xref: /linux/drivers/pinctrl/core.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /*
2  * Core driver for the pin control subsystem
3  *
4  * Copyright (C) 2011-2012 ST-Ericsson SA
5  * Written on behalf of Linaro for ST-Ericsson
6  * Based on bits of regulator core, gpio core and clk core
7  *
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11  *
12  * License terms: GNU General Public License (GPL) version 2
13  */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15 
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30 
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34 
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39 
40 
41 static bool pinctrl_dummy_state;
42 
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45 
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48 
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51 
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54 
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57 
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60 
61 
62 /**
63  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64  *
65  * Usually this function is called by platforms without pinctrl driver support
66  * but run with some shared drivers using pinctrl APIs.
67  * After calling this function, the pinctrl core will return successfully
68  * with creating a dummy state for the driver to keep going smoothly.
69  */
70 void pinctrl_provide_dummies(void)
71 {
72 	pinctrl_dummy_state = true;
73 }
74 
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 	/* We're not allowed to register devices without name */
78 	return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81 
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 	return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87 
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 	return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93 
94 /**
95  * get_pinctrl_dev_from_devname() - look up pin controller device
96  * @devname: the name of a device instance, as returned by dev_name()
97  *
98  * Looks up a pin control device matching a certain device name or pure device
99  * pointer, the pure device pointer will take precedence.
100  */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 	struct pinctrl_dev *pctldev = NULL;
104 
105 	if (!devname)
106 		return NULL;
107 
108 	mutex_lock(&pinctrldev_list_mutex);
109 
110 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 		if (!strcmp(dev_name(pctldev->dev), devname)) {
112 			/* Matched on device name */
113 			mutex_unlock(&pinctrldev_list_mutex);
114 			return pctldev;
115 		}
116 	}
117 
118 	mutex_unlock(&pinctrldev_list_mutex);
119 
120 	return NULL;
121 }
122 
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 	struct pinctrl_dev *pctldev;
126 
127 	mutex_lock(&pinctrldev_list_mutex);
128 
129 	list_for_each_entry(pctldev, &pinctrldev_list, node)
130 		if (pctldev->dev->of_node == np) {
131 			mutex_unlock(&pinctrldev_list_mutex);
132 			return pctldev;
133 		}
134 
135 	mutex_unlock(&pinctrldev_list_mutex);
136 
137 	return NULL;
138 }
139 
140 /**
141  * pin_get_from_name() - look up a pin number from a name
142  * @pctldev: the pin control device to lookup the pin on
143  * @name: the name of the pin to look up
144  */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 	unsigned i, pin;
148 
149 	/* The pin number can be retrived from the pin controller descriptor */
150 	for (i = 0; i < pctldev->desc->npins; i++) {
151 		struct pin_desc *desc;
152 
153 		pin = pctldev->desc->pins[i].number;
154 		desc = pin_desc_get(pctldev, pin);
155 		/* Pin space may be sparse */
156 		if (desc && !strcmp(name, desc->name))
157 			return pin;
158 	}
159 
160 	return -EINVAL;
161 }
162 
163 /**
164  * pin_get_name_from_id() - look up a pin name from a pin id
165  * @pctldev: the pin control device to lookup the pin on
166  * @name: the name of the pin to look up
167  */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 	const struct pin_desc *desc;
171 
172 	desc = pin_desc_get(pctldev, pin);
173 	if (!desc) {
174 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 			pin);
176 		return NULL;
177 	}
178 
179 	return desc->name;
180 }
181 
182 /**
183  * pin_is_valid() - check if pin exists on controller
184  * @pctldev: the pin control device to check the pin on
185  * @pin: pin to check, use the local pin controller index number
186  *
187  * This tells us whether a certain pin exist on a certain pin controller or
188  * not. Pin lists may be sparse, so some pins may not exist.
189  */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 	struct pin_desc *pindesc;
193 
194 	if (pin < 0)
195 		return false;
196 
197 	mutex_lock(&pctldev->mutex);
198 	pindesc = pin_desc_get(pctldev, pin);
199 	mutex_unlock(&pctldev->mutex);
200 
201 	return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204 
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 				  const struct pinctrl_pin_desc *pins,
208 				  unsigned num_pins)
209 {
210 	int i;
211 
212 	for (i = 0; i < num_pins; i++) {
213 		struct pin_desc *pindesc;
214 
215 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 					    pins[i].number);
217 		if (pindesc) {
218 			radix_tree_delete(&pctldev->pin_desc_tree,
219 					  pins[i].number);
220 			if (pindesc->dynamic_name)
221 				kfree(pindesc->name);
222 		}
223 		kfree(pindesc);
224 	}
225 }
226 
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 				    const struct pinctrl_pin_desc *pin)
229 {
230 	struct pin_desc *pindesc;
231 
232 	pindesc = pin_desc_get(pctldev, pin->number);
233 	if (pindesc) {
234 		dev_err(pctldev->dev, "pin %d already registered\n",
235 			pin->number);
236 		return -EINVAL;
237 	}
238 
239 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 	if (!pindesc)
241 		return -ENOMEM;
242 
243 	/* Set owner */
244 	pindesc->pctldev = pctldev;
245 
246 	/* Copy basic pin info */
247 	if (pin->name) {
248 		pindesc->name = pin->name;
249 	} else {
250 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
251 		if (!pindesc->name) {
252 			kfree(pindesc);
253 			return -ENOMEM;
254 		}
255 		pindesc->dynamic_name = true;
256 	}
257 
258 	pindesc->drv_data = pin->drv_data;
259 
260 	radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
261 	pr_debug("registered pin %d (%s) on %s\n",
262 		 pin->number, pindesc->name, pctldev->desc->name);
263 	return 0;
264 }
265 
266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
267 				 const struct pinctrl_pin_desc *pins,
268 				 unsigned num_descs)
269 {
270 	unsigned i;
271 	int ret = 0;
272 
273 	for (i = 0; i < num_descs; i++) {
274 		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
275 		if (ret)
276 			return ret;
277 	}
278 
279 	return 0;
280 }
281 
282 /**
283  * gpio_to_pin() - GPIO range GPIO number to pin number translation
284  * @range: GPIO range used for the translation
285  * @gpio: gpio pin to translate to a pin number
286  *
287  * Finds the pin number for a given GPIO using the specified GPIO range
288  * as a base for translation. The distinction between linear GPIO ranges
289  * and pin list based GPIO ranges is managed correctly by this function.
290  *
291  * This function assumes the gpio is part of the specified GPIO range, use
292  * only after making sure this is the case (e.g. by calling it on the
293  * result of successful pinctrl_get_device_gpio_range calls)!
294  */
295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
296 				unsigned int gpio)
297 {
298 	unsigned int offset = gpio - range->base;
299 	if (range->pins)
300 		return range->pins[offset];
301 	else
302 		return range->pin_base + offset;
303 }
304 
305 /**
306  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
307  * @pctldev: pin controller device to check
308  * @gpio: gpio pin to check taken from the global GPIO pin space
309  *
310  * Tries to match a GPIO pin number to the ranges handled by a certain pin
311  * controller, return the range or NULL
312  */
313 static struct pinctrl_gpio_range *
314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
315 {
316 	struct pinctrl_gpio_range *range = NULL;
317 
318 	mutex_lock(&pctldev->mutex);
319 	/* Loop over the ranges */
320 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
321 		/* Check if we're in the valid range */
322 		if (gpio >= range->base &&
323 		    gpio < range->base + range->npins) {
324 			mutex_unlock(&pctldev->mutex);
325 			return range;
326 		}
327 	}
328 	mutex_unlock(&pctldev->mutex);
329 	return NULL;
330 }
331 
332 /**
333  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
334  * the same GPIO chip are in range
335  * @gpio: gpio pin to check taken from the global GPIO pin space
336  *
337  * This function is complement of pinctrl_match_gpio_range(). If the return
338  * value of pinctrl_match_gpio_range() is NULL, this function could be used
339  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
340  * of the same GPIO chip don't have back-end pinctrl interface.
341  * If the return value is true, it means that pinctrl device is ready & the
342  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
343  * is false, it means that pinctrl device may not be ready.
344  */
345 #ifdef CONFIG_GPIOLIB
346 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
347 {
348 	struct pinctrl_dev *pctldev;
349 	struct pinctrl_gpio_range *range = NULL;
350 	struct gpio_chip *chip = gpio_to_chip(gpio);
351 
352 	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
353 		return false;
354 
355 	mutex_lock(&pinctrldev_list_mutex);
356 
357 	/* Loop over the pin controllers */
358 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
359 		/* Loop over the ranges */
360 		mutex_lock(&pctldev->mutex);
361 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
362 			/* Check if any gpio range overlapped with gpio chip */
363 			if (range->base + range->npins - 1 < chip->base ||
364 			    range->base > chip->base + chip->ngpio - 1)
365 				continue;
366 			mutex_unlock(&pctldev->mutex);
367 			mutex_unlock(&pinctrldev_list_mutex);
368 			return true;
369 		}
370 		mutex_unlock(&pctldev->mutex);
371 	}
372 
373 	mutex_unlock(&pinctrldev_list_mutex);
374 
375 	return false;
376 }
377 #else
378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
379 #endif
380 
381 /**
382  * pinctrl_get_device_gpio_range() - find device for GPIO range
383  * @gpio: the pin to locate the pin controller for
384  * @outdev: the pin control device if found
385  * @outrange: the GPIO range if found
386  *
387  * Find the pin controller handling a certain GPIO pin from the pinspace of
388  * the GPIO subsystem, return the device and the matching GPIO range. Returns
389  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
390  * may still have not been registered.
391  */
392 static int pinctrl_get_device_gpio_range(unsigned gpio,
393 					 struct pinctrl_dev **outdev,
394 					 struct pinctrl_gpio_range **outrange)
395 {
396 	struct pinctrl_dev *pctldev = NULL;
397 
398 	mutex_lock(&pinctrldev_list_mutex);
399 
400 	/* Loop over the pin controllers */
401 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
402 		struct pinctrl_gpio_range *range;
403 
404 		range = pinctrl_match_gpio_range(pctldev, gpio);
405 		if (range) {
406 			*outdev = pctldev;
407 			*outrange = range;
408 			mutex_unlock(&pinctrldev_list_mutex);
409 			return 0;
410 		}
411 	}
412 
413 	mutex_unlock(&pinctrldev_list_mutex);
414 
415 	return -EPROBE_DEFER;
416 }
417 
418 /**
419  * pinctrl_add_gpio_range() - register a GPIO range for a controller
420  * @pctldev: pin controller device to add the range to
421  * @range: the GPIO range to add
422  *
423  * This adds a range of GPIOs to be handled by a certain pin controller. Call
424  * this to register handled ranges after registering your pin controller.
425  */
426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
427 			    struct pinctrl_gpio_range *range)
428 {
429 	mutex_lock(&pctldev->mutex);
430 	list_add_tail(&range->node, &pctldev->gpio_ranges);
431 	mutex_unlock(&pctldev->mutex);
432 }
433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
434 
435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
436 			     struct pinctrl_gpio_range *ranges,
437 			     unsigned nranges)
438 {
439 	int i;
440 
441 	for (i = 0; i < nranges; i++)
442 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
443 }
444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
445 
446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447 		struct pinctrl_gpio_range *range)
448 {
449 	struct pinctrl_dev *pctldev;
450 
451 	pctldev = get_pinctrl_dev_from_devname(devname);
452 
453 	/*
454 	 * If we can't find this device, let's assume that is because
455 	 * it has not probed yet, so the driver trying to register this
456 	 * range need to defer probing.
457 	 */
458 	if (!pctldev) {
459 		return ERR_PTR(-EPROBE_DEFER);
460 	}
461 	pinctrl_add_gpio_range(pctldev, range);
462 
463 	return pctldev;
464 }
465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
466 
467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
468 				const unsigned **pins, unsigned *num_pins)
469 {
470 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
471 	int gs;
472 
473 	if (!pctlops->get_group_pins)
474 		return -EINVAL;
475 
476 	gs = pinctrl_get_group_selector(pctldev, pin_group);
477 	if (gs < 0)
478 		return gs;
479 
480 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
481 }
482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
483 
484 struct pinctrl_gpio_range *
485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
486 					unsigned int pin)
487 {
488 	struct pinctrl_gpio_range *range;
489 
490 	/* Loop over the ranges */
491 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
492 		/* Check if we're in the valid range */
493 		if (range->pins) {
494 			int a;
495 			for (a = 0; a < range->npins; a++) {
496 				if (range->pins[a] == pin)
497 					return range;
498 			}
499 		} else if (pin >= range->pin_base &&
500 			   pin < range->pin_base + range->npins)
501 			return range;
502 	}
503 
504 	return NULL;
505 }
506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
507 
508 /**
509  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
510  * @pctldev: the pin controller device to look in
511  * @pin: a controller-local number to find the range for
512  */
513 struct pinctrl_gpio_range *
514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
515 				 unsigned int pin)
516 {
517 	struct pinctrl_gpio_range *range;
518 
519 	mutex_lock(&pctldev->mutex);
520 	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
521 	mutex_unlock(&pctldev->mutex);
522 
523 	return range;
524 }
525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
526 
527 /**
528  * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
529  * @pctldev: pin controller device to remove the range from
530  * @range: the GPIO range to remove
531  */
532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
533 			       struct pinctrl_gpio_range *range)
534 {
535 	mutex_lock(&pctldev->mutex);
536 	list_del(&range->node);
537 	mutex_unlock(&pctldev->mutex);
538 }
539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
540 
541 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
542 
543 /**
544  * pinctrl_generic_get_group_count() - returns the number of pin groups
545  * @pctldev: pin controller device
546  */
547 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
548 {
549 	return pctldev->num_groups;
550 }
551 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
552 
553 /**
554  * pinctrl_generic_get_group_name() - returns the name of a pin group
555  * @pctldev: pin controller device
556  * @selector: group number
557  */
558 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
559 					   unsigned int selector)
560 {
561 	struct group_desc *group;
562 
563 	group = radix_tree_lookup(&pctldev->pin_group_tree,
564 				  selector);
565 	if (!group)
566 		return NULL;
567 
568 	return group->name;
569 }
570 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
571 
572 /**
573  * pinctrl_generic_get_group_pins() - gets the pin group pins
574  * @pctldev: pin controller device
575  * @selector: group number
576  * @pins: pins in the group
577  * @num_pins: number of pins in the group
578  */
579 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
580 				   unsigned int selector,
581 				   const unsigned int **pins,
582 				   unsigned int *num_pins)
583 {
584 	struct group_desc *group;
585 
586 	group = radix_tree_lookup(&pctldev->pin_group_tree,
587 				  selector);
588 	if (!group) {
589 		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
590 			__func__, selector);
591 		return -EINVAL;
592 	}
593 
594 	*pins = group->pins;
595 	*num_pins = group->num_pins;
596 
597 	return 0;
598 }
599 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
600 
601 /**
602  * pinctrl_generic_get_group() - returns a pin group based on the number
603  * @pctldev: pin controller device
604  * @gselector: group number
605  */
606 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
607 					     unsigned int selector)
608 {
609 	struct group_desc *group;
610 
611 	group = radix_tree_lookup(&pctldev->pin_group_tree,
612 				  selector);
613 	if (!group)
614 		return NULL;
615 
616 	return group;
617 }
618 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
619 
620 /**
621  * pinctrl_generic_add_group() - adds a new pin group
622  * @pctldev: pin controller device
623  * @name: name of the pin group
624  * @pins: pins in the pin group
625  * @num_pins: number of pins in the pin group
626  * @data: pin controller driver specific data
627  *
628  * Note that the caller must take care of locking.
629  */
630 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
631 			      int *pins, int num_pins, void *data)
632 {
633 	struct group_desc *group;
634 
635 	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
636 	if (!group)
637 		return -ENOMEM;
638 
639 	group->name = name;
640 	group->pins = pins;
641 	group->num_pins = num_pins;
642 	group->data = data;
643 
644 	radix_tree_insert(&pctldev->pin_group_tree, pctldev->num_groups,
645 			  group);
646 
647 	pctldev->num_groups++;
648 
649 	return 0;
650 }
651 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
652 
653 /**
654  * pinctrl_generic_remove_group() - removes a numbered pin group
655  * @pctldev: pin controller device
656  * @selector: group number
657  *
658  * Note that the caller must take care of locking.
659  */
660 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
661 				 unsigned int selector)
662 {
663 	struct group_desc *group;
664 
665 	group = radix_tree_lookup(&pctldev->pin_group_tree,
666 				  selector);
667 	if (!group)
668 		return -ENOENT;
669 
670 	radix_tree_delete(&pctldev->pin_group_tree, selector);
671 	devm_kfree(pctldev->dev, group);
672 
673 	pctldev->num_groups--;
674 
675 	return 0;
676 }
677 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
678 
679 /**
680  * pinctrl_generic_free_groups() - removes all pin groups
681  * @pctldev: pin controller device
682  *
683  * Note that the caller must take care of locking. The pinctrl groups
684  * are allocated with devm_kzalloc() so no need to free them here.
685  */
686 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
687 {
688 	struct radix_tree_iter iter;
689 	void __rcu **slot;
690 
691 	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
692 		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
693 
694 	pctldev->num_groups = 0;
695 }
696 
697 #else
698 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
699 {
700 }
701 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
702 
703 /**
704  * pinctrl_get_group_selector() - returns the group selector for a group
705  * @pctldev: the pin controller handling the group
706  * @pin_group: the pin group to look up
707  */
708 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
709 			       const char *pin_group)
710 {
711 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
712 	unsigned ngroups = pctlops->get_groups_count(pctldev);
713 	unsigned group_selector = 0;
714 
715 	while (group_selector < ngroups) {
716 		const char *gname = pctlops->get_group_name(pctldev,
717 							    group_selector);
718 		if (!strcmp(gname, pin_group)) {
719 			dev_dbg(pctldev->dev,
720 				"found group selector %u for %s\n",
721 				group_selector,
722 				pin_group);
723 			return group_selector;
724 		}
725 
726 		group_selector++;
727 	}
728 
729 	dev_err(pctldev->dev, "does not have pin group %s\n",
730 		pin_group);
731 
732 	return -EINVAL;
733 }
734 
735 /**
736  * pinctrl_gpio_request() - request a single pin to be used as GPIO
737  * @gpio: the GPIO pin number from the GPIO subsystem number space
738  *
739  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
740  * as part of their gpio_request() semantics, platforms and individual drivers
741  * shall *NOT* request GPIO pins to be muxed in.
742  */
743 int pinctrl_gpio_request(unsigned gpio)
744 {
745 	struct pinctrl_dev *pctldev;
746 	struct pinctrl_gpio_range *range;
747 	int ret;
748 	int pin;
749 
750 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
751 	if (ret) {
752 		if (pinctrl_ready_for_gpio_range(gpio))
753 			ret = 0;
754 		return ret;
755 	}
756 
757 	mutex_lock(&pctldev->mutex);
758 
759 	/* Convert to the pin controllers number space */
760 	pin = gpio_to_pin(range, gpio);
761 
762 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
763 
764 	mutex_unlock(&pctldev->mutex);
765 
766 	return ret;
767 }
768 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
769 
770 /**
771  * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
772  * @gpio: the GPIO pin number from the GPIO subsystem number space
773  *
774  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
775  * as part of their gpio_free() semantics, platforms and individual drivers
776  * shall *NOT* request GPIO pins to be muxed out.
777  */
778 void pinctrl_gpio_free(unsigned gpio)
779 {
780 	struct pinctrl_dev *pctldev;
781 	struct pinctrl_gpio_range *range;
782 	int ret;
783 	int pin;
784 
785 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
786 	if (ret) {
787 		return;
788 	}
789 	mutex_lock(&pctldev->mutex);
790 
791 	/* Convert to the pin controllers number space */
792 	pin = gpio_to_pin(range, gpio);
793 
794 	pinmux_free_gpio(pctldev, pin, range);
795 
796 	mutex_unlock(&pctldev->mutex);
797 }
798 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
799 
800 static int pinctrl_gpio_direction(unsigned gpio, bool input)
801 {
802 	struct pinctrl_dev *pctldev;
803 	struct pinctrl_gpio_range *range;
804 	int ret;
805 	int pin;
806 
807 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
808 	if (ret) {
809 		return ret;
810 	}
811 
812 	mutex_lock(&pctldev->mutex);
813 
814 	/* Convert to the pin controllers number space */
815 	pin = gpio_to_pin(range, gpio);
816 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
817 
818 	mutex_unlock(&pctldev->mutex);
819 
820 	return ret;
821 }
822 
823 /**
824  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
825  * @gpio: the GPIO pin number from the GPIO subsystem number space
826  *
827  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
828  * as part of their gpio_direction_input() semantics, platforms and individual
829  * drivers shall *NOT* touch pin control GPIO calls.
830  */
831 int pinctrl_gpio_direction_input(unsigned gpio)
832 {
833 	return pinctrl_gpio_direction(gpio, true);
834 }
835 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
836 
837 /**
838  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
839  * @gpio: the GPIO pin number from the GPIO subsystem number space
840  *
841  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
842  * as part of their gpio_direction_output() semantics, platforms and individual
843  * drivers shall *NOT* touch pin control GPIO calls.
844  */
845 int pinctrl_gpio_direction_output(unsigned gpio)
846 {
847 	return pinctrl_gpio_direction(gpio, false);
848 }
849 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
850 
851 /**
852  * pinctrl_gpio_set_config() - Apply config to given GPIO pin
853  * @gpio: the GPIO pin number from the GPIO subsystem number space
854  * @config: the configuration to apply to the GPIO
855  *
856  * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
857  * they need to call the underlying pin controller to change GPIO config
858  * (for example set debounce time).
859  */
860 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
861 {
862 	unsigned long configs[] = { config };
863 	struct pinctrl_gpio_range *range;
864 	struct pinctrl_dev *pctldev;
865 	int ret, pin;
866 
867 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
868 	if (ret)
869 		return ret;
870 
871 	mutex_lock(&pctldev->mutex);
872 	pin = gpio_to_pin(range, gpio);
873 	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
874 	mutex_unlock(&pctldev->mutex);
875 
876 	return ret;
877 }
878 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
879 
880 static struct pinctrl_state *find_state(struct pinctrl *p,
881 					const char *name)
882 {
883 	struct pinctrl_state *state;
884 
885 	list_for_each_entry(state, &p->states, node)
886 		if (!strcmp(state->name, name))
887 			return state;
888 
889 	return NULL;
890 }
891 
892 static struct pinctrl_state *create_state(struct pinctrl *p,
893 					  const char *name)
894 {
895 	struct pinctrl_state *state;
896 
897 	state = kzalloc(sizeof(*state), GFP_KERNEL);
898 	if (!state)
899 		return ERR_PTR(-ENOMEM);
900 
901 	state->name = name;
902 	INIT_LIST_HEAD(&state->settings);
903 
904 	list_add_tail(&state->node, &p->states);
905 
906 	return state;
907 }
908 
909 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
910 		       const struct pinctrl_map *map)
911 {
912 	struct pinctrl_state *state;
913 	struct pinctrl_setting *setting;
914 	int ret;
915 
916 	state = find_state(p, map->name);
917 	if (!state)
918 		state = create_state(p, map->name);
919 	if (IS_ERR(state))
920 		return PTR_ERR(state);
921 
922 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
923 		return 0;
924 
925 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
926 	if (!setting)
927 		return -ENOMEM;
928 
929 	setting->type = map->type;
930 
931 	if (pctldev)
932 		setting->pctldev = pctldev;
933 	else
934 		setting->pctldev =
935 			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
936 	if (!setting->pctldev) {
937 		kfree(setting);
938 		/* Do not defer probing of hogs (circular loop) */
939 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
940 			return -ENODEV;
941 		/*
942 		 * OK let us guess that the driver is not there yet, and
943 		 * let's defer obtaining this pinctrl handle to later...
944 		 */
945 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
946 			map->ctrl_dev_name);
947 		return -EPROBE_DEFER;
948 	}
949 
950 	setting->dev_name = map->dev_name;
951 
952 	switch (map->type) {
953 	case PIN_MAP_TYPE_MUX_GROUP:
954 		ret = pinmux_map_to_setting(map, setting);
955 		break;
956 	case PIN_MAP_TYPE_CONFIGS_PIN:
957 	case PIN_MAP_TYPE_CONFIGS_GROUP:
958 		ret = pinconf_map_to_setting(map, setting);
959 		break;
960 	default:
961 		ret = -EINVAL;
962 		break;
963 	}
964 	if (ret < 0) {
965 		kfree(setting);
966 		return ret;
967 	}
968 
969 	list_add_tail(&setting->node, &state->settings);
970 
971 	return 0;
972 }
973 
974 static struct pinctrl *find_pinctrl(struct device *dev)
975 {
976 	struct pinctrl *p;
977 
978 	mutex_lock(&pinctrl_list_mutex);
979 	list_for_each_entry(p, &pinctrl_list, node)
980 		if (p->dev == dev) {
981 			mutex_unlock(&pinctrl_list_mutex);
982 			return p;
983 		}
984 
985 	mutex_unlock(&pinctrl_list_mutex);
986 	return NULL;
987 }
988 
989 static void pinctrl_free(struct pinctrl *p, bool inlist);
990 
991 static struct pinctrl *create_pinctrl(struct device *dev,
992 				      struct pinctrl_dev *pctldev)
993 {
994 	struct pinctrl *p;
995 	const char *devname;
996 	struct pinctrl_maps *maps_node;
997 	int i;
998 	const struct pinctrl_map *map;
999 	int ret;
1000 
1001 	/*
1002 	 * create the state cookie holder struct pinctrl for each
1003 	 * mapping, this is what consumers will get when requesting
1004 	 * a pin control handle with pinctrl_get()
1005 	 */
1006 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1007 	if (!p)
1008 		return ERR_PTR(-ENOMEM);
1009 	p->dev = dev;
1010 	INIT_LIST_HEAD(&p->states);
1011 	INIT_LIST_HEAD(&p->dt_maps);
1012 
1013 	ret = pinctrl_dt_to_map(p, pctldev);
1014 	if (ret < 0) {
1015 		kfree(p);
1016 		return ERR_PTR(ret);
1017 	}
1018 
1019 	devname = dev_name(dev);
1020 
1021 	mutex_lock(&pinctrl_maps_mutex);
1022 	/* Iterate over the pin control maps to locate the right ones */
1023 	for_each_maps(maps_node, i, map) {
1024 		/* Map must be for this device */
1025 		if (strcmp(map->dev_name, devname))
1026 			continue;
1027 		/*
1028 		 * If pctldev is not null, we are claiming hog for it,
1029 		 * that means, setting that is served by pctldev by itself.
1030 		 *
1031 		 * Thus we must skip map that is for this device but is served
1032 		 * by other device.
1033 		 */
1034 		if (pctldev &&
1035 		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1036 			continue;
1037 
1038 		ret = add_setting(p, pctldev, map);
1039 		/*
1040 		 * At this point the adding of a setting may:
1041 		 *
1042 		 * - Defer, if the pinctrl device is not yet available
1043 		 * - Fail, if the pinctrl device is not yet available,
1044 		 *   AND the setting is a hog. We cannot defer that, since
1045 		 *   the hog will kick in immediately after the device
1046 		 *   is registered.
1047 		 *
1048 		 * If the error returned was not -EPROBE_DEFER then we
1049 		 * accumulate the errors to see if we end up with
1050 		 * an -EPROBE_DEFER later, as that is the worst case.
1051 		 */
1052 		if (ret == -EPROBE_DEFER) {
1053 			pinctrl_free(p, false);
1054 			mutex_unlock(&pinctrl_maps_mutex);
1055 			return ERR_PTR(ret);
1056 		}
1057 	}
1058 	mutex_unlock(&pinctrl_maps_mutex);
1059 
1060 	if (ret < 0) {
1061 		/* If some other error than deferral occurred, return here */
1062 		pinctrl_free(p, false);
1063 		return ERR_PTR(ret);
1064 	}
1065 
1066 	kref_init(&p->users);
1067 
1068 	/* Add the pinctrl handle to the global list */
1069 	mutex_lock(&pinctrl_list_mutex);
1070 	list_add_tail(&p->node, &pinctrl_list);
1071 	mutex_unlock(&pinctrl_list_mutex);
1072 
1073 	return p;
1074 }
1075 
1076 /**
1077  * pinctrl_get() - retrieves the pinctrl handle for a device
1078  * @dev: the device to obtain the handle for
1079  */
1080 struct pinctrl *pinctrl_get(struct device *dev)
1081 {
1082 	struct pinctrl *p;
1083 
1084 	if (WARN_ON(!dev))
1085 		return ERR_PTR(-EINVAL);
1086 
1087 	/*
1088 	 * See if somebody else (such as the device core) has already
1089 	 * obtained a handle to the pinctrl for this device. In that case,
1090 	 * return another pointer to it.
1091 	 */
1092 	p = find_pinctrl(dev);
1093 	if (p) {
1094 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1095 		kref_get(&p->users);
1096 		return p;
1097 	}
1098 
1099 	return create_pinctrl(dev, NULL);
1100 }
1101 EXPORT_SYMBOL_GPL(pinctrl_get);
1102 
1103 static void pinctrl_free_setting(bool disable_setting,
1104 				 struct pinctrl_setting *setting)
1105 {
1106 	switch (setting->type) {
1107 	case PIN_MAP_TYPE_MUX_GROUP:
1108 		if (disable_setting)
1109 			pinmux_disable_setting(setting);
1110 		pinmux_free_setting(setting);
1111 		break;
1112 	case PIN_MAP_TYPE_CONFIGS_PIN:
1113 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1114 		pinconf_free_setting(setting);
1115 		break;
1116 	default:
1117 		break;
1118 	}
1119 }
1120 
1121 static void pinctrl_free(struct pinctrl *p, bool inlist)
1122 {
1123 	struct pinctrl_state *state, *n1;
1124 	struct pinctrl_setting *setting, *n2;
1125 
1126 	mutex_lock(&pinctrl_list_mutex);
1127 	list_for_each_entry_safe(state, n1, &p->states, node) {
1128 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1129 			pinctrl_free_setting(state == p->state, setting);
1130 			list_del(&setting->node);
1131 			kfree(setting);
1132 		}
1133 		list_del(&state->node);
1134 		kfree(state);
1135 	}
1136 
1137 	pinctrl_dt_free_maps(p);
1138 
1139 	if (inlist)
1140 		list_del(&p->node);
1141 	kfree(p);
1142 	mutex_unlock(&pinctrl_list_mutex);
1143 }
1144 
1145 /**
1146  * pinctrl_release() - release the pinctrl handle
1147  * @kref: the kref in the pinctrl being released
1148  */
1149 static void pinctrl_release(struct kref *kref)
1150 {
1151 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1152 
1153 	pinctrl_free(p, true);
1154 }
1155 
1156 /**
1157  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1158  * @p: the pinctrl handle to release
1159  */
1160 void pinctrl_put(struct pinctrl *p)
1161 {
1162 	kref_put(&p->users, pinctrl_release);
1163 }
1164 EXPORT_SYMBOL_GPL(pinctrl_put);
1165 
1166 /**
1167  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1168  * @p: the pinctrl handle to retrieve the state from
1169  * @name: the state name to retrieve
1170  */
1171 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1172 						 const char *name)
1173 {
1174 	struct pinctrl_state *state;
1175 
1176 	state = find_state(p, name);
1177 	if (!state) {
1178 		if (pinctrl_dummy_state) {
1179 			/* create dummy state */
1180 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1181 				name);
1182 			state = create_state(p, name);
1183 		} else
1184 			state = ERR_PTR(-ENODEV);
1185 	}
1186 
1187 	return state;
1188 }
1189 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1190 
1191 /**
1192  * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1193  * @p: the pinctrl handle for the device that requests configuration
1194  * @state: the state handle to select/activate/program
1195  */
1196 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1197 {
1198 	struct pinctrl_setting *setting, *setting2;
1199 	struct pinctrl_state *old_state = p->state;
1200 	int ret;
1201 
1202 	if (p->state) {
1203 		/*
1204 		 * For each pinmux setting in the old state, forget SW's record
1205 		 * of mux owner for that pingroup. Any pingroups which are
1206 		 * still owned by the new state will be re-acquired by the call
1207 		 * to pinmux_enable_setting() in the loop below.
1208 		 */
1209 		list_for_each_entry(setting, &p->state->settings, node) {
1210 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1211 				continue;
1212 			pinmux_disable_setting(setting);
1213 		}
1214 	}
1215 
1216 	p->state = NULL;
1217 
1218 	/* Apply all the settings for the new state */
1219 	list_for_each_entry(setting, &state->settings, node) {
1220 		switch (setting->type) {
1221 		case PIN_MAP_TYPE_MUX_GROUP:
1222 			ret = pinmux_enable_setting(setting);
1223 			break;
1224 		case PIN_MAP_TYPE_CONFIGS_PIN:
1225 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1226 			ret = pinconf_apply_setting(setting);
1227 			break;
1228 		default:
1229 			ret = -EINVAL;
1230 			break;
1231 		}
1232 
1233 		if (ret < 0) {
1234 			goto unapply_new_state;
1235 		}
1236 	}
1237 
1238 	p->state = state;
1239 
1240 	return 0;
1241 
1242 unapply_new_state:
1243 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1244 
1245 	list_for_each_entry(setting2, &state->settings, node) {
1246 		if (&setting2->node == &setting->node)
1247 			break;
1248 		/*
1249 		 * All we can do here is pinmux_disable_setting.
1250 		 * That means that some pins are muxed differently now
1251 		 * than they were before applying the setting (We can't
1252 		 * "unmux a pin"!), but it's not a big deal since the pins
1253 		 * are free to be muxed by another apply_setting.
1254 		 */
1255 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1256 			pinmux_disable_setting(setting2);
1257 	}
1258 
1259 	/* There's no infinite recursive loop here because p->state is NULL */
1260 	if (old_state)
1261 		pinctrl_select_state(p, old_state);
1262 
1263 	return ret;
1264 }
1265 
1266 /**
1267  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1268  * @p: the pinctrl handle for the device that requests configuration
1269  * @state: the state handle to select/activate/program
1270  */
1271 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1272 {
1273 	if (p->state == state)
1274 		return 0;
1275 
1276 	return pinctrl_commit_state(p, state);
1277 }
1278 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1279 
1280 static void devm_pinctrl_release(struct device *dev, void *res)
1281 {
1282 	pinctrl_put(*(struct pinctrl **)res);
1283 }
1284 
1285 /**
1286  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1287  * @dev: the device to obtain the handle for
1288  *
1289  * If there is a need to explicitly destroy the returned struct pinctrl,
1290  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1291  */
1292 struct pinctrl *devm_pinctrl_get(struct device *dev)
1293 {
1294 	struct pinctrl **ptr, *p;
1295 
1296 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1297 	if (!ptr)
1298 		return ERR_PTR(-ENOMEM);
1299 
1300 	p = pinctrl_get(dev);
1301 	if (!IS_ERR(p)) {
1302 		*ptr = p;
1303 		devres_add(dev, ptr);
1304 	} else {
1305 		devres_free(ptr);
1306 	}
1307 
1308 	return p;
1309 }
1310 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1311 
1312 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1313 {
1314 	struct pinctrl **p = res;
1315 
1316 	return *p == data;
1317 }
1318 
1319 /**
1320  * devm_pinctrl_put() - Resource managed pinctrl_put()
1321  * @p: the pinctrl handle to release
1322  *
1323  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1324  * this function will not need to be called and the resource management
1325  * code will ensure that the resource is freed.
1326  */
1327 void devm_pinctrl_put(struct pinctrl *p)
1328 {
1329 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1330 			       devm_pinctrl_match, p));
1331 }
1332 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1333 
1334 int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps,
1335 			 bool dup)
1336 {
1337 	int i, ret;
1338 	struct pinctrl_maps *maps_node;
1339 
1340 	pr_debug("add %u pinctrl maps\n", num_maps);
1341 
1342 	/* First sanity check the new mapping */
1343 	for (i = 0; i < num_maps; i++) {
1344 		if (!maps[i].dev_name) {
1345 			pr_err("failed to register map %s (%d): no device given\n",
1346 			       maps[i].name, i);
1347 			return -EINVAL;
1348 		}
1349 
1350 		if (!maps[i].name) {
1351 			pr_err("failed to register map %d: no map name given\n",
1352 			       i);
1353 			return -EINVAL;
1354 		}
1355 
1356 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1357 				!maps[i].ctrl_dev_name) {
1358 			pr_err("failed to register map %s (%d): no pin control device given\n",
1359 			       maps[i].name, i);
1360 			return -EINVAL;
1361 		}
1362 
1363 		switch (maps[i].type) {
1364 		case PIN_MAP_TYPE_DUMMY_STATE:
1365 			break;
1366 		case PIN_MAP_TYPE_MUX_GROUP:
1367 			ret = pinmux_validate_map(&maps[i], i);
1368 			if (ret < 0)
1369 				return ret;
1370 			break;
1371 		case PIN_MAP_TYPE_CONFIGS_PIN:
1372 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1373 			ret = pinconf_validate_map(&maps[i], i);
1374 			if (ret < 0)
1375 				return ret;
1376 			break;
1377 		default:
1378 			pr_err("failed to register map %s (%d): invalid type given\n",
1379 			       maps[i].name, i);
1380 			return -EINVAL;
1381 		}
1382 	}
1383 
1384 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1385 	if (!maps_node)
1386 		return -ENOMEM;
1387 
1388 	maps_node->num_maps = num_maps;
1389 	if (dup) {
1390 		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1391 					  GFP_KERNEL);
1392 		if (!maps_node->maps) {
1393 			kfree(maps_node);
1394 			return -ENOMEM;
1395 		}
1396 	} else {
1397 		maps_node->maps = maps;
1398 	}
1399 
1400 	mutex_lock(&pinctrl_maps_mutex);
1401 	list_add_tail(&maps_node->node, &pinctrl_maps);
1402 	mutex_unlock(&pinctrl_maps_mutex);
1403 
1404 	return 0;
1405 }
1406 
1407 /**
1408  * pinctrl_register_mappings() - register a set of pin controller mappings
1409  * @maps: the pincontrol mappings table to register. This should probably be
1410  *	marked with __initdata so it can be discarded after boot. This
1411  *	function will perform a shallow copy for the mapping entries.
1412  * @num_maps: the number of maps in the mapping table
1413  */
1414 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1415 			      unsigned num_maps)
1416 {
1417 	return pinctrl_register_map(maps, num_maps, true);
1418 }
1419 
1420 void pinctrl_unregister_map(const struct pinctrl_map *map)
1421 {
1422 	struct pinctrl_maps *maps_node;
1423 
1424 	mutex_lock(&pinctrl_maps_mutex);
1425 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1426 		if (maps_node->maps == map) {
1427 			list_del(&maps_node->node);
1428 			kfree(maps_node);
1429 			mutex_unlock(&pinctrl_maps_mutex);
1430 			return;
1431 		}
1432 	}
1433 	mutex_unlock(&pinctrl_maps_mutex);
1434 }
1435 
1436 /**
1437  * pinctrl_force_sleep() - turn a given controller device into sleep state
1438  * @pctldev: pin controller device
1439  */
1440 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1441 {
1442 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1443 		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1444 	return 0;
1445 }
1446 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1447 
1448 /**
1449  * pinctrl_force_default() - turn a given controller device into default state
1450  * @pctldev: pin controller device
1451  */
1452 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1453 {
1454 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1455 		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1456 	return 0;
1457 }
1458 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1459 
1460 /**
1461  * pinctrl_init_done() - tell pinctrl probe is done
1462  *
1463  * We'll use this time to switch the pins from "init" to "default" unless the
1464  * driver selected some other state.
1465  *
1466  * @dev: device to that's done probing
1467  */
1468 int pinctrl_init_done(struct device *dev)
1469 {
1470 	struct dev_pin_info *pins = dev->pins;
1471 	int ret;
1472 
1473 	if (!pins)
1474 		return 0;
1475 
1476 	if (IS_ERR(pins->init_state))
1477 		return 0; /* No such state */
1478 
1479 	if (pins->p->state != pins->init_state)
1480 		return 0; /* Not at init anyway */
1481 
1482 	if (IS_ERR(pins->default_state))
1483 		return 0; /* No default state */
1484 
1485 	ret = pinctrl_select_state(pins->p, pins->default_state);
1486 	if (ret)
1487 		dev_err(dev, "failed to activate default pinctrl state\n");
1488 
1489 	return ret;
1490 }
1491 
1492 #ifdef CONFIG_PM
1493 
1494 /**
1495  * pinctrl_pm_select_state() - select pinctrl state for PM
1496  * @dev: device to select default state for
1497  * @state: state to set
1498  */
1499 static int pinctrl_pm_select_state(struct device *dev,
1500 				   struct pinctrl_state *state)
1501 {
1502 	struct dev_pin_info *pins = dev->pins;
1503 	int ret;
1504 
1505 	if (IS_ERR(state))
1506 		return 0; /* No such state */
1507 	ret = pinctrl_select_state(pins->p, state);
1508 	if (ret)
1509 		dev_err(dev, "failed to activate pinctrl state %s\n",
1510 			state->name);
1511 	return ret;
1512 }
1513 
1514 /**
1515  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1516  * @dev: device to select default state for
1517  */
1518 int pinctrl_pm_select_default_state(struct device *dev)
1519 {
1520 	if (!dev->pins)
1521 		return 0;
1522 
1523 	return pinctrl_pm_select_state(dev, dev->pins->default_state);
1524 }
1525 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1526 
1527 /**
1528  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1529  * @dev: device to select sleep state for
1530  */
1531 int pinctrl_pm_select_sleep_state(struct device *dev)
1532 {
1533 	if (!dev->pins)
1534 		return 0;
1535 
1536 	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1537 }
1538 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1539 
1540 /**
1541  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1542  * @dev: device to select idle state for
1543  */
1544 int pinctrl_pm_select_idle_state(struct device *dev)
1545 {
1546 	if (!dev->pins)
1547 		return 0;
1548 
1549 	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1550 }
1551 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1552 #endif
1553 
1554 #ifdef CONFIG_DEBUG_FS
1555 
1556 static int pinctrl_pins_show(struct seq_file *s, void *what)
1557 {
1558 	struct pinctrl_dev *pctldev = s->private;
1559 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1560 	unsigned i, pin;
1561 
1562 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1563 
1564 	mutex_lock(&pctldev->mutex);
1565 
1566 	/* The pin number can be retrived from the pin controller descriptor */
1567 	for (i = 0; i < pctldev->desc->npins; i++) {
1568 		struct pin_desc *desc;
1569 
1570 		pin = pctldev->desc->pins[i].number;
1571 		desc = pin_desc_get(pctldev, pin);
1572 		/* Pin space may be sparse */
1573 		if (!desc)
1574 			continue;
1575 
1576 		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1577 
1578 		/* Driver-specific info per pin */
1579 		if (ops->pin_dbg_show)
1580 			ops->pin_dbg_show(pctldev, s, pin);
1581 
1582 		seq_puts(s, "\n");
1583 	}
1584 
1585 	mutex_unlock(&pctldev->mutex);
1586 
1587 	return 0;
1588 }
1589 
1590 static int pinctrl_groups_show(struct seq_file *s, void *what)
1591 {
1592 	struct pinctrl_dev *pctldev = s->private;
1593 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1594 	unsigned ngroups, selector = 0;
1595 
1596 	mutex_lock(&pctldev->mutex);
1597 
1598 	ngroups = ops->get_groups_count(pctldev);
1599 
1600 	seq_puts(s, "registered pin groups:\n");
1601 	while (selector < ngroups) {
1602 		const unsigned *pins = NULL;
1603 		unsigned num_pins = 0;
1604 		const char *gname = ops->get_group_name(pctldev, selector);
1605 		const char *pname;
1606 		int ret = 0;
1607 		int i;
1608 
1609 		if (ops->get_group_pins)
1610 			ret = ops->get_group_pins(pctldev, selector,
1611 						  &pins, &num_pins);
1612 		if (ret)
1613 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1614 				   gname);
1615 		else {
1616 			seq_printf(s, "group: %s\n", gname);
1617 			for (i = 0; i < num_pins; i++) {
1618 				pname = pin_get_name(pctldev, pins[i]);
1619 				if (WARN_ON(!pname)) {
1620 					mutex_unlock(&pctldev->mutex);
1621 					return -EINVAL;
1622 				}
1623 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1624 			}
1625 			seq_puts(s, "\n");
1626 		}
1627 		selector++;
1628 	}
1629 
1630 	mutex_unlock(&pctldev->mutex);
1631 
1632 	return 0;
1633 }
1634 
1635 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1636 {
1637 	struct pinctrl_dev *pctldev = s->private;
1638 	struct pinctrl_gpio_range *range = NULL;
1639 
1640 	seq_puts(s, "GPIO ranges handled:\n");
1641 
1642 	mutex_lock(&pctldev->mutex);
1643 
1644 	/* Loop over the ranges */
1645 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1646 		if (range->pins) {
1647 			int a;
1648 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1649 				range->id, range->name,
1650 				range->base, (range->base + range->npins - 1));
1651 			for (a = 0; a < range->npins - 1; a++)
1652 				seq_printf(s, "%u, ", range->pins[a]);
1653 			seq_printf(s, "%u}\n", range->pins[a]);
1654 		}
1655 		else
1656 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1657 				range->id, range->name,
1658 				range->base, (range->base + range->npins - 1),
1659 				range->pin_base,
1660 				(range->pin_base + range->npins - 1));
1661 	}
1662 
1663 	mutex_unlock(&pctldev->mutex);
1664 
1665 	return 0;
1666 }
1667 
1668 static int pinctrl_devices_show(struct seq_file *s, void *what)
1669 {
1670 	struct pinctrl_dev *pctldev;
1671 
1672 	seq_puts(s, "name [pinmux] [pinconf]\n");
1673 
1674 	mutex_lock(&pinctrldev_list_mutex);
1675 
1676 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1677 		seq_printf(s, "%s ", pctldev->desc->name);
1678 		if (pctldev->desc->pmxops)
1679 			seq_puts(s, "yes ");
1680 		else
1681 			seq_puts(s, "no ");
1682 		if (pctldev->desc->confops)
1683 			seq_puts(s, "yes");
1684 		else
1685 			seq_puts(s, "no");
1686 		seq_puts(s, "\n");
1687 	}
1688 
1689 	mutex_unlock(&pinctrldev_list_mutex);
1690 
1691 	return 0;
1692 }
1693 
1694 static inline const char *map_type(enum pinctrl_map_type type)
1695 {
1696 	static const char * const names[] = {
1697 		"INVALID",
1698 		"DUMMY_STATE",
1699 		"MUX_GROUP",
1700 		"CONFIGS_PIN",
1701 		"CONFIGS_GROUP",
1702 	};
1703 
1704 	if (type >= ARRAY_SIZE(names))
1705 		return "UNKNOWN";
1706 
1707 	return names[type];
1708 }
1709 
1710 static int pinctrl_maps_show(struct seq_file *s, void *what)
1711 {
1712 	struct pinctrl_maps *maps_node;
1713 	int i;
1714 	const struct pinctrl_map *map;
1715 
1716 	seq_puts(s, "Pinctrl maps:\n");
1717 
1718 	mutex_lock(&pinctrl_maps_mutex);
1719 	for_each_maps(maps_node, i, map) {
1720 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1721 			   map->dev_name, map->name, map_type(map->type),
1722 			   map->type);
1723 
1724 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1725 			seq_printf(s, "controlling device %s\n",
1726 				   map->ctrl_dev_name);
1727 
1728 		switch (map->type) {
1729 		case PIN_MAP_TYPE_MUX_GROUP:
1730 			pinmux_show_map(s, map);
1731 			break;
1732 		case PIN_MAP_TYPE_CONFIGS_PIN:
1733 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1734 			pinconf_show_map(s, map);
1735 			break;
1736 		default:
1737 			break;
1738 		}
1739 
1740 		seq_putc(s, '\n');
1741 	}
1742 	mutex_unlock(&pinctrl_maps_mutex);
1743 
1744 	return 0;
1745 }
1746 
1747 static int pinctrl_show(struct seq_file *s, void *what)
1748 {
1749 	struct pinctrl *p;
1750 	struct pinctrl_state *state;
1751 	struct pinctrl_setting *setting;
1752 
1753 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1754 
1755 	mutex_lock(&pinctrl_list_mutex);
1756 
1757 	list_for_each_entry(p, &pinctrl_list, node) {
1758 		seq_printf(s, "device: %s current state: %s\n",
1759 			   dev_name(p->dev),
1760 			   p->state ? p->state->name : "none");
1761 
1762 		list_for_each_entry(state, &p->states, node) {
1763 			seq_printf(s, "  state: %s\n", state->name);
1764 
1765 			list_for_each_entry(setting, &state->settings, node) {
1766 				struct pinctrl_dev *pctldev = setting->pctldev;
1767 
1768 				seq_printf(s, "    type: %s controller %s ",
1769 					   map_type(setting->type),
1770 					   pinctrl_dev_get_name(pctldev));
1771 
1772 				switch (setting->type) {
1773 				case PIN_MAP_TYPE_MUX_GROUP:
1774 					pinmux_show_setting(s, setting);
1775 					break;
1776 				case PIN_MAP_TYPE_CONFIGS_PIN:
1777 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1778 					pinconf_show_setting(s, setting);
1779 					break;
1780 				default:
1781 					break;
1782 				}
1783 			}
1784 		}
1785 	}
1786 
1787 	mutex_unlock(&pinctrl_list_mutex);
1788 
1789 	return 0;
1790 }
1791 
1792 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1793 {
1794 	return single_open(file, pinctrl_pins_show, inode->i_private);
1795 }
1796 
1797 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1798 {
1799 	return single_open(file, pinctrl_groups_show, inode->i_private);
1800 }
1801 
1802 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1803 {
1804 	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1805 }
1806 
1807 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1808 {
1809 	return single_open(file, pinctrl_devices_show, NULL);
1810 }
1811 
1812 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1813 {
1814 	return single_open(file, pinctrl_maps_show, NULL);
1815 }
1816 
1817 static int pinctrl_open(struct inode *inode, struct file *file)
1818 {
1819 	return single_open(file, pinctrl_show, NULL);
1820 }
1821 
1822 static const struct file_operations pinctrl_pins_ops = {
1823 	.open		= pinctrl_pins_open,
1824 	.read		= seq_read,
1825 	.llseek		= seq_lseek,
1826 	.release	= single_release,
1827 };
1828 
1829 static const struct file_operations pinctrl_groups_ops = {
1830 	.open		= pinctrl_groups_open,
1831 	.read		= seq_read,
1832 	.llseek		= seq_lseek,
1833 	.release	= single_release,
1834 };
1835 
1836 static const struct file_operations pinctrl_gpioranges_ops = {
1837 	.open		= pinctrl_gpioranges_open,
1838 	.read		= seq_read,
1839 	.llseek		= seq_lseek,
1840 	.release	= single_release,
1841 };
1842 
1843 static const struct file_operations pinctrl_devices_ops = {
1844 	.open		= pinctrl_devices_open,
1845 	.read		= seq_read,
1846 	.llseek		= seq_lseek,
1847 	.release	= single_release,
1848 };
1849 
1850 static const struct file_operations pinctrl_maps_ops = {
1851 	.open		= pinctrl_maps_open,
1852 	.read		= seq_read,
1853 	.llseek		= seq_lseek,
1854 	.release	= single_release,
1855 };
1856 
1857 static const struct file_operations pinctrl_ops = {
1858 	.open		= pinctrl_open,
1859 	.read		= seq_read,
1860 	.llseek		= seq_lseek,
1861 	.release	= single_release,
1862 };
1863 
1864 static struct dentry *debugfs_root;
1865 
1866 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1867 {
1868 	struct dentry *device_root;
1869 
1870 	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1871 					 debugfs_root);
1872 	pctldev->device_root = device_root;
1873 
1874 	if (IS_ERR(device_root) || !device_root) {
1875 		pr_warn("failed to create debugfs directory for %s\n",
1876 			dev_name(pctldev->dev));
1877 		return;
1878 	}
1879 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1880 			    device_root, pctldev, &pinctrl_pins_ops);
1881 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1882 			    device_root, pctldev, &pinctrl_groups_ops);
1883 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1884 			    device_root, pctldev, &pinctrl_gpioranges_ops);
1885 	if (pctldev->desc->pmxops)
1886 		pinmux_init_device_debugfs(device_root, pctldev);
1887 	if (pctldev->desc->confops)
1888 		pinconf_init_device_debugfs(device_root, pctldev);
1889 }
1890 
1891 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1892 {
1893 	debugfs_remove_recursive(pctldev->device_root);
1894 }
1895 
1896 static void pinctrl_init_debugfs(void)
1897 {
1898 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1899 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1900 		pr_warn("failed to create debugfs directory\n");
1901 		debugfs_root = NULL;
1902 		return;
1903 	}
1904 
1905 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1906 			    debugfs_root, NULL, &pinctrl_devices_ops);
1907 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1908 			    debugfs_root, NULL, &pinctrl_maps_ops);
1909 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1910 			    debugfs_root, NULL, &pinctrl_ops);
1911 }
1912 
1913 #else /* CONFIG_DEBUG_FS */
1914 
1915 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1916 {
1917 }
1918 
1919 static void pinctrl_init_debugfs(void)
1920 {
1921 }
1922 
1923 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1924 {
1925 }
1926 
1927 #endif
1928 
1929 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1930 {
1931 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1932 
1933 	if (!ops ||
1934 	    !ops->get_groups_count ||
1935 	    !ops->get_group_name)
1936 		return -EINVAL;
1937 
1938 	return 0;
1939 }
1940 
1941 /**
1942  * pinctrl_init_controller() - init a pin controller device
1943  * @pctldesc: descriptor for this pin controller
1944  * @dev: parent device for this pin controller
1945  * @driver_data: private pin controller data for this pin controller
1946  */
1947 static struct pinctrl_dev *
1948 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1949 			void *driver_data)
1950 {
1951 	struct pinctrl_dev *pctldev;
1952 	int ret;
1953 
1954 	if (!pctldesc)
1955 		return ERR_PTR(-EINVAL);
1956 	if (!pctldesc->name)
1957 		return ERR_PTR(-EINVAL);
1958 
1959 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1960 	if (!pctldev)
1961 		return ERR_PTR(-ENOMEM);
1962 
1963 	/* Initialize pin control device struct */
1964 	pctldev->owner = pctldesc->owner;
1965 	pctldev->desc = pctldesc;
1966 	pctldev->driver_data = driver_data;
1967 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1968 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1969 	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1970 #endif
1971 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1972 	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1973 #endif
1974 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1975 	INIT_LIST_HEAD(&pctldev->node);
1976 	pctldev->dev = dev;
1977 	mutex_init(&pctldev->mutex);
1978 
1979 	/* check core ops for sanity */
1980 	ret = pinctrl_check_ops(pctldev);
1981 	if (ret) {
1982 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1983 		goto out_err;
1984 	}
1985 
1986 	/* If we're implementing pinmuxing, check the ops for sanity */
1987 	if (pctldesc->pmxops) {
1988 		ret = pinmux_check_ops(pctldev);
1989 		if (ret)
1990 			goto out_err;
1991 	}
1992 
1993 	/* If we're implementing pinconfig, check the ops for sanity */
1994 	if (pctldesc->confops) {
1995 		ret = pinconf_check_ops(pctldev);
1996 		if (ret)
1997 			goto out_err;
1998 	}
1999 
2000 	/* Register all the pins */
2001 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2002 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2003 	if (ret) {
2004 		dev_err(dev, "error during pin registration\n");
2005 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
2006 				      pctldesc->npins);
2007 		goto out_err;
2008 	}
2009 
2010 	return pctldev;
2011 
2012 out_err:
2013 	mutex_destroy(&pctldev->mutex);
2014 	kfree(pctldev);
2015 	return ERR_PTR(ret);
2016 }
2017 
2018 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2019 {
2020 	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2021 	if (PTR_ERR(pctldev->p) == -ENODEV) {
2022 		dev_dbg(pctldev->dev, "no hogs found\n");
2023 
2024 		return 0;
2025 	}
2026 
2027 	if (IS_ERR(pctldev->p)) {
2028 		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2029 			PTR_ERR(pctldev->p));
2030 
2031 		return PTR_ERR(pctldev->p);
2032 	}
2033 
2034 	kref_get(&pctldev->p->users);
2035 	pctldev->hog_default =
2036 		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2037 	if (IS_ERR(pctldev->hog_default)) {
2038 		dev_dbg(pctldev->dev,
2039 			"failed to lookup the default state\n");
2040 	} else {
2041 		if (pinctrl_select_state(pctldev->p,
2042 					 pctldev->hog_default))
2043 			dev_err(pctldev->dev,
2044 				"failed to select default state\n");
2045 	}
2046 
2047 	pctldev->hog_sleep =
2048 		pinctrl_lookup_state(pctldev->p,
2049 				     PINCTRL_STATE_SLEEP);
2050 	if (IS_ERR(pctldev->hog_sleep))
2051 		dev_dbg(pctldev->dev,
2052 			"failed to lookup the sleep state\n");
2053 
2054 	return 0;
2055 }
2056 
2057 int pinctrl_enable(struct pinctrl_dev *pctldev)
2058 {
2059 	int error;
2060 
2061 	error = pinctrl_claim_hogs(pctldev);
2062 	if (error) {
2063 		dev_err(pctldev->dev, "could not claim hogs: %i\n",
2064 			error);
2065 		mutex_destroy(&pctldev->mutex);
2066 		kfree(pctldev);
2067 
2068 		return error;
2069 	}
2070 
2071 	mutex_lock(&pinctrldev_list_mutex);
2072 	list_add_tail(&pctldev->node, &pinctrldev_list);
2073 	mutex_unlock(&pinctrldev_list_mutex);
2074 
2075 	pinctrl_init_device_debugfs(pctldev);
2076 
2077 	return 0;
2078 }
2079 EXPORT_SYMBOL_GPL(pinctrl_enable);
2080 
2081 /**
2082  * pinctrl_register() - register a pin controller device
2083  * @pctldesc: descriptor for this pin controller
2084  * @dev: parent device for this pin controller
2085  * @driver_data: private pin controller data for this pin controller
2086  *
2087  * Note that pinctrl_register() is known to have problems as the pin
2088  * controller driver functions are called before the driver has a
2089  * struct pinctrl_dev handle. To avoid issues later on, please use the
2090  * new pinctrl_register_and_init() below instead.
2091  */
2092 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2093 				    struct device *dev, void *driver_data)
2094 {
2095 	struct pinctrl_dev *pctldev;
2096 	int error;
2097 
2098 	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2099 	if (IS_ERR(pctldev))
2100 		return pctldev;
2101 
2102 	error = pinctrl_enable(pctldev);
2103 	if (error)
2104 		return ERR_PTR(error);
2105 
2106 	return pctldev;
2107 
2108 }
2109 EXPORT_SYMBOL_GPL(pinctrl_register);
2110 
2111 /**
2112  * pinctrl_register_and_init() - register and init pin controller device
2113  * @pctldesc: descriptor for this pin controller
2114  * @dev: parent device for this pin controller
2115  * @driver_data: private pin controller data for this pin controller
2116  * @pctldev: pin controller device
2117  *
2118  * Note that pinctrl_enable() still needs to be manually called after
2119  * this once the driver is ready.
2120  */
2121 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2122 			      struct device *dev, void *driver_data,
2123 			      struct pinctrl_dev **pctldev)
2124 {
2125 	struct pinctrl_dev *p;
2126 
2127 	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2128 	if (IS_ERR(p))
2129 		return PTR_ERR(p);
2130 
2131 	/*
2132 	 * We have pinctrl_start() call functions in the pin controller
2133 	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2134 	 * let's make sure pctldev is properly initialized for the
2135 	 * pin controller driver before we do anything.
2136 	 */
2137 	*pctldev = p;
2138 
2139 	return 0;
2140 }
2141 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2142 
2143 /**
2144  * pinctrl_unregister() - unregister pinmux
2145  * @pctldev: pin controller to unregister
2146  *
2147  * Called by pinmux drivers to unregister a pinmux.
2148  */
2149 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2150 {
2151 	struct pinctrl_gpio_range *range, *n;
2152 
2153 	if (!pctldev)
2154 		return;
2155 
2156 	mutex_lock(&pctldev->mutex);
2157 	pinctrl_remove_device_debugfs(pctldev);
2158 	mutex_unlock(&pctldev->mutex);
2159 
2160 	if (!IS_ERR_OR_NULL(pctldev->p))
2161 		pinctrl_put(pctldev->p);
2162 
2163 	mutex_lock(&pinctrldev_list_mutex);
2164 	mutex_lock(&pctldev->mutex);
2165 	/* TODO: check that no pinmuxes are still active? */
2166 	list_del(&pctldev->node);
2167 	pinmux_generic_free_functions(pctldev);
2168 	pinctrl_generic_free_groups(pctldev);
2169 	/* Destroy descriptor tree */
2170 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2171 			      pctldev->desc->npins);
2172 	/* remove gpio ranges map */
2173 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2174 		list_del(&range->node);
2175 
2176 	mutex_unlock(&pctldev->mutex);
2177 	mutex_destroy(&pctldev->mutex);
2178 	kfree(pctldev);
2179 	mutex_unlock(&pinctrldev_list_mutex);
2180 }
2181 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2182 
2183 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2184 {
2185 	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2186 
2187 	pinctrl_unregister(pctldev);
2188 }
2189 
2190 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2191 {
2192 	struct pctldev **r = res;
2193 
2194 	if (WARN_ON(!r || !*r))
2195 		return 0;
2196 
2197 	return *r == data;
2198 }
2199 
2200 /**
2201  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2202  * @dev: parent device for this pin controller
2203  * @pctldesc: descriptor for this pin controller
2204  * @driver_data: private pin controller data for this pin controller
2205  *
2206  * Returns an error pointer if pincontrol register failed. Otherwise
2207  * it returns valid pinctrl handle.
2208  *
2209  * The pinctrl device will be automatically released when the device is unbound.
2210  */
2211 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2212 					  struct pinctrl_desc *pctldesc,
2213 					  void *driver_data)
2214 {
2215 	struct pinctrl_dev **ptr, *pctldev;
2216 
2217 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2218 	if (!ptr)
2219 		return ERR_PTR(-ENOMEM);
2220 
2221 	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2222 	if (IS_ERR(pctldev)) {
2223 		devres_free(ptr);
2224 		return pctldev;
2225 	}
2226 
2227 	*ptr = pctldev;
2228 	devres_add(dev, ptr);
2229 
2230 	return pctldev;
2231 }
2232 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2233 
2234 /**
2235  * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2236  * @dev: parent device for this pin controller
2237  * @pctldesc: descriptor for this pin controller
2238  * @driver_data: private pin controller data for this pin controller
2239  *
2240  * Returns an error pointer if pincontrol register failed. Otherwise
2241  * it returns valid pinctrl handle.
2242  *
2243  * The pinctrl device will be automatically released when the device is unbound.
2244  */
2245 int devm_pinctrl_register_and_init(struct device *dev,
2246 				   struct pinctrl_desc *pctldesc,
2247 				   void *driver_data,
2248 				   struct pinctrl_dev **pctldev)
2249 {
2250 	struct pinctrl_dev **ptr;
2251 	int error;
2252 
2253 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2254 	if (!ptr)
2255 		return -ENOMEM;
2256 
2257 	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2258 	if (error) {
2259 		devres_free(ptr);
2260 		return error;
2261 	}
2262 
2263 	*ptr = *pctldev;
2264 	devres_add(dev, ptr);
2265 
2266 	return 0;
2267 }
2268 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2269 
2270 /**
2271  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2272  * @dev: device for which which resource was allocated
2273  * @pctldev: the pinctrl device to unregister.
2274  */
2275 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2276 {
2277 	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2278 			       devm_pinctrl_dev_match, pctldev));
2279 }
2280 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2281 
2282 static int __init pinctrl_init(void)
2283 {
2284 	pr_info("initialized pinctrl subsystem\n");
2285 	pinctrl_init_debugfs();
2286 	return 0;
2287 }
2288 
2289 /* init early since many drivers really need to initialized pinmux early */
2290 core_initcall(pinctrl_init);
2291