1 /* 2 * Core driver for the pin control subsystem 3 * 4 * Copyright (C) 2011-2012 ST-Ericsson SA 5 * Written on behalf of Linaro for ST-Ericsson 6 * Based on bits of regulator core, gpio core and clk core 7 * 8 * Author: Linus Walleij <linus.walleij@linaro.org> 9 * 10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 11 * 12 * License terms: GNU General Public License (GPL) version 2 13 */ 14 #define pr_fmt(fmt) "pinctrl core: " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/kref.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/slab.h> 22 #include <linux/err.h> 23 #include <linux/list.h> 24 #include <linux/sysfs.h> 25 #include <linux/debugfs.h> 26 #include <linux/seq_file.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pinctrl/pinctrl.h> 29 #include <linux/pinctrl/machine.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include <asm-generic/gpio.h> 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinmux.h" 38 #include "pinconf.h" 39 40 41 static bool pinctrl_dummy_state; 42 43 /* Mutex taken to protect pinctrl_list */ 44 static DEFINE_MUTEX(pinctrl_list_mutex); 45 46 /* Mutex taken to protect pinctrl_maps */ 47 DEFINE_MUTEX(pinctrl_maps_mutex); 48 49 /* Mutex taken to protect pinctrldev_list */ 50 static DEFINE_MUTEX(pinctrldev_list_mutex); 51 52 /* Global list of pin control devices (struct pinctrl_dev) */ 53 static LIST_HEAD(pinctrldev_list); 54 55 /* List of pin controller handles (struct pinctrl) */ 56 static LIST_HEAD(pinctrl_list); 57 58 /* List of pinctrl maps (struct pinctrl_maps) */ 59 LIST_HEAD(pinctrl_maps); 60 61 62 /** 63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 64 * 65 * Usually this function is called by platforms without pinctrl driver support 66 * but run with some shared drivers using pinctrl APIs. 67 * After calling this function, the pinctrl core will return successfully 68 * with creating a dummy state for the driver to keep going smoothly. 69 */ 70 void pinctrl_provide_dummies(void) 71 { 72 pinctrl_dummy_state = true; 73 } 74 75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 76 { 77 /* We're not allowed to register devices without name */ 78 return pctldev->desc->name; 79 } 80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 81 82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 83 { 84 return dev_name(pctldev->dev); 85 } 86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 87 88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 89 { 90 return pctldev->driver_data; 91 } 92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 93 94 /** 95 * get_pinctrl_dev_from_devname() - look up pin controller device 96 * @devname: the name of a device instance, as returned by dev_name() 97 * 98 * Looks up a pin control device matching a certain device name or pure device 99 * pointer, the pure device pointer will take precedence. 100 */ 101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 102 { 103 struct pinctrl_dev *pctldev = NULL; 104 105 if (!devname) 106 return NULL; 107 108 mutex_lock(&pinctrldev_list_mutex); 109 110 list_for_each_entry(pctldev, &pinctrldev_list, node) { 111 if (!strcmp(dev_name(pctldev->dev), devname)) { 112 /* Matched on device name */ 113 mutex_unlock(&pinctrldev_list_mutex); 114 return pctldev; 115 } 116 } 117 118 mutex_unlock(&pinctrldev_list_mutex); 119 120 return NULL; 121 } 122 123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 124 { 125 struct pinctrl_dev *pctldev; 126 127 mutex_lock(&pinctrldev_list_mutex); 128 129 list_for_each_entry(pctldev, &pinctrldev_list, node) 130 if (pctldev->dev->of_node == np) { 131 mutex_unlock(&pinctrldev_list_mutex); 132 return pctldev; 133 } 134 135 mutex_unlock(&pinctrldev_list_mutex); 136 137 return NULL; 138 } 139 140 /** 141 * pin_get_from_name() - look up a pin number from a name 142 * @pctldev: the pin control device to lookup the pin on 143 * @name: the name of the pin to look up 144 */ 145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 146 { 147 unsigned i, pin; 148 149 /* The pin number can be retrived from the pin controller descriptor */ 150 for (i = 0; i < pctldev->desc->npins; i++) { 151 struct pin_desc *desc; 152 153 pin = pctldev->desc->pins[i].number; 154 desc = pin_desc_get(pctldev, pin); 155 /* Pin space may be sparse */ 156 if (desc && !strcmp(name, desc->name)) 157 return pin; 158 } 159 160 return -EINVAL; 161 } 162 163 /** 164 * pin_get_name_from_id() - look up a pin name from a pin id 165 * @pctldev: the pin control device to lookup the pin on 166 * @name: the name of the pin to look up 167 */ 168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 169 { 170 const struct pin_desc *desc; 171 172 desc = pin_desc_get(pctldev, pin); 173 if (desc == NULL) { 174 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 175 pin); 176 return NULL; 177 } 178 179 return desc->name; 180 } 181 182 /** 183 * pin_is_valid() - check if pin exists on controller 184 * @pctldev: the pin control device to check the pin on 185 * @pin: pin to check, use the local pin controller index number 186 * 187 * This tells us whether a certain pin exist on a certain pin controller or 188 * not. Pin lists may be sparse, so some pins may not exist. 189 */ 190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 191 { 192 struct pin_desc *pindesc; 193 194 if (pin < 0) 195 return false; 196 197 mutex_lock(&pctldev->mutex); 198 pindesc = pin_desc_get(pctldev, pin); 199 mutex_unlock(&pctldev->mutex); 200 201 return pindesc != NULL; 202 } 203 EXPORT_SYMBOL_GPL(pin_is_valid); 204 205 /* Deletes a range of pin descriptors */ 206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 207 const struct pinctrl_pin_desc *pins, 208 unsigned num_pins) 209 { 210 int i; 211 212 for (i = 0; i < num_pins; i++) { 213 struct pin_desc *pindesc; 214 215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 216 pins[i].number); 217 if (pindesc != NULL) { 218 radix_tree_delete(&pctldev->pin_desc_tree, 219 pins[i].number); 220 if (pindesc->dynamic_name) 221 kfree(pindesc->name); 222 } 223 kfree(pindesc); 224 } 225 } 226 227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 228 const struct pinctrl_pin_desc *pin) 229 { 230 struct pin_desc *pindesc; 231 232 pindesc = pin_desc_get(pctldev, pin->number); 233 if (pindesc != NULL) { 234 dev_err(pctldev->dev, "pin %d already registered\n", 235 pin->number); 236 return -EINVAL; 237 } 238 239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 240 if (!pindesc) 241 return -ENOMEM; 242 243 /* Set owner */ 244 pindesc->pctldev = pctldev; 245 246 /* Copy basic pin info */ 247 if (pin->name) { 248 pindesc->name = pin->name; 249 } else { 250 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 251 if (pindesc->name == NULL) { 252 kfree(pindesc); 253 return -ENOMEM; 254 } 255 pindesc->dynamic_name = true; 256 } 257 258 pindesc->drv_data = pin->drv_data; 259 260 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 261 pr_debug("registered pin %d (%s) on %s\n", 262 pin->number, pindesc->name, pctldev->desc->name); 263 return 0; 264 } 265 266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 267 struct pinctrl_pin_desc const *pins, 268 unsigned num_descs) 269 { 270 unsigned i; 271 int ret = 0; 272 273 for (i = 0; i < num_descs; i++) { 274 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 275 if (ret) 276 return ret; 277 } 278 279 return 0; 280 } 281 282 /** 283 * gpio_to_pin() - GPIO range GPIO number to pin number translation 284 * @range: GPIO range used for the translation 285 * @gpio: gpio pin to translate to a pin number 286 * 287 * Finds the pin number for a given GPIO using the specified GPIO range 288 * as a base for translation. The distinction between linear GPIO ranges 289 * and pin list based GPIO ranges is managed correctly by this function. 290 * 291 * This function assumes the gpio is part of the specified GPIO range, use 292 * only after making sure this is the case (e.g. by calling it on the 293 * result of successful pinctrl_get_device_gpio_range calls)! 294 */ 295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 296 unsigned int gpio) 297 { 298 unsigned int offset = gpio - range->base; 299 if (range->pins) 300 return range->pins[offset]; 301 else 302 return range->pin_base + offset; 303 } 304 305 /** 306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 307 * @pctldev: pin controller device to check 308 * @gpio: gpio pin to check taken from the global GPIO pin space 309 * 310 * Tries to match a GPIO pin number to the ranges handled by a certain pin 311 * controller, return the range or NULL 312 */ 313 static struct pinctrl_gpio_range * 314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 315 { 316 struct pinctrl_gpio_range *range = NULL; 317 318 mutex_lock(&pctldev->mutex); 319 /* Loop over the ranges */ 320 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 321 /* Check if we're in the valid range */ 322 if (gpio >= range->base && 323 gpio < range->base + range->npins) { 324 mutex_unlock(&pctldev->mutex); 325 return range; 326 } 327 } 328 mutex_unlock(&pctldev->mutex); 329 return NULL; 330 } 331 332 /** 333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 334 * the same GPIO chip are in range 335 * @gpio: gpio pin to check taken from the global GPIO pin space 336 * 337 * This function is complement of pinctrl_match_gpio_range(). If the return 338 * value of pinctrl_match_gpio_range() is NULL, this function could be used 339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 340 * of the same GPIO chip don't have back-end pinctrl interface. 341 * If the return value is true, it means that pinctrl device is ready & the 342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 343 * is false, it means that pinctrl device may not be ready. 344 */ 345 #ifdef CONFIG_GPIOLIB 346 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 347 { 348 struct pinctrl_dev *pctldev; 349 struct pinctrl_gpio_range *range = NULL; 350 struct gpio_chip *chip = gpio_to_chip(gpio); 351 352 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 353 return false; 354 355 mutex_lock(&pinctrldev_list_mutex); 356 357 /* Loop over the pin controllers */ 358 list_for_each_entry(pctldev, &pinctrldev_list, node) { 359 /* Loop over the ranges */ 360 mutex_lock(&pctldev->mutex); 361 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 362 /* Check if any gpio range overlapped with gpio chip */ 363 if (range->base + range->npins - 1 < chip->base || 364 range->base > chip->base + chip->ngpio - 1) 365 continue; 366 mutex_unlock(&pctldev->mutex); 367 mutex_unlock(&pinctrldev_list_mutex); 368 return true; 369 } 370 mutex_unlock(&pctldev->mutex); 371 } 372 373 mutex_unlock(&pinctrldev_list_mutex); 374 375 return false; 376 } 377 #else 378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 379 #endif 380 381 /** 382 * pinctrl_get_device_gpio_range() - find device for GPIO range 383 * @gpio: the pin to locate the pin controller for 384 * @outdev: the pin control device if found 385 * @outrange: the GPIO range if found 386 * 387 * Find the pin controller handling a certain GPIO pin from the pinspace of 388 * the GPIO subsystem, return the device and the matching GPIO range. Returns 389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 390 * may still have not been registered. 391 */ 392 static int pinctrl_get_device_gpio_range(unsigned gpio, 393 struct pinctrl_dev **outdev, 394 struct pinctrl_gpio_range **outrange) 395 { 396 struct pinctrl_dev *pctldev = NULL; 397 398 mutex_lock(&pinctrldev_list_mutex); 399 400 /* Loop over the pin controllers */ 401 list_for_each_entry(pctldev, &pinctrldev_list, node) { 402 struct pinctrl_gpio_range *range; 403 404 range = pinctrl_match_gpio_range(pctldev, gpio); 405 if (range != NULL) { 406 *outdev = pctldev; 407 *outrange = range; 408 mutex_unlock(&pinctrldev_list_mutex); 409 return 0; 410 } 411 } 412 413 mutex_unlock(&pinctrldev_list_mutex); 414 415 return -EPROBE_DEFER; 416 } 417 418 /** 419 * pinctrl_add_gpio_range() - register a GPIO range for a controller 420 * @pctldev: pin controller device to add the range to 421 * @range: the GPIO range to add 422 * 423 * This adds a range of GPIOs to be handled by a certain pin controller. Call 424 * this to register handled ranges after registering your pin controller. 425 */ 426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 427 struct pinctrl_gpio_range *range) 428 { 429 mutex_lock(&pctldev->mutex); 430 list_add_tail(&range->node, &pctldev->gpio_ranges); 431 mutex_unlock(&pctldev->mutex); 432 } 433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 434 435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 436 struct pinctrl_gpio_range *ranges, 437 unsigned nranges) 438 { 439 int i; 440 441 for (i = 0; i < nranges; i++) 442 pinctrl_add_gpio_range(pctldev, &ranges[i]); 443 } 444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 445 446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 447 struct pinctrl_gpio_range *range) 448 { 449 struct pinctrl_dev *pctldev; 450 451 pctldev = get_pinctrl_dev_from_devname(devname); 452 453 /* 454 * If we can't find this device, let's assume that is because 455 * it has not probed yet, so the driver trying to register this 456 * range need to defer probing. 457 */ 458 if (!pctldev) { 459 return ERR_PTR(-EPROBE_DEFER); 460 } 461 pinctrl_add_gpio_range(pctldev, range); 462 463 return pctldev; 464 } 465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 466 467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 468 const unsigned **pins, unsigned *num_pins) 469 { 470 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 471 int gs; 472 473 if (!pctlops->get_group_pins) 474 return -EINVAL; 475 476 gs = pinctrl_get_group_selector(pctldev, pin_group); 477 if (gs < 0) 478 return gs; 479 480 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 481 } 482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 483 484 struct pinctrl_gpio_range * 485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 486 unsigned int pin) 487 { 488 struct pinctrl_gpio_range *range; 489 490 /* Loop over the ranges */ 491 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 492 /* Check if we're in the valid range */ 493 if (range->pins) { 494 int a; 495 for (a = 0; a < range->npins; a++) { 496 if (range->pins[a] == pin) 497 return range; 498 } 499 } else if (pin >= range->pin_base && 500 pin < range->pin_base + range->npins) 501 return range; 502 } 503 504 return NULL; 505 } 506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 507 508 /** 509 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 510 * @pctldev: the pin controller device to look in 511 * @pin: a controller-local number to find the range for 512 */ 513 struct pinctrl_gpio_range * 514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 515 unsigned int pin) 516 { 517 struct pinctrl_gpio_range *range; 518 519 mutex_lock(&pctldev->mutex); 520 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 521 mutex_unlock(&pctldev->mutex); 522 523 return range; 524 } 525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 526 527 /** 528 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller 529 * @pctldev: pin controller device to remove the range from 530 * @range: the GPIO range to remove 531 */ 532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 533 struct pinctrl_gpio_range *range) 534 { 535 mutex_lock(&pctldev->mutex); 536 list_del(&range->node); 537 mutex_unlock(&pctldev->mutex); 538 } 539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 540 541 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 542 543 /** 544 * pinctrl_generic_get_group_count() - returns the number of pin groups 545 * @pctldev: pin controller device 546 */ 547 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 548 { 549 return pctldev->num_groups; 550 } 551 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 552 553 /** 554 * pinctrl_generic_get_group_name() - returns the name of a pin group 555 * @pctldev: pin controller device 556 * @selector: group number 557 */ 558 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 559 unsigned int selector) 560 { 561 struct group_desc *group; 562 563 group = radix_tree_lookup(&pctldev->pin_group_tree, 564 selector); 565 if (!group) 566 return NULL; 567 568 return group->name; 569 } 570 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 571 572 /** 573 * pinctrl_generic_get_group_pins() - gets the pin group pins 574 * @pctldev: pin controller device 575 * @selector: group number 576 * @pins: pins in the group 577 * @num_pins: number of pins in the group 578 */ 579 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 580 unsigned int selector, 581 const unsigned int **pins, 582 unsigned int *num_pins) 583 { 584 struct group_desc *group; 585 586 group = radix_tree_lookup(&pctldev->pin_group_tree, 587 selector); 588 if (!group) { 589 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 590 __func__, selector); 591 return -EINVAL; 592 } 593 594 *pins = group->pins; 595 *num_pins = group->num_pins; 596 597 return 0; 598 } 599 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 600 601 /** 602 * pinctrl_generic_get_group() - returns a pin group based on the number 603 * @pctldev: pin controller device 604 * @gselector: group number 605 */ 606 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 607 unsigned int selector) 608 { 609 struct group_desc *group; 610 611 group = radix_tree_lookup(&pctldev->pin_group_tree, 612 selector); 613 if (!group) 614 return NULL; 615 616 return group; 617 } 618 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 619 620 /** 621 * pinctrl_generic_add_group() - adds a new pin group 622 * @pctldev: pin controller device 623 * @name: name of the pin group 624 * @pins: pins in the pin group 625 * @num_pins: number of pins in the pin group 626 * @data: pin controller driver specific data 627 * 628 * Note that the caller must take care of locking. 629 */ 630 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 631 int *pins, int num_pins, void *data) 632 { 633 struct group_desc *group; 634 635 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 636 if (!group) 637 return -ENOMEM; 638 639 group->name = name; 640 group->pins = pins; 641 group->num_pins = num_pins; 642 group->data = data; 643 644 radix_tree_insert(&pctldev->pin_group_tree, pctldev->num_groups, 645 group); 646 647 pctldev->num_groups++; 648 649 return 0; 650 } 651 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 652 653 /** 654 * pinctrl_generic_remove_group() - removes a numbered pin group 655 * @pctldev: pin controller device 656 * @selector: group number 657 * 658 * Note that the caller must take care of locking. 659 */ 660 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 661 unsigned int selector) 662 { 663 struct group_desc *group; 664 665 group = radix_tree_lookup(&pctldev->pin_group_tree, 666 selector); 667 if (!group) 668 return -ENOENT; 669 670 radix_tree_delete(&pctldev->pin_group_tree, selector); 671 devm_kfree(pctldev->dev, group); 672 673 pctldev->num_groups--; 674 675 return 0; 676 } 677 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 678 679 /** 680 * pinctrl_generic_free_groups() - removes all pin groups 681 * @pctldev: pin controller device 682 * 683 * Note that the caller must take care of locking. 684 */ 685 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 686 { 687 struct radix_tree_iter iter; 688 struct group_desc *group; 689 unsigned long *indices; 690 void **slot; 691 int i = 0; 692 693 indices = devm_kzalloc(pctldev->dev, sizeof(*indices) * 694 pctldev->num_groups, GFP_KERNEL); 695 if (!indices) 696 return; 697 698 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 699 indices[i++] = iter.index; 700 701 for (i = 0; i < pctldev->num_groups; i++) { 702 group = radix_tree_lookup(&pctldev->pin_group_tree, 703 indices[i]); 704 radix_tree_delete(&pctldev->pin_group_tree, indices[i]); 705 devm_kfree(pctldev->dev, group); 706 } 707 708 pctldev->num_groups = 0; 709 } 710 711 #else 712 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 713 { 714 } 715 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 716 717 /** 718 * pinctrl_get_group_selector() - returns the group selector for a group 719 * @pctldev: the pin controller handling the group 720 * @pin_group: the pin group to look up 721 */ 722 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 723 const char *pin_group) 724 { 725 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 726 unsigned ngroups = pctlops->get_groups_count(pctldev); 727 unsigned group_selector = 0; 728 729 while (group_selector < ngroups) { 730 const char *gname = pctlops->get_group_name(pctldev, 731 group_selector); 732 if (!strcmp(gname, pin_group)) { 733 dev_dbg(pctldev->dev, 734 "found group selector %u for %s\n", 735 group_selector, 736 pin_group); 737 return group_selector; 738 } 739 740 group_selector++; 741 } 742 743 dev_err(pctldev->dev, "does not have pin group %s\n", 744 pin_group); 745 746 return -EINVAL; 747 } 748 749 /** 750 * pinctrl_request_gpio() - request a single pin to be used as GPIO 751 * @gpio: the GPIO pin number from the GPIO subsystem number space 752 * 753 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 754 * as part of their gpio_request() semantics, platforms and individual drivers 755 * shall *NOT* request GPIO pins to be muxed in. 756 */ 757 int pinctrl_request_gpio(unsigned gpio) 758 { 759 struct pinctrl_dev *pctldev; 760 struct pinctrl_gpio_range *range; 761 int ret; 762 int pin; 763 764 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 765 if (ret) { 766 if (pinctrl_ready_for_gpio_range(gpio)) 767 ret = 0; 768 return ret; 769 } 770 771 mutex_lock(&pctldev->mutex); 772 773 /* Convert to the pin controllers number space */ 774 pin = gpio_to_pin(range, gpio); 775 776 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 777 778 mutex_unlock(&pctldev->mutex); 779 780 return ret; 781 } 782 EXPORT_SYMBOL_GPL(pinctrl_request_gpio); 783 784 /** 785 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO 786 * @gpio: the GPIO pin number from the GPIO subsystem number space 787 * 788 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 789 * as part of their gpio_free() semantics, platforms and individual drivers 790 * shall *NOT* request GPIO pins to be muxed out. 791 */ 792 void pinctrl_free_gpio(unsigned gpio) 793 { 794 struct pinctrl_dev *pctldev; 795 struct pinctrl_gpio_range *range; 796 int ret; 797 int pin; 798 799 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 800 if (ret) { 801 return; 802 } 803 mutex_lock(&pctldev->mutex); 804 805 /* Convert to the pin controllers number space */ 806 pin = gpio_to_pin(range, gpio); 807 808 pinmux_free_gpio(pctldev, pin, range); 809 810 mutex_unlock(&pctldev->mutex); 811 } 812 EXPORT_SYMBOL_GPL(pinctrl_free_gpio); 813 814 static int pinctrl_gpio_direction(unsigned gpio, bool input) 815 { 816 struct pinctrl_dev *pctldev; 817 struct pinctrl_gpio_range *range; 818 int ret; 819 int pin; 820 821 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 822 if (ret) { 823 return ret; 824 } 825 826 mutex_lock(&pctldev->mutex); 827 828 /* Convert to the pin controllers number space */ 829 pin = gpio_to_pin(range, gpio); 830 ret = pinmux_gpio_direction(pctldev, range, pin, input); 831 832 mutex_unlock(&pctldev->mutex); 833 834 return ret; 835 } 836 837 /** 838 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 839 * @gpio: the GPIO pin number from the GPIO subsystem number space 840 * 841 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 842 * as part of their gpio_direction_input() semantics, platforms and individual 843 * drivers shall *NOT* touch pin control GPIO calls. 844 */ 845 int pinctrl_gpio_direction_input(unsigned gpio) 846 { 847 return pinctrl_gpio_direction(gpio, true); 848 } 849 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 850 851 /** 852 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 853 * @gpio: the GPIO pin number from the GPIO subsystem number space 854 * 855 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 856 * as part of their gpio_direction_output() semantics, platforms and individual 857 * drivers shall *NOT* touch pin control GPIO calls. 858 */ 859 int pinctrl_gpio_direction_output(unsigned gpio) 860 { 861 return pinctrl_gpio_direction(gpio, false); 862 } 863 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 864 865 /** 866 * pinctrl_gpio_set_config() - Apply config to given GPIO pin 867 * @gpio: the GPIO pin number from the GPIO subsystem number space 868 * @config: the configuration to apply to the GPIO 869 * 870 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 871 * they need to call the underlying pin controller to change GPIO config 872 * (for example set debounce time). 873 */ 874 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config) 875 { 876 unsigned long configs[] = { config }; 877 struct pinctrl_gpio_range *range; 878 struct pinctrl_dev *pctldev; 879 int ret, pin; 880 881 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 882 if (ret) 883 return ret; 884 885 mutex_lock(&pctldev->mutex); 886 pin = gpio_to_pin(range, gpio); 887 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 888 mutex_unlock(&pctldev->mutex); 889 890 return ret; 891 } 892 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 893 894 static struct pinctrl_state *find_state(struct pinctrl *p, 895 const char *name) 896 { 897 struct pinctrl_state *state; 898 899 list_for_each_entry(state, &p->states, node) 900 if (!strcmp(state->name, name)) 901 return state; 902 903 return NULL; 904 } 905 906 static struct pinctrl_state *create_state(struct pinctrl *p, 907 const char *name) 908 { 909 struct pinctrl_state *state; 910 911 state = kzalloc(sizeof(*state), GFP_KERNEL); 912 if (!state) 913 return ERR_PTR(-ENOMEM); 914 915 state->name = name; 916 INIT_LIST_HEAD(&state->settings); 917 918 list_add_tail(&state->node, &p->states); 919 920 return state; 921 } 922 923 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 924 struct pinctrl_map const *map) 925 { 926 struct pinctrl_state *state; 927 struct pinctrl_setting *setting; 928 int ret; 929 930 state = find_state(p, map->name); 931 if (!state) 932 state = create_state(p, map->name); 933 if (IS_ERR(state)) 934 return PTR_ERR(state); 935 936 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 937 return 0; 938 939 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 940 if (!setting) 941 return -ENOMEM; 942 943 setting->type = map->type; 944 945 if (pctldev) 946 setting->pctldev = pctldev; 947 else 948 setting->pctldev = 949 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 950 if (setting->pctldev == NULL) { 951 kfree(setting); 952 /* Do not defer probing of hogs (circular loop) */ 953 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 954 return -ENODEV; 955 /* 956 * OK let us guess that the driver is not there yet, and 957 * let's defer obtaining this pinctrl handle to later... 958 */ 959 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 960 map->ctrl_dev_name); 961 return -EPROBE_DEFER; 962 } 963 964 setting->dev_name = map->dev_name; 965 966 switch (map->type) { 967 case PIN_MAP_TYPE_MUX_GROUP: 968 ret = pinmux_map_to_setting(map, setting); 969 break; 970 case PIN_MAP_TYPE_CONFIGS_PIN: 971 case PIN_MAP_TYPE_CONFIGS_GROUP: 972 ret = pinconf_map_to_setting(map, setting); 973 break; 974 default: 975 ret = -EINVAL; 976 break; 977 } 978 if (ret < 0) { 979 kfree(setting); 980 return ret; 981 } 982 983 list_add_tail(&setting->node, &state->settings); 984 985 return 0; 986 } 987 988 static struct pinctrl *find_pinctrl(struct device *dev) 989 { 990 struct pinctrl *p; 991 992 mutex_lock(&pinctrl_list_mutex); 993 list_for_each_entry(p, &pinctrl_list, node) 994 if (p->dev == dev) { 995 mutex_unlock(&pinctrl_list_mutex); 996 return p; 997 } 998 999 mutex_unlock(&pinctrl_list_mutex); 1000 return NULL; 1001 } 1002 1003 static void pinctrl_free(struct pinctrl *p, bool inlist); 1004 1005 static struct pinctrl *create_pinctrl(struct device *dev, 1006 struct pinctrl_dev *pctldev) 1007 { 1008 struct pinctrl *p; 1009 const char *devname; 1010 struct pinctrl_maps *maps_node; 1011 int i; 1012 struct pinctrl_map const *map; 1013 int ret; 1014 1015 /* 1016 * create the state cookie holder struct pinctrl for each 1017 * mapping, this is what consumers will get when requesting 1018 * a pin control handle with pinctrl_get() 1019 */ 1020 p = kzalloc(sizeof(*p), GFP_KERNEL); 1021 if (!p) 1022 return ERR_PTR(-ENOMEM); 1023 p->dev = dev; 1024 INIT_LIST_HEAD(&p->states); 1025 INIT_LIST_HEAD(&p->dt_maps); 1026 1027 ret = pinctrl_dt_to_map(p, pctldev); 1028 if (ret < 0) { 1029 kfree(p); 1030 return ERR_PTR(ret); 1031 } 1032 1033 devname = dev_name(dev); 1034 1035 mutex_lock(&pinctrl_maps_mutex); 1036 /* Iterate over the pin control maps to locate the right ones */ 1037 for_each_maps(maps_node, i, map) { 1038 /* Map must be for this device */ 1039 if (strcmp(map->dev_name, devname)) 1040 continue; 1041 1042 ret = add_setting(p, pctldev, map); 1043 /* 1044 * At this point the adding of a setting may: 1045 * 1046 * - Defer, if the pinctrl device is not yet available 1047 * - Fail, if the pinctrl device is not yet available, 1048 * AND the setting is a hog. We cannot defer that, since 1049 * the hog will kick in immediately after the device 1050 * is registered. 1051 * 1052 * If the error returned was not -EPROBE_DEFER then we 1053 * accumulate the errors to see if we end up with 1054 * an -EPROBE_DEFER later, as that is the worst case. 1055 */ 1056 if (ret == -EPROBE_DEFER) { 1057 pinctrl_free(p, false); 1058 mutex_unlock(&pinctrl_maps_mutex); 1059 return ERR_PTR(ret); 1060 } 1061 } 1062 mutex_unlock(&pinctrl_maps_mutex); 1063 1064 if (ret < 0) { 1065 /* If some other error than deferral occured, return here */ 1066 pinctrl_free(p, false); 1067 return ERR_PTR(ret); 1068 } 1069 1070 kref_init(&p->users); 1071 1072 /* Add the pinctrl handle to the global list */ 1073 mutex_lock(&pinctrl_list_mutex); 1074 list_add_tail(&p->node, &pinctrl_list); 1075 mutex_unlock(&pinctrl_list_mutex); 1076 1077 return p; 1078 } 1079 1080 /** 1081 * pinctrl_get() - retrieves the pinctrl handle for a device 1082 * @dev: the device to obtain the handle for 1083 */ 1084 struct pinctrl *pinctrl_get(struct device *dev) 1085 { 1086 struct pinctrl *p; 1087 1088 if (WARN_ON(!dev)) 1089 return ERR_PTR(-EINVAL); 1090 1091 /* 1092 * See if somebody else (such as the device core) has already 1093 * obtained a handle to the pinctrl for this device. In that case, 1094 * return another pointer to it. 1095 */ 1096 p = find_pinctrl(dev); 1097 if (p != NULL) { 1098 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1099 kref_get(&p->users); 1100 return p; 1101 } 1102 1103 return create_pinctrl(dev, NULL); 1104 } 1105 EXPORT_SYMBOL_GPL(pinctrl_get); 1106 1107 static void pinctrl_free_setting(bool disable_setting, 1108 struct pinctrl_setting *setting) 1109 { 1110 switch (setting->type) { 1111 case PIN_MAP_TYPE_MUX_GROUP: 1112 if (disable_setting) 1113 pinmux_disable_setting(setting); 1114 pinmux_free_setting(setting); 1115 break; 1116 case PIN_MAP_TYPE_CONFIGS_PIN: 1117 case PIN_MAP_TYPE_CONFIGS_GROUP: 1118 pinconf_free_setting(setting); 1119 break; 1120 default: 1121 break; 1122 } 1123 } 1124 1125 static void pinctrl_free(struct pinctrl *p, bool inlist) 1126 { 1127 struct pinctrl_state *state, *n1; 1128 struct pinctrl_setting *setting, *n2; 1129 1130 mutex_lock(&pinctrl_list_mutex); 1131 list_for_each_entry_safe(state, n1, &p->states, node) { 1132 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1133 pinctrl_free_setting(state == p->state, setting); 1134 list_del(&setting->node); 1135 kfree(setting); 1136 } 1137 list_del(&state->node); 1138 kfree(state); 1139 } 1140 1141 pinctrl_dt_free_maps(p); 1142 1143 if (inlist) 1144 list_del(&p->node); 1145 kfree(p); 1146 mutex_unlock(&pinctrl_list_mutex); 1147 } 1148 1149 /** 1150 * pinctrl_release() - release the pinctrl handle 1151 * @kref: the kref in the pinctrl being released 1152 */ 1153 static void pinctrl_release(struct kref *kref) 1154 { 1155 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1156 1157 pinctrl_free(p, true); 1158 } 1159 1160 /** 1161 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1162 * @p: the pinctrl handle to release 1163 */ 1164 void pinctrl_put(struct pinctrl *p) 1165 { 1166 kref_put(&p->users, pinctrl_release); 1167 } 1168 EXPORT_SYMBOL_GPL(pinctrl_put); 1169 1170 /** 1171 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1172 * @p: the pinctrl handle to retrieve the state from 1173 * @name: the state name to retrieve 1174 */ 1175 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1176 const char *name) 1177 { 1178 struct pinctrl_state *state; 1179 1180 state = find_state(p, name); 1181 if (!state) { 1182 if (pinctrl_dummy_state) { 1183 /* create dummy state */ 1184 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1185 name); 1186 state = create_state(p, name); 1187 } else 1188 state = ERR_PTR(-ENODEV); 1189 } 1190 1191 return state; 1192 } 1193 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1194 1195 /** 1196 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1197 * @p: the pinctrl handle for the device that requests configuration 1198 * @state: the state handle to select/activate/program 1199 */ 1200 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1201 { 1202 struct pinctrl_setting *setting, *setting2; 1203 struct pinctrl_state *old_state = p->state; 1204 int ret; 1205 1206 if (p->state == state) 1207 return 0; 1208 1209 if (p->state) { 1210 /* 1211 * For each pinmux setting in the old state, forget SW's record 1212 * of mux owner for that pingroup. Any pingroups which are 1213 * still owned by the new state will be re-acquired by the call 1214 * to pinmux_enable_setting() in the loop below. 1215 */ 1216 list_for_each_entry(setting, &p->state->settings, node) { 1217 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1218 continue; 1219 pinmux_disable_setting(setting); 1220 } 1221 } 1222 1223 p->state = NULL; 1224 1225 /* Apply all the settings for the new state */ 1226 list_for_each_entry(setting, &state->settings, node) { 1227 switch (setting->type) { 1228 case PIN_MAP_TYPE_MUX_GROUP: 1229 ret = pinmux_enable_setting(setting); 1230 break; 1231 case PIN_MAP_TYPE_CONFIGS_PIN: 1232 case PIN_MAP_TYPE_CONFIGS_GROUP: 1233 ret = pinconf_apply_setting(setting); 1234 break; 1235 default: 1236 ret = -EINVAL; 1237 break; 1238 } 1239 1240 if (ret < 0) { 1241 goto unapply_new_state; 1242 } 1243 } 1244 1245 p->state = state; 1246 1247 return 0; 1248 1249 unapply_new_state: 1250 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1251 1252 list_for_each_entry(setting2, &state->settings, node) { 1253 if (&setting2->node == &setting->node) 1254 break; 1255 /* 1256 * All we can do here is pinmux_disable_setting. 1257 * That means that some pins are muxed differently now 1258 * than they were before applying the setting (We can't 1259 * "unmux a pin"!), but it's not a big deal since the pins 1260 * are free to be muxed by another apply_setting. 1261 */ 1262 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1263 pinmux_disable_setting(setting2); 1264 } 1265 1266 /* There's no infinite recursive loop here because p->state is NULL */ 1267 if (old_state) 1268 pinctrl_select_state(p, old_state); 1269 1270 return ret; 1271 } 1272 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1273 1274 static void devm_pinctrl_release(struct device *dev, void *res) 1275 { 1276 pinctrl_put(*(struct pinctrl **)res); 1277 } 1278 1279 /** 1280 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1281 * @dev: the device to obtain the handle for 1282 * 1283 * If there is a need to explicitly destroy the returned struct pinctrl, 1284 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1285 */ 1286 struct pinctrl *devm_pinctrl_get(struct device *dev) 1287 { 1288 struct pinctrl **ptr, *p; 1289 1290 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1291 if (!ptr) 1292 return ERR_PTR(-ENOMEM); 1293 1294 p = pinctrl_get(dev); 1295 if (!IS_ERR(p)) { 1296 *ptr = p; 1297 devres_add(dev, ptr); 1298 } else { 1299 devres_free(ptr); 1300 } 1301 1302 return p; 1303 } 1304 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1305 1306 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1307 { 1308 struct pinctrl **p = res; 1309 1310 return *p == data; 1311 } 1312 1313 /** 1314 * devm_pinctrl_put() - Resource managed pinctrl_put() 1315 * @p: the pinctrl handle to release 1316 * 1317 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1318 * this function will not need to be called and the resource management 1319 * code will ensure that the resource is freed. 1320 */ 1321 void devm_pinctrl_put(struct pinctrl *p) 1322 { 1323 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1324 devm_pinctrl_match, p)); 1325 } 1326 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1327 1328 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps, 1329 bool dup) 1330 { 1331 int i, ret; 1332 struct pinctrl_maps *maps_node; 1333 1334 pr_debug("add %u pinctrl maps\n", num_maps); 1335 1336 /* First sanity check the new mapping */ 1337 for (i = 0; i < num_maps; i++) { 1338 if (!maps[i].dev_name) { 1339 pr_err("failed to register map %s (%d): no device given\n", 1340 maps[i].name, i); 1341 return -EINVAL; 1342 } 1343 1344 if (!maps[i].name) { 1345 pr_err("failed to register map %d: no map name given\n", 1346 i); 1347 return -EINVAL; 1348 } 1349 1350 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1351 !maps[i].ctrl_dev_name) { 1352 pr_err("failed to register map %s (%d): no pin control device given\n", 1353 maps[i].name, i); 1354 return -EINVAL; 1355 } 1356 1357 switch (maps[i].type) { 1358 case PIN_MAP_TYPE_DUMMY_STATE: 1359 break; 1360 case PIN_MAP_TYPE_MUX_GROUP: 1361 ret = pinmux_validate_map(&maps[i], i); 1362 if (ret < 0) 1363 return ret; 1364 break; 1365 case PIN_MAP_TYPE_CONFIGS_PIN: 1366 case PIN_MAP_TYPE_CONFIGS_GROUP: 1367 ret = pinconf_validate_map(&maps[i], i); 1368 if (ret < 0) 1369 return ret; 1370 break; 1371 default: 1372 pr_err("failed to register map %s (%d): invalid type given\n", 1373 maps[i].name, i); 1374 return -EINVAL; 1375 } 1376 } 1377 1378 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1379 if (!maps_node) 1380 return -ENOMEM; 1381 1382 maps_node->num_maps = num_maps; 1383 if (dup) { 1384 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1385 GFP_KERNEL); 1386 if (!maps_node->maps) { 1387 pr_err("failed to duplicate mapping table\n"); 1388 kfree(maps_node); 1389 return -ENOMEM; 1390 } 1391 } else { 1392 maps_node->maps = maps; 1393 } 1394 1395 mutex_lock(&pinctrl_maps_mutex); 1396 list_add_tail(&maps_node->node, &pinctrl_maps); 1397 mutex_unlock(&pinctrl_maps_mutex); 1398 1399 return 0; 1400 } 1401 1402 /** 1403 * pinctrl_register_mappings() - register a set of pin controller mappings 1404 * @maps: the pincontrol mappings table to register. This should probably be 1405 * marked with __initdata so it can be discarded after boot. This 1406 * function will perform a shallow copy for the mapping entries. 1407 * @num_maps: the number of maps in the mapping table 1408 */ 1409 int pinctrl_register_mappings(struct pinctrl_map const *maps, 1410 unsigned num_maps) 1411 { 1412 return pinctrl_register_map(maps, num_maps, true); 1413 } 1414 1415 void pinctrl_unregister_map(struct pinctrl_map const *map) 1416 { 1417 struct pinctrl_maps *maps_node; 1418 1419 mutex_lock(&pinctrl_maps_mutex); 1420 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1421 if (maps_node->maps == map) { 1422 list_del(&maps_node->node); 1423 kfree(maps_node); 1424 mutex_unlock(&pinctrl_maps_mutex); 1425 return; 1426 } 1427 } 1428 mutex_unlock(&pinctrl_maps_mutex); 1429 } 1430 1431 /** 1432 * pinctrl_force_sleep() - turn a given controller device into sleep state 1433 * @pctldev: pin controller device 1434 */ 1435 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1436 { 1437 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1438 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep); 1439 return 0; 1440 } 1441 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1442 1443 /** 1444 * pinctrl_force_default() - turn a given controller device into default state 1445 * @pctldev: pin controller device 1446 */ 1447 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1448 { 1449 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1450 return pinctrl_select_state(pctldev->p, pctldev->hog_default); 1451 return 0; 1452 } 1453 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1454 1455 /** 1456 * pinctrl_init_done() - tell pinctrl probe is done 1457 * 1458 * We'll use this time to switch the pins from "init" to "default" unless the 1459 * driver selected some other state. 1460 * 1461 * @dev: device to that's done probing 1462 */ 1463 int pinctrl_init_done(struct device *dev) 1464 { 1465 struct dev_pin_info *pins = dev->pins; 1466 int ret; 1467 1468 if (!pins) 1469 return 0; 1470 1471 if (IS_ERR(pins->init_state)) 1472 return 0; /* No such state */ 1473 1474 if (pins->p->state != pins->init_state) 1475 return 0; /* Not at init anyway */ 1476 1477 if (IS_ERR(pins->default_state)) 1478 return 0; /* No default state */ 1479 1480 ret = pinctrl_select_state(pins->p, pins->default_state); 1481 if (ret) 1482 dev_err(dev, "failed to activate default pinctrl state\n"); 1483 1484 return ret; 1485 } 1486 1487 #ifdef CONFIG_PM 1488 1489 /** 1490 * pinctrl_pm_select_state() - select pinctrl state for PM 1491 * @dev: device to select default state for 1492 * @state: state to set 1493 */ 1494 static int pinctrl_pm_select_state(struct device *dev, 1495 struct pinctrl_state *state) 1496 { 1497 struct dev_pin_info *pins = dev->pins; 1498 int ret; 1499 1500 if (IS_ERR(state)) 1501 return 0; /* No such state */ 1502 ret = pinctrl_select_state(pins->p, state); 1503 if (ret) 1504 dev_err(dev, "failed to activate pinctrl state %s\n", 1505 state->name); 1506 return ret; 1507 } 1508 1509 /** 1510 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1511 * @dev: device to select default state for 1512 */ 1513 int pinctrl_pm_select_default_state(struct device *dev) 1514 { 1515 if (!dev->pins) 1516 return 0; 1517 1518 return pinctrl_pm_select_state(dev, dev->pins->default_state); 1519 } 1520 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1521 1522 /** 1523 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1524 * @dev: device to select sleep state for 1525 */ 1526 int pinctrl_pm_select_sleep_state(struct device *dev) 1527 { 1528 if (!dev->pins) 1529 return 0; 1530 1531 return pinctrl_pm_select_state(dev, dev->pins->sleep_state); 1532 } 1533 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1534 1535 /** 1536 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1537 * @dev: device to select idle state for 1538 */ 1539 int pinctrl_pm_select_idle_state(struct device *dev) 1540 { 1541 if (!dev->pins) 1542 return 0; 1543 1544 return pinctrl_pm_select_state(dev, dev->pins->idle_state); 1545 } 1546 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1547 #endif 1548 1549 #ifdef CONFIG_DEBUG_FS 1550 1551 static int pinctrl_pins_show(struct seq_file *s, void *what) 1552 { 1553 struct pinctrl_dev *pctldev = s->private; 1554 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1555 unsigned i, pin; 1556 1557 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1558 1559 mutex_lock(&pctldev->mutex); 1560 1561 /* The pin number can be retrived from the pin controller descriptor */ 1562 for (i = 0; i < pctldev->desc->npins; i++) { 1563 struct pin_desc *desc; 1564 1565 pin = pctldev->desc->pins[i].number; 1566 desc = pin_desc_get(pctldev, pin); 1567 /* Pin space may be sparse */ 1568 if (desc == NULL) 1569 continue; 1570 1571 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1572 1573 /* Driver-specific info per pin */ 1574 if (ops->pin_dbg_show) 1575 ops->pin_dbg_show(pctldev, s, pin); 1576 1577 seq_puts(s, "\n"); 1578 } 1579 1580 mutex_unlock(&pctldev->mutex); 1581 1582 return 0; 1583 } 1584 1585 static int pinctrl_groups_show(struct seq_file *s, void *what) 1586 { 1587 struct pinctrl_dev *pctldev = s->private; 1588 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1589 unsigned ngroups, selector = 0; 1590 1591 mutex_lock(&pctldev->mutex); 1592 1593 ngroups = ops->get_groups_count(pctldev); 1594 1595 seq_puts(s, "registered pin groups:\n"); 1596 while (selector < ngroups) { 1597 const unsigned *pins = NULL; 1598 unsigned num_pins = 0; 1599 const char *gname = ops->get_group_name(pctldev, selector); 1600 const char *pname; 1601 int ret = 0; 1602 int i; 1603 1604 if (ops->get_group_pins) 1605 ret = ops->get_group_pins(pctldev, selector, 1606 &pins, &num_pins); 1607 if (ret) 1608 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1609 gname); 1610 else { 1611 seq_printf(s, "group: %s\n", gname); 1612 for (i = 0; i < num_pins; i++) { 1613 pname = pin_get_name(pctldev, pins[i]); 1614 if (WARN_ON(!pname)) { 1615 mutex_unlock(&pctldev->mutex); 1616 return -EINVAL; 1617 } 1618 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1619 } 1620 seq_puts(s, "\n"); 1621 } 1622 selector++; 1623 } 1624 1625 mutex_unlock(&pctldev->mutex); 1626 1627 return 0; 1628 } 1629 1630 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1631 { 1632 struct pinctrl_dev *pctldev = s->private; 1633 struct pinctrl_gpio_range *range = NULL; 1634 1635 seq_puts(s, "GPIO ranges handled:\n"); 1636 1637 mutex_lock(&pctldev->mutex); 1638 1639 /* Loop over the ranges */ 1640 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1641 if (range->pins) { 1642 int a; 1643 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1644 range->id, range->name, 1645 range->base, (range->base + range->npins - 1)); 1646 for (a = 0; a < range->npins - 1; a++) 1647 seq_printf(s, "%u, ", range->pins[a]); 1648 seq_printf(s, "%u}\n", range->pins[a]); 1649 } 1650 else 1651 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1652 range->id, range->name, 1653 range->base, (range->base + range->npins - 1), 1654 range->pin_base, 1655 (range->pin_base + range->npins - 1)); 1656 } 1657 1658 mutex_unlock(&pctldev->mutex); 1659 1660 return 0; 1661 } 1662 1663 static int pinctrl_devices_show(struct seq_file *s, void *what) 1664 { 1665 struct pinctrl_dev *pctldev; 1666 1667 seq_puts(s, "name [pinmux] [pinconf]\n"); 1668 1669 mutex_lock(&pinctrldev_list_mutex); 1670 1671 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1672 seq_printf(s, "%s ", pctldev->desc->name); 1673 if (pctldev->desc->pmxops) 1674 seq_puts(s, "yes "); 1675 else 1676 seq_puts(s, "no "); 1677 if (pctldev->desc->confops) 1678 seq_puts(s, "yes"); 1679 else 1680 seq_puts(s, "no"); 1681 seq_puts(s, "\n"); 1682 } 1683 1684 mutex_unlock(&pinctrldev_list_mutex); 1685 1686 return 0; 1687 } 1688 1689 static inline const char *map_type(enum pinctrl_map_type type) 1690 { 1691 static const char * const names[] = { 1692 "INVALID", 1693 "DUMMY_STATE", 1694 "MUX_GROUP", 1695 "CONFIGS_PIN", 1696 "CONFIGS_GROUP", 1697 }; 1698 1699 if (type >= ARRAY_SIZE(names)) 1700 return "UNKNOWN"; 1701 1702 return names[type]; 1703 } 1704 1705 static int pinctrl_maps_show(struct seq_file *s, void *what) 1706 { 1707 struct pinctrl_maps *maps_node; 1708 int i; 1709 struct pinctrl_map const *map; 1710 1711 seq_puts(s, "Pinctrl maps:\n"); 1712 1713 mutex_lock(&pinctrl_maps_mutex); 1714 for_each_maps(maps_node, i, map) { 1715 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1716 map->dev_name, map->name, map_type(map->type), 1717 map->type); 1718 1719 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1720 seq_printf(s, "controlling device %s\n", 1721 map->ctrl_dev_name); 1722 1723 switch (map->type) { 1724 case PIN_MAP_TYPE_MUX_GROUP: 1725 pinmux_show_map(s, map); 1726 break; 1727 case PIN_MAP_TYPE_CONFIGS_PIN: 1728 case PIN_MAP_TYPE_CONFIGS_GROUP: 1729 pinconf_show_map(s, map); 1730 break; 1731 default: 1732 break; 1733 } 1734 1735 seq_printf(s, "\n"); 1736 } 1737 mutex_unlock(&pinctrl_maps_mutex); 1738 1739 return 0; 1740 } 1741 1742 static int pinctrl_show(struct seq_file *s, void *what) 1743 { 1744 struct pinctrl *p; 1745 struct pinctrl_state *state; 1746 struct pinctrl_setting *setting; 1747 1748 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1749 1750 mutex_lock(&pinctrl_list_mutex); 1751 1752 list_for_each_entry(p, &pinctrl_list, node) { 1753 seq_printf(s, "device: %s current state: %s\n", 1754 dev_name(p->dev), 1755 p->state ? p->state->name : "none"); 1756 1757 list_for_each_entry(state, &p->states, node) { 1758 seq_printf(s, " state: %s\n", state->name); 1759 1760 list_for_each_entry(setting, &state->settings, node) { 1761 struct pinctrl_dev *pctldev = setting->pctldev; 1762 1763 seq_printf(s, " type: %s controller %s ", 1764 map_type(setting->type), 1765 pinctrl_dev_get_name(pctldev)); 1766 1767 switch (setting->type) { 1768 case PIN_MAP_TYPE_MUX_GROUP: 1769 pinmux_show_setting(s, setting); 1770 break; 1771 case PIN_MAP_TYPE_CONFIGS_PIN: 1772 case PIN_MAP_TYPE_CONFIGS_GROUP: 1773 pinconf_show_setting(s, setting); 1774 break; 1775 default: 1776 break; 1777 } 1778 } 1779 } 1780 } 1781 1782 mutex_unlock(&pinctrl_list_mutex); 1783 1784 return 0; 1785 } 1786 1787 static int pinctrl_pins_open(struct inode *inode, struct file *file) 1788 { 1789 return single_open(file, pinctrl_pins_show, inode->i_private); 1790 } 1791 1792 static int pinctrl_groups_open(struct inode *inode, struct file *file) 1793 { 1794 return single_open(file, pinctrl_groups_show, inode->i_private); 1795 } 1796 1797 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) 1798 { 1799 return single_open(file, pinctrl_gpioranges_show, inode->i_private); 1800 } 1801 1802 static int pinctrl_devices_open(struct inode *inode, struct file *file) 1803 { 1804 return single_open(file, pinctrl_devices_show, NULL); 1805 } 1806 1807 static int pinctrl_maps_open(struct inode *inode, struct file *file) 1808 { 1809 return single_open(file, pinctrl_maps_show, NULL); 1810 } 1811 1812 static int pinctrl_open(struct inode *inode, struct file *file) 1813 { 1814 return single_open(file, pinctrl_show, NULL); 1815 } 1816 1817 static const struct file_operations pinctrl_pins_ops = { 1818 .open = pinctrl_pins_open, 1819 .read = seq_read, 1820 .llseek = seq_lseek, 1821 .release = single_release, 1822 }; 1823 1824 static const struct file_operations pinctrl_groups_ops = { 1825 .open = pinctrl_groups_open, 1826 .read = seq_read, 1827 .llseek = seq_lseek, 1828 .release = single_release, 1829 }; 1830 1831 static const struct file_operations pinctrl_gpioranges_ops = { 1832 .open = pinctrl_gpioranges_open, 1833 .read = seq_read, 1834 .llseek = seq_lseek, 1835 .release = single_release, 1836 }; 1837 1838 static const struct file_operations pinctrl_devices_ops = { 1839 .open = pinctrl_devices_open, 1840 .read = seq_read, 1841 .llseek = seq_lseek, 1842 .release = single_release, 1843 }; 1844 1845 static const struct file_operations pinctrl_maps_ops = { 1846 .open = pinctrl_maps_open, 1847 .read = seq_read, 1848 .llseek = seq_lseek, 1849 .release = single_release, 1850 }; 1851 1852 static const struct file_operations pinctrl_ops = { 1853 .open = pinctrl_open, 1854 .read = seq_read, 1855 .llseek = seq_lseek, 1856 .release = single_release, 1857 }; 1858 1859 static struct dentry *debugfs_root; 1860 1861 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1862 { 1863 struct dentry *device_root; 1864 1865 device_root = debugfs_create_dir(dev_name(pctldev->dev), 1866 debugfs_root); 1867 pctldev->device_root = device_root; 1868 1869 if (IS_ERR(device_root) || !device_root) { 1870 pr_warn("failed to create debugfs directory for %s\n", 1871 dev_name(pctldev->dev)); 1872 return; 1873 } 1874 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1875 device_root, pctldev, &pinctrl_pins_ops); 1876 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1877 device_root, pctldev, &pinctrl_groups_ops); 1878 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1879 device_root, pctldev, &pinctrl_gpioranges_ops); 1880 if (pctldev->desc->pmxops) 1881 pinmux_init_device_debugfs(device_root, pctldev); 1882 if (pctldev->desc->confops) 1883 pinconf_init_device_debugfs(device_root, pctldev); 1884 } 1885 1886 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1887 { 1888 debugfs_remove_recursive(pctldev->device_root); 1889 } 1890 1891 static void pinctrl_init_debugfs(void) 1892 { 1893 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1894 if (IS_ERR(debugfs_root) || !debugfs_root) { 1895 pr_warn("failed to create debugfs directory\n"); 1896 debugfs_root = NULL; 1897 return; 1898 } 1899 1900 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1901 debugfs_root, NULL, &pinctrl_devices_ops); 1902 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1903 debugfs_root, NULL, &pinctrl_maps_ops); 1904 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1905 debugfs_root, NULL, &pinctrl_ops); 1906 } 1907 1908 #else /* CONFIG_DEBUG_FS */ 1909 1910 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1911 { 1912 } 1913 1914 static void pinctrl_init_debugfs(void) 1915 { 1916 } 1917 1918 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1919 { 1920 } 1921 1922 #endif 1923 1924 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1925 { 1926 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1927 1928 if (!ops || 1929 !ops->get_groups_count || 1930 !ops->get_group_name) 1931 return -EINVAL; 1932 1933 return 0; 1934 } 1935 1936 /** 1937 * pinctrl_init_controller() - init a pin controller device 1938 * @pctldesc: descriptor for this pin controller 1939 * @dev: parent device for this pin controller 1940 * @driver_data: private pin controller data for this pin controller 1941 */ 1942 struct pinctrl_dev *pinctrl_init_controller(struct pinctrl_desc *pctldesc, 1943 struct device *dev, 1944 void *driver_data) 1945 { 1946 struct pinctrl_dev *pctldev; 1947 int ret; 1948 1949 if (!pctldesc) 1950 return ERR_PTR(-EINVAL); 1951 if (!pctldesc->name) 1952 return ERR_PTR(-EINVAL); 1953 1954 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1955 if (!pctldev) 1956 return ERR_PTR(-ENOMEM); 1957 1958 /* Initialize pin control device struct */ 1959 pctldev->owner = pctldesc->owner; 1960 pctldev->desc = pctldesc; 1961 pctldev->driver_data = driver_data; 1962 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1963 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 1964 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 1965 #endif 1966 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 1967 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 1968 #endif 1969 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1970 INIT_LIST_HEAD(&pctldev->node); 1971 pctldev->dev = dev; 1972 mutex_init(&pctldev->mutex); 1973 1974 /* check core ops for sanity */ 1975 ret = pinctrl_check_ops(pctldev); 1976 if (ret) { 1977 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1978 goto out_err; 1979 } 1980 1981 /* If we're implementing pinmuxing, check the ops for sanity */ 1982 if (pctldesc->pmxops) { 1983 ret = pinmux_check_ops(pctldev); 1984 if (ret) 1985 goto out_err; 1986 } 1987 1988 /* If we're implementing pinconfig, check the ops for sanity */ 1989 if (pctldesc->confops) { 1990 ret = pinconf_check_ops(pctldev); 1991 if (ret) 1992 goto out_err; 1993 } 1994 1995 /* Register all the pins */ 1996 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1997 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1998 if (ret) { 1999 dev_err(dev, "error during pin registration\n"); 2000 pinctrl_free_pindescs(pctldev, pctldesc->pins, 2001 pctldesc->npins); 2002 goto out_err; 2003 } 2004 2005 return pctldev; 2006 2007 out_err: 2008 mutex_destroy(&pctldev->mutex); 2009 kfree(pctldev); 2010 return ERR_PTR(ret); 2011 } 2012 2013 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 2014 { 2015 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 2016 if (PTR_ERR(pctldev->p) == -ENODEV) { 2017 dev_dbg(pctldev->dev, "no hogs found\n"); 2018 2019 return 0; 2020 } 2021 2022 if (IS_ERR(pctldev->p)) { 2023 dev_err(pctldev->dev, "error claiming hogs: %li\n", 2024 PTR_ERR(pctldev->p)); 2025 2026 return PTR_ERR(pctldev->p); 2027 } 2028 2029 kref_get(&pctldev->p->users); 2030 pctldev->hog_default = 2031 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2032 if (IS_ERR(pctldev->hog_default)) { 2033 dev_dbg(pctldev->dev, 2034 "failed to lookup the default state\n"); 2035 } else { 2036 if (pinctrl_select_state(pctldev->p, 2037 pctldev->hog_default)) 2038 dev_err(pctldev->dev, 2039 "failed to select default state\n"); 2040 } 2041 2042 pctldev->hog_sleep = 2043 pinctrl_lookup_state(pctldev->p, 2044 PINCTRL_STATE_SLEEP); 2045 if (IS_ERR(pctldev->hog_sleep)) 2046 dev_dbg(pctldev->dev, 2047 "failed to lookup the sleep state\n"); 2048 2049 return 0; 2050 } 2051 2052 int pinctrl_enable(struct pinctrl_dev *pctldev) 2053 { 2054 int error; 2055 2056 error = pinctrl_claim_hogs(pctldev); 2057 if (error) { 2058 dev_err(pctldev->dev, "could not claim hogs: %i\n", 2059 error); 2060 mutex_destroy(&pctldev->mutex); 2061 kfree(pctldev); 2062 2063 return error; 2064 } 2065 2066 mutex_lock(&pinctrldev_list_mutex); 2067 list_add_tail(&pctldev->node, &pinctrldev_list); 2068 mutex_unlock(&pinctrldev_list_mutex); 2069 2070 pinctrl_init_device_debugfs(pctldev); 2071 2072 return 0; 2073 } 2074 EXPORT_SYMBOL_GPL(pinctrl_enable); 2075 2076 /** 2077 * pinctrl_register() - register a pin controller device 2078 * @pctldesc: descriptor for this pin controller 2079 * @dev: parent device for this pin controller 2080 * @driver_data: private pin controller data for this pin controller 2081 * 2082 * Note that pinctrl_register() is known to have problems as the pin 2083 * controller driver functions are called before the driver has a 2084 * struct pinctrl_dev handle. To avoid issues later on, please use the 2085 * new pinctrl_register_and_init() below instead. 2086 */ 2087 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 2088 struct device *dev, void *driver_data) 2089 { 2090 struct pinctrl_dev *pctldev; 2091 int error; 2092 2093 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2094 if (IS_ERR(pctldev)) 2095 return pctldev; 2096 2097 error = pinctrl_enable(pctldev); 2098 if (error) 2099 return ERR_PTR(error); 2100 2101 return pctldev; 2102 2103 } 2104 EXPORT_SYMBOL_GPL(pinctrl_register); 2105 2106 /** 2107 * pinctrl_register_and_init() - register and init pin controller device 2108 * @pctldesc: descriptor for this pin controller 2109 * @dev: parent device for this pin controller 2110 * @driver_data: private pin controller data for this pin controller 2111 * @pctldev: pin controller device 2112 * 2113 * Note that pinctrl_enable() still needs to be manually called after 2114 * this once the driver is ready. 2115 */ 2116 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, 2117 struct device *dev, void *driver_data, 2118 struct pinctrl_dev **pctldev) 2119 { 2120 struct pinctrl_dev *p; 2121 2122 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2123 if (IS_ERR(p)) 2124 return PTR_ERR(p); 2125 2126 /* 2127 * We have pinctrl_start() call functions in the pin controller 2128 * driver with create_pinctrl() for at least dt_node_to_map(). So 2129 * let's make sure pctldev is properly initialized for the 2130 * pin controller driver before we do anything. 2131 */ 2132 *pctldev = p; 2133 2134 return 0; 2135 } 2136 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2137 2138 /** 2139 * pinctrl_unregister() - unregister pinmux 2140 * @pctldev: pin controller to unregister 2141 * 2142 * Called by pinmux drivers to unregister a pinmux. 2143 */ 2144 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2145 { 2146 struct pinctrl_gpio_range *range, *n; 2147 2148 if (pctldev == NULL) 2149 return; 2150 2151 mutex_lock(&pctldev->mutex); 2152 pinctrl_remove_device_debugfs(pctldev); 2153 mutex_unlock(&pctldev->mutex); 2154 2155 if (!IS_ERR_OR_NULL(pctldev->p)) 2156 pinctrl_put(pctldev->p); 2157 2158 mutex_lock(&pinctrldev_list_mutex); 2159 mutex_lock(&pctldev->mutex); 2160 /* TODO: check that no pinmuxes are still active? */ 2161 list_del(&pctldev->node); 2162 pinmux_generic_free_functions(pctldev); 2163 pinctrl_generic_free_groups(pctldev); 2164 /* Destroy descriptor tree */ 2165 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2166 pctldev->desc->npins); 2167 /* remove gpio ranges map */ 2168 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2169 list_del(&range->node); 2170 2171 mutex_unlock(&pctldev->mutex); 2172 mutex_destroy(&pctldev->mutex); 2173 kfree(pctldev); 2174 mutex_unlock(&pinctrldev_list_mutex); 2175 } 2176 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2177 2178 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2179 { 2180 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2181 2182 pinctrl_unregister(pctldev); 2183 } 2184 2185 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2186 { 2187 struct pctldev **r = res; 2188 2189 if (WARN_ON(!r || !*r)) 2190 return 0; 2191 2192 return *r == data; 2193 } 2194 2195 /** 2196 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2197 * @dev: parent device for this pin controller 2198 * @pctldesc: descriptor for this pin controller 2199 * @driver_data: private pin controller data for this pin controller 2200 * 2201 * Returns an error pointer if pincontrol register failed. Otherwise 2202 * it returns valid pinctrl handle. 2203 * 2204 * The pinctrl device will be automatically released when the device is unbound. 2205 */ 2206 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2207 struct pinctrl_desc *pctldesc, 2208 void *driver_data) 2209 { 2210 struct pinctrl_dev **ptr, *pctldev; 2211 2212 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2213 if (!ptr) 2214 return ERR_PTR(-ENOMEM); 2215 2216 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2217 if (IS_ERR(pctldev)) { 2218 devres_free(ptr); 2219 return pctldev; 2220 } 2221 2222 *ptr = pctldev; 2223 devres_add(dev, ptr); 2224 2225 return pctldev; 2226 } 2227 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2228 2229 /** 2230 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2231 * @dev: parent device for this pin controller 2232 * @pctldesc: descriptor for this pin controller 2233 * @driver_data: private pin controller data for this pin controller 2234 * 2235 * Returns an error pointer if pincontrol register failed. Otherwise 2236 * it returns valid pinctrl handle. 2237 * 2238 * The pinctrl device will be automatically released when the device is unbound. 2239 */ 2240 int devm_pinctrl_register_and_init(struct device *dev, 2241 struct pinctrl_desc *pctldesc, 2242 void *driver_data, 2243 struct pinctrl_dev **pctldev) 2244 { 2245 struct pinctrl_dev **ptr; 2246 int error; 2247 2248 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2249 if (!ptr) 2250 return -ENOMEM; 2251 2252 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2253 if (error) { 2254 devres_free(ptr); 2255 return error; 2256 } 2257 2258 *ptr = *pctldev; 2259 devres_add(dev, ptr); 2260 2261 return 0; 2262 } 2263 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2264 2265 /** 2266 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2267 * @dev: device for which which resource was allocated 2268 * @pctldev: the pinctrl device to unregister. 2269 */ 2270 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2271 { 2272 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2273 devm_pinctrl_dev_match, pctldev)); 2274 } 2275 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2276 2277 static int __init pinctrl_init(void) 2278 { 2279 pr_info("initialized pinctrl subsystem\n"); 2280 pinctrl_init_debugfs(); 2281 return 0; 2282 } 2283 2284 /* init early since many drivers really need to initialized pinmux early */ 2285 core_initcall(pinctrl_init); 2286