xref: /linux/drivers/pinctrl/core.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Core driver for the pin control subsystem
4  *
5  * Copyright (C) 2011-2012 ST-Ericsson SA
6  * Written on behalf of Linaro for ST-Ericsson
7  * Based on bits of regulator core, gpio core and clk core
8  *
9  * Author: Linus Walleij <linus.walleij@linaro.org>
10  *
11  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12  */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kref.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/err.h>
22 #include <linux/list.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/pinctrl/consumer.h>
26 #include <linux/pinctrl/pinctrl.h>
27 #include <linux/pinctrl/machine.h>
28 
29 #ifdef CONFIG_GPIOLIB
30 #include <asm-generic/gpio.h>
31 #endif
32 
33 #include "core.h"
34 #include "devicetree.h"
35 #include "pinmux.h"
36 #include "pinconf.h"
37 
38 
39 static bool pinctrl_dummy_state;
40 
41 /* Mutex taken to protect pinctrl_list */
42 static DEFINE_MUTEX(pinctrl_list_mutex);
43 
44 /* Mutex taken to protect pinctrl_maps */
45 DEFINE_MUTEX(pinctrl_maps_mutex);
46 
47 /* Mutex taken to protect pinctrldev_list */
48 static DEFINE_MUTEX(pinctrldev_list_mutex);
49 
50 /* Global list of pin control devices (struct pinctrl_dev) */
51 static LIST_HEAD(pinctrldev_list);
52 
53 /* List of pin controller handles (struct pinctrl) */
54 static LIST_HEAD(pinctrl_list);
55 
56 /* List of pinctrl maps (struct pinctrl_maps) */
57 LIST_HEAD(pinctrl_maps);
58 
59 
60 /**
61  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
62  *
63  * Usually this function is called by platforms without pinctrl driver support
64  * but run with some shared drivers using pinctrl APIs.
65  * After calling this function, the pinctrl core will return successfully
66  * with creating a dummy state for the driver to keep going smoothly.
67  */
68 void pinctrl_provide_dummies(void)
69 {
70 	pinctrl_dummy_state = true;
71 }
72 
73 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
74 {
75 	/* We're not allowed to register devices without name */
76 	return pctldev->desc->name;
77 }
78 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
79 
80 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
81 {
82 	return dev_name(pctldev->dev);
83 }
84 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
85 
86 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
87 {
88 	return pctldev->driver_data;
89 }
90 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
91 
92 /**
93  * get_pinctrl_dev_from_devname() - look up pin controller device
94  * @devname: the name of a device instance, as returned by dev_name()
95  *
96  * Looks up a pin control device matching a certain device name or pure device
97  * pointer, the pure device pointer will take precedence.
98  */
99 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
100 {
101 	struct pinctrl_dev *pctldev = NULL;
102 
103 	if (!devname)
104 		return NULL;
105 
106 	mutex_lock(&pinctrldev_list_mutex);
107 
108 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
109 		if (!strcmp(dev_name(pctldev->dev), devname)) {
110 			/* Matched on device name */
111 			mutex_unlock(&pinctrldev_list_mutex);
112 			return pctldev;
113 		}
114 	}
115 
116 	mutex_unlock(&pinctrldev_list_mutex);
117 
118 	return NULL;
119 }
120 
121 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
122 {
123 	struct pinctrl_dev *pctldev;
124 
125 	mutex_lock(&pinctrldev_list_mutex);
126 
127 	list_for_each_entry(pctldev, &pinctrldev_list, node)
128 		if (pctldev->dev->of_node == np) {
129 			mutex_unlock(&pinctrldev_list_mutex);
130 			return pctldev;
131 		}
132 
133 	mutex_unlock(&pinctrldev_list_mutex);
134 
135 	return NULL;
136 }
137 
138 /**
139  * pin_get_from_name() - look up a pin number from a name
140  * @pctldev: the pin control device to lookup the pin on
141  * @name: the name of the pin to look up
142  */
143 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
144 {
145 	unsigned i, pin;
146 
147 	/* The pin number can be retrived from the pin controller descriptor */
148 	for (i = 0; i < pctldev->desc->npins; i++) {
149 		struct pin_desc *desc;
150 
151 		pin = pctldev->desc->pins[i].number;
152 		desc = pin_desc_get(pctldev, pin);
153 		/* Pin space may be sparse */
154 		if (desc && !strcmp(name, desc->name))
155 			return pin;
156 	}
157 
158 	return -EINVAL;
159 }
160 
161 /**
162  * pin_get_name_from_id() - look up a pin name from a pin id
163  * @pctldev: the pin control device to lookup the pin on
164  * @name: the name of the pin to look up
165  */
166 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
167 {
168 	const struct pin_desc *desc;
169 
170 	desc = pin_desc_get(pctldev, pin);
171 	if (!desc) {
172 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
173 			pin);
174 		return NULL;
175 	}
176 
177 	return desc->name;
178 }
179 
180 /**
181  * pin_is_valid() - check if pin exists on controller
182  * @pctldev: the pin control device to check the pin on
183  * @pin: pin to check, use the local pin controller index number
184  *
185  * This tells us whether a certain pin exist on a certain pin controller or
186  * not. Pin lists may be sparse, so some pins may not exist.
187  */
188 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
189 {
190 	struct pin_desc *pindesc;
191 
192 	if (pin < 0)
193 		return false;
194 
195 	mutex_lock(&pctldev->mutex);
196 	pindesc = pin_desc_get(pctldev, pin);
197 	mutex_unlock(&pctldev->mutex);
198 
199 	return pindesc != NULL;
200 }
201 EXPORT_SYMBOL_GPL(pin_is_valid);
202 
203 /* Deletes a range of pin descriptors */
204 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
205 				  const struct pinctrl_pin_desc *pins,
206 				  unsigned num_pins)
207 {
208 	int i;
209 
210 	for (i = 0; i < num_pins; i++) {
211 		struct pin_desc *pindesc;
212 
213 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
214 					    pins[i].number);
215 		if (pindesc) {
216 			radix_tree_delete(&pctldev->pin_desc_tree,
217 					  pins[i].number);
218 			if (pindesc->dynamic_name)
219 				kfree(pindesc->name);
220 		}
221 		kfree(pindesc);
222 	}
223 }
224 
225 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
226 				    const struct pinctrl_pin_desc *pin)
227 {
228 	struct pin_desc *pindesc;
229 
230 	pindesc = pin_desc_get(pctldev, pin->number);
231 	if (pindesc) {
232 		dev_err(pctldev->dev, "pin %d already registered\n",
233 			pin->number);
234 		return -EINVAL;
235 	}
236 
237 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
238 	if (!pindesc)
239 		return -ENOMEM;
240 
241 	/* Set owner */
242 	pindesc->pctldev = pctldev;
243 
244 	/* Copy basic pin info */
245 	if (pin->name) {
246 		pindesc->name = pin->name;
247 	} else {
248 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
249 		if (!pindesc->name) {
250 			kfree(pindesc);
251 			return -ENOMEM;
252 		}
253 		pindesc->dynamic_name = true;
254 	}
255 
256 	pindesc->drv_data = pin->drv_data;
257 
258 	radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
259 	pr_debug("registered pin %d (%s) on %s\n",
260 		 pin->number, pindesc->name, pctldev->desc->name);
261 	return 0;
262 }
263 
264 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
265 				 const struct pinctrl_pin_desc *pins,
266 				 unsigned num_descs)
267 {
268 	unsigned i;
269 	int ret = 0;
270 
271 	for (i = 0; i < num_descs; i++) {
272 		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
273 		if (ret)
274 			return ret;
275 	}
276 
277 	return 0;
278 }
279 
280 /**
281  * gpio_to_pin() - GPIO range GPIO number to pin number translation
282  * @range: GPIO range used for the translation
283  * @gpio: gpio pin to translate to a pin number
284  *
285  * Finds the pin number for a given GPIO using the specified GPIO range
286  * as a base for translation. The distinction between linear GPIO ranges
287  * and pin list based GPIO ranges is managed correctly by this function.
288  *
289  * This function assumes the gpio is part of the specified GPIO range, use
290  * only after making sure this is the case (e.g. by calling it on the
291  * result of successful pinctrl_get_device_gpio_range calls)!
292  */
293 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
294 				unsigned int gpio)
295 {
296 	unsigned int offset = gpio - range->base;
297 	if (range->pins)
298 		return range->pins[offset];
299 	else
300 		return range->pin_base + offset;
301 }
302 
303 /**
304  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
305  * @pctldev: pin controller device to check
306  * @gpio: gpio pin to check taken from the global GPIO pin space
307  *
308  * Tries to match a GPIO pin number to the ranges handled by a certain pin
309  * controller, return the range or NULL
310  */
311 static struct pinctrl_gpio_range *
312 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
313 {
314 	struct pinctrl_gpio_range *range = NULL;
315 
316 	mutex_lock(&pctldev->mutex);
317 	/* Loop over the ranges */
318 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
319 		/* Check if we're in the valid range */
320 		if (gpio >= range->base &&
321 		    gpio < range->base + range->npins) {
322 			mutex_unlock(&pctldev->mutex);
323 			return range;
324 		}
325 	}
326 	mutex_unlock(&pctldev->mutex);
327 	return NULL;
328 }
329 
330 /**
331  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
332  * the same GPIO chip are in range
333  * @gpio: gpio pin to check taken from the global GPIO pin space
334  *
335  * This function is complement of pinctrl_match_gpio_range(). If the return
336  * value of pinctrl_match_gpio_range() is NULL, this function could be used
337  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
338  * of the same GPIO chip don't have back-end pinctrl interface.
339  * If the return value is true, it means that pinctrl device is ready & the
340  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
341  * is false, it means that pinctrl device may not be ready.
342  */
343 #ifdef CONFIG_GPIOLIB
344 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
345 {
346 	struct pinctrl_dev *pctldev;
347 	struct pinctrl_gpio_range *range = NULL;
348 	struct gpio_chip *chip = gpio_to_chip(gpio);
349 
350 	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
351 		return false;
352 
353 	mutex_lock(&pinctrldev_list_mutex);
354 
355 	/* Loop over the pin controllers */
356 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
357 		/* Loop over the ranges */
358 		mutex_lock(&pctldev->mutex);
359 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
360 			/* Check if any gpio range overlapped with gpio chip */
361 			if (range->base + range->npins - 1 < chip->base ||
362 			    range->base > chip->base + chip->ngpio - 1)
363 				continue;
364 			mutex_unlock(&pctldev->mutex);
365 			mutex_unlock(&pinctrldev_list_mutex);
366 			return true;
367 		}
368 		mutex_unlock(&pctldev->mutex);
369 	}
370 
371 	mutex_unlock(&pinctrldev_list_mutex);
372 
373 	return false;
374 }
375 #else
376 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
377 #endif
378 
379 /**
380  * pinctrl_get_device_gpio_range() - find device for GPIO range
381  * @gpio: the pin to locate the pin controller for
382  * @outdev: the pin control device if found
383  * @outrange: the GPIO range if found
384  *
385  * Find the pin controller handling a certain GPIO pin from the pinspace of
386  * the GPIO subsystem, return the device and the matching GPIO range. Returns
387  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
388  * may still have not been registered.
389  */
390 static int pinctrl_get_device_gpio_range(unsigned gpio,
391 					 struct pinctrl_dev **outdev,
392 					 struct pinctrl_gpio_range **outrange)
393 {
394 	struct pinctrl_dev *pctldev = NULL;
395 
396 	mutex_lock(&pinctrldev_list_mutex);
397 
398 	/* Loop over the pin controllers */
399 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
400 		struct pinctrl_gpio_range *range;
401 
402 		range = pinctrl_match_gpio_range(pctldev, gpio);
403 		if (range) {
404 			*outdev = pctldev;
405 			*outrange = range;
406 			mutex_unlock(&pinctrldev_list_mutex);
407 			return 0;
408 		}
409 	}
410 
411 	mutex_unlock(&pinctrldev_list_mutex);
412 
413 	return -EPROBE_DEFER;
414 }
415 
416 /**
417  * pinctrl_add_gpio_range() - register a GPIO range for a controller
418  * @pctldev: pin controller device to add the range to
419  * @range: the GPIO range to add
420  *
421  * This adds a range of GPIOs to be handled by a certain pin controller. Call
422  * this to register handled ranges after registering your pin controller.
423  */
424 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
425 			    struct pinctrl_gpio_range *range)
426 {
427 	mutex_lock(&pctldev->mutex);
428 	list_add_tail(&range->node, &pctldev->gpio_ranges);
429 	mutex_unlock(&pctldev->mutex);
430 }
431 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
432 
433 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
434 			     struct pinctrl_gpio_range *ranges,
435 			     unsigned nranges)
436 {
437 	int i;
438 
439 	for (i = 0; i < nranges; i++)
440 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
441 }
442 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
443 
444 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
445 		struct pinctrl_gpio_range *range)
446 {
447 	struct pinctrl_dev *pctldev;
448 
449 	pctldev = get_pinctrl_dev_from_devname(devname);
450 
451 	/*
452 	 * If we can't find this device, let's assume that is because
453 	 * it has not probed yet, so the driver trying to register this
454 	 * range need to defer probing.
455 	 */
456 	if (!pctldev) {
457 		return ERR_PTR(-EPROBE_DEFER);
458 	}
459 	pinctrl_add_gpio_range(pctldev, range);
460 
461 	return pctldev;
462 }
463 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
464 
465 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
466 				const unsigned **pins, unsigned *num_pins)
467 {
468 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
469 	int gs;
470 
471 	if (!pctlops->get_group_pins)
472 		return -EINVAL;
473 
474 	gs = pinctrl_get_group_selector(pctldev, pin_group);
475 	if (gs < 0)
476 		return gs;
477 
478 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
479 }
480 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
481 
482 struct pinctrl_gpio_range *
483 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
484 					unsigned int pin)
485 {
486 	struct pinctrl_gpio_range *range;
487 
488 	/* Loop over the ranges */
489 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
490 		/* Check if we're in the valid range */
491 		if (range->pins) {
492 			int a;
493 			for (a = 0; a < range->npins; a++) {
494 				if (range->pins[a] == pin)
495 					return range;
496 			}
497 		} else if (pin >= range->pin_base &&
498 			   pin < range->pin_base + range->npins)
499 			return range;
500 	}
501 
502 	return NULL;
503 }
504 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
505 
506 /**
507  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
508  * @pctldev: the pin controller device to look in
509  * @pin: a controller-local number to find the range for
510  */
511 struct pinctrl_gpio_range *
512 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
513 				 unsigned int pin)
514 {
515 	struct pinctrl_gpio_range *range;
516 
517 	mutex_lock(&pctldev->mutex);
518 	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
519 	mutex_unlock(&pctldev->mutex);
520 
521 	return range;
522 }
523 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
524 
525 /**
526  * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
527  * @pctldev: pin controller device to remove the range from
528  * @range: the GPIO range to remove
529  */
530 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
531 			       struct pinctrl_gpio_range *range)
532 {
533 	mutex_lock(&pctldev->mutex);
534 	list_del(&range->node);
535 	mutex_unlock(&pctldev->mutex);
536 }
537 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
538 
539 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
540 
541 /**
542  * pinctrl_generic_get_group_count() - returns the number of pin groups
543  * @pctldev: pin controller device
544  */
545 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
546 {
547 	return pctldev->num_groups;
548 }
549 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
550 
551 /**
552  * pinctrl_generic_get_group_name() - returns the name of a pin group
553  * @pctldev: pin controller device
554  * @selector: group number
555  */
556 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
557 					   unsigned int selector)
558 {
559 	struct group_desc *group;
560 
561 	group = radix_tree_lookup(&pctldev->pin_group_tree,
562 				  selector);
563 	if (!group)
564 		return NULL;
565 
566 	return group->name;
567 }
568 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
569 
570 /**
571  * pinctrl_generic_get_group_pins() - gets the pin group pins
572  * @pctldev: pin controller device
573  * @selector: group number
574  * @pins: pins in the group
575  * @num_pins: number of pins in the group
576  */
577 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
578 				   unsigned int selector,
579 				   const unsigned int **pins,
580 				   unsigned int *num_pins)
581 {
582 	struct group_desc *group;
583 
584 	group = radix_tree_lookup(&pctldev->pin_group_tree,
585 				  selector);
586 	if (!group) {
587 		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
588 			__func__, selector);
589 		return -EINVAL;
590 	}
591 
592 	*pins = group->pins;
593 	*num_pins = group->num_pins;
594 
595 	return 0;
596 }
597 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
598 
599 /**
600  * pinctrl_generic_get_group() - returns a pin group based on the number
601  * @pctldev: pin controller device
602  * @gselector: group number
603  */
604 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
605 					     unsigned int selector)
606 {
607 	struct group_desc *group;
608 
609 	group = radix_tree_lookup(&pctldev->pin_group_tree,
610 				  selector);
611 	if (!group)
612 		return NULL;
613 
614 	return group;
615 }
616 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
617 
618 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
619 						  const char *function)
620 {
621 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
622 	int ngroups = ops->get_groups_count(pctldev);
623 	int selector = 0;
624 
625 	/* See if this pctldev has this group */
626 	while (selector < ngroups) {
627 		const char *gname = ops->get_group_name(pctldev, selector);
628 
629 		if (gname && !strcmp(function, gname))
630 			return selector;
631 
632 		selector++;
633 	}
634 
635 	return -EINVAL;
636 }
637 
638 /**
639  * pinctrl_generic_add_group() - adds a new pin group
640  * @pctldev: pin controller device
641  * @name: name of the pin group
642  * @pins: pins in the pin group
643  * @num_pins: number of pins in the pin group
644  * @data: pin controller driver specific data
645  *
646  * Note that the caller must take care of locking.
647  */
648 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
649 			      int *pins, int num_pins, void *data)
650 {
651 	struct group_desc *group;
652 	int selector;
653 
654 	if (!name)
655 		return -EINVAL;
656 
657 	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
658 	if (selector >= 0)
659 		return selector;
660 
661 	selector = pctldev->num_groups;
662 
663 	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
664 	if (!group)
665 		return -ENOMEM;
666 
667 	group->name = name;
668 	group->pins = pins;
669 	group->num_pins = num_pins;
670 	group->data = data;
671 
672 	radix_tree_insert(&pctldev->pin_group_tree, selector, group);
673 
674 	pctldev->num_groups++;
675 
676 	return selector;
677 }
678 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
679 
680 /**
681  * pinctrl_generic_remove_group() - removes a numbered pin group
682  * @pctldev: pin controller device
683  * @selector: group number
684  *
685  * Note that the caller must take care of locking.
686  */
687 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
688 				 unsigned int selector)
689 {
690 	struct group_desc *group;
691 
692 	group = radix_tree_lookup(&pctldev->pin_group_tree,
693 				  selector);
694 	if (!group)
695 		return -ENOENT;
696 
697 	radix_tree_delete(&pctldev->pin_group_tree, selector);
698 	devm_kfree(pctldev->dev, group);
699 
700 	pctldev->num_groups--;
701 
702 	return 0;
703 }
704 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
705 
706 /**
707  * pinctrl_generic_free_groups() - removes all pin groups
708  * @pctldev: pin controller device
709  *
710  * Note that the caller must take care of locking. The pinctrl groups
711  * are allocated with devm_kzalloc() so no need to free them here.
712  */
713 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
714 {
715 	struct radix_tree_iter iter;
716 	void __rcu **slot;
717 
718 	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
719 		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
720 
721 	pctldev->num_groups = 0;
722 }
723 
724 #else
725 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
726 {
727 }
728 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
729 
730 /**
731  * pinctrl_get_group_selector() - returns the group selector for a group
732  * @pctldev: the pin controller handling the group
733  * @pin_group: the pin group to look up
734  */
735 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
736 			       const char *pin_group)
737 {
738 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
739 	unsigned ngroups = pctlops->get_groups_count(pctldev);
740 	unsigned group_selector = 0;
741 
742 	while (group_selector < ngroups) {
743 		const char *gname = pctlops->get_group_name(pctldev,
744 							    group_selector);
745 		if (gname && !strcmp(gname, pin_group)) {
746 			dev_dbg(pctldev->dev,
747 				"found group selector %u for %s\n",
748 				group_selector,
749 				pin_group);
750 			return group_selector;
751 		}
752 
753 		group_selector++;
754 	}
755 
756 	dev_err(pctldev->dev, "does not have pin group %s\n",
757 		pin_group);
758 
759 	return -EINVAL;
760 }
761 
762 /**
763  * pinctrl_gpio_request() - request a single pin to be used as GPIO
764  * @gpio: the GPIO pin number from the GPIO subsystem number space
765  *
766  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
767  * as part of their gpio_request() semantics, platforms and individual drivers
768  * shall *NOT* request GPIO pins to be muxed in.
769  */
770 int pinctrl_gpio_request(unsigned gpio)
771 {
772 	struct pinctrl_dev *pctldev;
773 	struct pinctrl_gpio_range *range;
774 	int ret;
775 	int pin;
776 
777 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
778 	if (ret) {
779 		if (pinctrl_ready_for_gpio_range(gpio))
780 			ret = 0;
781 		return ret;
782 	}
783 
784 	mutex_lock(&pctldev->mutex);
785 
786 	/* Convert to the pin controllers number space */
787 	pin = gpio_to_pin(range, gpio);
788 
789 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
790 
791 	mutex_unlock(&pctldev->mutex);
792 
793 	return ret;
794 }
795 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
796 
797 /**
798  * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
799  * @gpio: the GPIO pin number from the GPIO subsystem number space
800  *
801  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
802  * as part of their gpio_free() semantics, platforms and individual drivers
803  * shall *NOT* request GPIO pins to be muxed out.
804  */
805 void pinctrl_gpio_free(unsigned gpio)
806 {
807 	struct pinctrl_dev *pctldev;
808 	struct pinctrl_gpio_range *range;
809 	int ret;
810 	int pin;
811 
812 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
813 	if (ret) {
814 		return;
815 	}
816 	mutex_lock(&pctldev->mutex);
817 
818 	/* Convert to the pin controllers number space */
819 	pin = gpio_to_pin(range, gpio);
820 
821 	pinmux_free_gpio(pctldev, pin, range);
822 
823 	mutex_unlock(&pctldev->mutex);
824 }
825 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
826 
827 static int pinctrl_gpio_direction(unsigned gpio, bool input)
828 {
829 	struct pinctrl_dev *pctldev;
830 	struct pinctrl_gpio_range *range;
831 	int ret;
832 	int pin;
833 
834 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
835 	if (ret) {
836 		return ret;
837 	}
838 
839 	mutex_lock(&pctldev->mutex);
840 
841 	/* Convert to the pin controllers number space */
842 	pin = gpio_to_pin(range, gpio);
843 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
844 
845 	mutex_unlock(&pctldev->mutex);
846 
847 	return ret;
848 }
849 
850 /**
851  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
852  * @gpio: the GPIO pin number from the GPIO subsystem number space
853  *
854  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
855  * as part of their gpio_direction_input() semantics, platforms and individual
856  * drivers shall *NOT* touch pin control GPIO calls.
857  */
858 int pinctrl_gpio_direction_input(unsigned gpio)
859 {
860 	return pinctrl_gpio_direction(gpio, true);
861 }
862 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
863 
864 /**
865  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
866  * @gpio: the GPIO pin number from the GPIO subsystem number space
867  *
868  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
869  * as part of their gpio_direction_output() semantics, platforms and individual
870  * drivers shall *NOT* touch pin control GPIO calls.
871  */
872 int pinctrl_gpio_direction_output(unsigned gpio)
873 {
874 	return pinctrl_gpio_direction(gpio, false);
875 }
876 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
877 
878 /**
879  * pinctrl_gpio_set_config() - Apply config to given GPIO pin
880  * @gpio: the GPIO pin number from the GPIO subsystem number space
881  * @config: the configuration to apply to the GPIO
882  *
883  * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
884  * they need to call the underlying pin controller to change GPIO config
885  * (for example set debounce time).
886  */
887 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
888 {
889 	unsigned long configs[] = { config };
890 	struct pinctrl_gpio_range *range;
891 	struct pinctrl_dev *pctldev;
892 	int ret, pin;
893 
894 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
895 	if (ret)
896 		return ret;
897 
898 	mutex_lock(&pctldev->mutex);
899 	pin = gpio_to_pin(range, gpio);
900 	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
901 	mutex_unlock(&pctldev->mutex);
902 
903 	return ret;
904 }
905 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
906 
907 static struct pinctrl_state *find_state(struct pinctrl *p,
908 					const char *name)
909 {
910 	struct pinctrl_state *state;
911 
912 	list_for_each_entry(state, &p->states, node)
913 		if (!strcmp(state->name, name))
914 			return state;
915 
916 	return NULL;
917 }
918 
919 static struct pinctrl_state *create_state(struct pinctrl *p,
920 					  const char *name)
921 {
922 	struct pinctrl_state *state;
923 
924 	state = kzalloc(sizeof(*state), GFP_KERNEL);
925 	if (!state)
926 		return ERR_PTR(-ENOMEM);
927 
928 	state->name = name;
929 	INIT_LIST_HEAD(&state->settings);
930 
931 	list_add_tail(&state->node, &p->states);
932 
933 	return state;
934 }
935 
936 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
937 		       const struct pinctrl_map *map)
938 {
939 	struct pinctrl_state *state;
940 	struct pinctrl_setting *setting;
941 	int ret;
942 
943 	state = find_state(p, map->name);
944 	if (!state)
945 		state = create_state(p, map->name);
946 	if (IS_ERR(state))
947 		return PTR_ERR(state);
948 
949 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
950 		return 0;
951 
952 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
953 	if (!setting)
954 		return -ENOMEM;
955 
956 	setting->type = map->type;
957 
958 	if (pctldev)
959 		setting->pctldev = pctldev;
960 	else
961 		setting->pctldev =
962 			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
963 	if (!setting->pctldev) {
964 		kfree(setting);
965 		/* Do not defer probing of hogs (circular loop) */
966 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
967 			return -ENODEV;
968 		/*
969 		 * OK let us guess that the driver is not there yet, and
970 		 * let's defer obtaining this pinctrl handle to later...
971 		 */
972 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
973 			map->ctrl_dev_name);
974 		return -EPROBE_DEFER;
975 	}
976 
977 	setting->dev_name = map->dev_name;
978 
979 	switch (map->type) {
980 	case PIN_MAP_TYPE_MUX_GROUP:
981 		ret = pinmux_map_to_setting(map, setting);
982 		break;
983 	case PIN_MAP_TYPE_CONFIGS_PIN:
984 	case PIN_MAP_TYPE_CONFIGS_GROUP:
985 		ret = pinconf_map_to_setting(map, setting);
986 		break;
987 	default:
988 		ret = -EINVAL;
989 		break;
990 	}
991 	if (ret < 0) {
992 		kfree(setting);
993 		return ret;
994 	}
995 
996 	list_add_tail(&setting->node, &state->settings);
997 
998 	return 0;
999 }
1000 
1001 static struct pinctrl *find_pinctrl(struct device *dev)
1002 {
1003 	struct pinctrl *p;
1004 
1005 	mutex_lock(&pinctrl_list_mutex);
1006 	list_for_each_entry(p, &pinctrl_list, node)
1007 		if (p->dev == dev) {
1008 			mutex_unlock(&pinctrl_list_mutex);
1009 			return p;
1010 		}
1011 
1012 	mutex_unlock(&pinctrl_list_mutex);
1013 	return NULL;
1014 }
1015 
1016 static void pinctrl_free(struct pinctrl *p, bool inlist);
1017 
1018 static struct pinctrl *create_pinctrl(struct device *dev,
1019 				      struct pinctrl_dev *pctldev)
1020 {
1021 	struct pinctrl *p;
1022 	const char *devname;
1023 	struct pinctrl_maps *maps_node;
1024 	int i;
1025 	const struct pinctrl_map *map;
1026 	int ret;
1027 
1028 	/*
1029 	 * create the state cookie holder struct pinctrl for each
1030 	 * mapping, this is what consumers will get when requesting
1031 	 * a pin control handle with pinctrl_get()
1032 	 */
1033 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1034 	if (!p)
1035 		return ERR_PTR(-ENOMEM);
1036 	p->dev = dev;
1037 	INIT_LIST_HEAD(&p->states);
1038 	INIT_LIST_HEAD(&p->dt_maps);
1039 
1040 	ret = pinctrl_dt_to_map(p, pctldev);
1041 	if (ret < 0) {
1042 		kfree(p);
1043 		return ERR_PTR(ret);
1044 	}
1045 
1046 	devname = dev_name(dev);
1047 
1048 	mutex_lock(&pinctrl_maps_mutex);
1049 	/* Iterate over the pin control maps to locate the right ones */
1050 	for_each_maps(maps_node, i, map) {
1051 		/* Map must be for this device */
1052 		if (strcmp(map->dev_name, devname))
1053 			continue;
1054 		/*
1055 		 * If pctldev is not null, we are claiming hog for it,
1056 		 * that means, setting that is served by pctldev by itself.
1057 		 *
1058 		 * Thus we must skip map that is for this device but is served
1059 		 * by other device.
1060 		 */
1061 		if (pctldev &&
1062 		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1063 			continue;
1064 
1065 		ret = add_setting(p, pctldev, map);
1066 		/*
1067 		 * At this point the adding of a setting may:
1068 		 *
1069 		 * - Defer, if the pinctrl device is not yet available
1070 		 * - Fail, if the pinctrl device is not yet available,
1071 		 *   AND the setting is a hog. We cannot defer that, since
1072 		 *   the hog will kick in immediately after the device
1073 		 *   is registered.
1074 		 *
1075 		 * If the error returned was not -EPROBE_DEFER then we
1076 		 * accumulate the errors to see if we end up with
1077 		 * an -EPROBE_DEFER later, as that is the worst case.
1078 		 */
1079 		if (ret == -EPROBE_DEFER) {
1080 			pinctrl_free(p, false);
1081 			mutex_unlock(&pinctrl_maps_mutex);
1082 			return ERR_PTR(ret);
1083 		}
1084 	}
1085 	mutex_unlock(&pinctrl_maps_mutex);
1086 
1087 	if (ret < 0) {
1088 		/* If some other error than deferral occurred, return here */
1089 		pinctrl_free(p, false);
1090 		return ERR_PTR(ret);
1091 	}
1092 
1093 	kref_init(&p->users);
1094 
1095 	/* Add the pinctrl handle to the global list */
1096 	mutex_lock(&pinctrl_list_mutex);
1097 	list_add_tail(&p->node, &pinctrl_list);
1098 	mutex_unlock(&pinctrl_list_mutex);
1099 
1100 	return p;
1101 }
1102 
1103 /**
1104  * pinctrl_get() - retrieves the pinctrl handle for a device
1105  * @dev: the device to obtain the handle for
1106  */
1107 struct pinctrl *pinctrl_get(struct device *dev)
1108 {
1109 	struct pinctrl *p;
1110 
1111 	if (WARN_ON(!dev))
1112 		return ERR_PTR(-EINVAL);
1113 
1114 	/*
1115 	 * See if somebody else (such as the device core) has already
1116 	 * obtained a handle to the pinctrl for this device. In that case,
1117 	 * return another pointer to it.
1118 	 */
1119 	p = find_pinctrl(dev);
1120 	if (p) {
1121 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1122 		kref_get(&p->users);
1123 		return p;
1124 	}
1125 
1126 	return create_pinctrl(dev, NULL);
1127 }
1128 EXPORT_SYMBOL_GPL(pinctrl_get);
1129 
1130 static void pinctrl_free_setting(bool disable_setting,
1131 				 struct pinctrl_setting *setting)
1132 {
1133 	switch (setting->type) {
1134 	case PIN_MAP_TYPE_MUX_GROUP:
1135 		if (disable_setting)
1136 			pinmux_disable_setting(setting);
1137 		pinmux_free_setting(setting);
1138 		break;
1139 	case PIN_MAP_TYPE_CONFIGS_PIN:
1140 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1141 		pinconf_free_setting(setting);
1142 		break;
1143 	default:
1144 		break;
1145 	}
1146 }
1147 
1148 static void pinctrl_free(struct pinctrl *p, bool inlist)
1149 {
1150 	struct pinctrl_state *state, *n1;
1151 	struct pinctrl_setting *setting, *n2;
1152 
1153 	mutex_lock(&pinctrl_list_mutex);
1154 	list_for_each_entry_safe(state, n1, &p->states, node) {
1155 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1156 			pinctrl_free_setting(state == p->state, setting);
1157 			list_del(&setting->node);
1158 			kfree(setting);
1159 		}
1160 		list_del(&state->node);
1161 		kfree(state);
1162 	}
1163 
1164 	pinctrl_dt_free_maps(p);
1165 
1166 	if (inlist)
1167 		list_del(&p->node);
1168 	kfree(p);
1169 	mutex_unlock(&pinctrl_list_mutex);
1170 }
1171 
1172 /**
1173  * pinctrl_release() - release the pinctrl handle
1174  * @kref: the kref in the pinctrl being released
1175  */
1176 static void pinctrl_release(struct kref *kref)
1177 {
1178 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1179 
1180 	pinctrl_free(p, true);
1181 }
1182 
1183 /**
1184  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1185  * @p: the pinctrl handle to release
1186  */
1187 void pinctrl_put(struct pinctrl *p)
1188 {
1189 	kref_put(&p->users, pinctrl_release);
1190 }
1191 EXPORT_SYMBOL_GPL(pinctrl_put);
1192 
1193 /**
1194  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1195  * @p: the pinctrl handle to retrieve the state from
1196  * @name: the state name to retrieve
1197  */
1198 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1199 						 const char *name)
1200 {
1201 	struct pinctrl_state *state;
1202 
1203 	state = find_state(p, name);
1204 	if (!state) {
1205 		if (pinctrl_dummy_state) {
1206 			/* create dummy state */
1207 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1208 				name);
1209 			state = create_state(p, name);
1210 		} else
1211 			state = ERR_PTR(-ENODEV);
1212 	}
1213 
1214 	return state;
1215 }
1216 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1217 
1218 /**
1219  * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1220  * @p: the pinctrl handle for the device that requests configuration
1221  * @state: the state handle to select/activate/program
1222  */
1223 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1224 {
1225 	struct pinctrl_setting *setting, *setting2;
1226 	struct pinctrl_state *old_state = p->state;
1227 	int ret;
1228 
1229 	if (p->state) {
1230 		/*
1231 		 * For each pinmux setting in the old state, forget SW's record
1232 		 * of mux owner for that pingroup. Any pingroups which are
1233 		 * still owned by the new state will be re-acquired by the call
1234 		 * to pinmux_enable_setting() in the loop below.
1235 		 */
1236 		list_for_each_entry(setting, &p->state->settings, node) {
1237 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1238 				continue;
1239 			pinmux_disable_setting(setting);
1240 		}
1241 	}
1242 
1243 	p->state = NULL;
1244 
1245 	/* Apply all the settings for the new state */
1246 	list_for_each_entry(setting, &state->settings, node) {
1247 		switch (setting->type) {
1248 		case PIN_MAP_TYPE_MUX_GROUP:
1249 			ret = pinmux_enable_setting(setting);
1250 			break;
1251 		case PIN_MAP_TYPE_CONFIGS_PIN:
1252 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1253 			ret = pinconf_apply_setting(setting);
1254 			break;
1255 		default:
1256 			ret = -EINVAL;
1257 			break;
1258 		}
1259 
1260 		if (ret < 0) {
1261 			goto unapply_new_state;
1262 		}
1263 	}
1264 
1265 	p->state = state;
1266 
1267 	return 0;
1268 
1269 unapply_new_state:
1270 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1271 
1272 	list_for_each_entry(setting2, &state->settings, node) {
1273 		if (&setting2->node == &setting->node)
1274 			break;
1275 		/*
1276 		 * All we can do here is pinmux_disable_setting.
1277 		 * That means that some pins are muxed differently now
1278 		 * than they were before applying the setting (We can't
1279 		 * "unmux a pin"!), but it's not a big deal since the pins
1280 		 * are free to be muxed by another apply_setting.
1281 		 */
1282 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1283 			pinmux_disable_setting(setting2);
1284 	}
1285 
1286 	/* There's no infinite recursive loop here because p->state is NULL */
1287 	if (old_state)
1288 		pinctrl_select_state(p, old_state);
1289 
1290 	return ret;
1291 }
1292 
1293 /**
1294  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1295  * @p: the pinctrl handle for the device that requests configuration
1296  * @state: the state handle to select/activate/program
1297  */
1298 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1299 {
1300 	if (p->state == state)
1301 		return 0;
1302 
1303 	return pinctrl_commit_state(p, state);
1304 }
1305 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1306 
1307 static void devm_pinctrl_release(struct device *dev, void *res)
1308 {
1309 	pinctrl_put(*(struct pinctrl **)res);
1310 }
1311 
1312 /**
1313  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1314  * @dev: the device to obtain the handle for
1315  *
1316  * If there is a need to explicitly destroy the returned struct pinctrl,
1317  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1318  */
1319 struct pinctrl *devm_pinctrl_get(struct device *dev)
1320 {
1321 	struct pinctrl **ptr, *p;
1322 
1323 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1324 	if (!ptr)
1325 		return ERR_PTR(-ENOMEM);
1326 
1327 	p = pinctrl_get(dev);
1328 	if (!IS_ERR(p)) {
1329 		*ptr = p;
1330 		devres_add(dev, ptr);
1331 	} else {
1332 		devres_free(ptr);
1333 	}
1334 
1335 	return p;
1336 }
1337 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1338 
1339 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1340 {
1341 	struct pinctrl **p = res;
1342 
1343 	return *p == data;
1344 }
1345 
1346 /**
1347  * devm_pinctrl_put() - Resource managed pinctrl_put()
1348  * @p: the pinctrl handle to release
1349  *
1350  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1351  * this function will not need to be called and the resource management
1352  * code will ensure that the resource is freed.
1353  */
1354 void devm_pinctrl_put(struct pinctrl *p)
1355 {
1356 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1357 			       devm_pinctrl_match, p));
1358 }
1359 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1360 
1361 int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps,
1362 			 bool dup)
1363 {
1364 	int i, ret;
1365 	struct pinctrl_maps *maps_node;
1366 
1367 	pr_debug("add %u pinctrl maps\n", num_maps);
1368 
1369 	/* First sanity check the new mapping */
1370 	for (i = 0; i < num_maps; i++) {
1371 		if (!maps[i].dev_name) {
1372 			pr_err("failed to register map %s (%d): no device given\n",
1373 			       maps[i].name, i);
1374 			return -EINVAL;
1375 		}
1376 
1377 		if (!maps[i].name) {
1378 			pr_err("failed to register map %d: no map name given\n",
1379 			       i);
1380 			return -EINVAL;
1381 		}
1382 
1383 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1384 				!maps[i].ctrl_dev_name) {
1385 			pr_err("failed to register map %s (%d): no pin control device given\n",
1386 			       maps[i].name, i);
1387 			return -EINVAL;
1388 		}
1389 
1390 		switch (maps[i].type) {
1391 		case PIN_MAP_TYPE_DUMMY_STATE:
1392 			break;
1393 		case PIN_MAP_TYPE_MUX_GROUP:
1394 			ret = pinmux_validate_map(&maps[i], i);
1395 			if (ret < 0)
1396 				return ret;
1397 			break;
1398 		case PIN_MAP_TYPE_CONFIGS_PIN:
1399 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1400 			ret = pinconf_validate_map(&maps[i], i);
1401 			if (ret < 0)
1402 				return ret;
1403 			break;
1404 		default:
1405 			pr_err("failed to register map %s (%d): invalid type given\n",
1406 			       maps[i].name, i);
1407 			return -EINVAL;
1408 		}
1409 	}
1410 
1411 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1412 	if (!maps_node)
1413 		return -ENOMEM;
1414 
1415 	maps_node->num_maps = num_maps;
1416 	if (dup) {
1417 		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1418 					  GFP_KERNEL);
1419 		if (!maps_node->maps) {
1420 			kfree(maps_node);
1421 			return -ENOMEM;
1422 		}
1423 	} else {
1424 		maps_node->maps = maps;
1425 	}
1426 
1427 	mutex_lock(&pinctrl_maps_mutex);
1428 	list_add_tail(&maps_node->node, &pinctrl_maps);
1429 	mutex_unlock(&pinctrl_maps_mutex);
1430 
1431 	return 0;
1432 }
1433 
1434 /**
1435  * pinctrl_register_mappings() - register a set of pin controller mappings
1436  * @maps: the pincontrol mappings table to register. This should probably be
1437  *	marked with __initdata so it can be discarded after boot. This
1438  *	function will perform a shallow copy for the mapping entries.
1439  * @num_maps: the number of maps in the mapping table
1440  */
1441 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1442 			      unsigned num_maps)
1443 {
1444 	return pinctrl_register_map(maps, num_maps, true);
1445 }
1446 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1447 
1448 void pinctrl_unregister_map(const struct pinctrl_map *map)
1449 {
1450 	struct pinctrl_maps *maps_node;
1451 
1452 	mutex_lock(&pinctrl_maps_mutex);
1453 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1454 		if (maps_node->maps == map) {
1455 			list_del(&maps_node->node);
1456 			kfree(maps_node);
1457 			mutex_unlock(&pinctrl_maps_mutex);
1458 			return;
1459 		}
1460 	}
1461 	mutex_unlock(&pinctrl_maps_mutex);
1462 }
1463 
1464 /**
1465  * pinctrl_force_sleep() - turn a given controller device into sleep state
1466  * @pctldev: pin controller device
1467  */
1468 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1469 {
1470 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1471 		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1472 	return 0;
1473 }
1474 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1475 
1476 /**
1477  * pinctrl_force_default() - turn a given controller device into default state
1478  * @pctldev: pin controller device
1479  */
1480 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1481 {
1482 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1483 		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1484 	return 0;
1485 }
1486 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1487 
1488 /**
1489  * pinctrl_init_done() - tell pinctrl probe is done
1490  *
1491  * We'll use this time to switch the pins from "init" to "default" unless the
1492  * driver selected some other state.
1493  *
1494  * @dev: device to that's done probing
1495  */
1496 int pinctrl_init_done(struct device *dev)
1497 {
1498 	struct dev_pin_info *pins = dev->pins;
1499 	int ret;
1500 
1501 	if (!pins)
1502 		return 0;
1503 
1504 	if (IS_ERR(pins->init_state))
1505 		return 0; /* No such state */
1506 
1507 	if (pins->p->state != pins->init_state)
1508 		return 0; /* Not at init anyway */
1509 
1510 	if (IS_ERR(pins->default_state))
1511 		return 0; /* No default state */
1512 
1513 	ret = pinctrl_select_state(pins->p, pins->default_state);
1514 	if (ret)
1515 		dev_err(dev, "failed to activate default pinctrl state\n");
1516 
1517 	return ret;
1518 }
1519 
1520 #ifdef CONFIG_PM
1521 
1522 /**
1523  * pinctrl_pm_select_state() - select pinctrl state for PM
1524  * @dev: device to select default state for
1525  * @state: state to set
1526  */
1527 static int pinctrl_pm_select_state(struct device *dev,
1528 				   struct pinctrl_state *state)
1529 {
1530 	struct dev_pin_info *pins = dev->pins;
1531 	int ret;
1532 
1533 	if (IS_ERR(state))
1534 		return 0; /* No such state */
1535 	ret = pinctrl_select_state(pins->p, state);
1536 	if (ret)
1537 		dev_err(dev, "failed to activate pinctrl state %s\n",
1538 			state->name);
1539 	return ret;
1540 }
1541 
1542 /**
1543  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1544  * @dev: device to select default state for
1545  */
1546 int pinctrl_pm_select_default_state(struct device *dev)
1547 {
1548 	if (!dev->pins)
1549 		return 0;
1550 
1551 	return pinctrl_pm_select_state(dev, dev->pins->default_state);
1552 }
1553 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1554 
1555 /**
1556  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1557  * @dev: device to select sleep state for
1558  */
1559 int pinctrl_pm_select_sleep_state(struct device *dev)
1560 {
1561 	if (!dev->pins)
1562 		return 0;
1563 
1564 	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1565 }
1566 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1567 
1568 /**
1569  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1570  * @dev: device to select idle state for
1571  */
1572 int pinctrl_pm_select_idle_state(struct device *dev)
1573 {
1574 	if (!dev->pins)
1575 		return 0;
1576 
1577 	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1578 }
1579 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1580 #endif
1581 
1582 #ifdef CONFIG_DEBUG_FS
1583 
1584 static int pinctrl_pins_show(struct seq_file *s, void *what)
1585 {
1586 	struct pinctrl_dev *pctldev = s->private;
1587 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1588 	unsigned i, pin;
1589 
1590 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1591 
1592 	mutex_lock(&pctldev->mutex);
1593 
1594 	/* The pin number can be retrived from the pin controller descriptor */
1595 	for (i = 0; i < pctldev->desc->npins; i++) {
1596 		struct pin_desc *desc;
1597 
1598 		pin = pctldev->desc->pins[i].number;
1599 		desc = pin_desc_get(pctldev, pin);
1600 		/* Pin space may be sparse */
1601 		if (!desc)
1602 			continue;
1603 
1604 		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1605 
1606 		/* Driver-specific info per pin */
1607 		if (ops->pin_dbg_show)
1608 			ops->pin_dbg_show(pctldev, s, pin);
1609 
1610 		seq_puts(s, "\n");
1611 	}
1612 
1613 	mutex_unlock(&pctldev->mutex);
1614 
1615 	return 0;
1616 }
1617 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1618 
1619 static int pinctrl_groups_show(struct seq_file *s, void *what)
1620 {
1621 	struct pinctrl_dev *pctldev = s->private;
1622 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1623 	unsigned ngroups, selector = 0;
1624 
1625 	mutex_lock(&pctldev->mutex);
1626 
1627 	ngroups = ops->get_groups_count(pctldev);
1628 
1629 	seq_puts(s, "registered pin groups:\n");
1630 	while (selector < ngroups) {
1631 		const unsigned *pins = NULL;
1632 		unsigned num_pins = 0;
1633 		const char *gname = ops->get_group_name(pctldev, selector);
1634 		const char *pname;
1635 		int ret = 0;
1636 		int i;
1637 
1638 		if (ops->get_group_pins)
1639 			ret = ops->get_group_pins(pctldev, selector,
1640 						  &pins, &num_pins);
1641 		if (ret)
1642 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1643 				   gname);
1644 		else {
1645 			seq_printf(s, "group: %s\n", gname);
1646 			for (i = 0; i < num_pins; i++) {
1647 				pname = pin_get_name(pctldev, pins[i]);
1648 				if (WARN_ON(!pname)) {
1649 					mutex_unlock(&pctldev->mutex);
1650 					return -EINVAL;
1651 				}
1652 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1653 			}
1654 			seq_puts(s, "\n");
1655 		}
1656 		selector++;
1657 	}
1658 
1659 	mutex_unlock(&pctldev->mutex);
1660 
1661 	return 0;
1662 }
1663 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1664 
1665 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1666 {
1667 	struct pinctrl_dev *pctldev = s->private;
1668 	struct pinctrl_gpio_range *range = NULL;
1669 
1670 	seq_puts(s, "GPIO ranges handled:\n");
1671 
1672 	mutex_lock(&pctldev->mutex);
1673 
1674 	/* Loop over the ranges */
1675 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1676 		if (range->pins) {
1677 			int a;
1678 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1679 				range->id, range->name,
1680 				range->base, (range->base + range->npins - 1));
1681 			for (a = 0; a < range->npins - 1; a++)
1682 				seq_printf(s, "%u, ", range->pins[a]);
1683 			seq_printf(s, "%u}\n", range->pins[a]);
1684 		}
1685 		else
1686 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1687 				range->id, range->name,
1688 				range->base, (range->base + range->npins - 1),
1689 				range->pin_base,
1690 				(range->pin_base + range->npins - 1));
1691 	}
1692 
1693 	mutex_unlock(&pctldev->mutex);
1694 
1695 	return 0;
1696 }
1697 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1698 
1699 static int pinctrl_devices_show(struct seq_file *s, void *what)
1700 {
1701 	struct pinctrl_dev *pctldev;
1702 
1703 	seq_puts(s, "name [pinmux] [pinconf]\n");
1704 
1705 	mutex_lock(&pinctrldev_list_mutex);
1706 
1707 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1708 		seq_printf(s, "%s ", pctldev->desc->name);
1709 		if (pctldev->desc->pmxops)
1710 			seq_puts(s, "yes ");
1711 		else
1712 			seq_puts(s, "no ");
1713 		if (pctldev->desc->confops)
1714 			seq_puts(s, "yes");
1715 		else
1716 			seq_puts(s, "no");
1717 		seq_puts(s, "\n");
1718 	}
1719 
1720 	mutex_unlock(&pinctrldev_list_mutex);
1721 
1722 	return 0;
1723 }
1724 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1725 
1726 static inline const char *map_type(enum pinctrl_map_type type)
1727 {
1728 	static const char * const names[] = {
1729 		"INVALID",
1730 		"DUMMY_STATE",
1731 		"MUX_GROUP",
1732 		"CONFIGS_PIN",
1733 		"CONFIGS_GROUP",
1734 	};
1735 
1736 	if (type >= ARRAY_SIZE(names))
1737 		return "UNKNOWN";
1738 
1739 	return names[type];
1740 }
1741 
1742 static int pinctrl_maps_show(struct seq_file *s, void *what)
1743 {
1744 	struct pinctrl_maps *maps_node;
1745 	int i;
1746 	const struct pinctrl_map *map;
1747 
1748 	seq_puts(s, "Pinctrl maps:\n");
1749 
1750 	mutex_lock(&pinctrl_maps_mutex);
1751 	for_each_maps(maps_node, i, map) {
1752 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1753 			   map->dev_name, map->name, map_type(map->type),
1754 			   map->type);
1755 
1756 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1757 			seq_printf(s, "controlling device %s\n",
1758 				   map->ctrl_dev_name);
1759 
1760 		switch (map->type) {
1761 		case PIN_MAP_TYPE_MUX_GROUP:
1762 			pinmux_show_map(s, map);
1763 			break;
1764 		case PIN_MAP_TYPE_CONFIGS_PIN:
1765 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1766 			pinconf_show_map(s, map);
1767 			break;
1768 		default:
1769 			break;
1770 		}
1771 
1772 		seq_putc(s, '\n');
1773 	}
1774 	mutex_unlock(&pinctrl_maps_mutex);
1775 
1776 	return 0;
1777 }
1778 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1779 
1780 static int pinctrl_show(struct seq_file *s, void *what)
1781 {
1782 	struct pinctrl *p;
1783 	struct pinctrl_state *state;
1784 	struct pinctrl_setting *setting;
1785 
1786 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1787 
1788 	mutex_lock(&pinctrl_list_mutex);
1789 
1790 	list_for_each_entry(p, &pinctrl_list, node) {
1791 		seq_printf(s, "device: %s current state: %s\n",
1792 			   dev_name(p->dev),
1793 			   p->state ? p->state->name : "none");
1794 
1795 		list_for_each_entry(state, &p->states, node) {
1796 			seq_printf(s, "  state: %s\n", state->name);
1797 
1798 			list_for_each_entry(setting, &state->settings, node) {
1799 				struct pinctrl_dev *pctldev = setting->pctldev;
1800 
1801 				seq_printf(s, "    type: %s controller %s ",
1802 					   map_type(setting->type),
1803 					   pinctrl_dev_get_name(pctldev));
1804 
1805 				switch (setting->type) {
1806 				case PIN_MAP_TYPE_MUX_GROUP:
1807 					pinmux_show_setting(s, setting);
1808 					break;
1809 				case PIN_MAP_TYPE_CONFIGS_PIN:
1810 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1811 					pinconf_show_setting(s, setting);
1812 					break;
1813 				default:
1814 					break;
1815 				}
1816 			}
1817 		}
1818 	}
1819 
1820 	mutex_unlock(&pinctrl_list_mutex);
1821 
1822 	return 0;
1823 }
1824 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1825 
1826 static struct dentry *debugfs_root;
1827 
1828 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1829 {
1830 	struct dentry *device_root;
1831 	const char *debugfs_name;
1832 
1833 	if (pctldev->desc->name &&
1834 			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1835 		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1836 				"%s-%s", dev_name(pctldev->dev),
1837 				pctldev->desc->name);
1838 		if (!debugfs_name) {
1839 			pr_warn("failed to determine debugfs dir name for %s\n",
1840 				dev_name(pctldev->dev));
1841 			return;
1842 		}
1843 	} else {
1844 		debugfs_name = dev_name(pctldev->dev);
1845 	}
1846 
1847 	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1848 	pctldev->device_root = device_root;
1849 
1850 	if (IS_ERR(device_root) || !device_root) {
1851 		pr_warn("failed to create debugfs directory for %s\n",
1852 			dev_name(pctldev->dev));
1853 		return;
1854 	}
1855 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1856 			    device_root, pctldev, &pinctrl_pins_fops);
1857 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1858 			    device_root, pctldev, &pinctrl_groups_fops);
1859 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1860 			    device_root, pctldev, &pinctrl_gpioranges_fops);
1861 	if (pctldev->desc->pmxops)
1862 		pinmux_init_device_debugfs(device_root, pctldev);
1863 	if (pctldev->desc->confops)
1864 		pinconf_init_device_debugfs(device_root, pctldev);
1865 }
1866 
1867 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1868 {
1869 	debugfs_remove_recursive(pctldev->device_root);
1870 }
1871 
1872 static void pinctrl_init_debugfs(void)
1873 {
1874 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1875 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1876 		pr_warn("failed to create debugfs directory\n");
1877 		debugfs_root = NULL;
1878 		return;
1879 	}
1880 
1881 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1882 			    debugfs_root, NULL, &pinctrl_devices_fops);
1883 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1884 			    debugfs_root, NULL, &pinctrl_maps_fops);
1885 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1886 			    debugfs_root, NULL, &pinctrl_fops);
1887 }
1888 
1889 #else /* CONFIG_DEBUG_FS */
1890 
1891 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1892 {
1893 }
1894 
1895 static void pinctrl_init_debugfs(void)
1896 {
1897 }
1898 
1899 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1900 {
1901 }
1902 
1903 #endif
1904 
1905 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1906 {
1907 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1908 
1909 	if (!ops ||
1910 	    !ops->get_groups_count ||
1911 	    !ops->get_group_name)
1912 		return -EINVAL;
1913 
1914 	return 0;
1915 }
1916 
1917 /**
1918  * pinctrl_init_controller() - init a pin controller device
1919  * @pctldesc: descriptor for this pin controller
1920  * @dev: parent device for this pin controller
1921  * @driver_data: private pin controller data for this pin controller
1922  */
1923 static struct pinctrl_dev *
1924 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1925 			void *driver_data)
1926 {
1927 	struct pinctrl_dev *pctldev;
1928 	int ret;
1929 
1930 	if (!pctldesc)
1931 		return ERR_PTR(-EINVAL);
1932 	if (!pctldesc->name)
1933 		return ERR_PTR(-EINVAL);
1934 
1935 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1936 	if (!pctldev)
1937 		return ERR_PTR(-ENOMEM);
1938 
1939 	/* Initialize pin control device struct */
1940 	pctldev->owner = pctldesc->owner;
1941 	pctldev->desc = pctldesc;
1942 	pctldev->driver_data = driver_data;
1943 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1944 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1945 	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1946 #endif
1947 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1948 	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1949 #endif
1950 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1951 	INIT_LIST_HEAD(&pctldev->node);
1952 	pctldev->dev = dev;
1953 	mutex_init(&pctldev->mutex);
1954 
1955 	/* check core ops for sanity */
1956 	ret = pinctrl_check_ops(pctldev);
1957 	if (ret) {
1958 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1959 		goto out_err;
1960 	}
1961 
1962 	/* If we're implementing pinmuxing, check the ops for sanity */
1963 	if (pctldesc->pmxops) {
1964 		ret = pinmux_check_ops(pctldev);
1965 		if (ret)
1966 			goto out_err;
1967 	}
1968 
1969 	/* If we're implementing pinconfig, check the ops for sanity */
1970 	if (pctldesc->confops) {
1971 		ret = pinconf_check_ops(pctldev);
1972 		if (ret)
1973 			goto out_err;
1974 	}
1975 
1976 	/* Register all the pins */
1977 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1978 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1979 	if (ret) {
1980 		dev_err(dev, "error during pin registration\n");
1981 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1982 				      pctldesc->npins);
1983 		goto out_err;
1984 	}
1985 
1986 	return pctldev;
1987 
1988 out_err:
1989 	mutex_destroy(&pctldev->mutex);
1990 	kfree(pctldev);
1991 	return ERR_PTR(ret);
1992 }
1993 
1994 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
1995 {
1996 	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
1997 	if (PTR_ERR(pctldev->p) == -ENODEV) {
1998 		dev_dbg(pctldev->dev, "no hogs found\n");
1999 
2000 		return 0;
2001 	}
2002 
2003 	if (IS_ERR(pctldev->p)) {
2004 		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2005 			PTR_ERR(pctldev->p));
2006 
2007 		return PTR_ERR(pctldev->p);
2008 	}
2009 
2010 	kref_get(&pctldev->p->users);
2011 	pctldev->hog_default =
2012 		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2013 	if (IS_ERR(pctldev->hog_default)) {
2014 		dev_dbg(pctldev->dev,
2015 			"failed to lookup the default state\n");
2016 	} else {
2017 		if (pinctrl_select_state(pctldev->p,
2018 					 pctldev->hog_default))
2019 			dev_err(pctldev->dev,
2020 				"failed to select default state\n");
2021 	}
2022 
2023 	pctldev->hog_sleep =
2024 		pinctrl_lookup_state(pctldev->p,
2025 				     PINCTRL_STATE_SLEEP);
2026 	if (IS_ERR(pctldev->hog_sleep))
2027 		dev_dbg(pctldev->dev,
2028 			"failed to lookup the sleep state\n");
2029 
2030 	return 0;
2031 }
2032 
2033 int pinctrl_enable(struct pinctrl_dev *pctldev)
2034 {
2035 	int error;
2036 
2037 	error = pinctrl_claim_hogs(pctldev);
2038 	if (error) {
2039 		dev_err(pctldev->dev, "could not claim hogs: %i\n",
2040 			error);
2041 		mutex_destroy(&pctldev->mutex);
2042 		kfree(pctldev);
2043 
2044 		return error;
2045 	}
2046 
2047 	mutex_lock(&pinctrldev_list_mutex);
2048 	list_add_tail(&pctldev->node, &pinctrldev_list);
2049 	mutex_unlock(&pinctrldev_list_mutex);
2050 
2051 	pinctrl_init_device_debugfs(pctldev);
2052 
2053 	return 0;
2054 }
2055 EXPORT_SYMBOL_GPL(pinctrl_enable);
2056 
2057 /**
2058  * pinctrl_register() - register a pin controller device
2059  * @pctldesc: descriptor for this pin controller
2060  * @dev: parent device for this pin controller
2061  * @driver_data: private pin controller data for this pin controller
2062  *
2063  * Note that pinctrl_register() is known to have problems as the pin
2064  * controller driver functions are called before the driver has a
2065  * struct pinctrl_dev handle. To avoid issues later on, please use the
2066  * new pinctrl_register_and_init() below instead.
2067  */
2068 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2069 				    struct device *dev, void *driver_data)
2070 {
2071 	struct pinctrl_dev *pctldev;
2072 	int error;
2073 
2074 	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2075 	if (IS_ERR(pctldev))
2076 		return pctldev;
2077 
2078 	error = pinctrl_enable(pctldev);
2079 	if (error)
2080 		return ERR_PTR(error);
2081 
2082 	return pctldev;
2083 
2084 }
2085 EXPORT_SYMBOL_GPL(pinctrl_register);
2086 
2087 /**
2088  * pinctrl_register_and_init() - register and init pin controller device
2089  * @pctldesc: descriptor for this pin controller
2090  * @dev: parent device for this pin controller
2091  * @driver_data: private pin controller data for this pin controller
2092  * @pctldev: pin controller device
2093  *
2094  * Note that pinctrl_enable() still needs to be manually called after
2095  * this once the driver is ready.
2096  */
2097 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2098 			      struct device *dev, void *driver_data,
2099 			      struct pinctrl_dev **pctldev)
2100 {
2101 	struct pinctrl_dev *p;
2102 
2103 	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2104 	if (IS_ERR(p))
2105 		return PTR_ERR(p);
2106 
2107 	/*
2108 	 * We have pinctrl_start() call functions in the pin controller
2109 	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2110 	 * let's make sure pctldev is properly initialized for the
2111 	 * pin controller driver before we do anything.
2112 	 */
2113 	*pctldev = p;
2114 
2115 	return 0;
2116 }
2117 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2118 
2119 /**
2120  * pinctrl_unregister() - unregister pinmux
2121  * @pctldev: pin controller to unregister
2122  *
2123  * Called by pinmux drivers to unregister a pinmux.
2124  */
2125 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2126 {
2127 	struct pinctrl_gpio_range *range, *n;
2128 
2129 	if (!pctldev)
2130 		return;
2131 
2132 	mutex_lock(&pctldev->mutex);
2133 	pinctrl_remove_device_debugfs(pctldev);
2134 	mutex_unlock(&pctldev->mutex);
2135 
2136 	if (!IS_ERR_OR_NULL(pctldev->p))
2137 		pinctrl_put(pctldev->p);
2138 
2139 	mutex_lock(&pinctrldev_list_mutex);
2140 	mutex_lock(&pctldev->mutex);
2141 	/* TODO: check that no pinmuxes are still active? */
2142 	list_del(&pctldev->node);
2143 	pinmux_generic_free_functions(pctldev);
2144 	pinctrl_generic_free_groups(pctldev);
2145 	/* Destroy descriptor tree */
2146 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2147 			      pctldev->desc->npins);
2148 	/* remove gpio ranges map */
2149 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2150 		list_del(&range->node);
2151 
2152 	mutex_unlock(&pctldev->mutex);
2153 	mutex_destroy(&pctldev->mutex);
2154 	kfree(pctldev);
2155 	mutex_unlock(&pinctrldev_list_mutex);
2156 }
2157 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2158 
2159 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2160 {
2161 	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2162 
2163 	pinctrl_unregister(pctldev);
2164 }
2165 
2166 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2167 {
2168 	struct pctldev **r = res;
2169 
2170 	if (WARN_ON(!r || !*r))
2171 		return 0;
2172 
2173 	return *r == data;
2174 }
2175 
2176 /**
2177  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2178  * @dev: parent device for this pin controller
2179  * @pctldesc: descriptor for this pin controller
2180  * @driver_data: private pin controller data for this pin controller
2181  *
2182  * Returns an error pointer if pincontrol register failed. Otherwise
2183  * it returns valid pinctrl handle.
2184  *
2185  * The pinctrl device will be automatically released when the device is unbound.
2186  */
2187 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2188 					  struct pinctrl_desc *pctldesc,
2189 					  void *driver_data)
2190 {
2191 	struct pinctrl_dev **ptr, *pctldev;
2192 
2193 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2194 	if (!ptr)
2195 		return ERR_PTR(-ENOMEM);
2196 
2197 	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2198 	if (IS_ERR(pctldev)) {
2199 		devres_free(ptr);
2200 		return pctldev;
2201 	}
2202 
2203 	*ptr = pctldev;
2204 	devres_add(dev, ptr);
2205 
2206 	return pctldev;
2207 }
2208 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2209 
2210 /**
2211  * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2212  * @dev: parent device for this pin controller
2213  * @pctldesc: descriptor for this pin controller
2214  * @driver_data: private pin controller data for this pin controller
2215  *
2216  * Returns an error pointer if pincontrol register failed. Otherwise
2217  * it returns valid pinctrl handle.
2218  *
2219  * The pinctrl device will be automatically released when the device is unbound.
2220  */
2221 int devm_pinctrl_register_and_init(struct device *dev,
2222 				   struct pinctrl_desc *pctldesc,
2223 				   void *driver_data,
2224 				   struct pinctrl_dev **pctldev)
2225 {
2226 	struct pinctrl_dev **ptr;
2227 	int error;
2228 
2229 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2230 	if (!ptr)
2231 		return -ENOMEM;
2232 
2233 	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2234 	if (error) {
2235 		devres_free(ptr);
2236 		return error;
2237 	}
2238 
2239 	*ptr = *pctldev;
2240 	devres_add(dev, ptr);
2241 
2242 	return 0;
2243 }
2244 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2245 
2246 /**
2247  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2248  * @dev: device for which which resource was allocated
2249  * @pctldev: the pinctrl device to unregister.
2250  */
2251 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2252 {
2253 	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2254 			       devm_pinctrl_dev_match, pctldev));
2255 }
2256 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2257 
2258 static int __init pinctrl_init(void)
2259 {
2260 	pr_info("initialized pinctrl subsystem\n");
2261 	pinctrl_init_debugfs();
2262 	return 0;
2263 }
2264 
2265 /* init early since many drivers really need to initialized pinmux early */
2266 core_initcall(pinctrl_init);
2267