xref: /linux/drivers/pinctrl/core.c (revision e96fddb32931d007db12b1fce9b5e8e4c080401b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Core driver for the pin control subsystem
4  *
5  * Copyright (C) 2011-2012 ST-Ericsson SA
6  * Written on behalf of Linaro for ST-Ericsson
7  * Based on bits of regulator core, gpio core and clk core
8  *
9  * Author: Linus Walleij <linus.walleij@linaro.org>
10  *
11  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12  */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14 
15 #include <linux/array_size.h>
16 #include <linux/cleanup.h>
17 #include <linux/debugfs.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kref.h>
23 #include <linux/list.h>
24 #include <linux/seq_file.h>
25 #include <linux/slab.h>
26 
27 #include <linux/gpio.h>
28 #include <linux/gpio/driver.h>
29 
30 #include <linux/pinctrl/consumer.h>
31 #include <linux/pinctrl/devinfo.h>
32 #include <linux/pinctrl/machine.h>
33 #include <linux/pinctrl/pinctrl.h>
34 
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinconf.h"
38 #include "pinmux.h"
39 
40 static bool pinctrl_dummy_state;
41 
42 /* Mutex taken to protect pinctrl_list */
43 static DEFINE_MUTEX(pinctrl_list_mutex);
44 
45 /* Mutex taken to protect pinctrl_maps */
46 DEFINE_MUTEX(pinctrl_maps_mutex);
47 
48 /* Mutex taken to protect pinctrldev_list */
49 static DEFINE_MUTEX(pinctrldev_list_mutex);
50 
51 /* Global list of pin control devices (struct pinctrl_dev) */
52 static LIST_HEAD(pinctrldev_list);
53 
54 /* List of pin controller handles (struct pinctrl) */
55 static LIST_HEAD(pinctrl_list);
56 
57 /* List of pinctrl maps (struct pinctrl_maps) */
58 LIST_HEAD(pinctrl_maps);
59 
60 
61 /**
62  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63  *
64  * Usually this function is called by platforms without pinctrl driver support
65  * but run with some shared drivers using pinctrl APIs.
66  * After calling this function, the pinctrl core will return successfully
67  * with creating a dummy state for the driver to keep going smoothly.
68  */
69 void pinctrl_provide_dummies(void)
70 {
71 	pinctrl_dummy_state = true;
72 }
73 
74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75 {
76 	/* We're not allowed to register devices without name */
77 	return pctldev->desc->name;
78 }
79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80 
81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82 {
83 	return dev_name(pctldev->dev);
84 }
85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86 
87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88 {
89 	return pctldev->driver_data;
90 }
91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92 
93 /**
94  * get_pinctrl_dev_from_devname() - look up pin controller device
95  * @devname: the name of a device instance, as returned by dev_name()
96  *
97  * Looks up a pin control device matching a certain device name or pure device
98  * pointer, the pure device pointer will take precedence.
99  */
100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101 {
102 	struct pinctrl_dev *pctldev;
103 
104 	if (!devname)
105 		return NULL;
106 
107 	mutex_lock(&pinctrldev_list_mutex);
108 
109 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 		if (!strcmp(dev_name(pctldev->dev), devname)) {
111 			/* Matched on device name */
112 			mutex_unlock(&pinctrldev_list_mutex);
113 			return pctldev;
114 		}
115 	}
116 
117 	mutex_unlock(&pinctrldev_list_mutex);
118 
119 	return NULL;
120 }
121 
122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123 {
124 	struct pinctrl_dev *pctldev;
125 
126 	mutex_lock(&pinctrldev_list_mutex);
127 
128 	list_for_each_entry(pctldev, &pinctrldev_list, node)
129 		if (device_match_of_node(pctldev->dev, np)) {
130 			mutex_unlock(&pinctrldev_list_mutex);
131 			return pctldev;
132 		}
133 
134 	mutex_unlock(&pinctrldev_list_mutex);
135 
136 	return NULL;
137 }
138 
139 /**
140  * pin_get_from_name() - look up a pin number from a name
141  * @pctldev: the pin control device to lookup the pin on
142  * @name: the name of the pin to look up
143  */
144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145 {
146 	unsigned int i, pin;
147 
148 	/* The pin number can be retrived from the pin controller descriptor */
149 	for (i = 0; i < pctldev->desc->npins; i++) {
150 		struct pin_desc *desc;
151 
152 		pin = pctldev->desc->pins[i].number;
153 		desc = pin_desc_get(pctldev, pin);
154 		/* Pin space may be sparse */
155 		if (desc && !strcmp(name, desc->name))
156 			return pin;
157 	}
158 
159 	return -EINVAL;
160 }
161 
162 /**
163  * pin_get_name() - look up a pin name from a pin id
164  * @pctldev: the pin control device to lookup the pin on
165  * @pin: pin number/id to look up
166  */
167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned int pin)
168 {
169 	const struct pin_desc *desc;
170 
171 	desc = pin_desc_get(pctldev, pin);
172 	if (!desc) {
173 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 			pin);
175 		return NULL;
176 	}
177 
178 	return desc->name;
179 }
180 EXPORT_SYMBOL_GPL(pin_get_name);
181 
182 /* Deletes a range of pin descriptors */
183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184 				  const struct pinctrl_pin_desc *pins,
185 				  unsigned int num_pins)
186 {
187 	int i;
188 
189 	for (i = 0; i < num_pins; i++) {
190 		struct pin_desc *pindesc;
191 
192 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193 					    pins[i].number);
194 		if (pindesc) {
195 			radix_tree_delete(&pctldev->pin_desc_tree,
196 					  pins[i].number);
197 			if (pindesc->dynamic_name)
198 				kfree(pindesc->name);
199 		}
200 		kfree(pindesc);
201 	}
202 }
203 
204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205 				    const struct pinctrl_pin_desc *pin)
206 {
207 	struct pin_desc *pindesc;
208 	int error;
209 
210 	pindesc = pin_desc_get(pctldev, pin->number);
211 	if (pindesc) {
212 		dev_err(pctldev->dev, "pin %d already registered\n",
213 			pin->number);
214 		return -EINVAL;
215 	}
216 
217 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
218 	if (!pindesc)
219 		return -ENOMEM;
220 
221 	/* Set owner */
222 	pindesc->pctldev = pctldev;
223 
224 	/* Copy basic pin info */
225 	if (pin->name) {
226 		pindesc->name = pin->name;
227 	} else {
228 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
229 		if (!pindesc->name) {
230 			error = -ENOMEM;
231 			goto failed;
232 		}
233 		pindesc->dynamic_name = true;
234 	}
235 
236 	pindesc->drv_data = pin->drv_data;
237 
238 	error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
239 	if (error)
240 		goto failed;
241 
242 	pr_debug("registered pin %d (%s) on %s\n",
243 		 pin->number, pindesc->name, pctldev->desc->name);
244 	return 0;
245 
246 failed:
247 	kfree(pindesc);
248 	return error;
249 }
250 
251 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
252 				 const struct pinctrl_pin_desc *pins,
253 				 unsigned int num_descs)
254 {
255 	unsigned int i;
256 	int ret = 0;
257 
258 	for (i = 0; i < num_descs; i++) {
259 		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
260 		if (ret)
261 			return ret;
262 	}
263 
264 	return 0;
265 }
266 
267 /**
268  * gpio_to_pin() - GPIO range GPIO number to pin number translation
269  * @range: GPIO range used for the translation
270  * @gc: GPIO chip structure from the GPIO subsystem
271  * @offset: hardware offset of the GPIO relative to the controller
272  *
273  * Finds the pin number for a given GPIO using the specified GPIO range
274  * as a base for translation. The distinction between linear GPIO ranges
275  * and pin list based GPIO ranges is managed correctly by this function.
276  *
277  * This function assumes the gpio is part of the specified GPIO range, use
278  * only after making sure this is the case (e.g. by calling it on the
279  * result of successful pinctrl_get_device_gpio_range calls)!
280  */
281 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
282 			      struct gpio_chip *gc, unsigned int offset)
283 {
284 	unsigned int pin = gc->base + offset - range->base;
285 	if (range->pins)
286 		return range->pins[pin];
287 	else
288 		return range->pin_base + pin;
289 }
290 
291 /**
292  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
293  * @pctldev: pin controller device to check
294  * @gc: GPIO chip structure from the GPIO subsystem
295  * @offset: hardware offset of the GPIO relative to the controller
296  *
297  * Tries to match a GPIO pin number to the ranges handled by a certain pin
298  * controller, return the range or NULL
299  */
300 static struct pinctrl_gpio_range *
301 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, struct gpio_chip *gc,
302 			 unsigned int offset)
303 {
304 	struct pinctrl_gpio_range *range;
305 
306 	mutex_lock(&pctldev->mutex);
307 	/* Loop over the ranges */
308 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
309 		/* Check if we're in the valid range */
310 		if ((gc->base + offset) >= range->base &&
311 		    (gc->base + offset) < range->base + range->npins) {
312 			mutex_unlock(&pctldev->mutex);
313 			return range;
314 		}
315 	}
316 	mutex_unlock(&pctldev->mutex);
317 	return NULL;
318 }
319 
320 /**
321  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
322  * the same GPIO chip are in range
323  * @gc: GPIO chip structure from the GPIO subsystem
324  * @offset: hardware offset of the GPIO relative to the controller
325  *
326  * This function is complement of pinctrl_match_gpio_range(). If the return
327  * value of pinctrl_match_gpio_range() is NULL, this function could be used
328  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
329  * of the same GPIO chip don't have back-end pinctrl interface.
330  * If the return value is true, it means that pinctrl device is ready & the
331  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
332  * is false, it means that pinctrl device may not be ready.
333  */
334 #ifdef CONFIG_GPIOLIB
335 static bool pinctrl_ready_for_gpio_range(struct gpio_chip *gc,
336 					 unsigned int offset)
337 {
338 	struct pinctrl_dev *pctldev;
339 	struct pinctrl_gpio_range *range = NULL;
340 
341 	mutex_lock(&pinctrldev_list_mutex);
342 
343 	/* Loop over the pin controllers */
344 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
345 		/* Loop over the ranges */
346 		mutex_lock(&pctldev->mutex);
347 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
348 			/* Check if any gpio range overlapped with gpio chip */
349 			if (range->base + range->npins - 1 < gc->base ||
350 			    range->base > gc->base + gc->ngpio - 1)
351 				continue;
352 			mutex_unlock(&pctldev->mutex);
353 			mutex_unlock(&pinctrldev_list_mutex);
354 			return true;
355 		}
356 		mutex_unlock(&pctldev->mutex);
357 	}
358 
359 	mutex_unlock(&pinctrldev_list_mutex);
360 
361 	return false;
362 }
363 #else
364 static inline bool
365 pinctrl_ready_for_gpio_range(struct gpio_chip *gc, unsigned int offset)
366 {
367 	return true;
368 }
369 #endif
370 
371 /**
372  * pinctrl_get_device_gpio_range() - find device for GPIO range
373  * @gc: GPIO chip structure from the GPIO subsystem
374  * @offset: hardware offset of the GPIO relative to the controller
375  * @outdev: the pin control device if found
376  * @outrange: the GPIO range if found
377  *
378  * Find the pin controller handling a certain GPIO pin from the pinspace of
379  * the GPIO subsystem, return the device and the matching GPIO range. Returns
380  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
381  * may still have not been registered.
382  */
383 static int pinctrl_get_device_gpio_range(struct gpio_chip *gc,
384 					 unsigned int offset,
385 					 struct pinctrl_dev **outdev,
386 					 struct pinctrl_gpio_range **outrange)
387 {
388 	struct pinctrl_dev *pctldev;
389 
390 	mutex_lock(&pinctrldev_list_mutex);
391 
392 	/* Loop over the pin controllers */
393 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
394 		struct pinctrl_gpio_range *range;
395 
396 		range = pinctrl_match_gpio_range(pctldev, gc, offset);
397 		if (range) {
398 			*outdev = pctldev;
399 			*outrange = range;
400 			mutex_unlock(&pinctrldev_list_mutex);
401 			return 0;
402 		}
403 	}
404 
405 	mutex_unlock(&pinctrldev_list_mutex);
406 
407 	return -EPROBE_DEFER;
408 }
409 
410 /**
411  * pinctrl_add_gpio_range() - register a GPIO range for a controller
412  * @pctldev: pin controller device to add the range to
413  * @range: the GPIO range to add
414  *
415  * This adds a range of GPIOs to be handled by a certain pin controller. Call
416  * this to register handled ranges after registering your pin controller.
417  */
418 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
419 			    struct pinctrl_gpio_range *range)
420 {
421 	mutex_lock(&pctldev->mutex);
422 	list_add_tail(&range->node, &pctldev->gpio_ranges);
423 	mutex_unlock(&pctldev->mutex);
424 }
425 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
426 
427 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
428 			     struct pinctrl_gpio_range *ranges,
429 			     unsigned int nranges)
430 {
431 	int i;
432 
433 	for (i = 0; i < nranges; i++)
434 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
435 }
436 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
437 
438 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
439 		struct pinctrl_gpio_range *range)
440 {
441 	struct pinctrl_dev *pctldev;
442 
443 	pctldev = get_pinctrl_dev_from_devname(devname);
444 
445 	/*
446 	 * If we can't find this device, let's assume that is because
447 	 * it has not probed yet, so the driver trying to register this
448 	 * range need to defer probing.
449 	 */
450 	if (!pctldev)
451 		return ERR_PTR(-EPROBE_DEFER);
452 
453 	pinctrl_add_gpio_range(pctldev, range);
454 
455 	return pctldev;
456 }
457 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
458 
459 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
460 			   const unsigned int **pins, unsigned int *num_pins)
461 {
462 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
463 	int gs;
464 
465 	if (!pctlops->get_group_pins)
466 		return -EINVAL;
467 
468 	gs = pinctrl_get_group_selector(pctldev, pin_group);
469 	if (gs < 0)
470 		return gs;
471 
472 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
473 }
474 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
475 
476 struct pinctrl_gpio_range *
477 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
478 					unsigned int pin)
479 {
480 	struct pinctrl_gpio_range *range;
481 
482 	/* Loop over the ranges */
483 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
484 		/* Check if we're in the valid range */
485 		if (range->pins) {
486 			int a;
487 			for (a = 0; a < range->npins; a++) {
488 				if (range->pins[a] == pin)
489 					return range;
490 			}
491 		} else if (pin >= range->pin_base &&
492 			   pin < range->pin_base + range->npins)
493 			return range;
494 	}
495 
496 	return NULL;
497 }
498 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
499 
500 /**
501  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
502  * @pctldev: the pin controller device to look in
503  * @pin: a controller-local number to find the range for
504  */
505 struct pinctrl_gpio_range *
506 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
507 				 unsigned int pin)
508 {
509 	struct pinctrl_gpio_range *range;
510 
511 	mutex_lock(&pctldev->mutex);
512 	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
513 	mutex_unlock(&pctldev->mutex);
514 
515 	return range;
516 }
517 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
518 
519 /**
520  * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
521  * @pctldev: pin controller device to remove the range from
522  * @range: the GPIO range to remove
523  */
524 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
525 			       struct pinctrl_gpio_range *range)
526 {
527 	mutex_lock(&pctldev->mutex);
528 	list_del(&range->node);
529 	mutex_unlock(&pctldev->mutex);
530 }
531 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
532 
533 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
534 
535 /**
536  * pinctrl_generic_get_group_count() - returns the number of pin groups
537  * @pctldev: pin controller device
538  */
539 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
540 {
541 	return pctldev->num_groups;
542 }
543 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
544 
545 /**
546  * pinctrl_generic_get_group_name() - returns the name of a pin group
547  * @pctldev: pin controller device
548  * @selector: group number
549  */
550 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
551 					   unsigned int selector)
552 {
553 	struct group_desc *group;
554 
555 	group = radix_tree_lookup(&pctldev->pin_group_tree,
556 				  selector);
557 	if (!group)
558 		return NULL;
559 
560 	return group->grp.name;
561 }
562 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
563 
564 /**
565  * pinctrl_generic_get_group_pins() - gets the pin group pins
566  * @pctldev: pin controller device
567  * @selector: group number
568  * @pins: pins in the group
569  * @num_pins: number of pins in the group
570  */
571 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
572 				   unsigned int selector,
573 				   const unsigned int **pins,
574 				   unsigned int *num_pins)
575 {
576 	struct group_desc *group;
577 
578 	group = radix_tree_lookup(&pctldev->pin_group_tree,
579 				  selector);
580 	if (!group) {
581 		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
582 			__func__, selector);
583 		return -EINVAL;
584 	}
585 
586 	*pins = group->grp.pins;
587 	*num_pins = group->grp.npins;
588 
589 	return 0;
590 }
591 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
592 
593 /**
594  * pinctrl_generic_get_group() - returns a pin group based on the number
595  * @pctldev: pin controller device
596  * @selector: group number
597  */
598 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
599 					     unsigned int selector)
600 {
601 	struct group_desc *group;
602 
603 	group = radix_tree_lookup(&pctldev->pin_group_tree,
604 				  selector);
605 	if (!group)
606 		return NULL;
607 
608 	return group;
609 }
610 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
611 
612 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
613 						  const char *function)
614 {
615 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
616 	int ngroups = ops->get_groups_count(pctldev);
617 	int selector = 0;
618 
619 	/* See if this pctldev has this group */
620 	while (selector < ngroups) {
621 		const char *gname = ops->get_group_name(pctldev, selector);
622 
623 		if (gname && !strcmp(function, gname))
624 			return selector;
625 
626 		selector++;
627 	}
628 
629 	return -EINVAL;
630 }
631 
632 /**
633  * pinctrl_generic_add_group() - adds a new pin group
634  * @pctldev: pin controller device
635  * @name: name of the pin group
636  * @pins: pins in the pin group
637  * @num_pins: number of pins in the pin group
638  * @data: pin controller driver specific data
639  *
640  * Note that the caller must take care of locking.
641  */
642 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
643 			      const unsigned int *pins, int num_pins, void *data)
644 {
645 	struct group_desc *group;
646 	int selector, error;
647 
648 	if (!name)
649 		return -EINVAL;
650 
651 	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
652 	if (selector >= 0)
653 		return selector;
654 
655 	selector = pctldev->num_groups;
656 
657 	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
658 	if (!group)
659 		return -ENOMEM;
660 
661 	*group = PINCTRL_GROUP_DESC(name, pins, num_pins, data);
662 
663 	error = radix_tree_insert(&pctldev->pin_group_tree, selector, group);
664 	if (error)
665 		return error;
666 
667 	pctldev->num_groups++;
668 
669 	return selector;
670 }
671 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
672 
673 /**
674  * pinctrl_generic_remove_group() - removes a numbered pin group
675  * @pctldev: pin controller device
676  * @selector: group number
677  *
678  * Note that the caller must take care of locking.
679  */
680 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
681 				 unsigned int selector)
682 {
683 	struct group_desc *group;
684 
685 	group = radix_tree_lookup(&pctldev->pin_group_tree,
686 				  selector);
687 	if (!group)
688 		return -ENOENT;
689 
690 	radix_tree_delete(&pctldev->pin_group_tree, selector);
691 	devm_kfree(pctldev->dev, group);
692 
693 	pctldev->num_groups--;
694 
695 	return 0;
696 }
697 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
698 
699 /**
700  * pinctrl_generic_free_groups() - removes all pin groups
701  * @pctldev: pin controller device
702  *
703  * Note that the caller must take care of locking. The pinctrl groups
704  * are allocated with devm_kzalloc() so no need to free them here.
705  */
706 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
707 {
708 	struct radix_tree_iter iter;
709 	void __rcu **slot;
710 
711 	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
712 		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
713 
714 	pctldev->num_groups = 0;
715 }
716 
717 #else
718 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
719 {
720 }
721 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
722 
723 /**
724  * pinctrl_get_group_selector() - returns the group selector for a group
725  * @pctldev: the pin controller handling the group
726  * @pin_group: the pin group to look up
727  */
728 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
729 			       const char *pin_group)
730 {
731 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
732 	unsigned int ngroups = pctlops->get_groups_count(pctldev);
733 	unsigned int group_selector = 0;
734 
735 	while (group_selector < ngroups) {
736 		const char *gname = pctlops->get_group_name(pctldev,
737 							    group_selector);
738 		if (gname && !strcmp(gname, pin_group)) {
739 			dev_dbg(pctldev->dev,
740 				"found group selector %u for %s\n",
741 				group_selector,
742 				pin_group);
743 			return group_selector;
744 		}
745 
746 		group_selector++;
747 	}
748 
749 	dev_err(pctldev->dev, "does not have pin group %s\n",
750 		pin_group);
751 
752 	return -EINVAL;
753 }
754 
755 bool pinctrl_gpio_can_use_line(struct gpio_chip *gc, unsigned int offset)
756 {
757 	struct pinctrl_dev *pctldev;
758 	struct pinctrl_gpio_range *range;
759 	bool result;
760 	int pin;
761 
762 	/*
763 	 * Try to obtain GPIO range, if it fails
764 	 * we're probably dealing with GPIO driver
765 	 * without a backing pin controller - bail out.
766 	 */
767 	if (pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range))
768 		return true;
769 
770 	mutex_lock(&pctldev->mutex);
771 
772 	/* Convert to the pin controllers number space */
773 	pin = gpio_to_pin(range, gc, offset);
774 
775 	result = pinmux_can_be_used_for_gpio(pctldev, pin);
776 
777 	mutex_unlock(&pctldev->mutex);
778 
779 	return result;
780 }
781 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
782 
783 /**
784  * pinctrl_gpio_request() - request a single pin to be used as GPIO
785  * @gc: GPIO chip structure from the GPIO subsystem
786  * @offset: hardware offset of the GPIO relative to the controller
787  *
788  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
789  * as part of their gpio_request() semantics, platforms and individual drivers
790  * shall *NOT* request GPIO pins to be muxed in.
791  */
792 int pinctrl_gpio_request(struct gpio_chip *gc, unsigned int offset)
793 {
794 	struct pinctrl_gpio_range *range;
795 	struct pinctrl_dev *pctldev;
796 	int ret, pin;
797 
798 	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
799 	if (ret) {
800 		if (pinctrl_ready_for_gpio_range(gc, offset))
801 			ret = 0;
802 		return ret;
803 	}
804 
805 	mutex_lock(&pctldev->mutex);
806 
807 	/* Convert to the pin controllers number space */
808 	pin = gpio_to_pin(range, gc, offset);
809 
810 	ret = pinmux_request_gpio(pctldev, range, pin, gc->base + offset);
811 
812 	mutex_unlock(&pctldev->mutex);
813 
814 	return ret;
815 }
816 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
817 
818 /**
819  * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
820  * @gc: GPIO chip structure from the GPIO subsystem
821  * @offset: hardware offset of the GPIO relative to the controller
822  *
823  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
824  * as part of their gpio_request() semantics, platforms and individual drivers
825  * shall *NOT* request GPIO pins to be muxed in.
826  */
827 void pinctrl_gpio_free(struct gpio_chip *gc, unsigned int offset)
828 {
829 	struct pinctrl_gpio_range *range;
830 	struct pinctrl_dev *pctldev;
831 	int ret, pin;
832 
833 	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
834 	if (ret)
835 		return;
836 
837 	mutex_lock(&pctldev->mutex);
838 
839 	/* Convert to the pin controllers number space */
840 	pin = gpio_to_pin(range, gc, offset);
841 
842 	pinmux_free_gpio(pctldev, pin, range);
843 
844 	mutex_unlock(&pctldev->mutex);
845 }
846 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
847 
848 static int pinctrl_gpio_direction(struct gpio_chip *gc, unsigned int offset,
849 				  bool input)
850 {
851 	struct pinctrl_dev *pctldev;
852 	struct pinctrl_gpio_range *range;
853 	int ret;
854 	int pin;
855 
856 	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
857 	if (ret) {
858 		return ret;
859 	}
860 
861 	mutex_lock(&pctldev->mutex);
862 
863 	/* Convert to the pin controllers number space */
864 	pin = gpio_to_pin(range, gc, offset);
865 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
866 
867 	mutex_unlock(&pctldev->mutex);
868 
869 	return ret;
870 }
871 
872 /**
873  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
874  * @gc: GPIO chip structure from the GPIO subsystem
875  * @offset: hardware offset of the GPIO relative to the controller
876  *
877  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
878  * as part of their gpio_direction_input() semantics, platforms and individual
879  * drivers shall *NOT* touch pin control GPIO calls.
880  */
881 int pinctrl_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
882 {
883 	return pinctrl_gpio_direction(gc, offset, true);
884 }
885 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
886 
887 /**
888  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
889  * @gc: GPIO chip structure from the GPIO subsystem
890  * @offset: hardware offset of the GPIO relative to the controller
891  *
892  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
893  * as part of their gpio_direction_output() semantics, platforms and individual
894  * drivers shall *NOT* touch pin control GPIO calls.
895  */
896 int pinctrl_gpio_direction_output(struct gpio_chip *gc, unsigned int offset)
897 {
898 	return pinctrl_gpio_direction(gc, offset, false);
899 }
900 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
901 
902 /**
903  * pinctrl_gpio_set_config() - Apply config to given GPIO pin
904  * @gc: GPIO chip structure from the GPIO subsystem
905  * @offset: hardware offset of the GPIO relative to the controller
906  * @config: the configuration to apply to the GPIO
907  *
908  * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
909  * they need to call the underlying pin controller to change GPIO config
910  * (for example set debounce time).
911  */
912 int pinctrl_gpio_set_config(struct gpio_chip *gc, unsigned int offset,
913 				unsigned long config)
914 {
915 	unsigned long configs[] = { config };
916 	struct pinctrl_gpio_range *range;
917 	struct pinctrl_dev *pctldev;
918 	int ret, pin;
919 
920 	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
921 	if (ret)
922 		return ret;
923 
924 	mutex_lock(&pctldev->mutex);
925 	pin = gpio_to_pin(range, gc, offset);
926 	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
927 	mutex_unlock(&pctldev->mutex);
928 
929 	return ret;
930 }
931 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
932 
933 static struct pinctrl_state *find_state(struct pinctrl *p,
934 					const char *name)
935 {
936 	struct pinctrl_state *state;
937 
938 	list_for_each_entry(state, &p->states, node)
939 		if (!strcmp(state->name, name))
940 			return state;
941 
942 	return NULL;
943 }
944 
945 static struct pinctrl_state *create_state(struct pinctrl *p,
946 					  const char *name)
947 {
948 	struct pinctrl_state *state;
949 
950 	state = kzalloc(sizeof(*state), GFP_KERNEL);
951 	if (!state)
952 		return ERR_PTR(-ENOMEM);
953 
954 	state->name = name;
955 	INIT_LIST_HEAD(&state->settings);
956 
957 	list_add_tail(&state->node, &p->states);
958 
959 	return state;
960 }
961 
962 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
963 		       const struct pinctrl_map *map)
964 {
965 	struct pinctrl_state *state;
966 	struct pinctrl_setting *setting;
967 	int ret;
968 
969 	state = find_state(p, map->name);
970 	if (!state)
971 		state = create_state(p, map->name);
972 	if (IS_ERR(state))
973 		return PTR_ERR(state);
974 
975 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
976 		return 0;
977 
978 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
979 	if (!setting)
980 		return -ENOMEM;
981 
982 	setting->type = map->type;
983 
984 	if (pctldev)
985 		setting->pctldev = pctldev;
986 	else
987 		setting->pctldev =
988 			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
989 	if (!setting->pctldev) {
990 		kfree(setting);
991 		/* Do not defer probing of hogs (circular loop) */
992 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
993 			return -ENODEV;
994 		/*
995 		 * OK let us guess that the driver is not there yet, and
996 		 * let's defer obtaining this pinctrl handle to later...
997 		 */
998 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
999 			map->ctrl_dev_name);
1000 		return -EPROBE_DEFER;
1001 	}
1002 
1003 	setting->dev_name = map->dev_name;
1004 
1005 	switch (map->type) {
1006 	case PIN_MAP_TYPE_MUX_GROUP:
1007 		ret = pinmux_map_to_setting(map, setting);
1008 		break;
1009 	case PIN_MAP_TYPE_CONFIGS_PIN:
1010 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1011 		ret = pinconf_map_to_setting(map, setting);
1012 		break;
1013 	default:
1014 		ret = -EINVAL;
1015 		break;
1016 	}
1017 	if (ret < 0) {
1018 		kfree(setting);
1019 		return ret;
1020 	}
1021 
1022 	list_add_tail(&setting->node, &state->settings);
1023 
1024 	return 0;
1025 }
1026 
1027 static struct pinctrl *find_pinctrl(struct device *dev)
1028 {
1029 	struct pinctrl *p;
1030 
1031 	mutex_lock(&pinctrl_list_mutex);
1032 	list_for_each_entry(p, &pinctrl_list, node)
1033 		if (p->dev == dev) {
1034 			mutex_unlock(&pinctrl_list_mutex);
1035 			return p;
1036 		}
1037 
1038 	mutex_unlock(&pinctrl_list_mutex);
1039 	return NULL;
1040 }
1041 
1042 static void pinctrl_free(struct pinctrl *p, bool inlist);
1043 
1044 static struct pinctrl *create_pinctrl(struct device *dev,
1045 				      struct pinctrl_dev *pctldev)
1046 {
1047 	struct pinctrl *p;
1048 	const char *devname;
1049 	struct pinctrl_maps *maps_node;
1050 	const struct pinctrl_map *map;
1051 	int ret;
1052 
1053 	/*
1054 	 * create the state cookie holder struct pinctrl for each
1055 	 * mapping, this is what consumers will get when requesting
1056 	 * a pin control handle with pinctrl_get()
1057 	 */
1058 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1059 	if (!p)
1060 		return ERR_PTR(-ENOMEM);
1061 	p->dev = dev;
1062 	INIT_LIST_HEAD(&p->states);
1063 	INIT_LIST_HEAD(&p->dt_maps);
1064 
1065 	ret = pinctrl_dt_to_map(p, pctldev);
1066 	if (ret < 0) {
1067 		kfree(p);
1068 		return ERR_PTR(ret);
1069 	}
1070 
1071 	devname = dev_name(dev);
1072 
1073 	mutex_lock(&pinctrl_maps_mutex);
1074 	/* Iterate over the pin control maps to locate the right ones */
1075 	for_each_pin_map(maps_node, map) {
1076 		/* Map must be for this device */
1077 		if (strcmp(map->dev_name, devname))
1078 			continue;
1079 		/*
1080 		 * If pctldev is not null, we are claiming hog for it,
1081 		 * that means, setting that is served by pctldev by itself.
1082 		 *
1083 		 * Thus we must skip map that is for this device but is served
1084 		 * by other device.
1085 		 */
1086 		if (pctldev &&
1087 		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1088 			continue;
1089 
1090 		ret = add_setting(p, pctldev, map);
1091 		/*
1092 		 * At this point the adding of a setting may:
1093 		 *
1094 		 * - Defer, if the pinctrl device is not yet available
1095 		 * - Fail, if the pinctrl device is not yet available,
1096 		 *   AND the setting is a hog. We cannot defer that, since
1097 		 *   the hog will kick in immediately after the device
1098 		 *   is registered.
1099 		 *
1100 		 * If the error returned was not -EPROBE_DEFER then we
1101 		 * accumulate the errors to see if we end up with
1102 		 * an -EPROBE_DEFER later, as that is the worst case.
1103 		 */
1104 		if (ret == -EPROBE_DEFER) {
1105 			pinctrl_free(p, false);
1106 			mutex_unlock(&pinctrl_maps_mutex);
1107 			return ERR_PTR(ret);
1108 		}
1109 	}
1110 	mutex_unlock(&pinctrl_maps_mutex);
1111 
1112 	if (ret < 0) {
1113 		/* If some other error than deferral occurred, return here */
1114 		pinctrl_free(p, false);
1115 		return ERR_PTR(ret);
1116 	}
1117 
1118 	kref_init(&p->users);
1119 
1120 	/* Add the pinctrl handle to the global list */
1121 	mutex_lock(&pinctrl_list_mutex);
1122 	list_add_tail(&p->node, &pinctrl_list);
1123 	mutex_unlock(&pinctrl_list_mutex);
1124 
1125 	return p;
1126 }
1127 
1128 /**
1129  * pinctrl_get() - retrieves the pinctrl handle for a device
1130  * @dev: the device to obtain the handle for
1131  */
1132 struct pinctrl *pinctrl_get(struct device *dev)
1133 {
1134 	struct pinctrl *p;
1135 
1136 	if (WARN_ON(!dev))
1137 		return ERR_PTR(-EINVAL);
1138 
1139 	/*
1140 	 * See if somebody else (such as the device core) has already
1141 	 * obtained a handle to the pinctrl for this device. In that case,
1142 	 * return another pointer to it.
1143 	 */
1144 	p = find_pinctrl(dev);
1145 	if (p) {
1146 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1147 		kref_get(&p->users);
1148 		return p;
1149 	}
1150 
1151 	return create_pinctrl(dev, NULL);
1152 }
1153 EXPORT_SYMBOL_GPL(pinctrl_get);
1154 
1155 static void pinctrl_free_setting(bool disable_setting,
1156 				 struct pinctrl_setting *setting)
1157 {
1158 	switch (setting->type) {
1159 	case PIN_MAP_TYPE_MUX_GROUP:
1160 		if (disable_setting)
1161 			pinmux_disable_setting(setting);
1162 		pinmux_free_setting(setting);
1163 		break;
1164 	case PIN_MAP_TYPE_CONFIGS_PIN:
1165 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1166 		pinconf_free_setting(setting);
1167 		break;
1168 	default:
1169 		break;
1170 	}
1171 }
1172 
1173 static void pinctrl_free(struct pinctrl *p, bool inlist)
1174 {
1175 	struct pinctrl_state *state, *n1;
1176 	struct pinctrl_setting *setting, *n2;
1177 
1178 	mutex_lock(&pinctrl_list_mutex);
1179 	list_for_each_entry_safe(state, n1, &p->states, node) {
1180 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1181 			pinctrl_free_setting(state == p->state, setting);
1182 			list_del(&setting->node);
1183 			kfree(setting);
1184 		}
1185 		list_del(&state->node);
1186 		kfree(state);
1187 	}
1188 
1189 	pinctrl_dt_free_maps(p);
1190 
1191 	if (inlist)
1192 		list_del(&p->node);
1193 	kfree(p);
1194 	mutex_unlock(&pinctrl_list_mutex);
1195 }
1196 
1197 /**
1198  * pinctrl_release() - release the pinctrl handle
1199  * @kref: the kref in the pinctrl being released
1200  */
1201 static void pinctrl_release(struct kref *kref)
1202 {
1203 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1204 
1205 	pinctrl_free(p, true);
1206 }
1207 
1208 /**
1209  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1210  * @p: the pinctrl handle to release
1211  */
1212 void pinctrl_put(struct pinctrl *p)
1213 {
1214 	kref_put(&p->users, pinctrl_release);
1215 }
1216 EXPORT_SYMBOL_GPL(pinctrl_put);
1217 
1218 /**
1219  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1220  * @p: the pinctrl handle to retrieve the state from
1221  * @name: the state name to retrieve
1222  */
1223 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1224 						 const char *name)
1225 {
1226 	struct pinctrl_state *state;
1227 
1228 	state = find_state(p, name);
1229 	if (!state) {
1230 		if (pinctrl_dummy_state) {
1231 			/* create dummy state */
1232 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1233 				name);
1234 			state = create_state(p, name);
1235 		} else
1236 			state = ERR_PTR(-ENODEV);
1237 	}
1238 
1239 	return state;
1240 }
1241 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1242 
1243 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1244 			     struct device *consumer)
1245 {
1246 	if (pctldev->desc->link_consumers)
1247 		device_link_add(consumer, pctldev->dev,
1248 				DL_FLAG_PM_RUNTIME |
1249 				DL_FLAG_AUTOREMOVE_CONSUMER);
1250 }
1251 
1252 /**
1253  * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1254  * @p: the pinctrl handle for the device that requests configuration
1255  * @state: the state handle to select/activate/program
1256  */
1257 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1258 {
1259 	struct pinctrl_setting *setting, *setting2;
1260 	struct pinctrl_state *old_state = READ_ONCE(p->state);
1261 	int ret;
1262 
1263 	if (old_state) {
1264 		/*
1265 		 * For each pinmux setting in the old state, forget SW's record
1266 		 * of mux owner for that pingroup. Any pingroups which are
1267 		 * still owned by the new state will be re-acquired by the call
1268 		 * to pinmux_enable_setting() in the loop below.
1269 		 */
1270 		list_for_each_entry(setting, &old_state->settings, node) {
1271 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1272 				continue;
1273 			pinmux_disable_setting(setting);
1274 		}
1275 	}
1276 
1277 	p->state = NULL;
1278 
1279 	/* Apply all the settings for the new state - pinmux first */
1280 	list_for_each_entry(setting, &state->settings, node) {
1281 		switch (setting->type) {
1282 		case PIN_MAP_TYPE_MUX_GROUP:
1283 			ret = pinmux_enable_setting(setting);
1284 			break;
1285 		case PIN_MAP_TYPE_CONFIGS_PIN:
1286 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1287 			ret = 0;
1288 			break;
1289 		default:
1290 			ret = -EINVAL;
1291 			break;
1292 		}
1293 
1294 		if (ret < 0)
1295 			goto unapply_new_state;
1296 
1297 		/* Do not link hogs (circular dependency) */
1298 		if (p != setting->pctldev->p)
1299 			pinctrl_link_add(setting->pctldev, p->dev);
1300 	}
1301 
1302 	/* Apply all the settings for the new state - pinconf after */
1303 	list_for_each_entry(setting, &state->settings, node) {
1304 		switch (setting->type) {
1305 		case PIN_MAP_TYPE_MUX_GROUP:
1306 			ret = 0;
1307 			break;
1308 		case PIN_MAP_TYPE_CONFIGS_PIN:
1309 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1310 			ret = pinconf_apply_setting(setting);
1311 			break;
1312 		default:
1313 			ret = -EINVAL;
1314 			break;
1315 		}
1316 
1317 		if (ret < 0) {
1318 			goto unapply_new_state;
1319 		}
1320 
1321 		/* Do not link hogs (circular dependency) */
1322 		if (p != setting->pctldev->p)
1323 			pinctrl_link_add(setting->pctldev, p->dev);
1324 	}
1325 
1326 	p->state = state;
1327 
1328 	return 0;
1329 
1330 unapply_new_state:
1331 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1332 
1333 	list_for_each_entry(setting2, &state->settings, node) {
1334 		if (&setting2->node == &setting->node)
1335 			break;
1336 		/*
1337 		 * All we can do here is pinmux_disable_setting.
1338 		 * That means that some pins are muxed differently now
1339 		 * than they were before applying the setting (We can't
1340 		 * "unmux a pin"!), but it's not a big deal since the pins
1341 		 * are free to be muxed by another apply_setting.
1342 		 */
1343 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1344 			pinmux_disable_setting(setting2);
1345 	}
1346 
1347 	/* There's no infinite recursive loop here because p->state is NULL */
1348 	if (old_state)
1349 		pinctrl_select_state(p, old_state);
1350 
1351 	return ret;
1352 }
1353 
1354 /**
1355  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1356  * @p: the pinctrl handle for the device that requests configuration
1357  * @state: the state handle to select/activate/program
1358  */
1359 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1360 {
1361 	if (p->state == state)
1362 		return 0;
1363 
1364 	return pinctrl_commit_state(p, state);
1365 }
1366 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1367 
1368 static void devm_pinctrl_release(struct device *dev, void *res)
1369 {
1370 	pinctrl_put(*(struct pinctrl **)res);
1371 }
1372 
1373 /**
1374  * devm_pinctrl_get() - Resource managed pinctrl_get()
1375  * @dev: the device to obtain the handle for
1376  *
1377  * If there is a need to explicitly destroy the returned struct pinctrl,
1378  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1379  */
1380 struct pinctrl *devm_pinctrl_get(struct device *dev)
1381 {
1382 	struct pinctrl **ptr, *p;
1383 
1384 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1385 	if (!ptr)
1386 		return ERR_PTR(-ENOMEM);
1387 
1388 	p = pinctrl_get(dev);
1389 	if (!IS_ERR(p)) {
1390 		*ptr = p;
1391 		devres_add(dev, ptr);
1392 	} else {
1393 		devres_free(ptr);
1394 	}
1395 
1396 	return p;
1397 }
1398 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1399 
1400 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1401 {
1402 	struct pinctrl **p = res;
1403 
1404 	return *p == data;
1405 }
1406 
1407 /**
1408  * devm_pinctrl_put() - Resource managed pinctrl_put()
1409  * @p: the pinctrl handle to release
1410  *
1411  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1412  * this function will not need to be called and the resource management
1413  * code will ensure that the resource is freed.
1414  */
1415 void devm_pinctrl_put(struct pinctrl *p)
1416 {
1417 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1418 			       devm_pinctrl_match, p));
1419 }
1420 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1421 
1422 /**
1423  * pinctrl_register_mappings() - register a set of pin controller mappings
1424  * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1425  *	keeps a reference to the passed in maps, so they should _not_ be
1426  *	marked with __initdata.
1427  * @num_maps: the number of maps in the mapping table
1428  */
1429 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1430 			      unsigned int num_maps)
1431 {
1432 	int i, ret;
1433 	struct pinctrl_maps *maps_node;
1434 
1435 	pr_debug("add %u pinctrl maps\n", num_maps);
1436 
1437 	/* First sanity check the new mapping */
1438 	for (i = 0; i < num_maps; i++) {
1439 		if (!maps[i].dev_name) {
1440 			pr_err("failed to register map %s (%d): no device given\n",
1441 			       maps[i].name, i);
1442 			return -EINVAL;
1443 		}
1444 
1445 		if (!maps[i].name) {
1446 			pr_err("failed to register map %d: no map name given\n",
1447 			       i);
1448 			return -EINVAL;
1449 		}
1450 
1451 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1452 				!maps[i].ctrl_dev_name) {
1453 			pr_err("failed to register map %s (%d): no pin control device given\n",
1454 			       maps[i].name, i);
1455 			return -EINVAL;
1456 		}
1457 
1458 		switch (maps[i].type) {
1459 		case PIN_MAP_TYPE_DUMMY_STATE:
1460 			break;
1461 		case PIN_MAP_TYPE_MUX_GROUP:
1462 			ret = pinmux_validate_map(&maps[i], i);
1463 			if (ret < 0)
1464 				return ret;
1465 			break;
1466 		case PIN_MAP_TYPE_CONFIGS_PIN:
1467 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1468 			ret = pinconf_validate_map(&maps[i], i);
1469 			if (ret < 0)
1470 				return ret;
1471 			break;
1472 		default:
1473 			pr_err("failed to register map %s (%d): invalid type given\n",
1474 			       maps[i].name, i);
1475 			return -EINVAL;
1476 		}
1477 	}
1478 
1479 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1480 	if (!maps_node)
1481 		return -ENOMEM;
1482 
1483 	maps_node->maps = maps;
1484 	maps_node->num_maps = num_maps;
1485 
1486 	mutex_lock(&pinctrl_maps_mutex);
1487 	list_add_tail(&maps_node->node, &pinctrl_maps);
1488 	mutex_unlock(&pinctrl_maps_mutex);
1489 
1490 	return 0;
1491 }
1492 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1493 
1494 /**
1495  * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1496  * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1497  *	when registering the mappings.
1498  */
1499 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1500 {
1501 	struct pinctrl_maps *maps_node;
1502 
1503 	mutex_lock(&pinctrl_maps_mutex);
1504 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1505 		if (maps_node->maps == map) {
1506 			list_del(&maps_node->node);
1507 			kfree(maps_node);
1508 			mutex_unlock(&pinctrl_maps_mutex);
1509 			return;
1510 		}
1511 	}
1512 	mutex_unlock(&pinctrl_maps_mutex);
1513 }
1514 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1515 
1516 /**
1517  * pinctrl_force_sleep() - turn a given controller device into sleep state
1518  * @pctldev: pin controller device
1519  */
1520 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1521 {
1522 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1523 		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1524 	return 0;
1525 }
1526 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1527 
1528 /**
1529  * pinctrl_force_default() - turn a given controller device into default state
1530  * @pctldev: pin controller device
1531  */
1532 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1533 {
1534 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1535 		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1536 	return 0;
1537 }
1538 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1539 
1540 /**
1541  * pinctrl_init_done() - tell pinctrl probe is done
1542  *
1543  * We'll use this time to switch the pins from "init" to "default" unless the
1544  * driver selected some other state.
1545  *
1546  * @dev: device to that's done probing
1547  */
1548 int pinctrl_init_done(struct device *dev)
1549 {
1550 	struct dev_pin_info *pins = dev->pins;
1551 	int ret;
1552 
1553 	if (!pins)
1554 		return 0;
1555 
1556 	if (IS_ERR(pins->init_state))
1557 		return 0; /* No such state */
1558 
1559 	if (pins->p->state != pins->init_state)
1560 		return 0; /* Not at init anyway */
1561 
1562 	if (IS_ERR(pins->default_state))
1563 		return 0; /* No default state */
1564 
1565 	ret = pinctrl_select_state(pins->p, pins->default_state);
1566 	if (ret)
1567 		dev_err(dev, "failed to activate default pinctrl state\n");
1568 
1569 	return ret;
1570 }
1571 
1572 static int pinctrl_select_bound_state(struct device *dev,
1573 				      struct pinctrl_state *state)
1574 {
1575 	struct dev_pin_info *pins = dev->pins;
1576 	int ret;
1577 
1578 	if (IS_ERR(state))
1579 		return 0; /* No such state */
1580 	ret = pinctrl_select_state(pins->p, state);
1581 	if (ret)
1582 		dev_err(dev, "failed to activate pinctrl state %s\n",
1583 			state->name);
1584 	return ret;
1585 }
1586 
1587 /**
1588  * pinctrl_select_default_state() - select default pinctrl state
1589  * @dev: device to select default state for
1590  */
1591 int pinctrl_select_default_state(struct device *dev)
1592 {
1593 	if (!dev->pins)
1594 		return 0;
1595 
1596 	return pinctrl_select_bound_state(dev, dev->pins->default_state);
1597 }
1598 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1599 
1600 #ifdef CONFIG_PM
1601 
1602 /**
1603  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1604  * @dev: device to select default state for
1605  */
1606 int pinctrl_pm_select_default_state(struct device *dev)
1607 {
1608 	return pinctrl_select_default_state(dev);
1609 }
1610 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1611 
1612 /**
1613  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1614  * @dev: device to select sleep state for
1615  */
1616 int pinctrl_pm_select_sleep_state(struct device *dev)
1617 {
1618 	if (!dev->pins)
1619 		return 0;
1620 
1621 	return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1622 }
1623 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1624 
1625 /**
1626  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1627  * @dev: device to select idle state for
1628  */
1629 int pinctrl_pm_select_idle_state(struct device *dev)
1630 {
1631 	if (!dev->pins)
1632 		return 0;
1633 
1634 	return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1635 }
1636 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1637 #endif
1638 
1639 #ifdef CONFIG_DEBUG_FS
1640 
1641 static int pinctrl_pins_show(struct seq_file *s, void *what)
1642 {
1643 	struct pinctrl_dev *pctldev = s->private;
1644 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1645 	unsigned int i, pin;
1646 #ifdef CONFIG_GPIOLIB
1647 	struct gpio_device *gdev __free(gpio_device_put) = NULL;
1648 	struct pinctrl_gpio_range *range;
1649 	int gpio_num;
1650 #endif
1651 
1652 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1653 
1654 	mutex_lock(&pctldev->mutex);
1655 
1656 	/* The pin number can be retrived from the pin controller descriptor */
1657 	for (i = 0; i < pctldev->desc->npins; i++) {
1658 		struct pin_desc *desc;
1659 
1660 		pin = pctldev->desc->pins[i].number;
1661 		desc = pin_desc_get(pctldev, pin);
1662 		/* Pin space may be sparse */
1663 		if (!desc)
1664 			continue;
1665 
1666 		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1667 
1668 #ifdef CONFIG_GPIOLIB
1669 		gpio_num = -1;
1670 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1671 			if ((pin >= range->pin_base) &&
1672 			    (pin < (range->pin_base + range->npins))) {
1673 				gpio_num = range->base + (pin - range->pin_base);
1674 				break;
1675 			}
1676 		}
1677 		if (gpio_num >= 0)
1678 			/*
1679 			 * FIXME: gpio_num comes from the global GPIO numberspace.
1680 			 * we need to get rid of the range->base eventually and
1681 			 * get the descriptor directly from the gpio_chip.
1682 			 */
1683 			gdev = gpiod_to_gpio_device(gpio_to_desc(gpio_num));
1684 		if (gdev)
1685 			seq_printf(s, "%u:%s ",
1686 				   gpio_num - gpio_device_get_base(gdev),
1687 				   gpio_device_get_label(gdev));
1688 		else
1689 			seq_puts(s, "0:? ");
1690 #endif
1691 
1692 		/* Driver-specific info per pin */
1693 		if (ops->pin_dbg_show)
1694 			ops->pin_dbg_show(pctldev, s, pin);
1695 
1696 		seq_puts(s, "\n");
1697 	}
1698 
1699 	mutex_unlock(&pctldev->mutex);
1700 
1701 	return 0;
1702 }
1703 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1704 
1705 static int pinctrl_groups_show(struct seq_file *s, void *what)
1706 {
1707 	struct pinctrl_dev *pctldev = s->private;
1708 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1709 	unsigned int ngroups, selector = 0;
1710 
1711 	mutex_lock(&pctldev->mutex);
1712 
1713 	ngroups = ops->get_groups_count(pctldev);
1714 
1715 	seq_puts(s, "registered pin groups:\n");
1716 	while (selector < ngroups) {
1717 		const unsigned int *pins = NULL;
1718 		unsigned int num_pins = 0;
1719 		const char *gname = ops->get_group_name(pctldev, selector);
1720 		const char *pname;
1721 		int ret = 0;
1722 		int i;
1723 
1724 		if (ops->get_group_pins)
1725 			ret = ops->get_group_pins(pctldev, selector,
1726 						  &pins, &num_pins);
1727 		if (ret)
1728 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1729 				   gname);
1730 		else {
1731 			seq_printf(s, "group: %s\n", gname);
1732 			for (i = 0; i < num_pins; i++) {
1733 				pname = pin_get_name(pctldev, pins[i]);
1734 				if (WARN_ON(!pname)) {
1735 					mutex_unlock(&pctldev->mutex);
1736 					return -EINVAL;
1737 				}
1738 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1739 			}
1740 			seq_puts(s, "\n");
1741 		}
1742 		selector++;
1743 	}
1744 
1745 	mutex_unlock(&pctldev->mutex);
1746 
1747 	return 0;
1748 }
1749 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1750 
1751 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1752 {
1753 	struct pinctrl_dev *pctldev = s->private;
1754 	struct pinctrl_gpio_range *range;
1755 
1756 	seq_puts(s, "GPIO ranges handled:\n");
1757 
1758 	mutex_lock(&pctldev->mutex);
1759 
1760 	/* Loop over the ranges */
1761 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1762 		if (range->pins) {
1763 			int a;
1764 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1765 				range->id, range->name,
1766 				range->base, (range->base + range->npins - 1));
1767 			for (a = 0; a < range->npins - 1; a++)
1768 				seq_printf(s, "%u, ", range->pins[a]);
1769 			seq_printf(s, "%u}\n", range->pins[a]);
1770 		}
1771 		else
1772 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1773 				range->id, range->name,
1774 				range->base, (range->base + range->npins - 1),
1775 				range->pin_base,
1776 				(range->pin_base + range->npins - 1));
1777 	}
1778 
1779 	mutex_unlock(&pctldev->mutex);
1780 
1781 	return 0;
1782 }
1783 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1784 
1785 static int pinctrl_devices_show(struct seq_file *s, void *what)
1786 {
1787 	struct pinctrl_dev *pctldev;
1788 
1789 	seq_puts(s, "name [pinmux] [pinconf]\n");
1790 
1791 	mutex_lock(&pinctrldev_list_mutex);
1792 
1793 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1794 		seq_printf(s, "%s ", pctldev->desc->name);
1795 		if (pctldev->desc->pmxops)
1796 			seq_puts(s, "yes ");
1797 		else
1798 			seq_puts(s, "no ");
1799 		if (pctldev->desc->confops)
1800 			seq_puts(s, "yes");
1801 		else
1802 			seq_puts(s, "no");
1803 		seq_puts(s, "\n");
1804 	}
1805 
1806 	mutex_unlock(&pinctrldev_list_mutex);
1807 
1808 	return 0;
1809 }
1810 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1811 
1812 static inline const char *map_type(enum pinctrl_map_type type)
1813 {
1814 	static const char * const names[] = {
1815 		"INVALID",
1816 		"DUMMY_STATE",
1817 		"MUX_GROUP",
1818 		"CONFIGS_PIN",
1819 		"CONFIGS_GROUP",
1820 	};
1821 
1822 	if (type >= ARRAY_SIZE(names))
1823 		return "UNKNOWN";
1824 
1825 	return names[type];
1826 }
1827 
1828 static int pinctrl_maps_show(struct seq_file *s, void *what)
1829 {
1830 	struct pinctrl_maps *maps_node;
1831 	const struct pinctrl_map *map;
1832 
1833 	seq_puts(s, "Pinctrl maps:\n");
1834 
1835 	mutex_lock(&pinctrl_maps_mutex);
1836 	for_each_pin_map(maps_node, map) {
1837 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1838 			   map->dev_name, map->name, map_type(map->type),
1839 			   map->type);
1840 
1841 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1842 			seq_printf(s, "controlling device %s\n",
1843 				   map->ctrl_dev_name);
1844 
1845 		switch (map->type) {
1846 		case PIN_MAP_TYPE_MUX_GROUP:
1847 			pinmux_show_map(s, map);
1848 			break;
1849 		case PIN_MAP_TYPE_CONFIGS_PIN:
1850 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1851 			pinconf_show_map(s, map);
1852 			break;
1853 		default:
1854 			break;
1855 		}
1856 
1857 		seq_putc(s, '\n');
1858 	}
1859 	mutex_unlock(&pinctrl_maps_mutex);
1860 
1861 	return 0;
1862 }
1863 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1864 
1865 static int pinctrl_show(struct seq_file *s, void *what)
1866 {
1867 	struct pinctrl *p;
1868 	struct pinctrl_state *state;
1869 	struct pinctrl_setting *setting;
1870 
1871 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1872 
1873 	mutex_lock(&pinctrl_list_mutex);
1874 
1875 	list_for_each_entry(p, &pinctrl_list, node) {
1876 		seq_printf(s, "device: %s current state: %s\n",
1877 			   dev_name(p->dev),
1878 			   p->state ? p->state->name : "none");
1879 
1880 		list_for_each_entry(state, &p->states, node) {
1881 			seq_printf(s, "  state: %s\n", state->name);
1882 
1883 			list_for_each_entry(setting, &state->settings, node) {
1884 				struct pinctrl_dev *pctldev = setting->pctldev;
1885 
1886 				seq_printf(s, "    type: %s controller %s ",
1887 					   map_type(setting->type),
1888 					   pinctrl_dev_get_name(pctldev));
1889 
1890 				switch (setting->type) {
1891 				case PIN_MAP_TYPE_MUX_GROUP:
1892 					pinmux_show_setting(s, setting);
1893 					break;
1894 				case PIN_MAP_TYPE_CONFIGS_PIN:
1895 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1896 					pinconf_show_setting(s, setting);
1897 					break;
1898 				default:
1899 					break;
1900 				}
1901 			}
1902 		}
1903 	}
1904 
1905 	mutex_unlock(&pinctrl_list_mutex);
1906 
1907 	return 0;
1908 }
1909 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1910 
1911 static struct dentry *debugfs_root;
1912 
1913 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1914 {
1915 	struct dentry *device_root;
1916 	const char *debugfs_name;
1917 
1918 	if (pctldev->desc->name &&
1919 			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1920 		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1921 				"%s-%s", dev_name(pctldev->dev),
1922 				pctldev->desc->name);
1923 		if (!debugfs_name) {
1924 			pr_warn("failed to determine debugfs dir name for %s\n",
1925 				dev_name(pctldev->dev));
1926 			return;
1927 		}
1928 	} else {
1929 		debugfs_name = dev_name(pctldev->dev);
1930 	}
1931 
1932 	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1933 	pctldev->device_root = device_root;
1934 
1935 	if (IS_ERR(device_root) || !device_root) {
1936 		pr_warn("failed to create debugfs directory for %s\n",
1937 			dev_name(pctldev->dev));
1938 		return;
1939 	}
1940 	debugfs_create_file("pins", 0444,
1941 			    device_root, pctldev, &pinctrl_pins_fops);
1942 	debugfs_create_file("pingroups", 0444,
1943 			    device_root, pctldev, &pinctrl_groups_fops);
1944 	debugfs_create_file("gpio-ranges", 0444,
1945 			    device_root, pctldev, &pinctrl_gpioranges_fops);
1946 	if (pctldev->desc->pmxops)
1947 		pinmux_init_device_debugfs(device_root, pctldev);
1948 	if (pctldev->desc->confops)
1949 		pinconf_init_device_debugfs(device_root, pctldev);
1950 }
1951 
1952 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1953 {
1954 	debugfs_remove_recursive(pctldev->device_root);
1955 }
1956 
1957 static void pinctrl_init_debugfs(void)
1958 {
1959 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1960 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1961 		pr_warn("failed to create debugfs directory\n");
1962 		debugfs_root = NULL;
1963 		return;
1964 	}
1965 
1966 	debugfs_create_file("pinctrl-devices", 0444,
1967 			    debugfs_root, NULL, &pinctrl_devices_fops);
1968 	debugfs_create_file("pinctrl-maps", 0444,
1969 			    debugfs_root, NULL, &pinctrl_maps_fops);
1970 	debugfs_create_file("pinctrl-handles", 0444,
1971 			    debugfs_root, NULL, &pinctrl_fops);
1972 }
1973 
1974 #else /* CONFIG_DEBUG_FS */
1975 
1976 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1977 {
1978 }
1979 
1980 static void pinctrl_init_debugfs(void)
1981 {
1982 }
1983 
1984 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1985 {
1986 }
1987 
1988 #endif
1989 
1990 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1991 {
1992 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1993 
1994 	if (!ops ||
1995 	    !ops->get_groups_count ||
1996 	    !ops->get_group_name)
1997 		return -EINVAL;
1998 
1999 	return 0;
2000 }
2001 
2002 /**
2003  * pinctrl_init_controller() - init a pin controller device
2004  * @pctldesc: descriptor for this pin controller
2005  * @dev: parent device for this pin controller
2006  * @driver_data: private pin controller data for this pin controller
2007  */
2008 static struct pinctrl_dev *
2009 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
2010 			void *driver_data)
2011 {
2012 	struct pinctrl_dev *pctldev;
2013 	int ret;
2014 
2015 	if (!pctldesc)
2016 		return ERR_PTR(-EINVAL);
2017 	if (!pctldesc->name)
2018 		return ERR_PTR(-EINVAL);
2019 
2020 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2021 	if (!pctldev)
2022 		return ERR_PTR(-ENOMEM);
2023 
2024 	/* Initialize pin control device struct */
2025 	pctldev->owner = pctldesc->owner;
2026 	pctldev->desc = pctldesc;
2027 	pctldev->driver_data = driver_data;
2028 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2029 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2030 	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2031 #endif
2032 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2033 	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2034 #endif
2035 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
2036 	INIT_LIST_HEAD(&pctldev->node);
2037 	pctldev->dev = dev;
2038 	mutex_init(&pctldev->mutex);
2039 
2040 	/* check core ops for sanity */
2041 	ret = pinctrl_check_ops(pctldev);
2042 	if (ret) {
2043 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
2044 		goto out_err;
2045 	}
2046 
2047 	/* If we're implementing pinmuxing, check the ops for sanity */
2048 	if (pctldesc->pmxops) {
2049 		ret = pinmux_check_ops(pctldev);
2050 		if (ret)
2051 			goto out_err;
2052 	}
2053 
2054 	/* If we're implementing pinconfig, check the ops for sanity */
2055 	if (pctldesc->confops) {
2056 		ret = pinconf_check_ops(pctldev);
2057 		if (ret)
2058 			goto out_err;
2059 	}
2060 
2061 	/* Register all the pins */
2062 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2063 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2064 	if (ret) {
2065 		dev_err(dev, "error during pin registration\n");
2066 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
2067 				      pctldesc->npins);
2068 		goto out_err;
2069 	}
2070 
2071 	return pctldev;
2072 
2073 out_err:
2074 	mutex_destroy(&pctldev->mutex);
2075 	kfree(pctldev);
2076 	return ERR_PTR(ret);
2077 }
2078 
2079 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2080 {
2081 	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2082 	if (PTR_ERR(pctldev->p) == -ENODEV) {
2083 		dev_dbg(pctldev->dev, "no hogs found\n");
2084 
2085 		return 0;
2086 	}
2087 
2088 	if (IS_ERR(pctldev->p)) {
2089 		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2090 			PTR_ERR(pctldev->p));
2091 
2092 		return PTR_ERR(pctldev->p);
2093 	}
2094 
2095 	pctldev->hog_default =
2096 		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2097 	if (IS_ERR(pctldev->hog_default)) {
2098 		dev_dbg(pctldev->dev,
2099 			"failed to lookup the default state\n");
2100 	} else {
2101 		if (pinctrl_select_state(pctldev->p,
2102 					 pctldev->hog_default))
2103 			dev_err(pctldev->dev,
2104 				"failed to select default state\n");
2105 	}
2106 
2107 	pctldev->hog_sleep =
2108 		pinctrl_lookup_state(pctldev->p,
2109 				     PINCTRL_STATE_SLEEP);
2110 	if (IS_ERR(pctldev->hog_sleep))
2111 		dev_dbg(pctldev->dev,
2112 			"failed to lookup the sleep state\n");
2113 
2114 	return 0;
2115 }
2116 
2117 int pinctrl_enable(struct pinctrl_dev *pctldev)
2118 {
2119 	int error;
2120 
2121 	error = pinctrl_claim_hogs(pctldev);
2122 	if (error) {
2123 		dev_err(pctldev->dev, "could not claim hogs: %i\n",
2124 			error);
2125 		pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2126 				      pctldev->desc->npins);
2127 		mutex_destroy(&pctldev->mutex);
2128 		kfree(pctldev);
2129 
2130 		return error;
2131 	}
2132 
2133 	mutex_lock(&pinctrldev_list_mutex);
2134 	list_add_tail(&pctldev->node, &pinctrldev_list);
2135 	mutex_unlock(&pinctrldev_list_mutex);
2136 
2137 	pinctrl_init_device_debugfs(pctldev);
2138 
2139 	return 0;
2140 }
2141 EXPORT_SYMBOL_GPL(pinctrl_enable);
2142 
2143 /**
2144  * pinctrl_register() - register a pin controller device
2145  * @pctldesc: descriptor for this pin controller
2146  * @dev: parent device for this pin controller
2147  * @driver_data: private pin controller data for this pin controller
2148  *
2149  * Note that pinctrl_register() is known to have problems as the pin
2150  * controller driver functions are called before the driver has a
2151  * struct pinctrl_dev handle. To avoid issues later on, please use the
2152  * new pinctrl_register_and_init() below instead.
2153  */
2154 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2155 				    struct device *dev, void *driver_data)
2156 {
2157 	struct pinctrl_dev *pctldev;
2158 	int error;
2159 
2160 	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2161 	if (IS_ERR(pctldev))
2162 		return pctldev;
2163 
2164 	error = pinctrl_enable(pctldev);
2165 	if (error)
2166 		return ERR_PTR(error);
2167 
2168 	return pctldev;
2169 }
2170 EXPORT_SYMBOL_GPL(pinctrl_register);
2171 
2172 /**
2173  * pinctrl_register_and_init() - register and init pin controller device
2174  * @pctldesc: descriptor for this pin controller
2175  * @dev: parent device for this pin controller
2176  * @driver_data: private pin controller data for this pin controller
2177  * @pctldev: pin controller device
2178  *
2179  * Note that pinctrl_enable() still needs to be manually called after
2180  * this once the driver is ready.
2181  */
2182 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2183 			      struct device *dev, void *driver_data,
2184 			      struct pinctrl_dev **pctldev)
2185 {
2186 	struct pinctrl_dev *p;
2187 
2188 	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2189 	if (IS_ERR(p))
2190 		return PTR_ERR(p);
2191 
2192 	/*
2193 	 * We have pinctrl_start() call functions in the pin controller
2194 	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2195 	 * let's make sure pctldev is properly initialized for the
2196 	 * pin controller driver before we do anything.
2197 	 */
2198 	*pctldev = p;
2199 
2200 	return 0;
2201 }
2202 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2203 
2204 /**
2205  * pinctrl_unregister() - unregister pinmux
2206  * @pctldev: pin controller to unregister
2207  *
2208  * Called by pinmux drivers to unregister a pinmux.
2209  */
2210 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2211 {
2212 	struct pinctrl_gpio_range *range, *n;
2213 
2214 	if (!pctldev)
2215 		return;
2216 
2217 	mutex_lock(&pctldev->mutex);
2218 	pinctrl_remove_device_debugfs(pctldev);
2219 	mutex_unlock(&pctldev->mutex);
2220 
2221 	if (!IS_ERR_OR_NULL(pctldev->p))
2222 		pinctrl_put(pctldev->p);
2223 
2224 	mutex_lock(&pinctrldev_list_mutex);
2225 	mutex_lock(&pctldev->mutex);
2226 	/* TODO: check that no pinmuxes are still active? */
2227 	list_del(&pctldev->node);
2228 	pinmux_generic_free_functions(pctldev);
2229 	pinctrl_generic_free_groups(pctldev);
2230 	/* Destroy descriptor tree */
2231 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2232 			      pctldev->desc->npins);
2233 	/* remove gpio ranges map */
2234 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2235 		list_del(&range->node);
2236 
2237 	mutex_unlock(&pctldev->mutex);
2238 	mutex_destroy(&pctldev->mutex);
2239 	kfree(pctldev);
2240 	mutex_unlock(&pinctrldev_list_mutex);
2241 }
2242 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2243 
2244 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2245 {
2246 	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2247 
2248 	pinctrl_unregister(pctldev);
2249 }
2250 
2251 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2252 {
2253 	struct pctldev **r = res;
2254 
2255 	if (WARN_ON(!r || !*r))
2256 		return 0;
2257 
2258 	return *r == data;
2259 }
2260 
2261 /**
2262  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2263  * @dev: parent device for this pin controller
2264  * @pctldesc: descriptor for this pin controller
2265  * @driver_data: private pin controller data for this pin controller
2266  *
2267  * Returns an error pointer if pincontrol register failed. Otherwise
2268  * it returns valid pinctrl handle.
2269  *
2270  * The pinctrl device will be automatically released when the device is unbound.
2271  */
2272 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2273 					  struct pinctrl_desc *pctldesc,
2274 					  void *driver_data)
2275 {
2276 	struct pinctrl_dev **ptr, *pctldev;
2277 
2278 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2279 	if (!ptr)
2280 		return ERR_PTR(-ENOMEM);
2281 
2282 	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2283 	if (IS_ERR(pctldev)) {
2284 		devres_free(ptr);
2285 		return pctldev;
2286 	}
2287 
2288 	*ptr = pctldev;
2289 	devres_add(dev, ptr);
2290 
2291 	return pctldev;
2292 }
2293 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2294 
2295 /**
2296  * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2297  * @dev: parent device for this pin controller
2298  * @pctldesc: descriptor for this pin controller
2299  * @driver_data: private pin controller data for this pin controller
2300  * @pctldev: pin controller device
2301  *
2302  * Returns zero on success or an error number on failure.
2303  *
2304  * The pinctrl device will be automatically released when the device is unbound.
2305  */
2306 int devm_pinctrl_register_and_init(struct device *dev,
2307 				   struct pinctrl_desc *pctldesc,
2308 				   void *driver_data,
2309 				   struct pinctrl_dev **pctldev)
2310 {
2311 	struct pinctrl_dev **ptr;
2312 	int error;
2313 
2314 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2315 	if (!ptr)
2316 		return -ENOMEM;
2317 
2318 	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2319 	if (error) {
2320 		devres_free(ptr);
2321 		return error;
2322 	}
2323 
2324 	*ptr = *pctldev;
2325 	devres_add(dev, ptr);
2326 
2327 	return 0;
2328 }
2329 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2330 
2331 /**
2332  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2333  * @dev: device for which resource was allocated
2334  * @pctldev: the pinctrl device to unregister.
2335  */
2336 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2337 {
2338 	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2339 			       devm_pinctrl_dev_match, pctldev));
2340 }
2341 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2342 
2343 static int __init pinctrl_init(void)
2344 {
2345 	pr_info("initialized pinctrl subsystem\n");
2346 	pinctrl_init_debugfs();
2347 	return 0;
2348 }
2349 
2350 /* init early since many drivers really need to initialized pinmux early */
2351 core_initcall(pinctrl_init);
2352