1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2013, Sony Mobile Communications AB. 4 * Copyright (c) 2013, The Linux Foundation. All rights reserved. 5 */ 6 7 #include <linux/delay.h> 8 #include <linux/err.h> 9 #include <linux/gpio/driver.h> 10 #include <linux/interrupt.h> 11 #include <linux/io.h> 12 #include <linux/log2.h> 13 #include <linux/module.h> 14 #include <linux/of.h> 15 #include <linux/platform_device.h> 16 #include <linux/pm.h> 17 #include <linux/qcom_scm.h> 18 #include <linux/reboot.h> 19 #include <linux/seq_file.h> 20 #include <linux/slab.h> 21 #include <linux/spinlock.h> 22 23 #include <linux/pinctrl/machine.h> 24 #include <linux/pinctrl/pinconf-generic.h> 25 #include <linux/pinctrl/pinconf.h> 26 #include <linux/pinctrl/pinctrl.h> 27 #include <linux/pinctrl/pinmux.h> 28 29 #include <linux/soc/qcom/irq.h> 30 31 #include "../core.h" 32 #include "../pinconf.h" 33 #include "../pinctrl-utils.h" 34 35 #include "pinctrl-msm.h" 36 37 #define MAX_NR_GPIO 300 38 #define MAX_NR_TILES 4 39 #define PS_HOLD_OFFSET 0x820 40 41 /** 42 * struct msm_pinctrl - state for a pinctrl-msm device 43 * @dev: device handle. 44 * @pctrl: pinctrl handle. 45 * @chip: gpiochip handle. 46 * @desc: pin controller descriptor 47 * @restart_nb: restart notifier block. 48 * @irq: parent irq for the TLMM irq_chip. 49 * @intr_target_use_scm: route irq to application cpu using scm calls 50 * @lock: Spinlock to protect register resources as well 51 * as msm_pinctrl data structures. 52 * @enabled_irqs: Bitmap of currently enabled irqs. 53 * @dual_edge_irqs: Bitmap of irqs that need sw emulated dual edge 54 * detection. 55 * @skip_wake_irqs: Skip IRQs that are handled by wakeup interrupt controller 56 * @disabled_for_mux: These IRQs were disabled because we muxed away. 57 * @ever_gpio: This bit is set the first time we mux a pin to gpio_func. 58 * @soc: Reference to soc_data of platform specific data. 59 * @regs: Base addresses for the TLMM tiles. 60 * @phys_base: Physical base address 61 */ 62 struct msm_pinctrl { 63 struct device *dev; 64 struct pinctrl_dev *pctrl; 65 struct gpio_chip chip; 66 struct pinctrl_desc desc; 67 struct notifier_block restart_nb; 68 69 int irq; 70 71 bool intr_target_use_scm; 72 73 raw_spinlock_t lock; 74 75 DECLARE_BITMAP(dual_edge_irqs, MAX_NR_GPIO); 76 DECLARE_BITMAP(enabled_irqs, MAX_NR_GPIO); 77 DECLARE_BITMAP(skip_wake_irqs, MAX_NR_GPIO); 78 DECLARE_BITMAP(disabled_for_mux, MAX_NR_GPIO); 79 DECLARE_BITMAP(ever_gpio, MAX_NR_GPIO); 80 81 const struct msm_pinctrl_soc_data *soc; 82 void __iomem *regs[MAX_NR_TILES]; 83 u32 phys_base[MAX_NR_TILES]; 84 }; 85 86 #define MSM_ACCESSOR(name) \ 87 static u32 msm_readl_##name(struct msm_pinctrl *pctrl, \ 88 const struct msm_pingroup *g) \ 89 { \ 90 return readl(pctrl->regs[g->tile] + g->name##_reg); \ 91 } \ 92 static void msm_writel_##name(u32 val, struct msm_pinctrl *pctrl, \ 93 const struct msm_pingroup *g) \ 94 { \ 95 writel(val, pctrl->regs[g->tile] + g->name##_reg); \ 96 } 97 98 MSM_ACCESSOR(ctl) 99 MSM_ACCESSOR(io) 100 MSM_ACCESSOR(intr_cfg) 101 MSM_ACCESSOR(intr_status) 102 MSM_ACCESSOR(intr_target) 103 104 static void msm_ack_intr_status(struct msm_pinctrl *pctrl, 105 const struct msm_pingroup *g) 106 { 107 u32 val = g->intr_ack_high ? BIT(g->intr_status_bit) : 0; 108 109 msm_writel_intr_status(val, pctrl, g); 110 } 111 112 static int msm_get_groups_count(struct pinctrl_dev *pctldev) 113 { 114 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 115 116 return pctrl->soc->ngroups; 117 } 118 119 static const char *msm_get_group_name(struct pinctrl_dev *pctldev, 120 unsigned group) 121 { 122 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 123 124 return pctrl->soc->groups[group].name; 125 } 126 127 static int msm_get_group_pins(struct pinctrl_dev *pctldev, 128 unsigned group, 129 const unsigned **pins, 130 unsigned *num_pins) 131 { 132 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 133 134 *pins = pctrl->soc->groups[group].pins; 135 *num_pins = pctrl->soc->groups[group].npins; 136 return 0; 137 } 138 139 static const struct pinctrl_ops msm_pinctrl_ops = { 140 .get_groups_count = msm_get_groups_count, 141 .get_group_name = msm_get_group_name, 142 .get_group_pins = msm_get_group_pins, 143 .dt_node_to_map = pinconf_generic_dt_node_to_map_group, 144 .dt_free_map = pinctrl_utils_free_map, 145 }; 146 147 static int msm_pinmux_request(struct pinctrl_dev *pctldev, unsigned offset) 148 { 149 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 150 struct gpio_chip *chip = &pctrl->chip; 151 152 return gpiochip_line_is_valid(chip, offset) ? 0 : -EINVAL; 153 } 154 155 static int msm_get_functions_count(struct pinctrl_dev *pctldev) 156 { 157 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 158 159 return pctrl->soc->nfunctions; 160 } 161 162 static const char *msm_get_function_name(struct pinctrl_dev *pctldev, 163 unsigned function) 164 { 165 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 166 167 return pctrl->soc->functions[function].name; 168 } 169 170 static int msm_get_function_groups(struct pinctrl_dev *pctldev, 171 unsigned function, 172 const char * const **groups, 173 unsigned * const num_groups) 174 { 175 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 176 177 *groups = pctrl->soc->functions[function].groups; 178 *num_groups = pctrl->soc->functions[function].ngroups; 179 return 0; 180 } 181 182 static int msm_pinmux_set_mux(struct pinctrl_dev *pctldev, 183 unsigned function, 184 unsigned group) 185 { 186 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 187 struct gpio_chip *gc = &pctrl->chip; 188 unsigned int irq = irq_find_mapping(gc->irq.domain, group); 189 struct irq_data *d = irq_get_irq_data(irq); 190 unsigned int gpio_func = pctrl->soc->gpio_func; 191 unsigned int egpio_func = pctrl->soc->egpio_func; 192 const struct msm_pingroup *g; 193 unsigned long flags; 194 u32 val, mask; 195 int i; 196 197 g = &pctrl->soc->groups[group]; 198 mask = GENMASK(g->mux_bit + order_base_2(g->nfuncs) - 1, g->mux_bit); 199 200 for (i = 0; i < g->nfuncs; i++) { 201 if (g->funcs[i] == function) 202 break; 203 } 204 205 if (WARN_ON(i == g->nfuncs)) 206 return -EINVAL; 207 208 /* 209 * If an GPIO interrupt is setup on this pin then we need special 210 * handling. Specifically interrupt detection logic will still see 211 * the pin twiddle even when we're muxed away. 212 * 213 * When we see a pin with an interrupt setup on it then we'll disable 214 * (mask) interrupts on it when we mux away until we mux back. Note 215 * that disable_irq() refcounts and interrupts are disabled as long as 216 * at least one disable_irq() has been called. 217 */ 218 if (d && i != gpio_func && 219 !test_and_set_bit(d->hwirq, pctrl->disabled_for_mux)) 220 disable_irq(irq); 221 222 raw_spin_lock_irqsave(&pctrl->lock, flags); 223 224 val = msm_readl_ctl(pctrl, g); 225 226 /* 227 * If this is the first time muxing to GPIO and the direction is 228 * output, make sure that we're not going to be glitching the pin 229 * by reading the current state of the pin and setting it as the 230 * output. 231 */ 232 if (i == gpio_func && (val & BIT(g->oe_bit)) && 233 !test_and_set_bit(group, pctrl->ever_gpio)) { 234 u32 io_val = msm_readl_io(pctrl, g); 235 236 if (io_val & BIT(g->in_bit)) { 237 if (!(io_val & BIT(g->out_bit))) 238 msm_writel_io(io_val | BIT(g->out_bit), pctrl, g); 239 } else { 240 if (io_val & BIT(g->out_bit)) 241 msm_writel_io(io_val & ~BIT(g->out_bit), pctrl, g); 242 } 243 } 244 245 if (egpio_func && i == egpio_func) { 246 if (val & BIT(g->egpio_present)) 247 val &= ~BIT(g->egpio_enable); 248 } else { 249 val &= ~mask; 250 val |= i << g->mux_bit; 251 /* Claim ownership of pin if egpio capable */ 252 if (egpio_func && val & BIT(g->egpio_present)) 253 val |= BIT(g->egpio_enable); 254 } 255 256 msm_writel_ctl(val, pctrl, g); 257 258 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 259 260 if (d && i == gpio_func && 261 test_and_clear_bit(d->hwirq, pctrl->disabled_for_mux)) { 262 /* 263 * Clear interrupts detected while not GPIO since we only 264 * masked things. 265 */ 266 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 267 irq_chip_set_parent_state(d, IRQCHIP_STATE_PENDING, false); 268 else 269 msm_ack_intr_status(pctrl, g); 270 271 enable_irq(irq); 272 } 273 274 return 0; 275 } 276 277 static int msm_pinmux_request_gpio(struct pinctrl_dev *pctldev, 278 struct pinctrl_gpio_range *range, 279 unsigned offset) 280 { 281 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 282 const struct msm_pingroup *g = &pctrl->soc->groups[offset]; 283 284 /* No funcs? Probably ACPI so can't do anything here */ 285 if (!g->nfuncs) 286 return 0; 287 288 return msm_pinmux_set_mux(pctldev, g->funcs[pctrl->soc->gpio_func], offset); 289 } 290 291 static const struct pinmux_ops msm_pinmux_ops = { 292 .request = msm_pinmux_request, 293 .get_functions_count = msm_get_functions_count, 294 .get_function_name = msm_get_function_name, 295 .get_function_groups = msm_get_function_groups, 296 .gpio_request_enable = msm_pinmux_request_gpio, 297 .set_mux = msm_pinmux_set_mux, 298 }; 299 300 static int msm_config_reg(struct msm_pinctrl *pctrl, 301 const struct msm_pingroup *g, 302 unsigned param, 303 unsigned *mask, 304 unsigned *bit) 305 { 306 switch (param) { 307 case PIN_CONFIG_BIAS_DISABLE: 308 case PIN_CONFIG_BIAS_PULL_DOWN: 309 case PIN_CONFIG_BIAS_BUS_HOLD: 310 case PIN_CONFIG_BIAS_PULL_UP: 311 *bit = g->pull_bit; 312 *mask = 3; 313 break; 314 case PIN_CONFIG_DRIVE_OPEN_DRAIN: 315 *bit = g->od_bit; 316 *mask = 1; 317 break; 318 case PIN_CONFIG_DRIVE_STRENGTH: 319 *bit = g->drv_bit; 320 *mask = 7; 321 break; 322 case PIN_CONFIG_OUTPUT: 323 case PIN_CONFIG_INPUT_ENABLE: 324 *bit = g->oe_bit; 325 *mask = 1; 326 break; 327 default: 328 return -ENOTSUPP; 329 } 330 331 return 0; 332 } 333 334 #define MSM_NO_PULL 0 335 #define MSM_PULL_DOWN 1 336 #define MSM_KEEPER 2 337 #define MSM_PULL_UP_NO_KEEPER 2 338 #define MSM_PULL_UP 3 339 340 static unsigned msm_regval_to_drive(u32 val) 341 { 342 return (val + 1) * 2; 343 } 344 345 static int msm_config_group_get(struct pinctrl_dev *pctldev, 346 unsigned int group, 347 unsigned long *config) 348 { 349 const struct msm_pingroup *g; 350 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 351 unsigned param = pinconf_to_config_param(*config); 352 unsigned mask; 353 unsigned arg; 354 unsigned bit; 355 int ret; 356 u32 val; 357 358 g = &pctrl->soc->groups[group]; 359 360 ret = msm_config_reg(pctrl, g, param, &mask, &bit); 361 if (ret < 0) 362 return ret; 363 364 val = msm_readl_ctl(pctrl, g); 365 arg = (val >> bit) & mask; 366 367 /* Convert register value to pinconf value */ 368 switch (param) { 369 case PIN_CONFIG_BIAS_DISABLE: 370 if (arg != MSM_NO_PULL) 371 return -EINVAL; 372 arg = 1; 373 break; 374 case PIN_CONFIG_BIAS_PULL_DOWN: 375 if (arg != MSM_PULL_DOWN) 376 return -EINVAL; 377 arg = 1; 378 break; 379 case PIN_CONFIG_BIAS_BUS_HOLD: 380 if (pctrl->soc->pull_no_keeper) 381 return -ENOTSUPP; 382 383 if (arg != MSM_KEEPER) 384 return -EINVAL; 385 arg = 1; 386 break; 387 case PIN_CONFIG_BIAS_PULL_UP: 388 if (pctrl->soc->pull_no_keeper) 389 arg = arg == MSM_PULL_UP_NO_KEEPER; 390 else 391 arg = arg == MSM_PULL_UP; 392 if (!arg) 393 return -EINVAL; 394 break; 395 case PIN_CONFIG_DRIVE_OPEN_DRAIN: 396 /* Pin is not open-drain */ 397 if (!arg) 398 return -EINVAL; 399 arg = 1; 400 break; 401 case PIN_CONFIG_DRIVE_STRENGTH: 402 arg = msm_regval_to_drive(arg); 403 break; 404 case PIN_CONFIG_OUTPUT: 405 /* Pin is not output */ 406 if (!arg) 407 return -EINVAL; 408 409 val = msm_readl_io(pctrl, g); 410 arg = !!(val & BIT(g->in_bit)); 411 break; 412 case PIN_CONFIG_INPUT_ENABLE: 413 /* Pin is output */ 414 if (arg) 415 return -EINVAL; 416 arg = 1; 417 break; 418 default: 419 return -ENOTSUPP; 420 } 421 422 *config = pinconf_to_config_packed(param, arg); 423 424 return 0; 425 } 426 427 static int msm_config_group_set(struct pinctrl_dev *pctldev, 428 unsigned group, 429 unsigned long *configs, 430 unsigned num_configs) 431 { 432 const struct msm_pingroup *g; 433 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev); 434 unsigned long flags; 435 unsigned param; 436 unsigned mask; 437 unsigned arg; 438 unsigned bit; 439 int ret; 440 u32 val; 441 int i; 442 443 g = &pctrl->soc->groups[group]; 444 445 for (i = 0; i < num_configs; i++) { 446 param = pinconf_to_config_param(configs[i]); 447 arg = pinconf_to_config_argument(configs[i]); 448 449 ret = msm_config_reg(pctrl, g, param, &mask, &bit); 450 if (ret < 0) 451 return ret; 452 453 /* Convert pinconf values to register values */ 454 switch (param) { 455 case PIN_CONFIG_BIAS_DISABLE: 456 arg = MSM_NO_PULL; 457 break; 458 case PIN_CONFIG_BIAS_PULL_DOWN: 459 arg = MSM_PULL_DOWN; 460 break; 461 case PIN_CONFIG_BIAS_BUS_HOLD: 462 if (pctrl->soc->pull_no_keeper) 463 return -ENOTSUPP; 464 465 arg = MSM_KEEPER; 466 break; 467 case PIN_CONFIG_BIAS_PULL_UP: 468 if (pctrl->soc->pull_no_keeper) 469 arg = MSM_PULL_UP_NO_KEEPER; 470 else 471 arg = MSM_PULL_UP; 472 break; 473 case PIN_CONFIG_DRIVE_OPEN_DRAIN: 474 arg = 1; 475 break; 476 case PIN_CONFIG_DRIVE_STRENGTH: 477 /* Check for invalid values */ 478 if (arg > 16 || arg < 2 || (arg % 2) != 0) 479 arg = -1; 480 else 481 arg = (arg / 2) - 1; 482 break; 483 case PIN_CONFIG_OUTPUT: 484 /* set output value */ 485 raw_spin_lock_irqsave(&pctrl->lock, flags); 486 val = msm_readl_io(pctrl, g); 487 if (arg) 488 val |= BIT(g->out_bit); 489 else 490 val &= ~BIT(g->out_bit); 491 msm_writel_io(val, pctrl, g); 492 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 493 494 /* enable output */ 495 arg = 1; 496 break; 497 case PIN_CONFIG_INPUT_ENABLE: 498 /* disable output */ 499 arg = 0; 500 break; 501 default: 502 dev_err(pctrl->dev, "Unsupported config parameter: %x\n", 503 param); 504 return -EINVAL; 505 } 506 507 /* Range-check user-supplied value */ 508 if (arg & ~mask) { 509 dev_err(pctrl->dev, "config %x: %x is invalid\n", param, arg); 510 return -EINVAL; 511 } 512 513 raw_spin_lock_irqsave(&pctrl->lock, flags); 514 val = msm_readl_ctl(pctrl, g); 515 val &= ~(mask << bit); 516 val |= arg << bit; 517 msm_writel_ctl(val, pctrl, g); 518 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 519 } 520 521 return 0; 522 } 523 524 static const struct pinconf_ops msm_pinconf_ops = { 525 .is_generic = true, 526 .pin_config_group_get = msm_config_group_get, 527 .pin_config_group_set = msm_config_group_set, 528 }; 529 530 static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset) 531 { 532 const struct msm_pingroup *g; 533 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 534 unsigned long flags; 535 u32 val; 536 537 g = &pctrl->soc->groups[offset]; 538 539 raw_spin_lock_irqsave(&pctrl->lock, flags); 540 541 val = msm_readl_ctl(pctrl, g); 542 val &= ~BIT(g->oe_bit); 543 msm_writel_ctl(val, pctrl, g); 544 545 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 546 547 return 0; 548 } 549 550 static int msm_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value) 551 { 552 const struct msm_pingroup *g; 553 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 554 unsigned long flags; 555 u32 val; 556 557 g = &pctrl->soc->groups[offset]; 558 559 raw_spin_lock_irqsave(&pctrl->lock, flags); 560 561 val = msm_readl_io(pctrl, g); 562 if (value) 563 val |= BIT(g->out_bit); 564 else 565 val &= ~BIT(g->out_bit); 566 msm_writel_io(val, pctrl, g); 567 568 val = msm_readl_ctl(pctrl, g); 569 val |= BIT(g->oe_bit); 570 msm_writel_ctl(val, pctrl, g); 571 572 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 573 574 return 0; 575 } 576 577 static int msm_gpio_get_direction(struct gpio_chip *chip, unsigned int offset) 578 { 579 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 580 const struct msm_pingroup *g; 581 u32 val; 582 583 g = &pctrl->soc->groups[offset]; 584 585 val = msm_readl_ctl(pctrl, g); 586 587 return val & BIT(g->oe_bit) ? GPIO_LINE_DIRECTION_OUT : 588 GPIO_LINE_DIRECTION_IN; 589 } 590 591 static int msm_gpio_get(struct gpio_chip *chip, unsigned offset) 592 { 593 const struct msm_pingroup *g; 594 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 595 u32 val; 596 597 g = &pctrl->soc->groups[offset]; 598 599 val = msm_readl_io(pctrl, g); 600 return !!(val & BIT(g->in_bit)); 601 } 602 603 static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int value) 604 { 605 const struct msm_pingroup *g; 606 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 607 unsigned long flags; 608 u32 val; 609 610 g = &pctrl->soc->groups[offset]; 611 612 raw_spin_lock_irqsave(&pctrl->lock, flags); 613 614 val = msm_readl_io(pctrl, g); 615 if (value) 616 val |= BIT(g->out_bit); 617 else 618 val &= ~BIT(g->out_bit); 619 msm_writel_io(val, pctrl, g); 620 621 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 622 } 623 624 #ifdef CONFIG_DEBUG_FS 625 626 static void msm_gpio_dbg_show_one(struct seq_file *s, 627 struct pinctrl_dev *pctldev, 628 struct gpio_chip *chip, 629 unsigned offset, 630 unsigned gpio) 631 { 632 const struct msm_pingroup *g; 633 struct msm_pinctrl *pctrl = gpiochip_get_data(chip); 634 unsigned func; 635 int is_out; 636 int drive; 637 int pull; 638 int val; 639 int egpio_enable; 640 u32 ctl_reg, io_reg; 641 642 static const char * const pulls_keeper[] = { 643 "no pull", 644 "pull down", 645 "keeper", 646 "pull up" 647 }; 648 649 static const char * const pulls_no_keeper[] = { 650 "no pull", 651 "pull down", 652 "pull up", 653 }; 654 655 if (!gpiochip_line_is_valid(chip, offset)) 656 return; 657 658 g = &pctrl->soc->groups[offset]; 659 ctl_reg = msm_readl_ctl(pctrl, g); 660 io_reg = msm_readl_io(pctrl, g); 661 662 is_out = !!(ctl_reg & BIT(g->oe_bit)); 663 func = (ctl_reg >> g->mux_bit) & 7; 664 drive = (ctl_reg >> g->drv_bit) & 7; 665 pull = (ctl_reg >> g->pull_bit) & 3; 666 egpio_enable = 0; 667 if (pctrl->soc->egpio_func && ctl_reg & BIT(g->egpio_present)) 668 egpio_enable = !(ctl_reg & BIT(g->egpio_enable)); 669 670 if (is_out) 671 val = !!(io_reg & BIT(g->out_bit)); 672 else 673 val = !!(io_reg & BIT(g->in_bit)); 674 675 if (egpio_enable) { 676 seq_printf(s, " %-8s: egpio\n", g->name); 677 return; 678 } 679 680 seq_printf(s, " %-8s: %-3s", g->name, is_out ? "out" : "in"); 681 seq_printf(s, " %-4s func%d", val ? "high" : "low", func); 682 seq_printf(s, " %dmA", msm_regval_to_drive(drive)); 683 if (pctrl->soc->pull_no_keeper) 684 seq_printf(s, " %s", pulls_no_keeper[pull]); 685 else 686 seq_printf(s, " %s", pulls_keeper[pull]); 687 seq_puts(s, "\n"); 688 } 689 690 static void msm_gpio_dbg_show(struct seq_file *s, struct gpio_chip *chip) 691 { 692 unsigned gpio = chip->base; 693 unsigned i; 694 695 for (i = 0; i < chip->ngpio; i++, gpio++) 696 msm_gpio_dbg_show_one(s, NULL, chip, i, gpio); 697 } 698 699 #else 700 #define msm_gpio_dbg_show NULL 701 #endif 702 703 static int msm_gpio_init_valid_mask(struct gpio_chip *gc, 704 unsigned long *valid_mask, 705 unsigned int ngpios) 706 { 707 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 708 int ret; 709 unsigned int len, i; 710 const int *reserved = pctrl->soc->reserved_gpios; 711 u16 *tmp; 712 713 /* Remove driver-provided reserved GPIOs from valid_mask */ 714 if (reserved) { 715 for (i = 0; reserved[i] >= 0; i++) { 716 if (i >= ngpios || reserved[i] >= ngpios) { 717 dev_err(pctrl->dev, "invalid list of reserved GPIOs\n"); 718 return -EINVAL; 719 } 720 clear_bit(reserved[i], valid_mask); 721 } 722 723 return 0; 724 } 725 726 /* The number of GPIOs in the ACPI tables */ 727 len = ret = device_property_count_u16(pctrl->dev, "gpios"); 728 if (ret < 0) 729 return 0; 730 731 if (ret > ngpios) 732 return -EINVAL; 733 734 tmp = kmalloc_array(len, sizeof(*tmp), GFP_KERNEL); 735 if (!tmp) 736 return -ENOMEM; 737 738 ret = device_property_read_u16_array(pctrl->dev, "gpios", tmp, len); 739 if (ret < 0) { 740 dev_err(pctrl->dev, "could not read list of GPIOs\n"); 741 goto out; 742 } 743 744 bitmap_zero(valid_mask, ngpios); 745 for (i = 0; i < len; i++) 746 set_bit(tmp[i], valid_mask); 747 748 out: 749 kfree(tmp); 750 return ret; 751 } 752 753 static const struct gpio_chip msm_gpio_template = { 754 .direction_input = msm_gpio_direction_input, 755 .direction_output = msm_gpio_direction_output, 756 .get_direction = msm_gpio_get_direction, 757 .get = msm_gpio_get, 758 .set = msm_gpio_set, 759 .request = gpiochip_generic_request, 760 .free = gpiochip_generic_free, 761 .dbg_show = msm_gpio_dbg_show, 762 }; 763 764 /* For dual-edge interrupts in software, since some hardware has no 765 * such support: 766 * 767 * At appropriate moments, this function may be called to flip the polarity 768 * settings of both-edge irq lines to try and catch the next edge. 769 * 770 * The attempt is considered successful if: 771 * - the status bit goes high, indicating that an edge was caught, or 772 * - the input value of the gpio doesn't change during the attempt. 773 * If the value changes twice during the process, that would cause the first 774 * test to fail but would force the second, as two opposite 775 * transitions would cause a detection no matter the polarity setting. 776 * 777 * The do-loop tries to sledge-hammer closed the timing hole between 778 * the initial value-read and the polarity-write - if the line value changes 779 * during that window, an interrupt is lost, the new polarity setting is 780 * incorrect, and the first success test will fail, causing a retry. 781 * 782 * Algorithm comes from Google's msmgpio driver. 783 */ 784 static void msm_gpio_update_dual_edge_pos(struct msm_pinctrl *pctrl, 785 const struct msm_pingroup *g, 786 struct irq_data *d) 787 { 788 int loop_limit = 100; 789 unsigned val, val2, intstat; 790 unsigned pol; 791 792 do { 793 val = msm_readl_io(pctrl, g) & BIT(g->in_bit); 794 795 pol = msm_readl_intr_cfg(pctrl, g); 796 pol ^= BIT(g->intr_polarity_bit); 797 msm_writel_intr_cfg(pol, pctrl, g); 798 799 val2 = msm_readl_io(pctrl, g) & BIT(g->in_bit); 800 intstat = msm_readl_intr_status(pctrl, g); 801 if (intstat || (val == val2)) 802 return; 803 } while (loop_limit-- > 0); 804 dev_err(pctrl->dev, "dual-edge irq failed to stabilize, %#08x != %#08x\n", 805 val, val2); 806 } 807 808 static void msm_gpio_irq_mask(struct irq_data *d) 809 { 810 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 811 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 812 const struct msm_pingroup *g; 813 unsigned long flags; 814 u32 val; 815 816 if (d->parent_data) 817 irq_chip_mask_parent(d); 818 819 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) 820 return; 821 822 g = &pctrl->soc->groups[d->hwirq]; 823 824 raw_spin_lock_irqsave(&pctrl->lock, flags); 825 826 val = msm_readl_intr_cfg(pctrl, g); 827 /* 828 * There are two bits that control interrupt forwarding to the CPU. The 829 * RAW_STATUS_EN bit causes the level or edge sensed on the line to be 830 * latched into the interrupt status register when the hardware detects 831 * an irq that it's configured for (either edge for edge type or level 832 * for level type irq). The 'non-raw' status enable bit causes the 833 * hardware to assert the summary interrupt to the CPU if the latched 834 * status bit is set. There's a bug though, the edge detection logic 835 * seems to have a problem where toggling the RAW_STATUS_EN bit may 836 * cause the status bit to latch spuriously when there isn't any edge 837 * so we can't touch that bit for edge type irqs and we have to keep 838 * the bit set anyway so that edges are latched while the line is masked. 839 * 840 * To make matters more complicated, leaving the RAW_STATUS_EN bit 841 * enabled all the time causes level interrupts to re-latch into the 842 * status register because the level is still present on the line after 843 * we ack it. We clear the raw status enable bit during mask here and 844 * set the bit on unmask so the interrupt can't latch into the hardware 845 * while it's masked. 846 */ 847 if (irqd_get_trigger_type(d) & IRQ_TYPE_LEVEL_MASK) 848 val &= ~BIT(g->intr_raw_status_bit); 849 850 val &= ~BIT(g->intr_enable_bit); 851 msm_writel_intr_cfg(val, pctrl, g); 852 853 clear_bit(d->hwirq, pctrl->enabled_irqs); 854 855 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 856 } 857 858 static void msm_gpio_irq_unmask(struct irq_data *d) 859 { 860 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 861 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 862 const struct msm_pingroup *g; 863 unsigned long flags; 864 u32 val; 865 866 if (d->parent_data) 867 irq_chip_unmask_parent(d); 868 869 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) 870 return; 871 872 g = &pctrl->soc->groups[d->hwirq]; 873 874 raw_spin_lock_irqsave(&pctrl->lock, flags); 875 876 val = msm_readl_intr_cfg(pctrl, g); 877 val |= BIT(g->intr_raw_status_bit); 878 val |= BIT(g->intr_enable_bit); 879 msm_writel_intr_cfg(val, pctrl, g); 880 881 set_bit(d->hwirq, pctrl->enabled_irqs); 882 883 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 884 } 885 886 static void msm_gpio_irq_enable(struct irq_data *d) 887 { 888 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 889 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 890 891 gpiochip_enable_irq(gc, d->hwirq); 892 893 if (d->parent_data) 894 irq_chip_enable_parent(d); 895 896 if (!test_bit(d->hwirq, pctrl->skip_wake_irqs)) 897 msm_gpio_irq_unmask(d); 898 } 899 900 static void msm_gpio_irq_disable(struct irq_data *d) 901 { 902 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 903 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 904 905 if (d->parent_data) 906 irq_chip_disable_parent(d); 907 908 if (!test_bit(d->hwirq, pctrl->skip_wake_irqs)) 909 msm_gpio_irq_mask(d); 910 911 gpiochip_disable_irq(gc, d->hwirq); 912 } 913 914 /** 915 * msm_gpio_update_dual_edge_parent() - Prime next edge for IRQs handled by parent. 916 * @d: The irq dta. 917 * 918 * This is much like msm_gpio_update_dual_edge_pos() but for IRQs that are 919 * normally handled by the parent irqchip. The logic here is slightly 920 * different due to what's easy to do with our parent, but in principle it's 921 * the same. 922 */ 923 static void msm_gpio_update_dual_edge_parent(struct irq_data *d) 924 { 925 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 926 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 927 const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq]; 928 int loop_limit = 100; 929 unsigned int val; 930 unsigned int type; 931 932 /* Read the value and make a guess about what edge we need to catch */ 933 val = msm_readl_io(pctrl, g) & BIT(g->in_bit); 934 type = val ? IRQ_TYPE_EDGE_FALLING : IRQ_TYPE_EDGE_RISING; 935 936 do { 937 /* Set the parent to catch the next edge */ 938 irq_chip_set_type_parent(d, type); 939 940 /* 941 * Possibly the line changed between when we last read "val" 942 * (and decided what edge we needed) and when set the edge. 943 * If the value didn't change (or changed and then changed 944 * back) then we're done. 945 */ 946 val = msm_readl_io(pctrl, g) & BIT(g->in_bit); 947 if (type == IRQ_TYPE_EDGE_RISING) { 948 if (!val) 949 return; 950 type = IRQ_TYPE_EDGE_FALLING; 951 } else if (type == IRQ_TYPE_EDGE_FALLING) { 952 if (val) 953 return; 954 type = IRQ_TYPE_EDGE_RISING; 955 } 956 } while (loop_limit-- > 0); 957 dev_warn_once(pctrl->dev, "dual-edge irq failed to stabilize\n"); 958 } 959 960 static void msm_gpio_irq_ack(struct irq_data *d) 961 { 962 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 963 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 964 const struct msm_pingroup *g; 965 unsigned long flags; 966 967 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) { 968 if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) 969 msm_gpio_update_dual_edge_parent(d); 970 return; 971 } 972 973 g = &pctrl->soc->groups[d->hwirq]; 974 975 raw_spin_lock_irqsave(&pctrl->lock, flags); 976 977 msm_ack_intr_status(pctrl, g); 978 979 if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) 980 msm_gpio_update_dual_edge_pos(pctrl, g, d); 981 982 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 983 } 984 985 static void msm_gpio_irq_eoi(struct irq_data *d) 986 { 987 d = d->parent_data; 988 989 if (d) 990 d->chip->irq_eoi(d); 991 } 992 993 static bool msm_gpio_needs_dual_edge_parent_workaround(struct irq_data *d, 994 unsigned int type) 995 { 996 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 997 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 998 999 return type == IRQ_TYPE_EDGE_BOTH && 1000 pctrl->soc->wakeirq_dual_edge_errata && d->parent_data && 1001 test_bit(d->hwirq, pctrl->skip_wake_irqs); 1002 } 1003 1004 static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int type) 1005 { 1006 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1007 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1008 const struct msm_pingroup *g; 1009 unsigned long flags; 1010 bool was_enabled; 1011 u32 val; 1012 1013 if (msm_gpio_needs_dual_edge_parent_workaround(d, type)) { 1014 set_bit(d->hwirq, pctrl->dual_edge_irqs); 1015 irq_set_handler_locked(d, handle_fasteoi_ack_irq); 1016 msm_gpio_update_dual_edge_parent(d); 1017 return 0; 1018 } 1019 1020 if (d->parent_data) 1021 irq_chip_set_type_parent(d, type); 1022 1023 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) { 1024 clear_bit(d->hwirq, pctrl->dual_edge_irqs); 1025 irq_set_handler_locked(d, handle_fasteoi_irq); 1026 return 0; 1027 } 1028 1029 g = &pctrl->soc->groups[d->hwirq]; 1030 1031 raw_spin_lock_irqsave(&pctrl->lock, flags); 1032 1033 /* 1034 * For hw without possibility of detecting both edges 1035 */ 1036 if (g->intr_detection_width == 1 && type == IRQ_TYPE_EDGE_BOTH) 1037 set_bit(d->hwirq, pctrl->dual_edge_irqs); 1038 else 1039 clear_bit(d->hwirq, pctrl->dual_edge_irqs); 1040 1041 /* Route interrupts to application cpu. 1042 * With intr_target_use_scm interrupts are routed to 1043 * application cpu using scm calls. 1044 */ 1045 if (pctrl->intr_target_use_scm) { 1046 u32 addr = pctrl->phys_base[0] + g->intr_target_reg; 1047 int ret; 1048 1049 qcom_scm_io_readl(addr, &val); 1050 1051 val &= ~(7 << g->intr_target_bit); 1052 val |= g->intr_target_kpss_val << g->intr_target_bit; 1053 1054 ret = qcom_scm_io_writel(addr, val); 1055 if (ret) 1056 dev_err(pctrl->dev, 1057 "Failed routing %lu interrupt to Apps proc", 1058 d->hwirq); 1059 } else { 1060 val = msm_readl_intr_target(pctrl, g); 1061 val &= ~(7 << g->intr_target_bit); 1062 val |= g->intr_target_kpss_val << g->intr_target_bit; 1063 msm_writel_intr_target(val, pctrl, g); 1064 } 1065 1066 /* Update configuration for gpio. 1067 * RAW_STATUS_EN is left on for all gpio irqs. Due to the 1068 * internal circuitry of TLMM, toggling the RAW_STATUS 1069 * could cause the INTR_STATUS to be set for EDGE interrupts. 1070 */ 1071 val = msm_readl_intr_cfg(pctrl, g); 1072 was_enabled = val & BIT(g->intr_raw_status_bit); 1073 val |= BIT(g->intr_raw_status_bit); 1074 if (g->intr_detection_width == 2) { 1075 val &= ~(3 << g->intr_detection_bit); 1076 val &= ~(1 << g->intr_polarity_bit); 1077 switch (type) { 1078 case IRQ_TYPE_EDGE_RISING: 1079 val |= 1 << g->intr_detection_bit; 1080 val |= BIT(g->intr_polarity_bit); 1081 break; 1082 case IRQ_TYPE_EDGE_FALLING: 1083 val |= 2 << g->intr_detection_bit; 1084 val |= BIT(g->intr_polarity_bit); 1085 break; 1086 case IRQ_TYPE_EDGE_BOTH: 1087 val |= 3 << g->intr_detection_bit; 1088 val |= BIT(g->intr_polarity_bit); 1089 break; 1090 case IRQ_TYPE_LEVEL_LOW: 1091 break; 1092 case IRQ_TYPE_LEVEL_HIGH: 1093 val |= BIT(g->intr_polarity_bit); 1094 break; 1095 } 1096 } else if (g->intr_detection_width == 1) { 1097 val &= ~(1 << g->intr_detection_bit); 1098 val &= ~(1 << g->intr_polarity_bit); 1099 switch (type) { 1100 case IRQ_TYPE_EDGE_RISING: 1101 val |= BIT(g->intr_detection_bit); 1102 val |= BIT(g->intr_polarity_bit); 1103 break; 1104 case IRQ_TYPE_EDGE_FALLING: 1105 val |= BIT(g->intr_detection_bit); 1106 break; 1107 case IRQ_TYPE_EDGE_BOTH: 1108 val |= BIT(g->intr_detection_bit); 1109 val |= BIT(g->intr_polarity_bit); 1110 break; 1111 case IRQ_TYPE_LEVEL_LOW: 1112 break; 1113 case IRQ_TYPE_LEVEL_HIGH: 1114 val |= BIT(g->intr_polarity_bit); 1115 break; 1116 } 1117 } else { 1118 BUG(); 1119 } 1120 msm_writel_intr_cfg(val, pctrl, g); 1121 1122 /* 1123 * The first time we set RAW_STATUS_EN it could trigger an interrupt. 1124 * Clear the interrupt. This is safe because we have 1125 * IRQCHIP_SET_TYPE_MASKED. 1126 */ 1127 if (!was_enabled) 1128 msm_ack_intr_status(pctrl, g); 1129 1130 if (test_bit(d->hwirq, pctrl->dual_edge_irqs)) 1131 msm_gpio_update_dual_edge_pos(pctrl, g, d); 1132 1133 raw_spin_unlock_irqrestore(&pctrl->lock, flags); 1134 1135 if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH)) 1136 irq_set_handler_locked(d, handle_level_irq); 1137 else if (type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING)) 1138 irq_set_handler_locked(d, handle_edge_irq); 1139 1140 return 0; 1141 } 1142 1143 static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on) 1144 { 1145 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1146 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1147 1148 /* 1149 * While they may not wake up when the TLMM is powered off, 1150 * some GPIOs would like to wakeup the system from suspend 1151 * when TLMM is powered on. To allow that, enable the GPIO 1152 * summary line to be wakeup capable at GIC. 1153 */ 1154 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 1155 return irq_chip_set_wake_parent(d, on); 1156 1157 return irq_set_irq_wake(pctrl->irq, on); 1158 } 1159 1160 static int msm_gpio_irq_reqres(struct irq_data *d) 1161 { 1162 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1163 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1164 int ret; 1165 1166 if (!try_module_get(gc->owner)) 1167 return -ENODEV; 1168 1169 ret = msm_pinmux_request_gpio(pctrl->pctrl, NULL, d->hwirq); 1170 if (ret) 1171 goto out; 1172 msm_gpio_direction_input(gc, d->hwirq); 1173 1174 if (gpiochip_lock_as_irq(gc, d->hwirq)) { 1175 dev_err(gc->parent, 1176 "unable to lock HW IRQ %lu for IRQ\n", 1177 d->hwirq); 1178 ret = -EINVAL; 1179 goto out; 1180 } 1181 1182 /* 1183 * The disable / clear-enable workaround we do in msm_pinmux_set_mux() 1184 * only works if disable is not lazy since we only clear any bogus 1185 * interrupt in hardware. Explicitly mark the interrupt as UNLAZY. 1186 */ 1187 irq_set_status_flags(d->irq, IRQ_DISABLE_UNLAZY); 1188 1189 return 0; 1190 out: 1191 module_put(gc->owner); 1192 return ret; 1193 } 1194 1195 static void msm_gpio_irq_relres(struct irq_data *d) 1196 { 1197 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1198 1199 gpiochip_unlock_as_irq(gc, d->hwirq); 1200 module_put(gc->owner); 1201 } 1202 1203 static int msm_gpio_irq_set_affinity(struct irq_data *d, 1204 const struct cpumask *dest, bool force) 1205 { 1206 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1207 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1208 1209 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 1210 return irq_chip_set_affinity_parent(d, dest, force); 1211 1212 return -EINVAL; 1213 } 1214 1215 static int msm_gpio_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info) 1216 { 1217 struct gpio_chip *gc = irq_data_get_irq_chip_data(d); 1218 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1219 1220 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs)) 1221 return irq_chip_set_vcpu_affinity_parent(d, vcpu_info); 1222 1223 return -EINVAL; 1224 } 1225 1226 static void msm_gpio_irq_handler(struct irq_desc *desc) 1227 { 1228 struct gpio_chip *gc = irq_desc_get_handler_data(desc); 1229 const struct msm_pingroup *g; 1230 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1231 struct irq_chip *chip = irq_desc_get_chip(desc); 1232 int handled = 0; 1233 u32 val; 1234 int i; 1235 1236 chained_irq_enter(chip, desc); 1237 1238 /* 1239 * Each pin has it's own IRQ status register, so use 1240 * enabled_irq bitmap to limit the number of reads. 1241 */ 1242 for_each_set_bit(i, pctrl->enabled_irqs, pctrl->chip.ngpio) { 1243 g = &pctrl->soc->groups[i]; 1244 val = msm_readl_intr_status(pctrl, g); 1245 if (val & BIT(g->intr_status_bit)) { 1246 generic_handle_domain_irq(gc->irq.domain, i); 1247 handled++; 1248 } 1249 } 1250 1251 /* No interrupts were flagged */ 1252 if (handled == 0) 1253 handle_bad_irq(desc); 1254 1255 chained_irq_exit(chip, desc); 1256 } 1257 1258 static int msm_gpio_wakeirq(struct gpio_chip *gc, 1259 unsigned int child, 1260 unsigned int child_type, 1261 unsigned int *parent, 1262 unsigned int *parent_type) 1263 { 1264 struct msm_pinctrl *pctrl = gpiochip_get_data(gc); 1265 const struct msm_gpio_wakeirq_map *map; 1266 int i; 1267 1268 *parent = GPIO_NO_WAKE_IRQ; 1269 *parent_type = IRQ_TYPE_EDGE_RISING; 1270 1271 for (i = 0; i < pctrl->soc->nwakeirq_map; i++) { 1272 map = &pctrl->soc->wakeirq_map[i]; 1273 if (map->gpio == child) { 1274 *parent = map->wakeirq; 1275 break; 1276 } 1277 } 1278 1279 return 0; 1280 } 1281 1282 static bool msm_gpio_needs_valid_mask(struct msm_pinctrl *pctrl) 1283 { 1284 if (pctrl->soc->reserved_gpios) 1285 return true; 1286 1287 return device_property_count_u16(pctrl->dev, "gpios") > 0; 1288 } 1289 1290 static const struct irq_chip msm_gpio_irq_chip = { 1291 .name = "msmgpio", 1292 .irq_enable = msm_gpio_irq_enable, 1293 .irq_disable = msm_gpio_irq_disable, 1294 .irq_mask = msm_gpio_irq_mask, 1295 .irq_unmask = msm_gpio_irq_unmask, 1296 .irq_ack = msm_gpio_irq_ack, 1297 .irq_eoi = msm_gpio_irq_eoi, 1298 .irq_set_type = msm_gpio_irq_set_type, 1299 .irq_set_wake = msm_gpio_irq_set_wake, 1300 .irq_request_resources = msm_gpio_irq_reqres, 1301 .irq_release_resources = msm_gpio_irq_relres, 1302 .irq_set_affinity = msm_gpio_irq_set_affinity, 1303 .irq_set_vcpu_affinity = msm_gpio_irq_set_vcpu_affinity, 1304 .flags = (IRQCHIP_MASK_ON_SUSPEND | 1305 IRQCHIP_SET_TYPE_MASKED | 1306 IRQCHIP_ENABLE_WAKEUP_ON_SUSPEND | 1307 IRQCHIP_IMMUTABLE), 1308 }; 1309 1310 static int msm_gpio_init(struct msm_pinctrl *pctrl) 1311 { 1312 struct gpio_chip *chip; 1313 struct gpio_irq_chip *girq; 1314 int i, ret; 1315 unsigned gpio, ngpio = pctrl->soc->ngpios; 1316 struct device_node *np; 1317 bool skip; 1318 1319 if (WARN_ON(ngpio > MAX_NR_GPIO)) 1320 return -EINVAL; 1321 1322 chip = &pctrl->chip; 1323 chip->base = -1; 1324 chip->ngpio = ngpio; 1325 chip->label = dev_name(pctrl->dev); 1326 chip->parent = pctrl->dev; 1327 chip->owner = THIS_MODULE; 1328 if (msm_gpio_needs_valid_mask(pctrl)) 1329 chip->init_valid_mask = msm_gpio_init_valid_mask; 1330 1331 np = of_parse_phandle(pctrl->dev->of_node, "wakeup-parent", 0); 1332 if (np) { 1333 chip->irq.parent_domain = irq_find_matching_host(np, 1334 DOMAIN_BUS_WAKEUP); 1335 of_node_put(np); 1336 if (!chip->irq.parent_domain) 1337 return -EPROBE_DEFER; 1338 chip->irq.child_to_parent_hwirq = msm_gpio_wakeirq; 1339 /* 1340 * Let's skip handling the GPIOs, if the parent irqchip 1341 * is handling the direct connect IRQ of the GPIO. 1342 */ 1343 skip = irq_domain_qcom_handle_wakeup(chip->irq.parent_domain); 1344 for (i = 0; skip && i < pctrl->soc->nwakeirq_map; i++) { 1345 gpio = pctrl->soc->wakeirq_map[i].gpio; 1346 set_bit(gpio, pctrl->skip_wake_irqs); 1347 } 1348 } 1349 1350 girq = &chip->irq; 1351 gpio_irq_chip_set_chip(girq, &msm_gpio_irq_chip); 1352 girq->parent_handler = msm_gpio_irq_handler; 1353 girq->fwnode = pctrl->dev->fwnode; 1354 girq->num_parents = 1; 1355 girq->parents = devm_kcalloc(pctrl->dev, 1, sizeof(*girq->parents), 1356 GFP_KERNEL); 1357 if (!girq->parents) 1358 return -ENOMEM; 1359 girq->default_type = IRQ_TYPE_NONE; 1360 girq->handler = handle_bad_irq; 1361 girq->parents[0] = pctrl->irq; 1362 1363 ret = gpiochip_add_data(&pctrl->chip, pctrl); 1364 if (ret) { 1365 dev_err(pctrl->dev, "Failed register gpiochip\n"); 1366 return ret; 1367 } 1368 1369 /* 1370 * For DeviceTree-supported systems, the gpio core checks the 1371 * pinctrl's device node for the "gpio-ranges" property. 1372 * If it is present, it takes care of adding the pin ranges 1373 * for the driver. In this case the driver can skip ahead. 1374 * 1375 * In order to remain compatible with older, existing DeviceTree 1376 * files which don't set the "gpio-ranges" property or systems that 1377 * utilize ACPI the driver has to call gpiochip_add_pin_range(). 1378 */ 1379 if (!of_property_read_bool(pctrl->dev->of_node, "gpio-ranges")) { 1380 ret = gpiochip_add_pin_range(&pctrl->chip, 1381 dev_name(pctrl->dev), 0, 0, chip->ngpio); 1382 if (ret) { 1383 dev_err(pctrl->dev, "Failed to add pin range\n"); 1384 gpiochip_remove(&pctrl->chip); 1385 return ret; 1386 } 1387 } 1388 1389 return 0; 1390 } 1391 1392 static int msm_ps_hold_restart(struct notifier_block *nb, unsigned long action, 1393 void *data) 1394 { 1395 struct msm_pinctrl *pctrl = container_of(nb, struct msm_pinctrl, restart_nb); 1396 1397 writel(0, pctrl->regs[0] + PS_HOLD_OFFSET); 1398 mdelay(1000); 1399 return NOTIFY_DONE; 1400 } 1401 1402 static struct msm_pinctrl *poweroff_pctrl; 1403 1404 static void msm_ps_hold_poweroff(void) 1405 { 1406 msm_ps_hold_restart(&poweroff_pctrl->restart_nb, 0, NULL); 1407 } 1408 1409 static void msm_pinctrl_setup_pm_reset(struct msm_pinctrl *pctrl) 1410 { 1411 int i; 1412 const struct msm_function *func = pctrl->soc->functions; 1413 1414 for (i = 0; i < pctrl->soc->nfunctions; i++) 1415 if (!strcmp(func[i].name, "ps_hold")) { 1416 pctrl->restart_nb.notifier_call = msm_ps_hold_restart; 1417 pctrl->restart_nb.priority = 128; 1418 if (register_restart_handler(&pctrl->restart_nb)) 1419 dev_err(pctrl->dev, 1420 "failed to setup restart handler.\n"); 1421 poweroff_pctrl = pctrl; 1422 pm_power_off = msm_ps_hold_poweroff; 1423 break; 1424 } 1425 } 1426 1427 static __maybe_unused int msm_pinctrl_suspend(struct device *dev) 1428 { 1429 struct msm_pinctrl *pctrl = dev_get_drvdata(dev); 1430 1431 return pinctrl_force_sleep(pctrl->pctrl); 1432 } 1433 1434 static __maybe_unused int msm_pinctrl_resume(struct device *dev) 1435 { 1436 struct msm_pinctrl *pctrl = dev_get_drvdata(dev); 1437 1438 return pinctrl_force_default(pctrl->pctrl); 1439 } 1440 1441 SIMPLE_DEV_PM_OPS(msm_pinctrl_dev_pm_ops, msm_pinctrl_suspend, 1442 msm_pinctrl_resume); 1443 1444 EXPORT_SYMBOL(msm_pinctrl_dev_pm_ops); 1445 1446 int msm_pinctrl_probe(struct platform_device *pdev, 1447 const struct msm_pinctrl_soc_data *soc_data) 1448 { 1449 struct msm_pinctrl *pctrl; 1450 struct resource *res; 1451 int ret; 1452 int i; 1453 1454 pctrl = devm_kzalloc(&pdev->dev, sizeof(*pctrl), GFP_KERNEL); 1455 if (!pctrl) 1456 return -ENOMEM; 1457 1458 pctrl->dev = &pdev->dev; 1459 pctrl->soc = soc_data; 1460 pctrl->chip = msm_gpio_template; 1461 pctrl->intr_target_use_scm = of_device_is_compatible( 1462 pctrl->dev->of_node, 1463 "qcom,ipq8064-pinctrl"); 1464 1465 raw_spin_lock_init(&pctrl->lock); 1466 1467 if (soc_data->tiles) { 1468 for (i = 0; i < soc_data->ntiles; i++) { 1469 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 1470 soc_data->tiles[i]); 1471 pctrl->regs[i] = devm_ioremap_resource(&pdev->dev, res); 1472 if (IS_ERR(pctrl->regs[i])) 1473 return PTR_ERR(pctrl->regs[i]); 1474 } 1475 } else { 1476 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1477 pctrl->regs[0] = devm_ioremap_resource(&pdev->dev, res); 1478 if (IS_ERR(pctrl->regs[0])) 1479 return PTR_ERR(pctrl->regs[0]); 1480 1481 pctrl->phys_base[0] = res->start; 1482 } 1483 1484 msm_pinctrl_setup_pm_reset(pctrl); 1485 1486 pctrl->irq = platform_get_irq(pdev, 0); 1487 if (pctrl->irq < 0) 1488 return pctrl->irq; 1489 1490 pctrl->desc.owner = THIS_MODULE; 1491 pctrl->desc.pctlops = &msm_pinctrl_ops; 1492 pctrl->desc.pmxops = &msm_pinmux_ops; 1493 pctrl->desc.confops = &msm_pinconf_ops; 1494 pctrl->desc.name = dev_name(&pdev->dev); 1495 pctrl->desc.pins = pctrl->soc->pins; 1496 pctrl->desc.npins = pctrl->soc->npins; 1497 1498 pctrl->pctrl = devm_pinctrl_register(&pdev->dev, &pctrl->desc, pctrl); 1499 if (IS_ERR(pctrl->pctrl)) { 1500 dev_err(&pdev->dev, "Couldn't register pinctrl driver\n"); 1501 return PTR_ERR(pctrl->pctrl); 1502 } 1503 1504 ret = msm_gpio_init(pctrl); 1505 if (ret) 1506 return ret; 1507 1508 platform_set_drvdata(pdev, pctrl); 1509 1510 dev_dbg(&pdev->dev, "Probed Qualcomm pinctrl driver\n"); 1511 1512 return 0; 1513 } 1514 EXPORT_SYMBOL(msm_pinctrl_probe); 1515 1516 int msm_pinctrl_remove(struct platform_device *pdev) 1517 { 1518 struct msm_pinctrl *pctrl = platform_get_drvdata(pdev); 1519 1520 gpiochip_remove(&pctrl->chip); 1521 1522 unregister_restart_handler(&pctrl->restart_nb); 1523 1524 return 0; 1525 } 1526 EXPORT_SYMBOL(msm_pinctrl_remove); 1527 1528 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. TLMM driver"); 1529 MODULE_LICENSE("GPL v2"); 1530