags); 624 625 val = msm_readl_io(pctrl, g); 626 if (value) 627 val |= BIT(g->out_bit); 628 else 629 val &= ~BIT(g->out_bit); 630 msm_writel_io(val, pctrl, g); 631 632 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 633 634 return 0; 635 } 636 637 #ifdef CONFIG_DEBUG_FS 638 639 static void msm_gpio_dbg_show_one(struct seq_file *s, 640 struct pinctrl_dev *pctldev, 641 struct gpio_chip *chip, 642 unsigned offset, 643 unsigned gpio) 644 { 645 const struct msm_pingroup *g; 646 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 647 unsigned func; 648 int is_out; 649 int drive; 650 int pull; 651 int val; 652 int egpio_enable; 653 u32 ctl_reg, io_reg; 654 655 static const char * const pulls_keeper[] = { 656 "no pull", 657 "pull down", 658 "keeper", 659 "pull up" 660 }; 661 662 static const char * const pulls_no_keeper[] = { 663 "no pull", 664 "pull down", 665 "pull up", 666 }; 667 668 if (!gpiochip_line_is_valid(chip, offset)) 669 return; 670 671 g = &pctrl->soc->groups[offset]; 672 ctl_reg = msm_readl_ctl(pctrl, g); 673 io_reg = msm_readl_io(pctrl, g); 674 675 is_out = !!(ctl_reg & BIT(g->oe_bit)); 676 func = (ctl_reg >> g->mux_bit) & 7; 677 drive = (ctl_reg >> g->drv_bit) & 7; 678 pull = (ctl_reg >> g->pull_bit) & 3; 679 egpio_enable = 0; 680 if (pctrl->soc->egpio_func && ctl_reg & BIT(g->egpio_present)) 681 egpio_enable = !(ctl_reg & BIT(g->egpio_enable)); 682 683 if (is_out) 684 val = !!(io_reg & BIT(g->out_bit)); 685 else 686 val = !!(io_reg & BIT(g->in_bit)); 687 688 if (egpio_enable) { 689 seq_printf(s, " %-8s: egpio\n", g->grp.name); 690 return; 691 } 692 693 seq_printf(s, " %-8s: %-3s", g->grp.name, is_out ? "out" : "in"); 694 seq_printf(s, " %-4s func%d", str_high_low(val), func); 695 seq_printf(s, " %dmA", msm_regval_to_drive(drive)); 696 if (pctrl->soc->pull_no_keeper) 697 seq_printf(s, " %s", pulls_no_keeper[pull]); 698 else 699 seq_printf(s, " %s", pulls_keeper[pull]); 700 seq_puts(s, "\n"); 701 } 702 703 static void msm_gpio_dbg_show(struct seq_file *s, struct gpio_chip *chip) 704 { 705 unsigned gpio = chip->base; 706 unsigned i; 707 708 for (i = 0; i < chip->ngpio; i++, gpio++) 709 msm_gpio_dbg_show_one(s, NULL, chip, i, gpio); 710 } 711 712 #else 713 #define msm_gpio_dbg_show NULL 714 #endif 715 716 static int msm_gpio_init_valid_mask(struct gpio_chip *gc, 717 unsigned long *valid_mask, 718 unsigned int ngpios) 719 { 720 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 721 int ret; 722 unsigned int len, i; 723 const int *reserved = pctrl->soc->reserved_gpios; 724 u16 *tmp; 725 726 /* Remove driver-provided reserved GPIOs from valid_mask */ 727 if (reserved) { 728 for (i = 0; reserved[i] >= 0; i++) { 729 if (i >= ngpios || reserved[i] >= ngpios) { 730 dev_err(pctrl->dev, "invalid list of reserved GPIOs\n"); 731 return -EINVAL; 732 } 733 clear_bit(reserved[i], valid_mask); 734 } 735 736 return 0; 737 } 738 739 /* The number of GPIOs in the ACPI tables */ 740 len = ret = device_property_count_u16(pctrl->dev, "gpios"); 741 if (ret < 0) 742 return 0; 743 744 if (ret > ngpios) 745 return -EINVAL; 746 747 tmp = kmalloc_array(len, sizeof(*tmp), GFP_KERNEL); 748 if (!tmp) 749 return -ENOMEM; 750 751 ret = device_property_read_u16_array(pctrl->dev, "gpios", tmp, len); 752 if (ret < 0) { 753 dev_err(pctrl->dev, "could not read list of GPIOs\n"); 754 goto out; 755 } 756 757 bitmap_zero(valid_mask, ngpios); 758 for (i = 0; i < len; i++) 759 set_bit(tmp[i], valid_mask); 760 761 out: 762 kfree(tmp); 763 return ret; 764 } 765 766 static const struct gpio_chip msm_gpio_template = { 767 .direction_input = msm_gpio_direction_input, 768 .direction_output = msm_gpio_direction_output, 769 .get_direction = msm_gpio_get_direction, 770 .get = msm_gpio_get, 771 .set = msm_gpio_set, 772 .request = gpiochip_generic_request, 773 .free = gpiochip_generic_free, 774 .dbg_show = msm_gpio_dbg_show, 775 }; 776 777 /* For dual-edge interrupts in software, since some hardware has no 778 * such support: 779 * 780 * At appropriate moments, this function may be called to flip the polarity 781 * settings of both-edge irq lines to try and catch the next edge. 782 * 783 * The attempt is considered successful if: 784 * - the status bit goes high, indicating that an edge was caught, or 785 * - the input value of the gpio doesn't change during the attempt. 786 * If the value changes twice during the process, that would cause the first 787 * test to fail but would force the second, as two opposite 788 * transitions would cause a detection no matter the polarity setting. 789 * 790 * The do-loop tries to sledge-hammer closed the timing hole between 791 * the initial value-read and the polarity-write - if the line value changes 792 * during that window, an interrupt is lost, the new polarity setting is 793 * incorrect, and the first success test will fail, causing a retry. 794 * 795 * Algorithm comes from Google's msmgpio driver. 796 */ 797 static void msm_gpio_update_dual_edge_pos(struct msm_pinctrl *pctrl, 798 const struct msm_pingroup *g, 799 struct irq_data *d) 800 { 801 int loop_limit = 100; 802 unsigned val, val2, intstat; 803 unsigned pol; 804 805 do { 806 val = msm_readl_io(pctrl, g) & BIT(g->in_bit); 807 808 pol = msm_readl_intr_cfg(pctrl, g); 809 pol ^= BIT(g->intr_polarity_bit); 810 msm_writel_intr_cfg(pol, pctrl, g); 811 812 val2 = msm_readl_io(pctrl, g) & BIT(g->in_bit); 813 intstat = msm_readl_intr_status(pctrl, g); 814 if (intstat || (val == val2)) 815 return; 816 } while (loop_limit-- > 0); 817 dev_err(pctrl->dev, "dual-edge irq failed to stabilize, %#08x != %#08x\n", 818 val, val2); 819 } 820 821 static void msm_gpio_irq_mask(struct irq_data *d) 822 { 823 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 824 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 825 const struct msm_pingroup *g; 826 unsigned long flags; 827 u32 val; 828 829 if (d->parent_data) 830 irq_chip_mask_parent(d); 831 832 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) 833 return; 834 835 g = &pctrl->soc->groups[d->hwirq]; 836 837 raw_spin_lock_irqsave(&pctrl->lock, flags); 838 839 val = msm_readl_intr_cfg(pctrl, g); 840 /* 841 * There are two bits that control interrupt forwarding to the CPU. The 842 * RAW_STATUS_EN bit causes the level or edge sensed on the line to be 843 * latched into the interrupt status register when the hardware detects 844 * an irq that it's configured for (either edge for edge type or level 845 * for level type irq). The 'non-raw' status enable bit causes the 846 * hardware to assert the summary interrupt to the CPU if the latched 847 * status bit is set. There's a bug though, the edge detection logic 848 * seems to have a problem where toggling the RAW_STATUS_EN bit may 849 * cause the status bit to latch spuriously when there isn't any edge 850 * so we can't touch that bit for edge type irqs and we have to keep 851 * the bit set anyway so that edges are latched while the line is masked. 852 * 853 * To make matters more complicated, leaving the RAW_STATUS_EN bit 854 * enabled all the time causes level interrupts to re-latch into the 855 * status register because the level is still present on the line after 856 * we ack it. We clear the raw status enable bit during mask here and 857 * set the bit on unmask so the interrupt can't latch into the hardware 858 * while it's masked. 859 */ 860 if (irqd_get_trigger_type(d) & IRQ_TYPE_LEVEL_MASK) 861 val &= ~BIT(g->intr_raw_status_bit); 862 863 val &= ~BIT(g->intr_enable_bit); 864 msm_writel_intr_cfg(val, pctrl, g); 865 866 clear_bit(d->hwirq, pctrl->enabled_irqs); 867 868 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 869 } 870 871 static void msm_gpio_irq_unmask(struct irq_data *d) 872 { 873 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 874 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 875 const struct msm_pingroup *g; 876 unsigned long flags; 877 u32 val; 878 879 if (d->parent_data) 880 irq_chip_unmask_parent(d); 881 882 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) 883 return; 884 885 g = &pctrl->soc->groups[d->hwirq]; 886 887 raw_spin_lock_irqsave(&pctrl->lock, flags); 888 889 val = msm_readl_intr_cfg(pctrl, g); 890 val |= BIT(g->intr_raw_status_bit); 891 val |= BIT(g->intr_enable_bit); 892 msm_writel_intr_cfg(val, pctrl, g); 893 894 set_bit(d->hwirq, pctrl->enabled_irqs); 895 896 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 897 } 898 899 static void msm_gpio_irq_enable(struct irq_data *d) 900 { 901 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 902 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 903 904 gpiochip_enable_irq(gc, d->hwirq); 905 906 if (d->parent_data) 907 irq_chip_enable_parent(d); 908 909 if (!test_bit(d->hwirq, pctrl->skip_wake_irqs)) 910 msm_gpio_irq_unmask(d); 911 } 912 913 static void msm_gpio_irq_disable(struct irq_data *d) 914 { 915 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 916 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 917 918 if (d->parent_data) 919 irq_chip_disable_parent(d); 920 921 if (!test_bit(d->hwirq, pctrl->skip_wake_irqs)) 922 msm_gpio_irq_mask(d); 923 924 gpiochip_disable_irq(gc, d->hwirq); 925 } 926 927 /** 928 * msm_gpio_update_dual_edge_parent() - Prime next edge for IRQs handled by parent. 929 * @d: The irq dta. 930 * 931 * This is much like msm_gpio_update_dual_edge_pos() but for IRQs that are 932 * normally handled by the parent irqchip. The logic here is slightly 933 * different due to what's easy to do with our parent, but in principle it's 934 * the same. 935 */ 936 static void msm_gpio_update_dual_edge_parent(struct irq_data *d) 937 { 938 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 939 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 940 const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq]; 941 int loop_limit = 100; 942 unsigned int val; 943 unsigned int type; 944 945 /* Read the value and make a guess about what edge we need to catch */ 946 val = msm_readl_io(pctrl, g) & BIT(g->in_bit); 947 type = val ? IRQ_TYPE_EDGE_FALLING : IRQ_TYPE_EDGE_RISING; 948 949 do { 950 /* Set the parent to catch the next edge */ 951 irq_chip_set_type_parent(d, type); 952 953 /* 954 * Possibly the line changed between when we last read "val" 955 * (and decided what edge we needed) and when set the edge. 956 * If the value didn't change (or changed and then changed 957 * back) then we're done. 958 */ 959 val = msm_readl_io(pctrl, g) & BIT(g->in_bit); 960 if (type == IRQ_TYPE_EDGE_RISING) { 961 if (!val) 962 return; 963 type = IRQ_TYPE_EDGE_FALLING; 964 } else if (type == IRQ_TYPE_EDGE_FALLING) { 965 if (val) 966 return; 967 type = IRQ_TYPE_EDGE_RISING; 968 } 969 } while (loop_limit-- > 0); 970 dev_warn_once(pctrl->dev, "dual-edge irq failed to stabilize\n"); 971 } 972 973 static void msm_gpio_irq_ack(struct irq_data *d) 974 { 975 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 976 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 977 const struct msm_pingroup *g; 978 unsigned long flags; 979 980 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) { 981 if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) 982 msm_gpio_update_dual_edge_parent(d); 983 return; 984 } 985 986 g = &pctrl->soc->groups[d->hwirq]; 987 988 raw_spin_lock_irqsave(&pctrl->lock, flags); 989 990 msm_ack_intr_status(pctrl, g); 991 992 if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) 993 msm_gpio_update_dual_edge_pos(pctrl, g, d); 994 995 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 996 } 997 998 static void msm_gpio_irq_eoi(struct irq_data *d) 999 { 1000 d = d->parent_data; 1001 1002 if (d) 1003 d->chip->irq_eoi(d); 1004 } 1005 1006 static bool msm_gpio_needs_dual_edge_parent_workaround(struct irq_data *d, 1007 unsigned int type) 1008 { 1009 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1010 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1011 1012 return type == IRQ_TYPE_EDGE_BOTH && 1013 pctrl->soc->wakeirq_dual_edge_errata && d->parent_data && 1014 test_bit(d->hwirq, pctrl->skip_wake_irqs); 1015 } 1016 1017 static void msm_gpio_irq_init_valid_mask(struct gpio_chip *gc, 1018 unsigned long *valid_mask, 1019 unsigned int ngpios) 1020 { 1021 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1022 const struct msm_pingroup *g; 1023 int i; 1024 1025 bitmap_fill(valid_mask, ngpios); 1026 1027 for (i = 0; i < ngpios; i++) { 1028 g = &pctrl->soc->groups[i]; 1029 1030 if (g->intr_detection_width != 1 && 1031 g->intr_detection_width != 2) 1032 clear_bit(i, valid_mask); 1033 } 1034 } 1035 1036 static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int type) 1037 { 1038 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1039 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1040 const struct msm_pingroup *g; 1041 u32 intr_target_mask = GENMASK(2, 0); 1042 unsigned long flags; 1043 u32 val, oldval; 1044 1045 if (msm_gpio_needs_dual_edge_parent_workaround(d, type)) { 1046 set_bit(d->hwirq, pctrl->dual_edge_irqs); 1047 irq_set_handler_locked(d, handle_fasteoi_ack_irq); 1048 msm_gpio_update_dual_edge_parent(d); 1049 return 0; 1050 } 1051 1052 if (d->parent_data) 1053 irq_chip_set_type_parent(d, type); 1054 1055 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) { 1056 clear_bit(d->hwirq, pctrl->dual_edge_irqs); 1057 irq_set_handler_locked(d, handle_fasteoi_irq); 1058 return 0; 1059 } 1060 1061 g = &pctrl->soc->groups[d->hwirq]; 1062 1063 raw_spin_lock_irqsave(&pctrl->lock, flags); 1064 1065 /* 1066 * For hw without possibility of detecting both edges 1067 */ 1068 if (g->intr_detection_width == 1 && type == IRQ_TYPE_EDGE_BOTH) 1069 set_bit(d->hwirq, pctrl->dual_edge_irqs); 1070 else 1071 clear_bit(d->hwirq, pctrl->dual_edge_irqs); 1072 1073 /* Route interrupts to application cpu. 1074 * With intr_target_use_scm interrupts are routed to 1075 * application cpu using scm calls. 1076 */ 1077 if (g->intr_target_width) 1078 intr_target_mask = GENMASK(g->intr_target_width - 1, 0); 1079 1080 if (pctrl->intr_target_use_scm) { 1081 u32 addr = pctrl->phys_base[0] + g->intr_target_reg; 1082 int ret; 1083 1084 qcom_scm_io_readl(addr, &val); 1085 val &= ~(intr_target_mask << g->intr_target_bit); 1086 val |= g->intr_target_kpss_val << g->intr_target_bit; 1087 1088 ret = qcom_scm_io_writel(addr, val); 1089 if (ret) 1090 dev_err(pctrl->dev, 1091 "Failed routing %lu interrupt to Apps proc", 1092 d->hwirq); 1093 } else { 1094 val = msm_readl_intr_target(pctrl, g); 1095 val &= ~(intr_target_mask << g->intr_target_bit); 1096 val |= g->intr_target_kpss_val << g->intr_target_bit; 1097 msm_writel_intr_target(val, pctrl, g); 1098 } 1099 1100 /* Update configuration for gpio. 1101 * RAW_STATUS_EN is left on for all gpio irqs. Due to the 1102 * internal circuitry of TLMM, toggling the RAW_STATUS 1103 * could cause the INTR_STATUS to be set for EDGE interrupts. 1104 */ 1105 val = oldval = msm_readl_intr_cfg(pctrl, g); 1106 val |= BIT(g->intr_raw_status_bit); 1107 if (g->intr_detection_width == 2) { 1108 val &= ~(3 << g->intr_detection_bit); 1109 val &= ~(1 << g->intr_polarity_bit); 1110 switch (type) { 1111 case IRQ_TYPE_EDGE_RISING: 1112 val |= 1 << g->intr_detection_bit; 1113 val |= BIT(g->intr_polarity_bit); 1114 break; 1115 case IRQ_TYPE_EDGE_FALLING: 1116 val |= 2 << g->intr_detection_bit; 1117 val |= BIT(g->intr_polarity_bit); 1118 break; 1119 case IRQ_TYPE_EDGE_BOTH: 1120 val |= 3 << g->intr_detection_bit; 1121 val |= BIT(g->intr_polarity_bit); 1122 break; 1123 case IRQ_TYPE_LEVEL_LOW: 1124 break; 1125 case IRQ_TYPE_LEVEL_HIGH: 1126 val |= BIT(g->intr_polarity_bit); 1127 break; 1128 } 1129 } else if (g->intr_detection_width == 1) { 1130 val &= ~(1 << g->intr_detection_bit); 1131 val &= ~(1 << g->intr_polarity_bit); 1132 switch (type) { 1133 case IRQ_TYPE_EDGE_RISING: 1134 val |= BIT(g->intr_detection_bit); 1135 val |= BIT(g->intr_polarity_bit); 1136 break; 1137 case IRQ_TYPE_EDGE_FALLING: 1138 val |= BIT(g->intr_detection_bit); 1139 break; 1140 case IRQ_TYPE_EDGE_BOTH: 1141 val |= BIT(g->intr_detection_bit); 1142 val |= BIT(g->intr_polarity_bit); 1143 break; 1144 case IRQ_TYPE_LEVEL_LOW: 1145 break; 1146 case IRQ_TYPE_LEVEL_HIGH: 1147 val |= BIT(g->intr_polarity_bit); 1148 break; 1149 } 1150 } else { 1151 BUG(); 1152 } 1153 msm_writel_intr_cfg(val, pctrl, g); 1154 1155 /* 1156 * The first time we set RAW_STATUS_EN it could trigger an interrupt. 1157 * Clear the interrupt. This is safe because we have 1158 * IRQCHIP_SET_TYPE_MASKED. When changing the interrupt type, we could 1159 * also still have a non-matching interrupt latched, so clear whenever 1160 * making changes to the interrupt configuration. 1161 */ 1162 if (val != oldval) 1163 msm_ack_intr_status(pctrl, g); 1164 1165 if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) 1166 msm_gpio_update_dual_edge_pos(pctrl, g, d); 1167 1168 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 1169 1170 if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH)) 1171 irq_set_handler_locked(d, handle_level_irq); 1172 else if (type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING)) 1173 irq_set_handler_locked(d, handle_edge_irq); 1174 1175 return 0; 1176 } 1177 1178 static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on) 1179 { 1180 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1181 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1182 1183 /* 1184 * While they may not wake up when the TLMM is powered off, 1185 * some GPIOs would like to wakeup the system from suspend 1186 * when TLMM is powered on. To allow that, enable the GPIO 1187 * summary line to be wakeup capable at GIC. 1188 */ 1189 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 1190 return irq_chip_set_wake_parent(d, on); 1191 1192 return irq_set_irq_wake(pctrl->irq, on); 1193 } 1194 1195 static int msm_gpio_irq_reqres(struct irq_data *d) 1196 { 1197 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1198 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1199 const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq]; 1200 unsigned long flags; 1201 int ret; 1202 1203 if (!try_module_get(gc->owner)) 1204 return -ENODEV; 1205 1206 ret = msm_pinmux_request_gpio(pctrl->pctrl, NULL, d->hwirq); 1207 if (ret) 1208 goto out; 1209 msm_gpio_direction_input(gc, d->hwirq); 1210 1211 if (gpiochip_lock_as_irq(gc, d->hwirq)) { 1212 dev_err(gc->parent, 1213 "unable to lock HW IRQ %lu for IRQ\n", 1214 d->hwirq); 1215 ret = -EINVAL; 1216 goto out; 1217 } 1218 1219 /* 1220 * The disable / clear-enable workaround we do in msm_pinmux_set_mux() 1221 * only works if disable is not lazy since we only clear any bogus 1222 * interrupt in hardware. Explicitly mark the interrupt as UNLAZY. 1223 */ 1224 irq_set_status_flags(d->irq, IRQ_DISABLE_UNLAZY); 1225 1226 /* 1227 * If the wakeup_enable bit is present and marked as available for the 1228 * requested GPIO, it should be enabled when the GPIO is marked as 1229 * wake irq in order to allow the interrupt event to be transfered to 1230 * the PDC HW. 1231 * While the name implies only the wakeup event, it's also required for 1232 * the interrupt event. 1233 */ 1234 if (test_bit(d->hwirq, pctrl->skip_wake_irqs) && g->intr_wakeup_present_bit) { 1235 u32 intr_cfg; 1236 1237 raw_spin_lock_irqsave(&pctrl->lock, flags); 1238 1239 intr_cfg = msm_readl_intr_cfg(pctrl, g); 1240 if (intr_cfg & BIT(g->intr_wakeup_present_bit)) { 1241 intr_cfg |= BIT(g->intr_wakeup_enable_bit); 1242 msm_writel_intr_cfg(intr_cfg, pctrl, g); 1243 } 1244 1245 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 1246 } 1247 1248 return 0; 1249 out: 1250 module_put(gc->owner); 1251 return ret; 1252 } 1253 1254 static void msm_gpio_irq_relres(struct irq_data *d) 1255 { 1256 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1257 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1258 const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq]; 1259 unsigned long flags; 1260 1261 /* Disable the wakeup_enable bit if it has been set in msm_gpio_irq_reqres() */ 1262 if (test_bit(d->hwirq, pctrl->skip_wake_irqs) && g->intr_wakeup_present_bit) { 1263 u32 intr_cfg; 1264 1265 raw_spin_lock_irqsave(&pctrl->lock, flags); 1266 1267 intr_cfg = msm_readl_intr_cfg(pctrl, g); 1268 if (intr_cfg & BIT(g->intr_wakeup_present_bit)) { 1269 intr_cfg &= ~BIT(g->intr_wakeup_enable_bit); 1270 msm_writel_intr_cfg(intr_cfg, pctrl, g); 1271 } 1272 1273 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 1274 } 1275 1276 gpiochip_unlock_as_irq(gc, d->hwirq); 1277 module_put(gc->owner); 1278 } 1279 1280 static int msm_gpio_irq_set_affinity(struct irq_data *d, 1281 const struct cpumask *dest, bool force) 1282 { 1283 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1284 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1285 1286 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 1287 return irq_chip_set_affinity_parent(d, dest, force); 1288 1289 return -EINVAL; 1290 } 1291 1292 static int msm_gpio_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1293 { 1294 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1295 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1296 1297 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 1298 return irq_chip_set_vcpu_affinity_parent(d, vcpu_info); 1299 1300 return -EINVAL; 1301 } 1302 1303 static void msm_gpio_irq_handler(struct irq_desc *desc) 1304 { 1305 struct gpio_chip *gc = irq_desc_get_handler_data(desc); 1306 const struct msm_pingroup *g; 1307 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1308 struct irq_chip *chip = irq_desc_get_chip(desc); 1309 int handled = 0; 1310 u32 val; 1311 int i; 1312 1313 chained_irq_enter(chip, desc); 1314 1315 /* 1316 * Each pin has it's own IRQ status register, so use 1317 * enabled_irq bitmap to limit the number of reads. 1318 */ 1319 for_each_set_bit(i, pctrl->enabled_irqs, pctrl->chip.ngpio) { 1320 g = &pctrl->soc->groups[i]; 1321 val = msm_readl_intr_status(pctrl, g); 1322 if (val & BIT(g->intr_status_bit)) { 1323 generic_handle_domain_irq(gc->irq.domain, i); 1324 handled++; 1325 } 1326 } 1327 1328 /* No interrupts were flagged */ 1329 if (handled == 0) 1330 handle_bad_irq(desc); 1331 1332 chained_irq_exit(chip, desc); 1333 } 1334 1335 static int msm_gpio_wakeirq(struct gpio_chip *gc, 1336 unsigned int child, 1337 unsigned int child_type, 1338 unsigned int *parent, 1339 unsigned int *parent_type) 1340 { 1341 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1342 const struct msm_gpio_wakeirq_map *map; 1343 int i; 1344 1345 *parent = GPIO_NO_WAKE_IRQ; 1346 *parent_type = IRQ_TYPE_EDGE_RISING; 1347 1348 for (i = 0; i < pctrl->soc->nwakeirq_map; i++) { 1349 map = &pctrl->soc->wakeirq_map[i]; 1350 if (map->gpio == child) { 1351 *parent = map->wakeirq; 1352 break; 1353 } 1354 } 1355 1356 return 0; 1357 } 1358 1359 static bool msm_gpio_needs_valid_mask(struct msm_pinctrl *pctrl) 1360 { 1361 if (pctrl->soc->reserved_gpios) 1362 return true; 1363 1364 return device_property_count_u16(pctrl->dev, "gpios") > 0; 1365 } 1366 1367 static const struct irq_chip msm_gpio_irq_chip = { 1368 .name = "msmgpio", 1369 .irq_enable = msm_gpio_irq_enable, 1370 .irq_disable = msm_gpio_irq_disable, 1371 .irq_mask = msm_gpio_irq_mask, 1372 .irq_unmask = msm_gpio_irq_unmask, 1373 .irq_ack = msm_gpio_irq_ack, 1374 .irq_eoi = msm_gpio_irq_eoi, 1375 .irq_set_type = msm_gpio_irq_set_type, 1376 .irq_set_wake = msm_gpio_irq_set_wake, 1377 .irq_request_resources = msm_gpio_irq_reqres, 1378 .irq_release_resources = msm_gpio_irq_relres, 1379 .irq_set_affinity = msm_gpio_irq_set_affinity, 1380 .irq_set_vcpu_affinity = msm_gpio_irq_set_vcpu_affinity, 1381 .flags = (IRQCHIP_MASK_ON_SUSPEND | 1382 IRQCHIP_SET_TYPE_MASKED | 1383 IRQCHIP_ENABLE_WAKEUP_ON_SUSPEND | 1384 IRQCHIP_IMMUTABLE), 1385 }; 1386 1387 static int msm_gpio_init(struct msm_pinctrl *pctrl) 1388 { 1389 struct gpio_chip *chip; 1390 struct gpio_irq_chip *girq; 1391 int i, ret; 1392 unsigned gpio, ngpio = pctrl->soc->ngpios; 1393 struct device_node *np; 1394 bool skip; 1395 1396 if (WARN_ON(ngpio > MAX_NR_GPIO)) 1397 return -EINVAL; 1398 1399 chip = &pctrl->chip; 1400 chip->base = -1; 1401 chip->ngpio = ngpio; 1402 chip->label = dev_name(pctrl->dev); 1403 chip->parent = pctrl->dev; 1404 chip->owner = THIS_MODULE; 1405 if (msm_gpio_needs_valid_mask(pctrl)) 1406 chip->init_valid_mask = msm_gpio_init_valid_mask; 1407 1408 np = of_parse_phandle(pctrl->dev->of_node, "wakeup-parent", 0); 1409 if (np) { 1410 chip->irq.parent_domain = irq_find_matching_host(np, 1411 DOMAIN_BUS_WAKEUP); 1412 of_node_put(np); 1413 if (!chip->irq.parent_domain) 1414 return -EPROBE_DEFER; 1415 chip->irq.child_to_parent_hwirq = msm_gpio_wakeirq; 1416 /* 1417 * Let's skip handling the GPIOs, if the parent irqchip 1418 * is handling the direct connect IRQ of the GPIO. 1419 */ 1420 skip = irq_domain_qcom_handle_wakeup(chip->irq.parent_domain); 1421 for (i = 0; skip && i < pctrl->soc->nwakeirq_map; i++) { 1422 gpio = pctrl->soc->wakeirq_map[i].gpio; 1423 set_bit(gpio, pctrl->skip_wake_irqs); 1424 } 1425 } 1426 1427 girq = &chip->irq; 1428 gpio_irq_chip_set_chip(girq, &msm_gpio_irq_chip); 1429 girq->parent_handler = msm_gpio_irq_handler; 1430 girq->fwnode = dev_fwnode(pctrl->dev); 1431 girq->num_parents = 1; 1432 girq->parents = devm_kcalloc(pctrl->dev, 1, sizeof(*girq->parents), 1433 GFP_KERNEL); 1434 if (!girq->parents) 1435 return -ENOMEM; 1436 girq->default_type = IRQ_TYPE_NONE; 1437 girq->handler = handle_bad_irq; 1438 girq->parents[0] = pctrl->irq; 1439 girq->init_valid_mask = msm_gpio_irq_init_valid_mask; 1440 1441 ret = devm_gpiochip_add_data(pctrl->dev, &pctrl->chip, pctrl); 1442 if (ret) { 1443 dev_err(pctrl->dev, "Failed register gpiochip\n"); 1444 return ret; 1445 } 1446 1447 /* 1448 * For DeviceTree-supported systems, the gpio core checks the 1449 * pinctrl's device node for the "gpio-ranges" property. 1450 * If it is present, it takes care of adding the pin ranges 1451 * for the driver. In this case the driver can skip ahead. 1452 * 1453 * In order to remain compatible with older, existing DeviceTree 1454 * files which don't set the "gpio-ranges" property or systems that 1455 * utilize ACPI the driver has to call gpiochip_add_pin_range(). 1456 */ 1457 if (!of_property_present(pctrl->dev->of_node, "gpio-ranges")) { 1458 ret = gpiochip_add_pin_range(&pctrl->chip, 1459 dev_name(pctrl->dev), 0, 0, chip->ngpio); 1460 if (ret) { 1461 dev_err(pctrl->dev, "Failed to add pin range\n"); 1462 return ret; 1463 } 1464 } 1465 1466 return 0; 1467 } 1468 1469 static int msm_ps_hold_restart(struct sys_off_data *data) 1470 { 1471 struct msm_pinctrl *pctrl = data->cb_data; 1472 1473 writel(0, pctrl->regs[0] + PS_HOLD_OFFSET); 1474 mdelay(1000); 1475 return NOTIFY_DONE; 1476 } 1477 1478 static struct msm_pinctrl *poweroff_pctrl; 1479 1480 static void msm_ps_hold_poweroff(void) 1481 { 1482 struct sys_off_data data = { 1483 .cb_data = poweroff_pctrl, 1484 }; 1485 1486 msm_ps_hold_restart(&data); 1487 } 1488 1489 static void msm_pinctrl_setup_pm_reset(struct msm_pinctrl *pctrl) 1490 { 1491 int i; 1492 const struct pinfunction *func = pctrl->soc->functions; 1493 1494 for (i = 0; i < pctrl->soc->nfunctions; i++) 1495 if (!strcmp(func[i].name, "ps_hold")) { 1496 if (devm_register_sys_off_handler(pctrl->dev, 1497 SYS_OFF_MODE_RESTART, 1498 128, 1499 msm_ps_hold_restart, 1500 pctrl)) 1501 dev_err(pctrl->dev, 1502 "failed to setup restart handler.\n"); 1503 poweroff_pctrl = pctrl; 1504 pm_power_off = msm_ps_hold_poweroff; 1505 break; 1506 } 1507 } 1508 1509 static __maybe_unused int msm_pinctrl_suspend(struct device *dev) 1510 { 1511 struct msm_pinctrl *pctrl = dev_get_drvdata(dev); 1512 1513 return pinctrl_force_sleep(pctrl->pctrl); 1514 } 1515 1516 static __maybe_unused int msm_pinctrl_resume(struct device *dev) 1517 { 1518 struct msm_pinctrl *pctrl = dev_get_drvdata(dev); 1519 1520 return pinctrl_force_default(pctrl->pctrl); 1521 } 1522 1523 SIMPLE_DEV_PM_OPS(msm_pinctrl_dev_pm_ops, msm_pinctrl_suspend, 1524 msm_pinctrl_resume); 1525 1526 EXPORT_SYMBOL(msm_pinctrl_dev_pm_ops); 1527 1528 int msm_pinctrl_probe(struct platform_device *pdev, 1529 const struct msm_pinctrl_soc_data *soc_data) 1530 { 1531 const struct pinfunction *func; 1532 struct msm_pinctrl *pctrl; 1533 struct resource *res; 1534 int ret; 1535 int i; 1536 1537 pctrl = devm_kzalloc(&pdev->dev, sizeof(*pctrl), GFP_KERNEL); 1538 if (!pctrl) 1539 return -ENOMEM; 1540 1541 pctrl->dev = &pdev->dev; 1542 pctrl->soc = soc_data; 1543 pctrl->chip = msm_gpio_template; 1544 pctrl->intr_target_use_scm = of_device_is_compatible( 1545 pctrl->dev->of_node, 1546 "qcom,ipq8064-pinctrl"); 1547 1548 raw_spin_lock_init(&pctrl->lock); 1549 1550 if (soc_data->tiles) { 1551 for (i = 0; i < soc_data->ntiles; i++) { 1552 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 1553 soc_data->tiles[i]); 1554 pctrl->regs[i] = devm_ioremap_resource(&pdev->dev, res); 1555 if (IS_ERR(pctrl->regs[i])) 1556 return PTR_ERR(pctrl->regs[i]); 1557 } 1558 } else { 1559 pctrl->regs[0] = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1560 if (IS_ERR(pctrl->regs[0])) 1561 return PTR_ERR(pctrl->regs[0]); 1562 1563 pctrl->phys_base[0] = res->start; 1564 } 1565 1566 msm_pinctrl_setup_pm_reset(pctrl); 1567 1568 pctrl->irq = platform_get_irq(pdev, 0); 1569 if (pctrl->irq < 0) 1570 return pctrl->irq; 1571 1572 pctrl->desc.owner = THIS_MODULE; 1573 pctrl->desc.pctlops = &msm_pinctrl_ops; 1574 pctrl->desc.pmxops = &msm_pinmux_ops; 1575 pctrl->desc.confops = &msm_pinconf_ops; 1576 pctrl->desc.name = dev_name(&pdev->dev); 1577 pctrl->desc.pins = pctrl->soc->pins; 1578 pctrl->desc.npins = pctrl->soc->npins; 1579 1580 pctrl->pctrl = devm_pinctrl_register(&pdev->dev, &pctrl->desc, pctrl); 1581 if (IS_ERR(pctrl->pctrl)) { 1582 dev_err(&pdev->dev, "Couldn't register pinctrl driver\n"); 1583 return PTR_ERR(pctrl->pctrl); 1584 } 1585 1586 for (i = 0; i < soc_data->nfunctions; i++) { 1587 func = &soc_data->functions[i]; 1588 1589 ret = pinmux_generic_add_pinfunction(pctrl->pctrl, func, NULL); 1590 if (ret < 0) 1591 return ret; 1592 } 1593 1594 ret = msm_gpio_init(pctrl); 1595 if (ret) 1596 return ret; 1597 1598 platform_set_drvdata(pdev, pctrl); 1599 1600 dev_dbg(&pdev->dev, "Probed Qualcomm pinctrl driver\n"); 1601 1602 return 0; 1603 } 1604 EXPORT_SYMBOL(msm_pinctrl_probe); 1605 1606 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. TLMM driver"); 1607 MODULE_LICENSE("GPL v2"); 1608