xref: /linux/drivers/pinctrl/core.c (revision b679d6c06b2b29187374f9f4da7eea1961c2eeaa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Core driver for the pin control subsystem
4  *
5  * Copyright (C) 2011-2012 ST-Ericsson SA
6  * Written on behalf of Linaro for ST-Ericsson
7  * Based on bits of regulator core, gpio core and clk core
8  *
9  * Author: Linus Walleij <linus.walleij@linaro.org>
10  *
11  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12  */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14 
15 #include <linux/array_size.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/export.h>
20 #include <linux/init.h>
21 #include <linux/kref.h>
22 #include <linux/list.h>
23 #include <linux/seq_file.h>
24 #include <linux/slab.h>
25 
26 #include <linux/gpio/driver.h>
27 
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pinctrl/devinfo.h>
30 #include <linux/pinctrl/machine.h>
31 #include <linux/pinctrl/pinctrl.h>
32 
33 #ifdef CONFIG_GPIOLIB
34 #include "../gpio/gpiolib.h"
35 #endif
36 
37 #include "core.h"
38 #include "devicetree.h"
39 #include "pinconf.h"
40 #include "pinmux.h"
41 
42 static bool pinctrl_dummy_state;
43 
44 /* Mutex taken to protect pinctrl_list */
45 static DEFINE_MUTEX(pinctrl_list_mutex);
46 
47 /* Mutex taken to protect pinctrl_maps */
48 DEFINE_MUTEX(pinctrl_maps_mutex);
49 
50 /* Mutex taken to protect pinctrldev_list */
51 static DEFINE_MUTEX(pinctrldev_list_mutex);
52 
53 /* Global list of pin control devices (struct pinctrl_dev) */
54 static LIST_HEAD(pinctrldev_list);
55 
56 /* List of pin controller handles (struct pinctrl) */
57 static LIST_HEAD(pinctrl_list);
58 
59 /* List of pinctrl maps (struct pinctrl_maps) */
60 LIST_HEAD(pinctrl_maps);
61 
62 
63 /**
64  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
65  *
66  * Usually this function is called by platforms without pinctrl driver support
67  * but run with some shared drivers using pinctrl APIs.
68  * After calling this function, the pinctrl core will return successfully
69  * with creating a dummy state for the driver to keep going smoothly.
70  */
71 void pinctrl_provide_dummies(void)
72 {
73 	pinctrl_dummy_state = true;
74 }
75 
76 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
77 {
78 	/* We're not allowed to register devices without name */
79 	return pctldev->desc->name;
80 }
81 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
82 
83 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
84 {
85 	return dev_name(pctldev->dev);
86 }
87 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
88 
89 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
90 {
91 	return pctldev->driver_data;
92 }
93 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
94 
95 /**
96  * get_pinctrl_dev_from_devname() - look up pin controller device
97  * @devname: the name of a device instance, as returned by dev_name()
98  *
99  * Looks up a pin control device matching a certain device name or pure device
100  * pointer, the pure device pointer will take precedence.
101  */
102 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
103 {
104 	struct pinctrl_dev *pctldev;
105 
106 	if (!devname)
107 		return NULL;
108 
109 	mutex_lock(&pinctrldev_list_mutex);
110 
111 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
112 		if (!strcmp(dev_name(pctldev->dev), devname)) {
113 			/* Matched on device name */
114 			mutex_unlock(&pinctrldev_list_mutex);
115 			return pctldev;
116 		}
117 	}
118 
119 	mutex_unlock(&pinctrldev_list_mutex);
120 
121 	return NULL;
122 }
123 
124 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
125 {
126 	struct pinctrl_dev *pctldev;
127 
128 	mutex_lock(&pinctrldev_list_mutex);
129 
130 	list_for_each_entry(pctldev, &pinctrldev_list, node)
131 		if (device_match_of_node(pctldev->dev, np)) {
132 			mutex_unlock(&pinctrldev_list_mutex);
133 			return pctldev;
134 		}
135 
136 	mutex_unlock(&pinctrldev_list_mutex);
137 
138 	return NULL;
139 }
140 
141 /**
142  * pin_get_from_name() - look up a pin number from a name
143  * @pctldev: the pin control device to lookup the pin on
144  * @name: the name of the pin to look up
145  */
146 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
147 {
148 	unsigned i, pin;
149 
150 	/* The pin number can be retrived from the pin controller descriptor */
151 	for (i = 0; i < pctldev->desc->npins; i++) {
152 		struct pin_desc *desc;
153 
154 		pin = pctldev->desc->pins[i].number;
155 		desc = pin_desc_get(pctldev, pin);
156 		/* Pin space may be sparse */
157 		if (desc && !strcmp(name, desc->name))
158 			return pin;
159 	}
160 
161 	return -EINVAL;
162 }
163 
164 /**
165  * pin_get_name() - look up a pin name from a pin id
166  * @pctldev: the pin control device to lookup the pin on
167  * @pin: pin number/id to look up
168  */
169 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
170 {
171 	const struct pin_desc *desc;
172 
173 	desc = pin_desc_get(pctldev, pin);
174 	if (!desc) {
175 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
176 			pin);
177 		return NULL;
178 	}
179 
180 	return desc->name;
181 }
182 EXPORT_SYMBOL_GPL(pin_get_name);
183 
184 /* Deletes a range of pin descriptors */
185 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
186 				  const struct pinctrl_pin_desc *pins,
187 				  unsigned num_pins)
188 {
189 	int i;
190 
191 	for (i = 0; i < num_pins; i++) {
192 		struct pin_desc *pindesc;
193 
194 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
195 					    pins[i].number);
196 		if (pindesc) {
197 			radix_tree_delete(&pctldev->pin_desc_tree,
198 					  pins[i].number);
199 			if (pindesc->dynamic_name)
200 				kfree(pindesc->name);
201 		}
202 		kfree(pindesc);
203 	}
204 }
205 
206 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
207 				    const struct pinctrl_pin_desc *pin)
208 {
209 	struct pin_desc *pindesc;
210 	int error;
211 
212 	pindesc = pin_desc_get(pctldev, pin->number);
213 	if (pindesc) {
214 		dev_err(pctldev->dev, "pin %d already registered\n",
215 			pin->number);
216 		return -EINVAL;
217 	}
218 
219 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
220 	if (!pindesc)
221 		return -ENOMEM;
222 
223 	/* Set owner */
224 	pindesc->pctldev = pctldev;
225 
226 	/* Copy basic pin info */
227 	if (pin->name) {
228 		pindesc->name = pin->name;
229 	} else {
230 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
231 		if (!pindesc->name) {
232 			error = -ENOMEM;
233 			goto failed;
234 		}
235 		pindesc->dynamic_name = true;
236 	}
237 
238 	pindesc->drv_data = pin->drv_data;
239 
240 	error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
241 	if (error)
242 		goto failed;
243 
244 	pr_debug("registered pin %d (%s) on %s\n",
245 		 pin->number, pindesc->name, pctldev->desc->name);
246 	return 0;
247 
248 failed:
249 	kfree(pindesc);
250 	return error;
251 }
252 
253 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
254 				 const struct pinctrl_pin_desc *pins,
255 				 unsigned num_descs)
256 {
257 	unsigned i;
258 	int ret = 0;
259 
260 	for (i = 0; i < num_descs; i++) {
261 		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
262 		if (ret)
263 			return ret;
264 	}
265 
266 	return 0;
267 }
268 
269 /**
270  * gpio_to_pin() - GPIO range GPIO number to pin number translation
271  * @range: GPIO range used for the translation
272  * @gpio: gpio pin to translate to a pin number
273  *
274  * Finds the pin number for a given GPIO using the specified GPIO range
275  * as a base for translation. The distinction between linear GPIO ranges
276  * and pin list based GPIO ranges is managed correctly by this function.
277  *
278  * This function assumes the gpio is part of the specified GPIO range, use
279  * only after making sure this is the case (e.g. by calling it on the
280  * result of successful pinctrl_get_device_gpio_range calls)!
281  */
282 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
283 				unsigned int gpio)
284 {
285 	unsigned int offset = gpio - range->base;
286 	if (range->pins)
287 		return range->pins[offset];
288 	else
289 		return range->pin_base + offset;
290 }
291 
292 /**
293  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
294  * @pctldev: pin controller device to check
295  * @gpio: gpio pin to check taken from the global GPIO pin space
296  *
297  * Tries to match a GPIO pin number to the ranges handled by a certain pin
298  * controller, return the range or NULL
299  */
300 static struct pinctrl_gpio_range *
301 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
302 {
303 	struct pinctrl_gpio_range *range;
304 
305 	mutex_lock(&pctldev->mutex);
306 	/* Loop over the ranges */
307 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
308 		/* Check if we're in the valid range */
309 		if (gpio >= range->base &&
310 		    gpio < range->base + range->npins) {
311 			mutex_unlock(&pctldev->mutex);
312 			return range;
313 		}
314 	}
315 	mutex_unlock(&pctldev->mutex);
316 	return NULL;
317 }
318 
319 /**
320  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
321  * the same GPIO chip are in range
322  * @gpio: gpio pin to check taken from the global GPIO pin space
323  *
324  * This function is complement of pinctrl_match_gpio_range(). If the return
325  * value of pinctrl_match_gpio_range() is NULL, this function could be used
326  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
327  * of the same GPIO chip don't have back-end pinctrl interface.
328  * If the return value is true, it means that pinctrl device is ready & the
329  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
330  * is false, it means that pinctrl device may not be ready.
331  */
332 #ifdef CONFIG_GPIOLIB
333 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
334 {
335 	struct pinctrl_dev *pctldev;
336 	struct pinctrl_gpio_range *range = NULL;
337 	/*
338 	 * FIXME: "gpio" here is a number in the global GPIO numberspace.
339 	 * get rid of this from the ranges eventually and get the GPIO
340 	 * descriptor from the gpio_chip.
341 	 */
342 	struct gpio_chip *chip = gpiod_to_chip(gpio_to_desc(gpio));
343 
344 	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
345 		return false;
346 
347 	mutex_lock(&pinctrldev_list_mutex);
348 
349 	/* Loop over the pin controllers */
350 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
351 		/* Loop over the ranges */
352 		mutex_lock(&pctldev->mutex);
353 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
354 			/* Check if any gpio range overlapped with gpio chip */
355 			if (range->base + range->npins - 1 < chip->base ||
356 			    range->base > chip->base + chip->ngpio - 1)
357 				continue;
358 			mutex_unlock(&pctldev->mutex);
359 			mutex_unlock(&pinctrldev_list_mutex);
360 			return true;
361 		}
362 		mutex_unlock(&pctldev->mutex);
363 	}
364 
365 	mutex_unlock(&pinctrldev_list_mutex);
366 
367 	return false;
368 }
369 #else
370 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
371 #endif
372 
373 /**
374  * pinctrl_get_device_gpio_range() - find device for GPIO range
375  * @gpio: the pin to locate the pin controller for
376  * @outdev: the pin control device if found
377  * @outrange: the GPIO range if found
378  *
379  * Find the pin controller handling a certain GPIO pin from the pinspace of
380  * the GPIO subsystem, return the device and the matching GPIO range. Returns
381  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
382  * may still have not been registered.
383  */
384 static int pinctrl_get_device_gpio_range(unsigned gpio,
385 					 struct pinctrl_dev **outdev,
386 					 struct pinctrl_gpio_range **outrange)
387 {
388 	struct pinctrl_dev *pctldev;
389 
390 	mutex_lock(&pinctrldev_list_mutex);
391 
392 	/* Loop over the pin controllers */
393 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
394 		struct pinctrl_gpio_range *range;
395 
396 		range = pinctrl_match_gpio_range(pctldev, gpio);
397 		if (range) {
398 			*outdev = pctldev;
399 			*outrange = range;
400 			mutex_unlock(&pinctrldev_list_mutex);
401 			return 0;
402 		}
403 	}
404 
405 	mutex_unlock(&pinctrldev_list_mutex);
406 
407 	return -EPROBE_DEFER;
408 }
409 
410 /**
411  * pinctrl_add_gpio_range() - register a GPIO range for a controller
412  * @pctldev: pin controller device to add the range to
413  * @range: the GPIO range to add
414  *
415  * This adds a range of GPIOs to be handled by a certain pin controller. Call
416  * this to register handled ranges after registering your pin controller.
417  */
418 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
419 			    struct pinctrl_gpio_range *range)
420 {
421 	mutex_lock(&pctldev->mutex);
422 	list_add_tail(&range->node, &pctldev->gpio_ranges);
423 	mutex_unlock(&pctldev->mutex);
424 }
425 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
426 
427 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
428 			     struct pinctrl_gpio_range *ranges,
429 			     unsigned nranges)
430 {
431 	int i;
432 
433 	for (i = 0; i < nranges; i++)
434 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
435 }
436 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
437 
438 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
439 		struct pinctrl_gpio_range *range)
440 {
441 	struct pinctrl_dev *pctldev;
442 
443 	pctldev = get_pinctrl_dev_from_devname(devname);
444 
445 	/*
446 	 * If we can't find this device, let's assume that is because
447 	 * it has not probed yet, so the driver trying to register this
448 	 * range need to defer probing.
449 	 */
450 	if (!pctldev)
451 		return ERR_PTR(-EPROBE_DEFER);
452 
453 	pinctrl_add_gpio_range(pctldev, range);
454 
455 	return pctldev;
456 }
457 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
458 
459 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
460 				const unsigned **pins, unsigned *num_pins)
461 {
462 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
463 	int gs;
464 
465 	if (!pctlops->get_group_pins)
466 		return -EINVAL;
467 
468 	gs = pinctrl_get_group_selector(pctldev, pin_group);
469 	if (gs < 0)
470 		return gs;
471 
472 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
473 }
474 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
475 
476 struct pinctrl_gpio_range *
477 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
478 					unsigned int pin)
479 {
480 	struct pinctrl_gpio_range *range;
481 
482 	/* Loop over the ranges */
483 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
484 		/* Check if we're in the valid range */
485 		if (range->pins) {
486 			int a;
487 			for (a = 0; a < range->npins; a++) {
488 				if (range->pins[a] == pin)
489 					return range;
490 			}
491 		} else if (pin >= range->pin_base &&
492 			   pin < range->pin_base + range->npins)
493 			return range;
494 	}
495 
496 	return NULL;
497 }
498 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
499 
500 /**
501  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
502  * @pctldev: the pin controller device to look in
503  * @pin: a controller-local number to find the range for
504  */
505 struct pinctrl_gpio_range *
506 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
507 				 unsigned int pin)
508 {
509 	struct pinctrl_gpio_range *range;
510 
511 	mutex_lock(&pctldev->mutex);
512 	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
513 	mutex_unlock(&pctldev->mutex);
514 
515 	return range;
516 }
517 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
518 
519 /**
520  * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
521  * @pctldev: pin controller device to remove the range from
522  * @range: the GPIO range to remove
523  */
524 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
525 			       struct pinctrl_gpio_range *range)
526 {
527 	mutex_lock(&pctldev->mutex);
528 	list_del(&range->node);
529 	mutex_unlock(&pctldev->mutex);
530 }
531 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
532 
533 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
534 
535 /**
536  * pinctrl_generic_get_group_count() - returns the number of pin groups
537  * @pctldev: pin controller device
538  */
539 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
540 {
541 	return pctldev->num_groups;
542 }
543 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
544 
545 /**
546  * pinctrl_generic_get_group_name() - returns the name of a pin group
547  * @pctldev: pin controller device
548  * @selector: group number
549  */
550 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
551 					   unsigned int selector)
552 {
553 	struct group_desc *group;
554 
555 	group = radix_tree_lookup(&pctldev->pin_group_tree,
556 				  selector);
557 	if (!group)
558 		return NULL;
559 
560 	return group->name;
561 }
562 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
563 
564 /**
565  * pinctrl_generic_get_group_pins() - gets the pin group pins
566  * @pctldev: pin controller device
567  * @selector: group number
568  * @pins: pins in the group
569  * @num_pins: number of pins in the group
570  */
571 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
572 				   unsigned int selector,
573 				   const unsigned int **pins,
574 				   unsigned int *num_pins)
575 {
576 	struct group_desc *group;
577 
578 	group = radix_tree_lookup(&pctldev->pin_group_tree,
579 				  selector);
580 	if (!group) {
581 		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
582 			__func__, selector);
583 		return -EINVAL;
584 	}
585 
586 	*pins = group->pins;
587 	*num_pins = group->num_pins;
588 
589 	return 0;
590 }
591 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
592 
593 /**
594  * pinctrl_generic_get_group() - returns a pin group based on the number
595  * @pctldev: pin controller device
596  * @selector: group number
597  */
598 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
599 					     unsigned int selector)
600 {
601 	struct group_desc *group;
602 
603 	group = radix_tree_lookup(&pctldev->pin_group_tree,
604 				  selector);
605 	if (!group)
606 		return NULL;
607 
608 	return group;
609 }
610 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
611 
612 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
613 						  const char *function)
614 {
615 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
616 	int ngroups = ops->get_groups_count(pctldev);
617 	int selector = 0;
618 
619 	/* See if this pctldev has this group */
620 	while (selector < ngroups) {
621 		const char *gname = ops->get_group_name(pctldev, selector);
622 
623 		if (gname && !strcmp(function, gname))
624 			return selector;
625 
626 		selector++;
627 	}
628 
629 	return -EINVAL;
630 }
631 
632 /**
633  * pinctrl_generic_add_group() - adds a new pin group
634  * @pctldev: pin controller device
635  * @name: name of the pin group
636  * @pins: pins in the pin group
637  * @num_pins: number of pins in the pin group
638  * @data: pin controller driver specific data
639  *
640  * Note that the caller must take care of locking.
641  */
642 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
643 			      int *pins, int num_pins, void *data)
644 {
645 	struct group_desc *group;
646 	int selector, error;
647 
648 	if (!name)
649 		return -EINVAL;
650 
651 	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
652 	if (selector >= 0)
653 		return selector;
654 
655 	selector = pctldev->num_groups;
656 
657 	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
658 	if (!group)
659 		return -ENOMEM;
660 
661 	group->name = name;
662 	group->pins = pins;
663 	group->num_pins = num_pins;
664 	group->data = data;
665 
666 	error = radix_tree_insert(&pctldev->pin_group_tree, selector, group);
667 	if (error)
668 		return error;
669 
670 	pctldev->num_groups++;
671 
672 	return selector;
673 }
674 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
675 
676 /**
677  * pinctrl_generic_remove_group() - removes a numbered pin group
678  * @pctldev: pin controller device
679  * @selector: group number
680  *
681  * Note that the caller must take care of locking.
682  */
683 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
684 				 unsigned int selector)
685 {
686 	struct group_desc *group;
687 
688 	group = radix_tree_lookup(&pctldev->pin_group_tree,
689 				  selector);
690 	if (!group)
691 		return -ENOENT;
692 
693 	radix_tree_delete(&pctldev->pin_group_tree, selector);
694 	devm_kfree(pctldev->dev, group);
695 
696 	pctldev->num_groups--;
697 
698 	return 0;
699 }
700 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
701 
702 /**
703  * pinctrl_generic_free_groups() - removes all pin groups
704  * @pctldev: pin controller device
705  *
706  * Note that the caller must take care of locking. The pinctrl groups
707  * are allocated with devm_kzalloc() so no need to free them here.
708  */
709 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
710 {
711 	struct radix_tree_iter iter;
712 	void __rcu **slot;
713 
714 	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
715 		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
716 
717 	pctldev->num_groups = 0;
718 }
719 
720 #else
721 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
722 {
723 }
724 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
725 
726 /**
727  * pinctrl_get_group_selector() - returns the group selector for a group
728  * @pctldev: the pin controller handling the group
729  * @pin_group: the pin group to look up
730  */
731 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
732 			       const char *pin_group)
733 {
734 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
735 	unsigned ngroups = pctlops->get_groups_count(pctldev);
736 	unsigned group_selector = 0;
737 
738 	while (group_selector < ngroups) {
739 		const char *gname = pctlops->get_group_name(pctldev,
740 							    group_selector);
741 		if (gname && !strcmp(gname, pin_group)) {
742 			dev_dbg(pctldev->dev,
743 				"found group selector %u for %s\n",
744 				group_selector,
745 				pin_group);
746 			return group_selector;
747 		}
748 
749 		group_selector++;
750 	}
751 
752 	dev_err(pctldev->dev, "does not have pin group %s\n",
753 		pin_group);
754 
755 	return -EINVAL;
756 }
757 
758 bool pinctrl_gpio_can_use_line(struct gpio_chip *gc, unsigned int offset)
759 {
760 	struct pinctrl_dev *pctldev;
761 	struct pinctrl_gpio_range *range;
762 	bool result;
763 	int pin;
764 
765 	/*
766 	 * Try to obtain GPIO range, if it fails
767 	 * we're probably dealing with GPIO driver
768 	 * without a backing pin controller - bail out.
769 	 */
770 	if (pinctrl_get_device_gpio_range(gc->base + offset, &pctldev, &range))
771 		return true;
772 
773 	mutex_lock(&pctldev->mutex);
774 
775 	/* Convert to the pin controllers number space */
776 	pin = gpio_to_pin(range, gc->base + offset);
777 
778 	result = pinmux_can_be_used_for_gpio(pctldev, pin);
779 
780 	mutex_unlock(&pctldev->mutex);
781 
782 	return result;
783 }
784 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
785 
786 /**
787  * pinctrl_gpio_request() - request a single pin to be used as GPIO
788  * @gc: GPIO chip structure from the GPIO subsystem
789  * @offset: hardware offset of the GPIO relative to the controller
790  *
791  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
792  * as part of their gpio_request() semantics, platforms and individual drivers
793  * shall *NOT* request GPIO pins to be muxed in.
794  */
795 int pinctrl_gpio_request(struct gpio_chip *gc, unsigned int offset)
796 {
797 	struct pinctrl_gpio_range *range;
798 	struct pinctrl_dev *pctldev;
799 	int ret, pin;
800 
801 	ret = pinctrl_get_device_gpio_range(gc->base + offset, &pctldev,
802 					    &range);
803 	if (ret) {
804 		if (pinctrl_ready_for_gpio_range(gc->base + offset))
805 			ret = 0;
806 		return ret;
807 	}
808 
809 	mutex_lock(&pctldev->mutex);
810 
811 	/* Convert to the pin controllers number space */
812 	pin = gpio_to_pin(range, gc->base + offset);
813 
814 	ret = pinmux_request_gpio(pctldev, range, pin, gc->base + offset);
815 
816 	mutex_unlock(&pctldev->mutex);
817 
818 	return ret;
819 }
820 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
821 
822 /**
823  * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
824  * @gc: GPIO chip structure from the GPIO subsystem
825  * @offset: hardware offset of the GPIO relative to the controller
826  *
827  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
828  * as part of their gpio_request() semantics, platforms and individual drivers
829  * shall *NOT* request GPIO pins to be muxed in.
830  */
831 void pinctrl_gpio_free(struct gpio_chip *gc, unsigned int offset)
832 {
833 	struct pinctrl_gpio_range *range;
834 	struct pinctrl_dev *pctldev;
835 	int ret, pin;
836 
837 	ret = pinctrl_get_device_gpio_range(gc->base + offset, &pctldev,
838 					    &range);
839 	if (ret)
840 		return;
841 
842 	mutex_lock(&pctldev->mutex);
843 
844 	/* Convert to the pin controllers number space */
845 	pin = gpio_to_pin(range, gc->base + offset);
846 
847 	pinmux_free_gpio(pctldev, pin, range);
848 
849 	mutex_unlock(&pctldev->mutex);
850 }
851 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
852 
853 static int pinctrl_gpio_direction(unsigned gpio, bool input)
854 {
855 	struct pinctrl_dev *pctldev;
856 	struct pinctrl_gpio_range *range;
857 	int ret;
858 	int pin;
859 
860 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
861 	if (ret) {
862 		return ret;
863 	}
864 
865 	mutex_lock(&pctldev->mutex);
866 
867 	/* Convert to the pin controllers number space */
868 	pin = gpio_to_pin(range, gpio);
869 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
870 
871 	mutex_unlock(&pctldev->mutex);
872 
873 	return ret;
874 }
875 
876 /**
877  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
878  * @gc: GPIO chip structure from the GPIO subsystem
879  * @offset: hardware offset of the GPIO relative to the controller
880  *
881  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
882  * as part of their gpio_direction_input() semantics, platforms and individual
883  * drivers shall *NOT* touch pin control GPIO calls.
884  */
885 int pinctrl_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
886 {
887 	return pinctrl_gpio_direction(gc->base + offset, true);
888 }
889 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
890 
891 /**
892  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
893  * @gc: GPIO chip structure from the GPIO subsystem
894  * @offset: hardware offset of the GPIO relative to the controller
895  *
896  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
897  * as part of their gpio_direction_output() semantics, platforms and individual
898  * drivers shall *NOT* touch pin control GPIO calls.
899  */
900 int pinctrl_gpio_direction_output(struct gpio_chip *gc, unsigned int offset)
901 {
902 	return pinctrl_gpio_direction(gc->base + offset, false);
903 }
904 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
905 
906 /**
907  * pinctrl_gpio_set_config_new() - Apply config to given GPIO pin
908  * @gc: GPIO chip structure from the GPIO subsystem
909  * @offset: hardware offset of the GPIO relative to the controller
910  * @config: the configuration to apply to the GPIO
911  *
912  * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
913  * they need to call the underlying pin controller to change GPIO config
914  * (for example set debounce time).
915  */
916 int pinctrl_gpio_set_config_new(struct gpio_chip *gc, unsigned int offset,
917 				unsigned long config)
918 {
919 	unsigned long configs[] = { config };
920 	struct pinctrl_gpio_range *range;
921 	struct pinctrl_dev *pctldev;
922 	int ret, pin;
923 
924 	ret = pinctrl_get_device_gpio_range(gc->base + offset, &pctldev,
925 					    &range);
926 	if (ret)
927 		return ret;
928 
929 	mutex_lock(&pctldev->mutex);
930 	pin = gpio_to_pin(range, gc->base + offset);
931 	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
932 	mutex_unlock(&pctldev->mutex);
933 
934 	return ret;
935 }
936 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config_new);
937 
938 static struct pinctrl_state *find_state(struct pinctrl *p,
939 					const char *name)
940 {
941 	struct pinctrl_state *state;
942 
943 	list_for_each_entry(state, &p->states, node)
944 		if (!strcmp(state->name, name))
945 			return state;
946 
947 	return NULL;
948 }
949 
950 static struct pinctrl_state *create_state(struct pinctrl *p,
951 					  const char *name)
952 {
953 	struct pinctrl_state *state;
954 
955 	state = kzalloc(sizeof(*state), GFP_KERNEL);
956 	if (!state)
957 		return ERR_PTR(-ENOMEM);
958 
959 	state->name = name;
960 	INIT_LIST_HEAD(&state->settings);
961 
962 	list_add_tail(&state->node, &p->states);
963 
964 	return state;
965 }
966 
967 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
968 		       const struct pinctrl_map *map)
969 {
970 	struct pinctrl_state *state;
971 	struct pinctrl_setting *setting;
972 	int ret;
973 
974 	state = find_state(p, map->name);
975 	if (!state)
976 		state = create_state(p, map->name);
977 	if (IS_ERR(state))
978 		return PTR_ERR(state);
979 
980 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
981 		return 0;
982 
983 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
984 	if (!setting)
985 		return -ENOMEM;
986 
987 	setting->type = map->type;
988 
989 	if (pctldev)
990 		setting->pctldev = pctldev;
991 	else
992 		setting->pctldev =
993 			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
994 	if (!setting->pctldev) {
995 		kfree(setting);
996 		/* Do not defer probing of hogs (circular loop) */
997 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
998 			return -ENODEV;
999 		/*
1000 		 * OK let us guess that the driver is not there yet, and
1001 		 * let's defer obtaining this pinctrl handle to later...
1002 		 */
1003 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
1004 			map->ctrl_dev_name);
1005 		return -EPROBE_DEFER;
1006 	}
1007 
1008 	setting->dev_name = map->dev_name;
1009 
1010 	switch (map->type) {
1011 	case PIN_MAP_TYPE_MUX_GROUP:
1012 		ret = pinmux_map_to_setting(map, setting);
1013 		break;
1014 	case PIN_MAP_TYPE_CONFIGS_PIN:
1015 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1016 		ret = pinconf_map_to_setting(map, setting);
1017 		break;
1018 	default:
1019 		ret = -EINVAL;
1020 		break;
1021 	}
1022 	if (ret < 0) {
1023 		kfree(setting);
1024 		return ret;
1025 	}
1026 
1027 	list_add_tail(&setting->node, &state->settings);
1028 
1029 	return 0;
1030 }
1031 
1032 static struct pinctrl *find_pinctrl(struct device *dev)
1033 {
1034 	struct pinctrl *p;
1035 
1036 	mutex_lock(&pinctrl_list_mutex);
1037 	list_for_each_entry(p, &pinctrl_list, node)
1038 		if (p->dev == dev) {
1039 			mutex_unlock(&pinctrl_list_mutex);
1040 			return p;
1041 		}
1042 
1043 	mutex_unlock(&pinctrl_list_mutex);
1044 	return NULL;
1045 }
1046 
1047 static void pinctrl_free(struct pinctrl *p, bool inlist);
1048 
1049 static struct pinctrl *create_pinctrl(struct device *dev,
1050 				      struct pinctrl_dev *pctldev)
1051 {
1052 	struct pinctrl *p;
1053 	const char *devname;
1054 	struct pinctrl_maps *maps_node;
1055 	const struct pinctrl_map *map;
1056 	int ret;
1057 
1058 	/*
1059 	 * create the state cookie holder struct pinctrl for each
1060 	 * mapping, this is what consumers will get when requesting
1061 	 * a pin control handle with pinctrl_get()
1062 	 */
1063 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1064 	if (!p)
1065 		return ERR_PTR(-ENOMEM);
1066 	p->dev = dev;
1067 	INIT_LIST_HEAD(&p->states);
1068 	INIT_LIST_HEAD(&p->dt_maps);
1069 
1070 	ret = pinctrl_dt_to_map(p, pctldev);
1071 	if (ret < 0) {
1072 		kfree(p);
1073 		return ERR_PTR(ret);
1074 	}
1075 
1076 	devname = dev_name(dev);
1077 
1078 	mutex_lock(&pinctrl_maps_mutex);
1079 	/* Iterate over the pin control maps to locate the right ones */
1080 	for_each_pin_map(maps_node, map) {
1081 		/* Map must be for this device */
1082 		if (strcmp(map->dev_name, devname))
1083 			continue;
1084 		/*
1085 		 * If pctldev is not null, we are claiming hog for it,
1086 		 * that means, setting that is served by pctldev by itself.
1087 		 *
1088 		 * Thus we must skip map that is for this device but is served
1089 		 * by other device.
1090 		 */
1091 		if (pctldev &&
1092 		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1093 			continue;
1094 
1095 		ret = add_setting(p, pctldev, map);
1096 		/*
1097 		 * At this point the adding of a setting may:
1098 		 *
1099 		 * - Defer, if the pinctrl device is not yet available
1100 		 * - Fail, if the pinctrl device is not yet available,
1101 		 *   AND the setting is a hog. We cannot defer that, since
1102 		 *   the hog will kick in immediately after the device
1103 		 *   is registered.
1104 		 *
1105 		 * If the error returned was not -EPROBE_DEFER then we
1106 		 * accumulate the errors to see if we end up with
1107 		 * an -EPROBE_DEFER later, as that is the worst case.
1108 		 */
1109 		if (ret == -EPROBE_DEFER) {
1110 			pinctrl_free(p, false);
1111 			mutex_unlock(&pinctrl_maps_mutex);
1112 			return ERR_PTR(ret);
1113 		}
1114 	}
1115 	mutex_unlock(&pinctrl_maps_mutex);
1116 
1117 	if (ret < 0) {
1118 		/* If some other error than deferral occurred, return here */
1119 		pinctrl_free(p, false);
1120 		return ERR_PTR(ret);
1121 	}
1122 
1123 	kref_init(&p->users);
1124 
1125 	/* Add the pinctrl handle to the global list */
1126 	mutex_lock(&pinctrl_list_mutex);
1127 	list_add_tail(&p->node, &pinctrl_list);
1128 	mutex_unlock(&pinctrl_list_mutex);
1129 
1130 	return p;
1131 }
1132 
1133 /**
1134  * pinctrl_get() - retrieves the pinctrl handle for a device
1135  * @dev: the device to obtain the handle for
1136  */
1137 struct pinctrl *pinctrl_get(struct device *dev)
1138 {
1139 	struct pinctrl *p;
1140 
1141 	if (WARN_ON(!dev))
1142 		return ERR_PTR(-EINVAL);
1143 
1144 	/*
1145 	 * See if somebody else (such as the device core) has already
1146 	 * obtained a handle to the pinctrl for this device. In that case,
1147 	 * return another pointer to it.
1148 	 */
1149 	p = find_pinctrl(dev);
1150 	if (p) {
1151 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1152 		kref_get(&p->users);
1153 		return p;
1154 	}
1155 
1156 	return create_pinctrl(dev, NULL);
1157 }
1158 EXPORT_SYMBOL_GPL(pinctrl_get);
1159 
1160 static void pinctrl_free_setting(bool disable_setting,
1161 				 struct pinctrl_setting *setting)
1162 {
1163 	switch (setting->type) {
1164 	case PIN_MAP_TYPE_MUX_GROUP:
1165 		if (disable_setting)
1166 			pinmux_disable_setting(setting);
1167 		pinmux_free_setting(setting);
1168 		break;
1169 	case PIN_MAP_TYPE_CONFIGS_PIN:
1170 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1171 		pinconf_free_setting(setting);
1172 		break;
1173 	default:
1174 		break;
1175 	}
1176 }
1177 
1178 static void pinctrl_free(struct pinctrl *p, bool inlist)
1179 {
1180 	struct pinctrl_state *state, *n1;
1181 	struct pinctrl_setting *setting, *n2;
1182 
1183 	mutex_lock(&pinctrl_list_mutex);
1184 	list_for_each_entry_safe(state, n1, &p->states, node) {
1185 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1186 			pinctrl_free_setting(state == p->state, setting);
1187 			list_del(&setting->node);
1188 			kfree(setting);
1189 		}
1190 		list_del(&state->node);
1191 		kfree(state);
1192 	}
1193 
1194 	pinctrl_dt_free_maps(p);
1195 
1196 	if (inlist)
1197 		list_del(&p->node);
1198 	kfree(p);
1199 	mutex_unlock(&pinctrl_list_mutex);
1200 }
1201 
1202 /**
1203  * pinctrl_release() - release the pinctrl handle
1204  * @kref: the kref in the pinctrl being released
1205  */
1206 static void pinctrl_release(struct kref *kref)
1207 {
1208 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1209 
1210 	pinctrl_free(p, true);
1211 }
1212 
1213 /**
1214  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1215  * @p: the pinctrl handle to release
1216  */
1217 void pinctrl_put(struct pinctrl *p)
1218 {
1219 	kref_put(&p->users, pinctrl_release);
1220 }
1221 EXPORT_SYMBOL_GPL(pinctrl_put);
1222 
1223 /**
1224  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1225  * @p: the pinctrl handle to retrieve the state from
1226  * @name: the state name to retrieve
1227  */
1228 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1229 						 const char *name)
1230 {
1231 	struct pinctrl_state *state;
1232 
1233 	state = find_state(p, name);
1234 	if (!state) {
1235 		if (pinctrl_dummy_state) {
1236 			/* create dummy state */
1237 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1238 				name);
1239 			state = create_state(p, name);
1240 		} else
1241 			state = ERR_PTR(-ENODEV);
1242 	}
1243 
1244 	return state;
1245 }
1246 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1247 
1248 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1249 			     struct device *consumer)
1250 {
1251 	if (pctldev->desc->link_consumers)
1252 		device_link_add(consumer, pctldev->dev,
1253 				DL_FLAG_PM_RUNTIME |
1254 				DL_FLAG_AUTOREMOVE_CONSUMER);
1255 }
1256 
1257 /**
1258  * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1259  * @p: the pinctrl handle for the device that requests configuration
1260  * @state: the state handle to select/activate/program
1261  */
1262 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1263 {
1264 	struct pinctrl_setting *setting, *setting2;
1265 	struct pinctrl_state *old_state = p->state;
1266 	int ret;
1267 
1268 	if (p->state) {
1269 		/*
1270 		 * For each pinmux setting in the old state, forget SW's record
1271 		 * of mux owner for that pingroup. Any pingroups which are
1272 		 * still owned by the new state will be re-acquired by the call
1273 		 * to pinmux_enable_setting() in the loop below.
1274 		 */
1275 		list_for_each_entry(setting, &p->state->settings, node) {
1276 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1277 				continue;
1278 			pinmux_disable_setting(setting);
1279 		}
1280 	}
1281 
1282 	p->state = NULL;
1283 
1284 	/* Apply all the settings for the new state - pinmux first */
1285 	list_for_each_entry(setting, &state->settings, node) {
1286 		switch (setting->type) {
1287 		case PIN_MAP_TYPE_MUX_GROUP:
1288 			ret = pinmux_enable_setting(setting);
1289 			break;
1290 		case PIN_MAP_TYPE_CONFIGS_PIN:
1291 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1292 			ret = 0;
1293 			break;
1294 		default:
1295 			ret = -EINVAL;
1296 			break;
1297 		}
1298 
1299 		if (ret < 0)
1300 			goto unapply_new_state;
1301 
1302 		/* Do not link hogs (circular dependency) */
1303 		if (p != setting->pctldev->p)
1304 			pinctrl_link_add(setting->pctldev, p->dev);
1305 	}
1306 
1307 	/* Apply all the settings for the new state - pinconf after */
1308 	list_for_each_entry(setting, &state->settings, node) {
1309 		switch (setting->type) {
1310 		case PIN_MAP_TYPE_MUX_GROUP:
1311 			ret = 0;
1312 			break;
1313 		case PIN_MAP_TYPE_CONFIGS_PIN:
1314 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1315 			ret = pinconf_apply_setting(setting);
1316 			break;
1317 		default:
1318 			ret = -EINVAL;
1319 			break;
1320 		}
1321 
1322 		if (ret < 0) {
1323 			goto unapply_new_state;
1324 		}
1325 
1326 		/* Do not link hogs (circular dependency) */
1327 		if (p != setting->pctldev->p)
1328 			pinctrl_link_add(setting->pctldev, p->dev);
1329 	}
1330 
1331 	p->state = state;
1332 
1333 	return 0;
1334 
1335 unapply_new_state:
1336 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1337 
1338 	list_for_each_entry(setting2, &state->settings, node) {
1339 		if (&setting2->node == &setting->node)
1340 			break;
1341 		/*
1342 		 * All we can do here is pinmux_disable_setting.
1343 		 * That means that some pins are muxed differently now
1344 		 * than they were before applying the setting (We can't
1345 		 * "unmux a pin"!), but it's not a big deal since the pins
1346 		 * are free to be muxed by another apply_setting.
1347 		 */
1348 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1349 			pinmux_disable_setting(setting2);
1350 	}
1351 
1352 	/* There's no infinite recursive loop here because p->state is NULL */
1353 	if (old_state)
1354 		pinctrl_select_state(p, old_state);
1355 
1356 	return ret;
1357 }
1358 
1359 /**
1360  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1361  * @p: the pinctrl handle for the device that requests configuration
1362  * @state: the state handle to select/activate/program
1363  */
1364 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1365 {
1366 	if (p->state == state)
1367 		return 0;
1368 
1369 	return pinctrl_commit_state(p, state);
1370 }
1371 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1372 
1373 static void devm_pinctrl_release(struct device *dev, void *res)
1374 {
1375 	pinctrl_put(*(struct pinctrl **)res);
1376 }
1377 
1378 /**
1379  * devm_pinctrl_get() - Resource managed pinctrl_get()
1380  * @dev: the device to obtain the handle for
1381  *
1382  * If there is a need to explicitly destroy the returned struct pinctrl,
1383  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1384  */
1385 struct pinctrl *devm_pinctrl_get(struct device *dev)
1386 {
1387 	struct pinctrl **ptr, *p;
1388 
1389 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1390 	if (!ptr)
1391 		return ERR_PTR(-ENOMEM);
1392 
1393 	p = pinctrl_get(dev);
1394 	if (!IS_ERR(p)) {
1395 		*ptr = p;
1396 		devres_add(dev, ptr);
1397 	} else {
1398 		devres_free(ptr);
1399 	}
1400 
1401 	return p;
1402 }
1403 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1404 
1405 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1406 {
1407 	struct pinctrl **p = res;
1408 
1409 	return *p == data;
1410 }
1411 
1412 /**
1413  * devm_pinctrl_put() - Resource managed pinctrl_put()
1414  * @p: the pinctrl handle to release
1415  *
1416  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1417  * this function will not need to be called and the resource management
1418  * code will ensure that the resource is freed.
1419  */
1420 void devm_pinctrl_put(struct pinctrl *p)
1421 {
1422 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1423 			       devm_pinctrl_match, p));
1424 }
1425 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1426 
1427 /**
1428  * pinctrl_register_mappings() - register a set of pin controller mappings
1429  * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1430  *	keeps a reference to the passed in maps, so they should _not_ be
1431  *	marked with __initdata.
1432  * @num_maps: the number of maps in the mapping table
1433  */
1434 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1435 			      unsigned num_maps)
1436 {
1437 	int i, ret;
1438 	struct pinctrl_maps *maps_node;
1439 
1440 	pr_debug("add %u pinctrl maps\n", num_maps);
1441 
1442 	/* First sanity check the new mapping */
1443 	for (i = 0; i < num_maps; i++) {
1444 		if (!maps[i].dev_name) {
1445 			pr_err("failed to register map %s (%d): no device given\n",
1446 			       maps[i].name, i);
1447 			return -EINVAL;
1448 		}
1449 
1450 		if (!maps[i].name) {
1451 			pr_err("failed to register map %d: no map name given\n",
1452 			       i);
1453 			return -EINVAL;
1454 		}
1455 
1456 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1457 				!maps[i].ctrl_dev_name) {
1458 			pr_err("failed to register map %s (%d): no pin control device given\n",
1459 			       maps[i].name, i);
1460 			return -EINVAL;
1461 		}
1462 
1463 		switch (maps[i].type) {
1464 		case PIN_MAP_TYPE_DUMMY_STATE:
1465 			break;
1466 		case PIN_MAP_TYPE_MUX_GROUP:
1467 			ret = pinmux_validate_map(&maps[i], i);
1468 			if (ret < 0)
1469 				return ret;
1470 			break;
1471 		case PIN_MAP_TYPE_CONFIGS_PIN:
1472 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1473 			ret = pinconf_validate_map(&maps[i], i);
1474 			if (ret < 0)
1475 				return ret;
1476 			break;
1477 		default:
1478 			pr_err("failed to register map %s (%d): invalid type given\n",
1479 			       maps[i].name, i);
1480 			return -EINVAL;
1481 		}
1482 	}
1483 
1484 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1485 	if (!maps_node)
1486 		return -ENOMEM;
1487 
1488 	maps_node->maps = maps;
1489 	maps_node->num_maps = num_maps;
1490 
1491 	mutex_lock(&pinctrl_maps_mutex);
1492 	list_add_tail(&maps_node->node, &pinctrl_maps);
1493 	mutex_unlock(&pinctrl_maps_mutex);
1494 
1495 	return 0;
1496 }
1497 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1498 
1499 /**
1500  * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1501  * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1502  *	when registering the mappings.
1503  */
1504 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1505 {
1506 	struct pinctrl_maps *maps_node;
1507 
1508 	mutex_lock(&pinctrl_maps_mutex);
1509 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1510 		if (maps_node->maps == map) {
1511 			list_del(&maps_node->node);
1512 			kfree(maps_node);
1513 			mutex_unlock(&pinctrl_maps_mutex);
1514 			return;
1515 		}
1516 	}
1517 	mutex_unlock(&pinctrl_maps_mutex);
1518 }
1519 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1520 
1521 /**
1522  * pinctrl_force_sleep() - turn a given controller device into sleep state
1523  * @pctldev: pin controller device
1524  */
1525 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1526 {
1527 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1528 		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1529 	return 0;
1530 }
1531 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1532 
1533 /**
1534  * pinctrl_force_default() - turn a given controller device into default state
1535  * @pctldev: pin controller device
1536  */
1537 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1538 {
1539 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1540 		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1541 	return 0;
1542 }
1543 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1544 
1545 /**
1546  * pinctrl_init_done() - tell pinctrl probe is done
1547  *
1548  * We'll use this time to switch the pins from "init" to "default" unless the
1549  * driver selected some other state.
1550  *
1551  * @dev: device to that's done probing
1552  */
1553 int pinctrl_init_done(struct device *dev)
1554 {
1555 	struct dev_pin_info *pins = dev->pins;
1556 	int ret;
1557 
1558 	if (!pins)
1559 		return 0;
1560 
1561 	if (IS_ERR(pins->init_state))
1562 		return 0; /* No such state */
1563 
1564 	if (pins->p->state != pins->init_state)
1565 		return 0; /* Not at init anyway */
1566 
1567 	if (IS_ERR(pins->default_state))
1568 		return 0; /* No default state */
1569 
1570 	ret = pinctrl_select_state(pins->p, pins->default_state);
1571 	if (ret)
1572 		dev_err(dev, "failed to activate default pinctrl state\n");
1573 
1574 	return ret;
1575 }
1576 
1577 static int pinctrl_select_bound_state(struct device *dev,
1578 				      struct pinctrl_state *state)
1579 {
1580 	struct dev_pin_info *pins = dev->pins;
1581 	int ret;
1582 
1583 	if (IS_ERR(state))
1584 		return 0; /* No such state */
1585 	ret = pinctrl_select_state(pins->p, state);
1586 	if (ret)
1587 		dev_err(dev, "failed to activate pinctrl state %s\n",
1588 			state->name);
1589 	return ret;
1590 }
1591 
1592 /**
1593  * pinctrl_select_default_state() - select default pinctrl state
1594  * @dev: device to select default state for
1595  */
1596 int pinctrl_select_default_state(struct device *dev)
1597 {
1598 	if (!dev->pins)
1599 		return 0;
1600 
1601 	return pinctrl_select_bound_state(dev, dev->pins->default_state);
1602 }
1603 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1604 
1605 #ifdef CONFIG_PM
1606 
1607 /**
1608  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1609  * @dev: device to select default state for
1610  */
1611 int pinctrl_pm_select_default_state(struct device *dev)
1612 {
1613 	return pinctrl_select_default_state(dev);
1614 }
1615 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1616 
1617 /**
1618  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1619  * @dev: device to select sleep state for
1620  */
1621 int pinctrl_pm_select_sleep_state(struct device *dev)
1622 {
1623 	if (!dev->pins)
1624 		return 0;
1625 
1626 	return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1627 }
1628 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1629 
1630 /**
1631  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1632  * @dev: device to select idle state for
1633  */
1634 int pinctrl_pm_select_idle_state(struct device *dev)
1635 {
1636 	if (!dev->pins)
1637 		return 0;
1638 
1639 	return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1640 }
1641 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1642 #endif
1643 
1644 #ifdef CONFIG_DEBUG_FS
1645 
1646 static int pinctrl_pins_show(struct seq_file *s, void *what)
1647 {
1648 	struct pinctrl_dev *pctldev = s->private;
1649 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1650 	unsigned i, pin;
1651 #ifdef CONFIG_GPIOLIB
1652 	struct pinctrl_gpio_range *range;
1653 	struct gpio_chip *chip;
1654 	int gpio_num;
1655 #endif
1656 
1657 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1658 
1659 	mutex_lock(&pctldev->mutex);
1660 
1661 	/* The pin number can be retrived from the pin controller descriptor */
1662 	for (i = 0; i < pctldev->desc->npins; i++) {
1663 		struct pin_desc *desc;
1664 
1665 		pin = pctldev->desc->pins[i].number;
1666 		desc = pin_desc_get(pctldev, pin);
1667 		/* Pin space may be sparse */
1668 		if (!desc)
1669 			continue;
1670 
1671 		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1672 
1673 #ifdef CONFIG_GPIOLIB
1674 		gpio_num = -1;
1675 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1676 			if ((pin >= range->pin_base) &&
1677 			    (pin < (range->pin_base + range->npins))) {
1678 				gpio_num = range->base + (pin - range->pin_base);
1679 				break;
1680 			}
1681 		}
1682 		if (gpio_num >= 0)
1683 			/*
1684 			 * FIXME: gpio_num comes from the global GPIO numberspace.
1685 			 * we need to get rid of the range->base eventually and
1686 			 * get the descriptor directly from the gpio_chip.
1687 			 */
1688 			chip = gpiod_to_chip(gpio_to_desc(gpio_num));
1689 		else
1690 			chip = NULL;
1691 		if (chip)
1692 			seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
1693 		else
1694 			seq_puts(s, "0:? ");
1695 #endif
1696 
1697 		/* Driver-specific info per pin */
1698 		if (ops->pin_dbg_show)
1699 			ops->pin_dbg_show(pctldev, s, pin);
1700 
1701 		seq_puts(s, "\n");
1702 	}
1703 
1704 	mutex_unlock(&pctldev->mutex);
1705 
1706 	return 0;
1707 }
1708 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1709 
1710 static int pinctrl_groups_show(struct seq_file *s, void *what)
1711 {
1712 	struct pinctrl_dev *pctldev = s->private;
1713 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1714 	unsigned ngroups, selector = 0;
1715 
1716 	mutex_lock(&pctldev->mutex);
1717 
1718 	ngroups = ops->get_groups_count(pctldev);
1719 
1720 	seq_puts(s, "registered pin groups:\n");
1721 	while (selector < ngroups) {
1722 		const unsigned *pins = NULL;
1723 		unsigned num_pins = 0;
1724 		const char *gname = ops->get_group_name(pctldev, selector);
1725 		const char *pname;
1726 		int ret = 0;
1727 		int i;
1728 
1729 		if (ops->get_group_pins)
1730 			ret = ops->get_group_pins(pctldev, selector,
1731 						  &pins, &num_pins);
1732 		if (ret)
1733 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1734 				   gname);
1735 		else {
1736 			seq_printf(s, "group: %s\n", gname);
1737 			for (i = 0; i < num_pins; i++) {
1738 				pname = pin_get_name(pctldev, pins[i]);
1739 				if (WARN_ON(!pname)) {
1740 					mutex_unlock(&pctldev->mutex);
1741 					return -EINVAL;
1742 				}
1743 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1744 			}
1745 			seq_puts(s, "\n");
1746 		}
1747 		selector++;
1748 	}
1749 
1750 	mutex_unlock(&pctldev->mutex);
1751 
1752 	return 0;
1753 }
1754 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1755 
1756 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1757 {
1758 	struct pinctrl_dev *pctldev = s->private;
1759 	struct pinctrl_gpio_range *range;
1760 
1761 	seq_puts(s, "GPIO ranges handled:\n");
1762 
1763 	mutex_lock(&pctldev->mutex);
1764 
1765 	/* Loop over the ranges */
1766 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1767 		if (range->pins) {
1768 			int a;
1769 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1770 				range->id, range->name,
1771 				range->base, (range->base + range->npins - 1));
1772 			for (a = 0; a < range->npins - 1; a++)
1773 				seq_printf(s, "%u, ", range->pins[a]);
1774 			seq_printf(s, "%u}\n", range->pins[a]);
1775 		}
1776 		else
1777 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1778 				range->id, range->name,
1779 				range->base, (range->base + range->npins - 1),
1780 				range->pin_base,
1781 				(range->pin_base + range->npins - 1));
1782 	}
1783 
1784 	mutex_unlock(&pctldev->mutex);
1785 
1786 	return 0;
1787 }
1788 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1789 
1790 static int pinctrl_devices_show(struct seq_file *s, void *what)
1791 {
1792 	struct pinctrl_dev *pctldev;
1793 
1794 	seq_puts(s, "name [pinmux] [pinconf]\n");
1795 
1796 	mutex_lock(&pinctrldev_list_mutex);
1797 
1798 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1799 		seq_printf(s, "%s ", pctldev->desc->name);
1800 		if (pctldev->desc->pmxops)
1801 			seq_puts(s, "yes ");
1802 		else
1803 			seq_puts(s, "no ");
1804 		if (pctldev->desc->confops)
1805 			seq_puts(s, "yes");
1806 		else
1807 			seq_puts(s, "no");
1808 		seq_puts(s, "\n");
1809 	}
1810 
1811 	mutex_unlock(&pinctrldev_list_mutex);
1812 
1813 	return 0;
1814 }
1815 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1816 
1817 static inline const char *map_type(enum pinctrl_map_type type)
1818 {
1819 	static const char * const names[] = {
1820 		"INVALID",
1821 		"DUMMY_STATE",
1822 		"MUX_GROUP",
1823 		"CONFIGS_PIN",
1824 		"CONFIGS_GROUP",
1825 	};
1826 
1827 	if (type >= ARRAY_SIZE(names))
1828 		return "UNKNOWN";
1829 
1830 	return names[type];
1831 }
1832 
1833 static int pinctrl_maps_show(struct seq_file *s, void *what)
1834 {
1835 	struct pinctrl_maps *maps_node;
1836 	const struct pinctrl_map *map;
1837 
1838 	seq_puts(s, "Pinctrl maps:\n");
1839 
1840 	mutex_lock(&pinctrl_maps_mutex);
1841 	for_each_pin_map(maps_node, map) {
1842 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1843 			   map->dev_name, map->name, map_type(map->type),
1844 			   map->type);
1845 
1846 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1847 			seq_printf(s, "controlling device %s\n",
1848 				   map->ctrl_dev_name);
1849 
1850 		switch (map->type) {
1851 		case PIN_MAP_TYPE_MUX_GROUP:
1852 			pinmux_show_map(s, map);
1853 			break;
1854 		case PIN_MAP_TYPE_CONFIGS_PIN:
1855 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1856 			pinconf_show_map(s, map);
1857 			break;
1858 		default:
1859 			break;
1860 		}
1861 
1862 		seq_putc(s, '\n');
1863 	}
1864 	mutex_unlock(&pinctrl_maps_mutex);
1865 
1866 	return 0;
1867 }
1868 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1869 
1870 static int pinctrl_show(struct seq_file *s, void *what)
1871 {
1872 	struct pinctrl *p;
1873 	struct pinctrl_state *state;
1874 	struct pinctrl_setting *setting;
1875 
1876 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1877 
1878 	mutex_lock(&pinctrl_list_mutex);
1879 
1880 	list_for_each_entry(p, &pinctrl_list, node) {
1881 		seq_printf(s, "device: %s current state: %s\n",
1882 			   dev_name(p->dev),
1883 			   p->state ? p->state->name : "none");
1884 
1885 		list_for_each_entry(state, &p->states, node) {
1886 			seq_printf(s, "  state: %s\n", state->name);
1887 
1888 			list_for_each_entry(setting, &state->settings, node) {
1889 				struct pinctrl_dev *pctldev = setting->pctldev;
1890 
1891 				seq_printf(s, "    type: %s controller %s ",
1892 					   map_type(setting->type),
1893 					   pinctrl_dev_get_name(pctldev));
1894 
1895 				switch (setting->type) {
1896 				case PIN_MAP_TYPE_MUX_GROUP:
1897 					pinmux_show_setting(s, setting);
1898 					break;
1899 				case PIN_MAP_TYPE_CONFIGS_PIN:
1900 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1901 					pinconf_show_setting(s, setting);
1902 					break;
1903 				default:
1904 					break;
1905 				}
1906 			}
1907 		}
1908 	}
1909 
1910 	mutex_unlock(&pinctrl_list_mutex);
1911 
1912 	return 0;
1913 }
1914 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1915 
1916 static struct dentry *debugfs_root;
1917 
1918 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1919 {
1920 	struct dentry *device_root;
1921 	const char *debugfs_name;
1922 
1923 	if (pctldev->desc->name &&
1924 			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1925 		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1926 				"%s-%s", dev_name(pctldev->dev),
1927 				pctldev->desc->name);
1928 		if (!debugfs_name) {
1929 			pr_warn("failed to determine debugfs dir name for %s\n",
1930 				dev_name(pctldev->dev));
1931 			return;
1932 		}
1933 	} else {
1934 		debugfs_name = dev_name(pctldev->dev);
1935 	}
1936 
1937 	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1938 	pctldev->device_root = device_root;
1939 
1940 	if (IS_ERR(device_root) || !device_root) {
1941 		pr_warn("failed to create debugfs directory for %s\n",
1942 			dev_name(pctldev->dev));
1943 		return;
1944 	}
1945 	debugfs_create_file("pins", 0444,
1946 			    device_root, pctldev, &pinctrl_pins_fops);
1947 	debugfs_create_file("pingroups", 0444,
1948 			    device_root, pctldev, &pinctrl_groups_fops);
1949 	debugfs_create_file("gpio-ranges", 0444,
1950 			    device_root, pctldev, &pinctrl_gpioranges_fops);
1951 	if (pctldev->desc->pmxops)
1952 		pinmux_init_device_debugfs(device_root, pctldev);
1953 	if (pctldev->desc->confops)
1954 		pinconf_init_device_debugfs(device_root, pctldev);
1955 }
1956 
1957 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1958 {
1959 	debugfs_remove_recursive(pctldev->device_root);
1960 }
1961 
1962 static void pinctrl_init_debugfs(void)
1963 {
1964 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1965 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1966 		pr_warn("failed to create debugfs directory\n");
1967 		debugfs_root = NULL;
1968 		return;
1969 	}
1970 
1971 	debugfs_create_file("pinctrl-devices", 0444,
1972 			    debugfs_root, NULL, &pinctrl_devices_fops);
1973 	debugfs_create_file("pinctrl-maps", 0444,
1974 			    debugfs_root, NULL, &pinctrl_maps_fops);
1975 	debugfs_create_file("pinctrl-handles", 0444,
1976 			    debugfs_root, NULL, &pinctrl_fops);
1977 }
1978 
1979 #else /* CONFIG_DEBUG_FS */
1980 
1981 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1982 {
1983 }
1984 
1985 static void pinctrl_init_debugfs(void)
1986 {
1987 }
1988 
1989 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1990 {
1991 }
1992 
1993 #endif
1994 
1995 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1996 {
1997 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1998 
1999 	if (!ops ||
2000 	    !ops->get_groups_count ||
2001 	    !ops->get_group_name)
2002 		return -EINVAL;
2003 
2004 	return 0;
2005 }
2006 
2007 /**
2008  * pinctrl_init_controller() - init a pin controller device
2009  * @pctldesc: descriptor for this pin controller
2010  * @dev: parent device for this pin controller
2011  * @driver_data: private pin controller data for this pin controller
2012  */
2013 static struct pinctrl_dev *
2014 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
2015 			void *driver_data)
2016 {
2017 	struct pinctrl_dev *pctldev;
2018 	int ret;
2019 
2020 	if (!pctldesc)
2021 		return ERR_PTR(-EINVAL);
2022 	if (!pctldesc->name)
2023 		return ERR_PTR(-EINVAL);
2024 
2025 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2026 	if (!pctldev)
2027 		return ERR_PTR(-ENOMEM);
2028 
2029 	/* Initialize pin control device struct */
2030 	pctldev->owner = pctldesc->owner;
2031 	pctldev->desc = pctldesc;
2032 	pctldev->driver_data = driver_data;
2033 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2034 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2035 	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2036 #endif
2037 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2038 	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2039 #endif
2040 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
2041 	INIT_LIST_HEAD(&pctldev->node);
2042 	pctldev->dev = dev;
2043 	mutex_init(&pctldev->mutex);
2044 
2045 	/* check core ops for sanity */
2046 	ret = pinctrl_check_ops(pctldev);
2047 	if (ret) {
2048 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
2049 		goto out_err;
2050 	}
2051 
2052 	/* If we're implementing pinmuxing, check the ops for sanity */
2053 	if (pctldesc->pmxops) {
2054 		ret = pinmux_check_ops(pctldev);
2055 		if (ret)
2056 			goto out_err;
2057 	}
2058 
2059 	/* If we're implementing pinconfig, check the ops for sanity */
2060 	if (pctldesc->confops) {
2061 		ret = pinconf_check_ops(pctldev);
2062 		if (ret)
2063 			goto out_err;
2064 	}
2065 
2066 	/* Register all the pins */
2067 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2068 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2069 	if (ret) {
2070 		dev_err(dev, "error during pin registration\n");
2071 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
2072 				      pctldesc->npins);
2073 		goto out_err;
2074 	}
2075 
2076 	return pctldev;
2077 
2078 out_err:
2079 	mutex_destroy(&pctldev->mutex);
2080 	kfree(pctldev);
2081 	return ERR_PTR(ret);
2082 }
2083 
2084 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2085 {
2086 	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2087 	if (PTR_ERR(pctldev->p) == -ENODEV) {
2088 		dev_dbg(pctldev->dev, "no hogs found\n");
2089 
2090 		return 0;
2091 	}
2092 
2093 	if (IS_ERR(pctldev->p)) {
2094 		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2095 			PTR_ERR(pctldev->p));
2096 
2097 		return PTR_ERR(pctldev->p);
2098 	}
2099 
2100 	pctldev->hog_default =
2101 		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2102 	if (IS_ERR(pctldev->hog_default)) {
2103 		dev_dbg(pctldev->dev,
2104 			"failed to lookup the default state\n");
2105 	} else {
2106 		if (pinctrl_select_state(pctldev->p,
2107 					 pctldev->hog_default))
2108 			dev_err(pctldev->dev,
2109 				"failed to select default state\n");
2110 	}
2111 
2112 	pctldev->hog_sleep =
2113 		pinctrl_lookup_state(pctldev->p,
2114 				     PINCTRL_STATE_SLEEP);
2115 	if (IS_ERR(pctldev->hog_sleep))
2116 		dev_dbg(pctldev->dev,
2117 			"failed to lookup the sleep state\n");
2118 
2119 	return 0;
2120 }
2121 
2122 int pinctrl_enable(struct pinctrl_dev *pctldev)
2123 {
2124 	int error;
2125 
2126 	error = pinctrl_claim_hogs(pctldev);
2127 	if (error) {
2128 		dev_err(pctldev->dev, "could not claim hogs: %i\n",
2129 			error);
2130 		pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2131 				      pctldev->desc->npins);
2132 		mutex_destroy(&pctldev->mutex);
2133 		kfree(pctldev);
2134 
2135 		return error;
2136 	}
2137 
2138 	mutex_lock(&pinctrldev_list_mutex);
2139 	list_add_tail(&pctldev->node, &pinctrldev_list);
2140 	mutex_unlock(&pinctrldev_list_mutex);
2141 
2142 	pinctrl_init_device_debugfs(pctldev);
2143 
2144 	return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(pinctrl_enable);
2147 
2148 /**
2149  * pinctrl_register() - register a pin controller device
2150  * @pctldesc: descriptor for this pin controller
2151  * @dev: parent device for this pin controller
2152  * @driver_data: private pin controller data for this pin controller
2153  *
2154  * Note that pinctrl_register() is known to have problems as the pin
2155  * controller driver functions are called before the driver has a
2156  * struct pinctrl_dev handle. To avoid issues later on, please use the
2157  * new pinctrl_register_and_init() below instead.
2158  */
2159 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2160 				    struct device *dev, void *driver_data)
2161 {
2162 	struct pinctrl_dev *pctldev;
2163 	int error;
2164 
2165 	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2166 	if (IS_ERR(pctldev))
2167 		return pctldev;
2168 
2169 	error = pinctrl_enable(pctldev);
2170 	if (error)
2171 		return ERR_PTR(error);
2172 
2173 	return pctldev;
2174 }
2175 EXPORT_SYMBOL_GPL(pinctrl_register);
2176 
2177 /**
2178  * pinctrl_register_and_init() - register and init pin controller device
2179  * @pctldesc: descriptor for this pin controller
2180  * @dev: parent device for this pin controller
2181  * @driver_data: private pin controller data for this pin controller
2182  * @pctldev: pin controller device
2183  *
2184  * Note that pinctrl_enable() still needs to be manually called after
2185  * this once the driver is ready.
2186  */
2187 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2188 			      struct device *dev, void *driver_data,
2189 			      struct pinctrl_dev **pctldev)
2190 {
2191 	struct pinctrl_dev *p;
2192 
2193 	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2194 	if (IS_ERR(p))
2195 		return PTR_ERR(p);
2196 
2197 	/*
2198 	 * We have pinctrl_start() call functions in the pin controller
2199 	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2200 	 * let's make sure pctldev is properly initialized for the
2201 	 * pin controller driver before we do anything.
2202 	 */
2203 	*pctldev = p;
2204 
2205 	return 0;
2206 }
2207 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2208 
2209 /**
2210  * pinctrl_unregister() - unregister pinmux
2211  * @pctldev: pin controller to unregister
2212  *
2213  * Called by pinmux drivers to unregister a pinmux.
2214  */
2215 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2216 {
2217 	struct pinctrl_gpio_range *range, *n;
2218 
2219 	if (!pctldev)
2220 		return;
2221 
2222 	mutex_lock(&pctldev->mutex);
2223 	pinctrl_remove_device_debugfs(pctldev);
2224 	mutex_unlock(&pctldev->mutex);
2225 
2226 	if (!IS_ERR_OR_NULL(pctldev->p))
2227 		pinctrl_put(pctldev->p);
2228 
2229 	mutex_lock(&pinctrldev_list_mutex);
2230 	mutex_lock(&pctldev->mutex);
2231 	/* TODO: check that no pinmuxes are still active? */
2232 	list_del(&pctldev->node);
2233 	pinmux_generic_free_functions(pctldev);
2234 	pinctrl_generic_free_groups(pctldev);
2235 	/* Destroy descriptor tree */
2236 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2237 			      pctldev->desc->npins);
2238 	/* remove gpio ranges map */
2239 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2240 		list_del(&range->node);
2241 
2242 	mutex_unlock(&pctldev->mutex);
2243 	mutex_destroy(&pctldev->mutex);
2244 	kfree(pctldev);
2245 	mutex_unlock(&pinctrldev_list_mutex);
2246 }
2247 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2248 
2249 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2250 {
2251 	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2252 
2253 	pinctrl_unregister(pctldev);
2254 }
2255 
2256 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2257 {
2258 	struct pctldev **r = res;
2259 
2260 	if (WARN_ON(!r || !*r))
2261 		return 0;
2262 
2263 	return *r == data;
2264 }
2265 
2266 /**
2267  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2268  * @dev: parent device for this pin controller
2269  * @pctldesc: descriptor for this pin controller
2270  * @driver_data: private pin controller data for this pin controller
2271  *
2272  * Returns an error pointer if pincontrol register failed. Otherwise
2273  * it returns valid pinctrl handle.
2274  *
2275  * The pinctrl device will be automatically released when the device is unbound.
2276  */
2277 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2278 					  struct pinctrl_desc *pctldesc,
2279 					  void *driver_data)
2280 {
2281 	struct pinctrl_dev **ptr, *pctldev;
2282 
2283 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2284 	if (!ptr)
2285 		return ERR_PTR(-ENOMEM);
2286 
2287 	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2288 	if (IS_ERR(pctldev)) {
2289 		devres_free(ptr);
2290 		return pctldev;
2291 	}
2292 
2293 	*ptr = pctldev;
2294 	devres_add(dev, ptr);
2295 
2296 	return pctldev;
2297 }
2298 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2299 
2300 /**
2301  * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2302  * @dev: parent device for this pin controller
2303  * @pctldesc: descriptor for this pin controller
2304  * @driver_data: private pin controller data for this pin controller
2305  * @pctldev: pin controller device
2306  *
2307  * Returns zero on success or an error number on failure.
2308  *
2309  * The pinctrl device will be automatically released when the device is unbound.
2310  */
2311 int devm_pinctrl_register_and_init(struct device *dev,
2312 				   struct pinctrl_desc *pctldesc,
2313 				   void *driver_data,
2314 				   struct pinctrl_dev **pctldev)
2315 {
2316 	struct pinctrl_dev **ptr;
2317 	int error;
2318 
2319 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2320 	if (!ptr)
2321 		return -ENOMEM;
2322 
2323 	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2324 	if (error) {
2325 		devres_free(ptr);
2326 		return error;
2327 	}
2328 
2329 	*ptr = *pctldev;
2330 	devres_add(dev, ptr);
2331 
2332 	return 0;
2333 }
2334 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2335 
2336 /**
2337  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2338  * @dev: device for which resource was allocated
2339  * @pctldev: the pinctrl device to unregister.
2340  */
2341 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2342 {
2343 	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2344 			       devm_pinctrl_dev_match, pctldev));
2345 }
2346 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2347 
2348 static int __init pinctrl_init(void)
2349 {
2350 	pr_info("initialized pinctrl subsystem\n");
2351 	pinctrl_init_debugfs();
2352 	return 0;
2353 }
2354 
2355 /* init early since many drivers really need to initialized pinmux early */
2356 core_initcall(pinctrl_init);
2357