1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Core driver for the pin control subsystem 4 * 5 * Copyright (C) 2011-2012 ST-Ericsson SA 6 * Written on behalf of Linaro for ST-Ericsson 7 * Based on bits of regulator core, gpio core and clk core 8 * 9 * Author: Linus Walleij <linus.walleij@linaro.org> 10 * 11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 12 */ 13 #define pr_fmt(fmt) "pinctrl core: " fmt 14 15 #include <linux/array_size.h> 16 #include <linux/cleanup.h> 17 #include <linux/debugfs.h> 18 #include <linux/device.h> 19 #include <linux/err.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kref.h> 23 #include <linux/list.h> 24 #include <linux/seq_file.h> 25 #include <linux/slab.h> 26 27 #include <linux/gpio.h> 28 #include <linux/gpio/driver.h> 29 30 #include <linux/pinctrl/consumer.h> 31 #include <linux/pinctrl/devinfo.h> 32 #include <linux/pinctrl/machine.h> 33 #include <linux/pinctrl/pinctrl.h> 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinconf.h" 38 #include "pinmux.h" 39 40 static bool pinctrl_dummy_state; 41 42 /* Mutex taken to protect pinctrl_list */ 43 static DEFINE_MUTEX(pinctrl_list_mutex); 44 45 /* Mutex taken to protect pinctrl_maps */ 46 DEFINE_MUTEX(pinctrl_maps_mutex); 47 48 /* Mutex taken to protect pinctrldev_list */ 49 static DEFINE_MUTEX(pinctrldev_list_mutex); 50 51 /* Global list of pin control devices (struct pinctrl_dev) */ 52 static LIST_HEAD(pinctrldev_list); 53 54 /* List of pin controller handles (struct pinctrl) */ 55 static LIST_HEAD(pinctrl_list); 56 57 /* List of pinctrl maps (struct pinctrl_maps) */ 58 LIST_HEAD(pinctrl_maps); 59 60 61 /** 62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 63 * 64 * Usually this function is called by platforms without pinctrl driver support 65 * but run with some shared drivers using pinctrl APIs. 66 * After calling this function, the pinctrl core will return successfully 67 * with creating a dummy state for the driver to keep going smoothly. 68 */ 69 void pinctrl_provide_dummies(void) 70 { 71 pinctrl_dummy_state = true; 72 } 73 EXPORT_SYMBOL_GPL(pinctrl_provide_dummies); 74 75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 76 { 77 /* We're not allowed to register devices without name */ 78 return pctldev->desc->name; 79 } 80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 81 82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 83 { 84 return dev_name(pctldev->dev); 85 } 86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 87 88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 89 { 90 return pctldev->driver_data; 91 } 92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 93 94 /** 95 * get_pinctrl_dev_from_devname() - look up pin controller device 96 * @devname: the name of a device instance, as returned by dev_name() 97 * 98 * Looks up a pin control device matching a certain device name or pure device 99 * pointer, the pure device pointer will take precedence. 100 */ 101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 102 { 103 struct pinctrl_dev *pctldev; 104 105 if (!devname) 106 return NULL; 107 108 mutex_lock(&pinctrldev_list_mutex); 109 110 list_for_each_entry(pctldev, &pinctrldev_list, node) { 111 if (!strcmp(dev_name(pctldev->dev), devname)) { 112 /* Matched on device name */ 113 mutex_unlock(&pinctrldev_list_mutex); 114 return pctldev; 115 } 116 } 117 118 mutex_unlock(&pinctrldev_list_mutex); 119 120 return NULL; 121 } 122 123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 124 { 125 struct pinctrl_dev *pctldev; 126 127 mutex_lock(&pinctrldev_list_mutex); 128 129 list_for_each_entry(pctldev, &pinctrldev_list, node) 130 if (device_match_of_node(pctldev->dev, np)) { 131 mutex_unlock(&pinctrldev_list_mutex); 132 return pctldev; 133 } 134 135 mutex_unlock(&pinctrldev_list_mutex); 136 137 return NULL; 138 } 139 140 /** 141 * pin_get_from_name() - look up a pin number from a name 142 * @pctldev: the pin control device to lookup the pin on 143 * @name: the name of the pin to look up 144 */ 145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 146 { 147 unsigned int i, pin; 148 149 /* The pin number can be retrived from the pin controller descriptor */ 150 for (i = 0; i < pctldev->desc->npins; i++) { 151 struct pin_desc *desc; 152 153 pin = pctldev->desc->pins[i].number; 154 desc = pin_desc_get(pctldev, pin); 155 /* Pin space may be sparse */ 156 if (desc && !strcmp(name, desc->name)) 157 return pin; 158 } 159 160 return -EINVAL; 161 } 162 163 /** 164 * pin_get_name() - look up a pin name from a pin id 165 * @pctldev: the pin control device to lookup the pin on 166 * @pin: pin number/id to look up 167 */ 168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned int pin) 169 { 170 const struct pin_desc *desc; 171 172 desc = pin_desc_get(pctldev, pin); 173 if (!desc) { 174 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 175 pin); 176 return NULL; 177 } 178 179 return desc->name; 180 } 181 EXPORT_SYMBOL_GPL(pin_get_name); 182 183 /* Deletes a range of pin descriptors */ 184 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 185 const struct pinctrl_pin_desc *pins, 186 unsigned int num_pins) 187 { 188 int i; 189 190 for (i = 0; i < num_pins; i++) { 191 struct pin_desc *pindesc; 192 193 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 194 pins[i].number); 195 if (pindesc) { 196 radix_tree_delete(&pctldev->pin_desc_tree, 197 pins[i].number); 198 if (pindesc->dynamic_name) 199 kfree(pindesc->name); 200 } 201 kfree(pindesc); 202 } 203 } 204 205 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 206 const struct pinctrl_pin_desc *pin) 207 { 208 struct pin_desc *pindesc; 209 int error; 210 211 pindesc = pin_desc_get(pctldev, pin->number); 212 if (pindesc) { 213 dev_err(pctldev->dev, "pin %d already registered\n", 214 pin->number); 215 return -EINVAL; 216 } 217 218 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 219 if (!pindesc) 220 return -ENOMEM; 221 222 /* Set owner */ 223 pindesc->pctldev = pctldev; 224 #ifdef CONFIG_PINMUX 225 mutex_init(&pindesc->mux_lock); 226 #endif 227 228 /* Copy basic pin info */ 229 if (pin->name) { 230 pindesc->name = pin->name; 231 } else { 232 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 233 if (!pindesc->name) { 234 error = -ENOMEM; 235 goto failed; 236 } 237 pindesc->dynamic_name = true; 238 } 239 240 pindesc->drv_data = pin->drv_data; 241 242 error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 243 if (error) 244 goto failed; 245 246 pr_debug("registered pin %d (%s) on %s\n", 247 pin->number, pindesc->name, pctldev->desc->name); 248 return 0; 249 250 failed: 251 kfree(pindesc); 252 return error; 253 } 254 255 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 256 const struct pinctrl_pin_desc *pins, 257 unsigned int num_descs) 258 { 259 unsigned int i; 260 int ret = 0; 261 262 for (i = 0; i < num_descs; i++) { 263 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 264 if (ret) 265 return ret; 266 } 267 268 return 0; 269 } 270 271 /** 272 * gpio_to_pin() - GPIO range GPIO number to pin number translation 273 * @range: GPIO range used for the translation 274 * @gc: GPIO chip structure from the GPIO subsystem 275 * @offset: hardware offset of the GPIO relative to the controller 276 * 277 * Finds the pin number for a given GPIO using the specified GPIO range 278 * as a base for translation. The distinction between linear GPIO ranges 279 * and pin list based GPIO ranges is managed correctly by this function. 280 * 281 * This function assumes the gpio is part of the specified GPIO range, use 282 * only after making sure this is the case (e.g. by calling it on the 283 * result of successful pinctrl_get_device_gpio_range calls)! 284 */ 285 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 286 struct gpio_chip *gc, unsigned int offset) 287 { 288 unsigned int pin = gc->base + offset - range->base; 289 if (range->pins) 290 return range->pins[pin]; 291 else 292 return range->pin_base + pin; 293 } 294 295 /** 296 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 297 * @pctldev: pin controller device to check 298 * @gc: GPIO chip structure from the GPIO subsystem 299 * @offset: hardware offset of the GPIO relative to the controller 300 * 301 * Tries to match a GPIO pin number to the ranges handled by a certain pin 302 * controller, return the range or NULL 303 */ 304 static struct pinctrl_gpio_range * 305 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, struct gpio_chip *gc, 306 unsigned int offset) 307 { 308 struct pinctrl_gpio_range *range; 309 310 mutex_lock(&pctldev->mutex); 311 /* Loop over the ranges */ 312 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 313 /* Check if we're in the valid range */ 314 if ((gc->base + offset) >= range->base && 315 (gc->base + offset) < range->base + range->npins) { 316 mutex_unlock(&pctldev->mutex); 317 return range; 318 } 319 } 320 mutex_unlock(&pctldev->mutex); 321 return NULL; 322 } 323 324 /** 325 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 326 * the same GPIO chip are in range 327 * @gc: GPIO chip structure from the GPIO subsystem 328 * @offset: hardware offset of the GPIO relative to the controller 329 * 330 * This function is complement of pinctrl_match_gpio_range(). If the return 331 * value of pinctrl_match_gpio_range() is NULL, this function could be used 332 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 333 * of the same GPIO chip don't have back-end pinctrl interface. 334 * If the return value is true, it means that pinctrl device is ready & the 335 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 336 * is false, it means that pinctrl device may not be ready. 337 */ 338 #ifdef CONFIG_GPIOLIB 339 static bool pinctrl_ready_for_gpio_range(struct gpio_chip *gc, 340 unsigned int offset) 341 { 342 struct pinctrl_dev *pctldev; 343 struct pinctrl_gpio_range *range = NULL; 344 345 mutex_lock(&pinctrldev_list_mutex); 346 347 /* Loop over the pin controllers */ 348 list_for_each_entry(pctldev, &pinctrldev_list, node) { 349 /* Loop over the ranges */ 350 mutex_lock(&pctldev->mutex); 351 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 352 /* Check if any gpio range overlapped with gpio chip */ 353 if (range->base + range->npins - 1 < gc->base || 354 range->base > gc->base + gc->ngpio - 1) 355 continue; 356 mutex_unlock(&pctldev->mutex); 357 mutex_unlock(&pinctrldev_list_mutex); 358 return true; 359 } 360 mutex_unlock(&pctldev->mutex); 361 } 362 363 mutex_unlock(&pinctrldev_list_mutex); 364 365 return false; 366 } 367 #else 368 static inline bool 369 pinctrl_ready_for_gpio_range(struct gpio_chip *gc, unsigned int offset) 370 { 371 return true; 372 } 373 #endif 374 375 /** 376 * pinctrl_get_device_gpio_range() - find device for GPIO range 377 * @gc: GPIO chip structure from the GPIO subsystem 378 * @offset: hardware offset of the GPIO relative to the controller 379 * @outdev: the pin control device if found 380 * @outrange: the GPIO range if found 381 * 382 * Find the pin controller handling a certain GPIO pin from the pinspace of 383 * the GPIO subsystem, return the device and the matching GPIO range. Returns 384 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 385 * may still have not been registered. 386 */ 387 static int pinctrl_get_device_gpio_range(struct gpio_chip *gc, 388 unsigned int offset, 389 struct pinctrl_dev **outdev, 390 struct pinctrl_gpio_range **outrange) 391 { 392 struct pinctrl_dev *pctldev; 393 394 mutex_lock(&pinctrldev_list_mutex); 395 396 /* Loop over the pin controllers */ 397 list_for_each_entry(pctldev, &pinctrldev_list, node) { 398 struct pinctrl_gpio_range *range; 399 400 range = pinctrl_match_gpio_range(pctldev, gc, offset); 401 if (range) { 402 *outdev = pctldev; 403 *outrange = range; 404 mutex_unlock(&pinctrldev_list_mutex); 405 return 0; 406 } 407 } 408 409 mutex_unlock(&pinctrldev_list_mutex); 410 411 return -EPROBE_DEFER; 412 } 413 414 /** 415 * pinctrl_add_gpio_range() - register a GPIO range for a controller 416 * @pctldev: pin controller device to add the range to 417 * @range: the GPIO range to add 418 * 419 * DEPRECATED: Don't use this function in new code. See section 2 of 420 * Documentation/devicetree/bindings/gpio/gpio.txt on how to bind pinctrl and 421 * gpio drivers. 422 * 423 * This adds a range of GPIOs to be handled by a certain pin controller. Call 424 * this to register handled ranges after registering your pin controller. 425 */ 426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 427 struct pinctrl_gpio_range *range) 428 { 429 mutex_lock(&pctldev->mutex); 430 list_add_tail(&range->node, &pctldev->gpio_ranges); 431 mutex_unlock(&pctldev->mutex); 432 } 433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 434 435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 436 struct pinctrl_gpio_range *ranges, 437 unsigned int nranges) 438 { 439 int i; 440 441 for (i = 0; i < nranges; i++) 442 pinctrl_add_gpio_range(pctldev, &ranges[i]); 443 } 444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 445 446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 447 struct pinctrl_gpio_range *range) 448 { 449 struct pinctrl_dev *pctldev; 450 451 pctldev = get_pinctrl_dev_from_devname(devname); 452 453 /* 454 * If we can't find this device, let's assume that is because 455 * it has not probed yet, so the driver trying to register this 456 * range need to defer probing. 457 */ 458 if (!pctldev) 459 return ERR_PTR(-EPROBE_DEFER); 460 461 pinctrl_add_gpio_range(pctldev, range); 462 463 return pctldev; 464 } 465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 466 467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 468 const unsigned int **pins, unsigned int *num_pins) 469 { 470 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 471 int gs; 472 473 if (!pctlops->get_group_pins) 474 return -EINVAL; 475 476 gs = pinctrl_get_group_selector(pctldev, pin_group); 477 if (gs < 0) 478 return gs; 479 480 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 481 } 482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 483 484 struct pinctrl_gpio_range * 485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 486 unsigned int pin) 487 { 488 struct pinctrl_gpio_range *range; 489 490 /* Loop over the ranges */ 491 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 492 /* Check if we're in the valid range */ 493 if (range->pins) { 494 int a; 495 for (a = 0; a < range->npins; a++) { 496 if (range->pins[a] == pin) 497 return range; 498 } 499 } else if (pin >= range->pin_base && 500 pin < range->pin_base + range->npins) 501 return range; 502 } 503 504 return NULL; 505 } 506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 507 508 /** 509 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 510 * @pctldev: the pin controller device to look in 511 * @pin: a controller-local number to find the range for 512 */ 513 struct pinctrl_gpio_range * 514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 515 unsigned int pin) 516 { 517 struct pinctrl_gpio_range *range; 518 519 mutex_lock(&pctldev->mutex); 520 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 521 mutex_unlock(&pctldev->mutex); 522 523 return range; 524 } 525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 526 527 /** 528 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller 529 * @pctldev: pin controller device to remove the range from 530 * @range: the GPIO range to remove 531 */ 532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 533 struct pinctrl_gpio_range *range) 534 { 535 mutex_lock(&pctldev->mutex); 536 list_del(&range->node); 537 mutex_unlock(&pctldev->mutex); 538 } 539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 540 541 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 542 543 /** 544 * pinctrl_generic_get_group_count() - returns the number of pin groups 545 * @pctldev: pin controller device 546 */ 547 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 548 { 549 return pctldev->num_groups; 550 } 551 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 552 553 /** 554 * pinctrl_generic_get_group_name() - returns the name of a pin group 555 * @pctldev: pin controller device 556 * @selector: group number 557 */ 558 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 559 unsigned int selector) 560 { 561 struct group_desc *group; 562 563 group = radix_tree_lookup(&pctldev->pin_group_tree, 564 selector); 565 if (!group) 566 return NULL; 567 568 return group->grp.name; 569 } 570 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 571 572 /** 573 * pinctrl_generic_get_group_pins() - gets the pin group pins 574 * @pctldev: pin controller device 575 * @selector: group number 576 * @pins: pins in the group 577 * @num_pins: number of pins in the group 578 */ 579 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 580 unsigned int selector, 581 const unsigned int **pins, 582 unsigned int *num_pins) 583 { 584 struct group_desc *group; 585 586 group = radix_tree_lookup(&pctldev->pin_group_tree, 587 selector); 588 if (!group) { 589 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 590 __func__, selector); 591 return -EINVAL; 592 } 593 594 *pins = group->grp.pins; 595 *num_pins = group->grp.npins; 596 597 return 0; 598 } 599 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 600 601 /** 602 * pinctrl_generic_get_group() - returns a pin group based on the number 603 * @pctldev: pin controller device 604 * @selector: group number 605 */ 606 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 607 unsigned int selector) 608 { 609 struct group_desc *group; 610 611 group = radix_tree_lookup(&pctldev->pin_group_tree, 612 selector); 613 if (!group) 614 return NULL; 615 616 return group; 617 } 618 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 619 620 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev, 621 const char *function) 622 { 623 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 624 int ngroups = ops->get_groups_count(pctldev); 625 int selector = 0; 626 627 /* See if this pctldev has this group */ 628 while (selector < ngroups) { 629 const char *gname = ops->get_group_name(pctldev, selector); 630 631 if (gname && !strcmp(function, gname)) 632 return selector; 633 634 selector++; 635 } 636 637 return -EINVAL; 638 } 639 640 /** 641 * pinctrl_generic_add_group() - adds a new pin group 642 * @pctldev: pin controller device 643 * @name: name of the pin group 644 * @pins: pins in the pin group 645 * @num_pins: number of pins in the pin group 646 * @data: pin controller driver specific data 647 * 648 * Note that the caller must take care of locking. 649 */ 650 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 651 const unsigned int *pins, int num_pins, void *data) 652 { 653 struct group_desc *group; 654 int selector, error; 655 656 if (!name) 657 return -EINVAL; 658 659 selector = pinctrl_generic_group_name_to_selector(pctldev, name); 660 if (selector >= 0) 661 return selector; 662 663 selector = pctldev->num_groups; 664 665 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 666 if (!group) 667 return -ENOMEM; 668 669 *group = PINCTRL_GROUP_DESC(name, pins, num_pins, data); 670 671 error = radix_tree_insert(&pctldev->pin_group_tree, selector, group); 672 if (error) 673 return error; 674 675 pctldev->num_groups++; 676 677 return selector; 678 } 679 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 680 681 /** 682 * pinctrl_generic_remove_group() - removes a numbered pin group 683 * @pctldev: pin controller device 684 * @selector: group number 685 * 686 * Note that the caller must take care of locking. 687 */ 688 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 689 unsigned int selector) 690 { 691 struct group_desc *group; 692 693 group = radix_tree_lookup(&pctldev->pin_group_tree, 694 selector); 695 if (!group) 696 return -ENOENT; 697 698 radix_tree_delete(&pctldev->pin_group_tree, selector); 699 devm_kfree(pctldev->dev, group); 700 701 pctldev->num_groups--; 702 703 return 0; 704 } 705 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 706 707 /** 708 * pinctrl_generic_free_groups() - removes all pin groups 709 * @pctldev: pin controller device 710 * 711 * Note that the caller must take care of locking. The pinctrl groups 712 * are allocated with devm_kzalloc() so no need to free them here. 713 */ 714 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 715 { 716 struct radix_tree_iter iter; 717 void __rcu **slot; 718 719 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 720 radix_tree_delete(&pctldev->pin_group_tree, iter.index); 721 722 pctldev->num_groups = 0; 723 } 724 725 #else 726 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 727 { 728 } 729 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 730 731 /** 732 * pinctrl_get_group_selector() - returns the group selector for a group 733 * @pctldev: the pin controller handling the group 734 * @pin_group: the pin group to look up 735 */ 736 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 737 const char *pin_group) 738 { 739 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 740 unsigned int ngroups = pctlops->get_groups_count(pctldev); 741 unsigned int group_selector = 0; 742 743 while (group_selector < ngroups) { 744 const char *gname = pctlops->get_group_name(pctldev, 745 group_selector); 746 if (gname && !strcmp(gname, pin_group)) { 747 dev_dbg(pctldev->dev, 748 "found group selector %u for %s\n", 749 group_selector, 750 pin_group); 751 return group_selector; 752 } 753 754 group_selector++; 755 } 756 757 dev_err(pctldev->dev, "does not have pin group %s\n", 758 pin_group); 759 760 return -EINVAL; 761 } 762 763 bool pinctrl_gpio_can_use_line(struct gpio_chip *gc, unsigned int offset) 764 { 765 struct pinctrl_dev *pctldev; 766 struct pinctrl_gpio_range *range; 767 bool result; 768 int pin; 769 770 /* 771 * Try to obtain GPIO range, if it fails 772 * we're probably dealing with GPIO driver 773 * without a backing pin controller - bail out. 774 */ 775 if (pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range)) 776 return true; 777 778 mutex_lock(&pctldev->mutex); 779 780 /* Convert to the pin controllers number space */ 781 pin = gpio_to_pin(range, gc, offset); 782 783 result = pinmux_can_be_used_for_gpio(pctldev, pin); 784 785 mutex_unlock(&pctldev->mutex); 786 787 return result; 788 } 789 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line); 790 791 /** 792 * pinctrl_gpio_request() - request a single pin to be used as GPIO 793 * @gc: GPIO chip structure from the GPIO subsystem 794 * @offset: hardware offset of the GPIO relative to the controller 795 * 796 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 797 * as part of their gpio_request() semantics, platforms and individual drivers 798 * shall *NOT* request GPIO pins to be muxed in. 799 */ 800 int pinctrl_gpio_request(struct gpio_chip *gc, unsigned int offset) 801 { 802 struct pinctrl_gpio_range *range; 803 struct pinctrl_dev *pctldev; 804 int ret, pin; 805 806 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range); 807 if (ret) { 808 if (pinctrl_ready_for_gpio_range(gc, offset)) 809 ret = 0; 810 return ret; 811 } 812 813 mutex_lock(&pctldev->mutex); 814 815 /* Convert to the pin controllers number space */ 816 pin = gpio_to_pin(range, gc, offset); 817 818 ret = pinmux_request_gpio(pctldev, range, pin, gc->base + offset); 819 820 mutex_unlock(&pctldev->mutex); 821 822 return ret; 823 } 824 EXPORT_SYMBOL_GPL(pinctrl_gpio_request); 825 826 /** 827 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO 828 * @gc: GPIO chip structure from the GPIO subsystem 829 * @offset: hardware offset of the GPIO relative to the controller 830 * 831 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 832 * as part of their gpio_request() semantics, platforms and individual drivers 833 * shall *NOT* request GPIO pins to be muxed in. 834 */ 835 void pinctrl_gpio_free(struct gpio_chip *gc, unsigned int offset) 836 { 837 struct pinctrl_gpio_range *range; 838 struct pinctrl_dev *pctldev; 839 int ret, pin; 840 841 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range); 842 if (ret) 843 return; 844 845 mutex_lock(&pctldev->mutex); 846 847 /* Convert to the pin controllers number space */ 848 pin = gpio_to_pin(range, gc, offset); 849 850 pinmux_free_gpio(pctldev, pin, range); 851 852 mutex_unlock(&pctldev->mutex); 853 } 854 EXPORT_SYMBOL_GPL(pinctrl_gpio_free); 855 856 static int pinctrl_gpio_direction(struct gpio_chip *gc, unsigned int offset, 857 bool input) 858 { 859 struct pinctrl_dev *pctldev; 860 struct pinctrl_gpio_range *range; 861 int ret; 862 int pin; 863 864 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range); 865 if (ret) { 866 return ret; 867 } 868 869 mutex_lock(&pctldev->mutex); 870 871 /* Convert to the pin controllers number space */ 872 pin = gpio_to_pin(range, gc, offset); 873 ret = pinmux_gpio_direction(pctldev, range, pin, input); 874 875 mutex_unlock(&pctldev->mutex); 876 877 return ret; 878 } 879 880 /** 881 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 882 * @gc: GPIO chip structure from the GPIO subsystem 883 * @offset: hardware offset of the GPIO relative to the controller 884 * 885 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 886 * as part of their gpio_direction_input() semantics, platforms and individual 887 * drivers shall *NOT* touch pin control GPIO calls. 888 */ 889 int pinctrl_gpio_direction_input(struct gpio_chip *gc, unsigned int offset) 890 { 891 return pinctrl_gpio_direction(gc, offset, true); 892 } 893 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 894 895 /** 896 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 897 * @gc: GPIO chip structure from the GPIO subsystem 898 * @offset: hardware offset of the GPIO relative to the controller 899 * 900 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 901 * as part of their gpio_direction_output() semantics, platforms and individual 902 * drivers shall *NOT* touch pin control GPIO calls. 903 */ 904 int pinctrl_gpio_direction_output(struct gpio_chip *gc, unsigned int offset) 905 { 906 return pinctrl_gpio_direction(gc, offset, false); 907 } 908 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 909 910 /** 911 * pinctrl_gpio_set_config() - Apply config to given GPIO pin 912 * @gc: GPIO chip structure from the GPIO subsystem 913 * @offset: hardware offset of the GPIO relative to the controller 914 * @config: the configuration to apply to the GPIO 915 * 916 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 917 * they need to call the underlying pin controller to change GPIO config 918 * (for example set debounce time). 919 */ 920 int pinctrl_gpio_set_config(struct gpio_chip *gc, unsigned int offset, 921 unsigned long config) 922 { 923 unsigned long configs[] = { config }; 924 struct pinctrl_gpio_range *range; 925 struct pinctrl_dev *pctldev; 926 int ret, pin; 927 928 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range); 929 if (ret) 930 return ret; 931 932 mutex_lock(&pctldev->mutex); 933 pin = gpio_to_pin(range, gc, offset); 934 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 935 mutex_unlock(&pctldev->mutex); 936 937 return ret; 938 } 939 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 940 941 static struct pinctrl_state *find_state(struct pinctrl *p, 942 const char *name) 943 { 944 struct pinctrl_state *state; 945 946 list_for_each_entry(state, &p->states, node) 947 if (!strcmp(state->name, name)) 948 return state; 949 950 return NULL; 951 } 952 953 static struct pinctrl_state *create_state(struct pinctrl *p, 954 const char *name) 955 { 956 struct pinctrl_state *state; 957 958 state = kzalloc(sizeof(*state), GFP_KERNEL); 959 if (!state) 960 return ERR_PTR(-ENOMEM); 961 962 state->name = name; 963 INIT_LIST_HEAD(&state->settings); 964 965 list_add_tail(&state->node, &p->states); 966 967 return state; 968 } 969 970 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 971 const struct pinctrl_map *map) 972 { 973 struct pinctrl_state *state; 974 struct pinctrl_setting *setting; 975 int ret; 976 977 state = find_state(p, map->name); 978 if (!state) 979 state = create_state(p, map->name); 980 if (IS_ERR(state)) 981 return PTR_ERR(state); 982 983 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 984 return 0; 985 986 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 987 if (!setting) 988 return -ENOMEM; 989 990 setting->type = map->type; 991 992 if (pctldev) 993 setting->pctldev = pctldev; 994 else 995 setting->pctldev = 996 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 997 if (!setting->pctldev) { 998 kfree(setting); 999 /* Do not defer probing of hogs (circular loop) */ 1000 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 1001 return -ENODEV; 1002 /* 1003 * OK let us guess that the driver is not there yet, and 1004 * let's defer obtaining this pinctrl handle to later... 1005 */ 1006 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 1007 map->ctrl_dev_name); 1008 return -EPROBE_DEFER; 1009 } 1010 1011 setting->dev_name = map->dev_name; 1012 1013 switch (map->type) { 1014 case PIN_MAP_TYPE_MUX_GROUP: 1015 ret = pinmux_map_to_setting(map, setting); 1016 break; 1017 case PIN_MAP_TYPE_CONFIGS_PIN: 1018 case PIN_MAP_TYPE_CONFIGS_GROUP: 1019 ret = pinconf_map_to_setting(map, setting); 1020 break; 1021 default: 1022 ret = -EINVAL; 1023 break; 1024 } 1025 if (ret < 0) { 1026 kfree(setting); 1027 return ret; 1028 } 1029 1030 list_add_tail(&setting->node, &state->settings); 1031 1032 return 0; 1033 } 1034 1035 static struct pinctrl *find_pinctrl(struct device *dev) 1036 { 1037 struct pinctrl *p; 1038 1039 mutex_lock(&pinctrl_list_mutex); 1040 list_for_each_entry(p, &pinctrl_list, node) 1041 if (p->dev == dev) { 1042 mutex_unlock(&pinctrl_list_mutex); 1043 return p; 1044 } 1045 1046 mutex_unlock(&pinctrl_list_mutex); 1047 return NULL; 1048 } 1049 1050 static void pinctrl_free(struct pinctrl *p, bool inlist); 1051 1052 static struct pinctrl *create_pinctrl(struct device *dev, 1053 struct pinctrl_dev *pctldev) 1054 { 1055 struct pinctrl *p; 1056 const char *devname; 1057 struct pinctrl_maps *maps_node; 1058 const struct pinctrl_map *map; 1059 int ret; 1060 1061 /* 1062 * create the state cookie holder struct pinctrl for each 1063 * mapping, this is what consumers will get when requesting 1064 * a pin control handle with pinctrl_get() 1065 */ 1066 p = kzalloc(sizeof(*p), GFP_KERNEL); 1067 if (!p) 1068 return ERR_PTR(-ENOMEM); 1069 p->dev = dev; 1070 INIT_LIST_HEAD(&p->states); 1071 INIT_LIST_HEAD(&p->dt_maps); 1072 1073 ret = pinctrl_dt_to_map(p, pctldev); 1074 if (ret < 0) { 1075 kfree(p); 1076 return ERR_PTR(ret); 1077 } 1078 1079 devname = dev_name(dev); 1080 1081 mutex_lock(&pinctrl_maps_mutex); 1082 /* Iterate over the pin control maps to locate the right ones */ 1083 for_each_pin_map(maps_node, map) { 1084 /* Map must be for this device */ 1085 if (strcmp(map->dev_name, devname)) 1086 continue; 1087 /* 1088 * If pctldev is not null, we are claiming hog for it, 1089 * that means, setting that is served by pctldev by itself. 1090 * 1091 * Thus we must skip map that is for this device but is served 1092 * by other device. 1093 */ 1094 if (pctldev && 1095 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name)) 1096 continue; 1097 1098 ret = add_setting(p, pctldev, map); 1099 /* 1100 * At this point the adding of a setting may: 1101 * 1102 * - Defer, if the pinctrl device is not yet available 1103 * - Fail, if the pinctrl device is not yet available, 1104 * AND the setting is a hog. We cannot defer that, since 1105 * the hog will kick in immediately after the device 1106 * is registered. 1107 * 1108 * If the error returned was not -EPROBE_DEFER then we 1109 * accumulate the errors to see if we end up with 1110 * an -EPROBE_DEFER later, as that is the worst case. 1111 */ 1112 if (ret == -EPROBE_DEFER) { 1113 mutex_unlock(&pinctrl_maps_mutex); 1114 pinctrl_free(p, false); 1115 return ERR_PTR(ret); 1116 } 1117 } 1118 mutex_unlock(&pinctrl_maps_mutex); 1119 1120 if (ret < 0) { 1121 /* If some other error than deferral occurred, return here */ 1122 pinctrl_free(p, false); 1123 return ERR_PTR(ret); 1124 } 1125 1126 kref_init(&p->users); 1127 1128 /* Add the pinctrl handle to the global list */ 1129 mutex_lock(&pinctrl_list_mutex); 1130 list_add_tail(&p->node, &pinctrl_list); 1131 mutex_unlock(&pinctrl_list_mutex); 1132 1133 return p; 1134 } 1135 1136 /** 1137 * pinctrl_get() - retrieves the pinctrl handle for a device 1138 * @dev: the device to obtain the handle for 1139 */ 1140 struct pinctrl *pinctrl_get(struct device *dev) 1141 { 1142 struct pinctrl *p; 1143 1144 if (WARN_ON(!dev)) 1145 return ERR_PTR(-EINVAL); 1146 1147 /* 1148 * See if somebody else (such as the device core) has already 1149 * obtained a handle to the pinctrl for this device. In that case, 1150 * return another pointer to it. 1151 */ 1152 p = find_pinctrl(dev); 1153 if (p) { 1154 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1155 kref_get(&p->users); 1156 return p; 1157 } 1158 1159 return create_pinctrl(dev, NULL); 1160 } 1161 EXPORT_SYMBOL_GPL(pinctrl_get); 1162 1163 static void pinctrl_free_setting(bool disable_setting, 1164 struct pinctrl_setting *setting) 1165 { 1166 switch (setting->type) { 1167 case PIN_MAP_TYPE_MUX_GROUP: 1168 if (disable_setting) 1169 pinmux_disable_setting(setting); 1170 pinmux_free_setting(setting); 1171 break; 1172 case PIN_MAP_TYPE_CONFIGS_PIN: 1173 case PIN_MAP_TYPE_CONFIGS_GROUP: 1174 pinconf_free_setting(setting); 1175 break; 1176 default: 1177 break; 1178 } 1179 } 1180 1181 static void pinctrl_free(struct pinctrl *p, bool inlist) 1182 { 1183 struct pinctrl_state *state, *n1; 1184 struct pinctrl_setting *setting, *n2; 1185 1186 mutex_lock(&pinctrl_list_mutex); 1187 list_for_each_entry_safe(state, n1, &p->states, node) { 1188 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1189 pinctrl_free_setting(state == p->state, setting); 1190 list_del(&setting->node); 1191 kfree(setting); 1192 } 1193 list_del(&state->node); 1194 kfree(state); 1195 } 1196 1197 pinctrl_dt_free_maps(p); 1198 1199 if (inlist) 1200 list_del(&p->node); 1201 kfree(p); 1202 mutex_unlock(&pinctrl_list_mutex); 1203 } 1204 1205 /** 1206 * pinctrl_release() - release the pinctrl handle 1207 * @kref: the kref in the pinctrl being released 1208 */ 1209 static void pinctrl_release(struct kref *kref) 1210 { 1211 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1212 1213 pinctrl_free(p, true); 1214 } 1215 1216 /** 1217 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1218 * @p: the pinctrl handle to release 1219 */ 1220 void pinctrl_put(struct pinctrl *p) 1221 { 1222 kref_put(&p->users, pinctrl_release); 1223 } 1224 EXPORT_SYMBOL_GPL(pinctrl_put); 1225 1226 /** 1227 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1228 * @p: the pinctrl handle to retrieve the state from 1229 * @name: the state name to retrieve 1230 */ 1231 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1232 const char *name) 1233 { 1234 struct pinctrl_state *state; 1235 1236 state = find_state(p, name); 1237 if (!state) { 1238 if (pinctrl_dummy_state) { 1239 /* create dummy state */ 1240 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1241 name); 1242 state = create_state(p, name); 1243 } else 1244 state = ERR_PTR(-ENODEV); 1245 } 1246 1247 return state; 1248 } 1249 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1250 1251 static void pinctrl_link_add(struct pinctrl_dev *pctldev, 1252 struct device *consumer) 1253 { 1254 if (pctldev->desc->link_consumers) 1255 device_link_add(consumer, pctldev->dev, 1256 DL_FLAG_PM_RUNTIME | 1257 DL_FLAG_AUTOREMOVE_CONSUMER); 1258 } 1259 1260 static void pinctrl_cond_disable_mux_setting(struct pinctrl_state *state, 1261 struct pinctrl_setting *target_setting) 1262 { 1263 struct pinctrl_setting *setting; 1264 1265 list_for_each_entry(setting, &state->settings, node) { 1266 if (target_setting && (&setting->node == &target_setting->node)) 1267 break; 1268 1269 if (setting->type == PIN_MAP_TYPE_MUX_GROUP) 1270 pinmux_disable_setting(setting); 1271 } 1272 } 1273 1274 /** 1275 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW 1276 * @p: the pinctrl handle for the device that requests configuration 1277 * @state: the state handle to select/activate/program 1278 */ 1279 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state) 1280 { 1281 struct pinctrl_setting *setting; 1282 struct pinctrl_state *old_state = READ_ONCE(p->state); 1283 int ret; 1284 1285 if (old_state) { 1286 /* 1287 * For each pinmux setting in the old state, forget SW's record 1288 * of mux owner for that pingroup. Any pingroups which are 1289 * still owned by the new state will be re-acquired by the call 1290 * to pinmux_enable_setting() in the loop below. 1291 */ 1292 pinctrl_cond_disable_mux_setting(old_state, NULL); 1293 } 1294 1295 p->state = NULL; 1296 1297 /* Apply all the settings for the new state - pinmux first */ 1298 list_for_each_entry(setting, &state->settings, node) { 1299 switch (setting->type) { 1300 case PIN_MAP_TYPE_MUX_GROUP: 1301 ret = pinmux_enable_setting(setting); 1302 break; 1303 case PIN_MAP_TYPE_CONFIGS_PIN: 1304 case PIN_MAP_TYPE_CONFIGS_GROUP: 1305 ret = 0; 1306 break; 1307 default: 1308 ret = -EINVAL; 1309 break; 1310 } 1311 1312 if (ret < 0) 1313 goto unapply_new_state; 1314 1315 /* Do not link hogs (circular dependency) */ 1316 if (p != setting->pctldev->p) 1317 pinctrl_link_add(setting->pctldev, p->dev); 1318 } 1319 1320 /* Apply all the settings for the new state - pinconf after */ 1321 list_for_each_entry(setting, &state->settings, node) { 1322 switch (setting->type) { 1323 case PIN_MAP_TYPE_MUX_GROUP: 1324 ret = 0; 1325 break; 1326 case PIN_MAP_TYPE_CONFIGS_PIN: 1327 case PIN_MAP_TYPE_CONFIGS_GROUP: 1328 ret = pinconf_apply_setting(setting); 1329 break; 1330 default: 1331 ret = -EINVAL; 1332 break; 1333 } 1334 1335 if (ret < 0) { 1336 goto unapply_mux_setting; 1337 } 1338 1339 /* Do not link hogs (circular dependency) */ 1340 if (p != setting->pctldev->p) 1341 pinctrl_link_add(setting->pctldev, p->dev); 1342 } 1343 1344 p->state = state; 1345 1346 return 0; 1347 1348 unapply_mux_setting: 1349 pinctrl_cond_disable_mux_setting(state, NULL); 1350 goto restore_old_state; 1351 1352 unapply_new_state: 1353 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1354 1355 /* 1356 * All we can do here is pinmux_disable_setting. 1357 * That means that some pins are muxed differently now 1358 * than they were before applying the setting (We can't 1359 * "unmux a pin"!), but it's not a big deal since the pins 1360 * are free to be muxed by another apply_setting. 1361 */ 1362 pinctrl_cond_disable_mux_setting(state, setting); 1363 1364 restore_old_state: 1365 /* There's no infinite recursive loop here because p->state is NULL */ 1366 if (old_state) 1367 pinctrl_select_state(p, old_state); 1368 1369 return ret; 1370 } 1371 1372 /** 1373 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1374 * @p: the pinctrl handle for the device that requests configuration 1375 * @state: the state handle to select/activate/program 1376 */ 1377 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1378 { 1379 if (p->state == state) 1380 return 0; 1381 1382 return pinctrl_commit_state(p, state); 1383 } 1384 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1385 1386 static void devm_pinctrl_release(struct device *dev, void *res) 1387 { 1388 pinctrl_put(*(struct pinctrl **)res); 1389 } 1390 1391 /** 1392 * devm_pinctrl_get() - Resource managed pinctrl_get() 1393 * @dev: the device to obtain the handle for 1394 * 1395 * If there is a need to explicitly destroy the returned struct pinctrl, 1396 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1397 */ 1398 struct pinctrl *devm_pinctrl_get(struct device *dev) 1399 { 1400 struct pinctrl **ptr, *p; 1401 1402 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1403 if (!ptr) 1404 return ERR_PTR(-ENOMEM); 1405 1406 p = pinctrl_get(dev); 1407 if (!IS_ERR(p)) { 1408 *ptr = p; 1409 devres_add(dev, ptr); 1410 } else { 1411 devres_free(ptr); 1412 } 1413 1414 return p; 1415 } 1416 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1417 1418 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1419 { 1420 struct pinctrl **p = res; 1421 1422 return *p == data; 1423 } 1424 1425 /** 1426 * devm_pinctrl_put() - Resource managed pinctrl_put() 1427 * @p: the pinctrl handle to release 1428 * 1429 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1430 * this function will not need to be called and the resource management 1431 * code will ensure that the resource is freed. 1432 */ 1433 void devm_pinctrl_put(struct pinctrl *p) 1434 { 1435 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1436 devm_pinctrl_match, p)); 1437 } 1438 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1439 1440 /** 1441 * pinctrl_register_mappings() - register a set of pin controller mappings 1442 * @maps: the pincontrol mappings table to register. Note the pinctrl-core 1443 * keeps a reference to the passed in maps, so they should _not_ be 1444 * marked with __initdata. 1445 * @num_maps: the number of maps in the mapping table 1446 */ 1447 int pinctrl_register_mappings(const struct pinctrl_map *maps, 1448 unsigned int num_maps) 1449 { 1450 int i, ret; 1451 struct pinctrl_maps *maps_node; 1452 1453 pr_debug("add %u pinctrl maps\n", num_maps); 1454 1455 /* First sanity check the new mapping */ 1456 for (i = 0; i < num_maps; i++) { 1457 if (!maps[i].dev_name) { 1458 pr_err("failed to register map %s (%d): no device given\n", 1459 maps[i].name, i); 1460 return -EINVAL; 1461 } 1462 1463 if (!maps[i].name) { 1464 pr_err("failed to register map %d: no map name given\n", 1465 i); 1466 return -EINVAL; 1467 } 1468 1469 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1470 !maps[i].ctrl_dev_name) { 1471 pr_err("failed to register map %s (%d): no pin control device given\n", 1472 maps[i].name, i); 1473 return -EINVAL; 1474 } 1475 1476 switch (maps[i].type) { 1477 case PIN_MAP_TYPE_DUMMY_STATE: 1478 break; 1479 case PIN_MAP_TYPE_MUX_GROUP: 1480 ret = pinmux_validate_map(&maps[i], i); 1481 if (ret < 0) 1482 return ret; 1483 break; 1484 case PIN_MAP_TYPE_CONFIGS_PIN: 1485 case PIN_MAP_TYPE_CONFIGS_GROUP: 1486 ret = pinconf_validate_map(&maps[i], i); 1487 if (ret < 0) 1488 return ret; 1489 break; 1490 default: 1491 pr_err("failed to register map %s (%d): invalid type given\n", 1492 maps[i].name, i); 1493 return -EINVAL; 1494 } 1495 } 1496 1497 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1498 if (!maps_node) 1499 return -ENOMEM; 1500 1501 maps_node->maps = maps; 1502 maps_node->num_maps = num_maps; 1503 1504 mutex_lock(&pinctrl_maps_mutex); 1505 list_add_tail(&maps_node->node, &pinctrl_maps); 1506 mutex_unlock(&pinctrl_maps_mutex); 1507 1508 return 0; 1509 } 1510 EXPORT_SYMBOL_GPL(pinctrl_register_mappings); 1511 1512 /** 1513 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings 1514 * @map: the pincontrol mappings table passed to pinctrl_register_mappings() 1515 * when registering the mappings. 1516 */ 1517 void pinctrl_unregister_mappings(const struct pinctrl_map *map) 1518 { 1519 struct pinctrl_maps *maps_node; 1520 1521 mutex_lock(&pinctrl_maps_mutex); 1522 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1523 if (maps_node->maps == map) { 1524 list_del(&maps_node->node); 1525 kfree(maps_node); 1526 mutex_unlock(&pinctrl_maps_mutex); 1527 return; 1528 } 1529 } 1530 mutex_unlock(&pinctrl_maps_mutex); 1531 } 1532 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings); 1533 1534 static void devm_pinctrl_unregister_mappings(void *maps) 1535 { 1536 pinctrl_unregister_mappings(maps); 1537 } 1538 1539 /** 1540 * devm_pinctrl_register_mappings() - Resource managed pinctrl_register_mappings() 1541 * @dev: device for which mappings are registered 1542 * @maps: the pincontrol mappings table to register. Note the pinctrl-core 1543 * keeps a reference to the passed in maps, so they should _not_ be 1544 * marked with __initdata. 1545 * @num_maps: the number of maps in the mapping table 1546 * 1547 * Returns: 0 on success, or negative errno on failure. 1548 */ 1549 int devm_pinctrl_register_mappings(struct device *dev, 1550 const struct pinctrl_map *maps, 1551 unsigned int num_maps) 1552 { 1553 int ret; 1554 1555 ret = pinctrl_register_mappings(maps, num_maps); 1556 if (ret) 1557 return ret; 1558 1559 return devm_add_action_or_reset(dev, devm_pinctrl_unregister_mappings, (void *)maps); 1560 } 1561 EXPORT_SYMBOL_GPL(devm_pinctrl_register_mappings); 1562 1563 /** 1564 * pinctrl_force_sleep() - turn a given controller device into sleep state 1565 * @pctldev: pin controller device 1566 */ 1567 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1568 { 1569 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1570 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep); 1571 return 0; 1572 } 1573 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1574 1575 /** 1576 * pinctrl_force_default() - turn a given controller device into default state 1577 * @pctldev: pin controller device 1578 */ 1579 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1580 { 1581 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1582 return pinctrl_commit_state(pctldev->p, pctldev->hog_default); 1583 return 0; 1584 } 1585 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1586 1587 /** 1588 * pinctrl_init_done() - tell pinctrl probe is done 1589 * 1590 * We'll use this time to switch the pins from "init" to "default" unless the 1591 * driver selected some other state. 1592 * 1593 * @dev: device to that's done probing 1594 */ 1595 int pinctrl_init_done(struct device *dev) 1596 { 1597 struct dev_pin_info *pins = dev->pins; 1598 int ret; 1599 1600 if (!pins) 1601 return 0; 1602 1603 if (IS_ERR(pins->init_state)) 1604 return 0; /* No such state */ 1605 1606 if (pins->p->state != pins->init_state) 1607 return 0; /* Not at init anyway */ 1608 1609 if (IS_ERR(pins->default_state)) 1610 return 0; /* No default state */ 1611 1612 ret = pinctrl_select_state(pins->p, pins->default_state); 1613 if (ret) 1614 dev_err(dev, "failed to activate default pinctrl state\n"); 1615 1616 return ret; 1617 } 1618 1619 static int pinctrl_select_bound_state(struct device *dev, 1620 struct pinctrl_state *state) 1621 { 1622 struct dev_pin_info *pins = dev->pins; 1623 int ret; 1624 1625 if (IS_ERR(state)) 1626 return 0; /* No such state */ 1627 ret = pinctrl_select_state(pins->p, state); 1628 if (ret) 1629 dev_err(dev, "failed to activate pinctrl state %s\n", 1630 state->name); 1631 return ret; 1632 } 1633 1634 /** 1635 * pinctrl_select_default_state() - select default pinctrl state 1636 * @dev: device to select default state for 1637 */ 1638 int pinctrl_select_default_state(struct device *dev) 1639 { 1640 if (!dev->pins) 1641 return 0; 1642 1643 return pinctrl_select_bound_state(dev, dev->pins->default_state); 1644 } 1645 EXPORT_SYMBOL_GPL(pinctrl_select_default_state); 1646 1647 #ifdef CONFIG_PM 1648 1649 /** 1650 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1651 * @dev: device to select default state for 1652 */ 1653 int pinctrl_pm_select_default_state(struct device *dev) 1654 { 1655 return pinctrl_select_default_state(dev); 1656 } 1657 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1658 1659 /** 1660 * pinctrl_pm_select_init_state() - select init pinctrl state for PM 1661 * @dev: device to select init state for 1662 */ 1663 int pinctrl_pm_select_init_state(struct device *dev) 1664 { 1665 if (!dev->pins) 1666 return 0; 1667 1668 return pinctrl_select_bound_state(dev, dev->pins->init_state); 1669 } 1670 EXPORT_SYMBOL_GPL(pinctrl_pm_select_init_state); 1671 1672 /** 1673 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1674 * @dev: device to select sleep state for 1675 */ 1676 int pinctrl_pm_select_sleep_state(struct device *dev) 1677 { 1678 if (!dev->pins) 1679 return 0; 1680 1681 return pinctrl_select_bound_state(dev, dev->pins->sleep_state); 1682 } 1683 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1684 1685 /** 1686 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1687 * @dev: device to select idle state for 1688 */ 1689 int pinctrl_pm_select_idle_state(struct device *dev) 1690 { 1691 if (!dev->pins) 1692 return 0; 1693 1694 return pinctrl_select_bound_state(dev, dev->pins->idle_state); 1695 } 1696 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1697 #endif 1698 1699 #ifdef CONFIG_DEBUG_FS 1700 1701 static int pinctrl_pins_show(struct seq_file *s, void *what) 1702 { 1703 struct pinctrl_dev *pctldev = s->private; 1704 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1705 unsigned int i, pin; 1706 #ifdef CONFIG_GPIOLIB 1707 struct gpio_device *gdev = NULL; 1708 struct pinctrl_gpio_range *range; 1709 int gpio_num; 1710 #endif 1711 1712 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1713 1714 mutex_lock(&pctldev->mutex); 1715 1716 /* The pin number can be retrived from the pin controller descriptor */ 1717 for (i = 0; i < pctldev->desc->npins; i++) { 1718 struct pin_desc *desc; 1719 1720 pin = pctldev->desc->pins[i].number; 1721 desc = pin_desc_get(pctldev, pin); 1722 /* Pin space may be sparse */ 1723 if (!desc) 1724 continue; 1725 1726 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1727 1728 #ifdef CONFIG_GPIOLIB 1729 gdev = NULL; 1730 gpio_num = -1; 1731 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1732 if (range->pins != NULL) { 1733 for (int i = 0; i < range->npins; ++i) { 1734 if (range->pins[i] == pin) { 1735 gpio_num = range->base + i; 1736 break; 1737 } 1738 } 1739 } else if ((pin >= range->pin_base) && 1740 (pin < (range->pin_base + range->npins))) { 1741 gpio_num = 1742 range->base + (pin - range->pin_base); 1743 } 1744 if (gpio_num != -1) 1745 break; 1746 } 1747 if (gpio_num >= 0) 1748 /* 1749 * FIXME: gpio_num comes from the global GPIO numberspace. 1750 * we need to get rid of the range->base eventually and 1751 * get the descriptor directly from the gpio_chip. 1752 */ 1753 gdev = gpiod_to_gpio_device(gpio_to_desc(gpio_num)); 1754 if (gdev) 1755 seq_printf(s, "%u:%s ", 1756 gpio_num - gpio_device_get_base(gdev), 1757 gpio_device_get_label(gdev)); 1758 else 1759 seq_puts(s, "0:? "); 1760 #endif 1761 1762 /* Driver-specific info per pin */ 1763 if (ops->pin_dbg_show) 1764 ops->pin_dbg_show(pctldev, s, pin); 1765 1766 seq_puts(s, "\n"); 1767 } 1768 1769 mutex_unlock(&pctldev->mutex); 1770 1771 return 0; 1772 } 1773 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins); 1774 1775 static int pinctrl_groups_show(struct seq_file *s, void *what) 1776 { 1777 struct pinctrl_dev *pctldev = s->private; 1778 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1779 unsigned int ngroups, selector = 0; 1780 1781 mutex_lock(&pctldev->mutex); 1782 1783 ngroups = ops->get_groups_count(pctldev); 1784 1785 seq_puts(s, "registered pin groups:\n"); 1786 while (selector < ngroups) { 1787 const unsigned int *pins = NULL; 1788 unsigned int num_pins = 0; 1789 const char *gname = ops->get_group_name(pctldev, selector); 1790 const char *pname; 1791 int ret = 0; 1792 int i; 1793 1794 if (ops->get_group_pins) 1795 ret = ops->get_group_pins(pctldev, selector, 1796 &pins, &num_pins); 1797 if (ret) 1798 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1799 gname); 1800 else { 1801 seq_printf(s, "group: %s\n", gname); 1802 for (i = 0; i < num_pins; i++) { 1803 pname = pin_get_name(pctldev, pins[i]); 1804 if (WARN_ON(!pname)) { 1805 mutex_unlock(&pctldev->mutex); 1806 return -EINVAL; 1807 } 1808 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1809 } 1810 seq_puts(s, "\n"); 1811 } 1812 selector++; 1813 } 1814 1815 mutex_unlock(&pctldev->mutex); 1816 1817 return 0; 1818 } 1819 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups); 1820 1821 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1822 { 1823 struct pinctrl_dev *pctldev = s->private; 1824 struct pinctrl_gpio_range *range; 1825 1826 seq_puts(s, "GPIO ranges handled:\n"); 1827 1828 mutex_lock(&pctldev->mutex); 1829 1830 /* Loop over the ranges */ 1831 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1832 if (range->pins) { 1833 int a; 1834 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1835 range->id, range->name, 1836 range->base, (range->base + range->npins - 1)); 1837 for (a = 0; a < range->npins - 1; a++) 1838 seq_printf(s, "%u, ", range->pins[a]); 1839 seq_printf(s, "%u}\n", range->pins[a]); 1840 } 1841 else 1842 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1843 range->id, range->name, 1844 range->base, (range->base + range->npins - 1), 1845 range->pin_base, 1846 (range->pin_base + range->npins - 1)); 1847 } 1848 1849 mutex_unlock(&pctldev->mutex); 1850 1851 return 0; 1852 } 1853 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges); 1854 1855 static int pinctrl_devices_show(struct seq_file *s, void *what) 1856 { 1857 struct pinctrl_dev *pctldev; 1858 1859 seq_puts(s, "name [pinmux] [pinconf]\n"); 1860 1861 mutex_lock(&pinctrldev_list_mutex); 1862 1863 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1864 seq_printf(s, "%s ", pctldev->desc->name); 1865 if (pctldev->desc->pmxops) 1866 seq_puts(s, "yes "); 1867 else 1868 seq_puts(s, "no "); 1869 if (pctldev->desc->confops) 1870 seq_puts(s, "yes"); 1871 else 1872 seq_puts(s, "no"); 1873 seq_puts(s, "\n"); 1874 } 1875 1876 mutex_unlock(&pinctrldev_list_mutex); 1877 1878 return 0; 1879 } 1880 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices); 1881 1882 static inline const char *map_type(enum pinctrl_map_type type) 1883 { 1884 static const char * const names[] = { 1885 "INVALID", 1886 "DUMMY_STATE", 1887 "MUX_GROUP", 1888 "CONFIGS_PIN", 1889 "CONFIGS_GROUP", 1890 }; 1891 1892 if (type >= ARRAY_SIZE(names)) 1893 return "UNKNOWN"; 1894 1895 return names[type]; 1896 } 1897 1898 static int pinctrl_maps_show(struct seq_file *s, void *what) 1899 { 1900 struct pinctrl_maps *maps_node; 1901 const struct pinctrl_map *map; 1902 1903 seq_puts(s, "Pinctrl maps:\n"); 1904 1905 mutex_lock(&pinctrl_maps_mutex); 1906 for_each_pin_map(maps_node, map) { 1907 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1908 map->dev_name, map->name, map_type(map->type), 1909 map->type); 1910 1911 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1912 seq_printf(s, "controlling device %s\n", 1913 map->ctrl_dev_name); 1914 1915 switch (map->type) { 1916 case PIN_MAP_TYPE_MUX_GROUP: 1917 pinmux_show_map(s, map); 1918 break; 1919 case PIN_MAP_TYPE_CONFIGS_PIN: 1920 case PIN_MAP_TYPE_CONFIGS_GROUP: 1921 pinconf_show_map(s, map); 1922 break; 1923 default: 1924 break; 1925 } 1926 1927 seq_putc(s, '\n'); 1928 } 1929 mutex_unlock(&pinctrl_maps_mutex); 1930 1931 return 0; 1932 } 1933 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps); 1934 1935 static int pinctrl_show(struct seq_file *s, void *what) 1936 { 1937 struct pinctrl *p; 1938 struct pinctrl_state *state; 1939 struct pinctrl_setting *setting; 1940 1941 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1942 1943 mutex_lock(&pinctrl_list_mutex); 1944 1945 list_for_each_entry(p, &pinctrl_list, node) { 1946 seq_printf(s, "device: %s current state: %s\n", 1947 dev_name(p->dev), 1948 p->state ? p->state->name : "none"); 1949 1950 list_for_each_entry(state, &p->states, node) { 1951 seq_printf(s, " state: %s\n", state->name); 1952 1953 list_for_each_entry(setting, &state->settings, node) { 1954 struct pinctrl_dev *pctldev = setting->pctldev; 1955 1956 seq_printf(s, " type: %s controller %s ", 1957 map_type(setting->type), 1958 pinctrl_dev_get_name(pctldev)); 1959 1960 switch (setting->type) { 1961 case PIN_MAP_TYPE_MUX_GROUP: 1962 pinmux_show_setting(s, setting); 1963 break; 1964 case PIN_MAP_TYPE_CONFIGS_PIN: 1965 case PIN_MAP_TYPE_CONFIGS_GROUP: 1966 pinconf_show_setting(s, setting); 1967 break; 1968 default: 1969 break; 1970 } 1971 } 1972 } 1973 } 1974 1975 mutex_unlock(&pinctrl_list_mutex); 1976 1977 return 0; 1978 } 1979 DEFINE_SHOW_ATTRIBUTE(pinctrl); 1980 1981 static struct dentry *debugfs_root; 1982 1983 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1984 { 1985 struct dentry *device_root; 1986 const char *debugfs_name; 1987 1988 if (pctldev->desc->name && 1989 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) { 1990 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL, 1991 "%s-%s", dev_name(pctldev->dev), 1992 pctldev->desc->name); 1993 if (!debugfs_name) { 1994 pr_warn("failed to determine debugfs dir name for %s\n", 1995 dev_name(pctldev->dev)); 1996 return; 1997 } 1998 } else { 1999 debugfs_name = dev_name(pctldev->dev); 2000 } 2001 2002 device_root = debugfs_create_dir(debugfs_name, debugfs_root); 2003 pctldev->device_root = device_root; 2004 2005 if (IS_ERR(device_root) || !device_root) { 2006 pr_warn("failed to create debugfs directory for %s\n", 2007 dev_name(pctldev->dev)); 2008 return; 2009 } 2010 debugfs_create_file("pins", 0444, 2011 device_root, pctldev, &pinctrl_pins_fops); 2012 debugfs_create_file("pingroups", 0444, 2013 device_root, pctldev, &pinctrl_groups_fops); 2014 debugfs_create_file("gpio-ranges", 0444, 2015 device_root, pctldev, &pinctrl_gpioranges_fops); 2016 if (pctldev->desc->pmxops) 2017 pinmux_init_device_debugfs(device_root, pctldev); 2018 if (pctldev->desc->confops) 2019 pinconf_init_device_debugfs(device_root, pctldev); 2020 } 2021 2022 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 2023 { 2024 debugfs_remove_recursive(pctldev->device_root); 2025 } 2026 2027 static void pinctrl_init_debugfs(void) 2028 { 2029 debugfs_root = debugfs_create_dir("pinctrl", NULL); 2030 if (IS_ERR(debugfs_root)) { 2031 pr_warn("failed to create debugfs directory\n"); 2032 debugfs_root = NULL; 2033 return; 2034 } 2035 2036 debugfs_create_file("pinctrl-devices", 0444, 2037 debugfs_root, NULL, &pinctrl_devices_fops); 2038 debugfs_create_file("pinctrl-maps", 0444, 2039 debugfs_root, NULL, &pinctrl_maps_fops); 2040 debugfs_create_file("pinctrl-handles", 0444, 2041 debugfs_root, NULL, &pinctrl_fops); 2042 } 2043 2044 #else /* CONFIG_DEBUG_FS */ 2045 2046 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 2047 { 2048 } 2049 2050 static void pinctrl_init_debugfs(void) 2051 { 2052 } 2053 2054 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 2055 { 2056 } 2057 2058 #endif 2059 2060 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 2061 { 2062 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 2063 2064 if (!ops || 2065 !ops->get_groups_count || 2066 !ops->get_group_name) 2067 return -EINVAL; 2068 2069 return 0; 2070 } 2071 2072 /** 2073 * pinctrl_init_controller() - init a pin controller device 2074 * @pctldesc: descriptor for this pin controller 2075 * @dev: parent device for this pin controller 2076 * @driver_data: private pin controller data for this pin controller 2077 */ 2078 static struct pinctrl_dev * 2079 pinctrl_init_controller(const struct pinctrl_desc *pctldesc, struct device *dev, 2080 void *driver_data) 2081 { 2082 struct pinctrl_dev *pctldev; 2083 int ret; 2084 2085 if (!pctldesc) 2086 return ERR_PTR(-EINVAL); 2087 if (!pctldesc->name) 2088 return ERR_PTR(-EINVAL); 2089 2090 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 2091 if (!pctldev) 2092 return ERR_PTR(-ENOMEM); 2093 2094 /* Initialize pin control device struct */ 2095 pctldev->owner = pctldesc->owner; 2096 pctldev->desc = pctldesc; 2097 pctldev->driver_data = driver_data; 2098 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 2099 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 2100 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 2101 #endif 2102 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 2103 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 2104 #endif 2105 INIT_LIST_HEAD(&pctldev->gpio_ranges); 2106 INIT_LIST_HEAD(&pctldev->node); 2107 pctldev->dev = dev; 2108 mutex_init(&pctldev->mutex); 2109 2110 /* check core ops for sanity */ 2111 ret = pinctrl_check_ops(pctldev); 2112 if (ret) { 2113 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 2114 goto out_err; 2115 } 2116 2117 /* If we're implementing pinmuxing, check the ops for sanity */ 2118 if (pctldesc->pmxops) { 2119 ret = pinmux_check_ops(pctldev); 2120 if (ret) 2121 goto out_err; 2122 } 2123 2124 /* If we're implementing pinconfig, check the ops for sanity */ 2125 if (pctldesc->confops) { 2126 ret = pinconf_check_ops(pctldev); 2127 if (ret) 2128 goto out_err; 2129 } 2130 2131 /* Register all the pins */ 2132 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 2133 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 2134 if (ret) { 2135 dev_err(dev, "error during pin registration\n"); 2136 pinctrl_free_pindescs(pctldev, pctldesc->pins, 2137 pctldesc->npins); 2138 goto out_err; 2139 } 2140 2141 return pctldev; 2142 2143 out_err: 2144 mutex_destroy(&pctldev->mutex); 2145 kfree(pctldev); 2146 return ERR_PTR(ret); 2147 } 2148 2149 static void pinctrl_uninit_controller(struct pinctrl_dev *pctldev, 2150 const struct pinctrl_desc *pctldesc) 2151 { 2152 pinctrl_free_pindescs(pctldev, pctldesc->pins, 2153 pctldesc->npins); 2154 mutex_destroy(&pctldev->mutex); 2155 kfree(pctldev); 2156 } 2157 2158 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 2159 { 2160 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 2161 if (PTR_ERR(pctldev->p) == -ENODEV) { 2162 dev_dbg(pctldev->dev, "no hogs found\n"); 2163 2164 return 0; 2165 } 2166 2167 if (IS_ERR(pctldev->p)) { 2168 dev_err(pctldev->dev, "error claiming hogs: %li\n", 2169 PTR_ERR(pctldev->p)); 2170 2171 return PTR_ERR(pctldev->p); 2172 } 2173 2174 pctldev->hog_default = 2175 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2176 if (IS_ERR(pctldev->hog_default)) { 2177 dev_dbg(pctldev->dev, 2178 "failed to lookup the default state\n"); 2179 } else { 2180 if (pinctrl_select_state(pctldev->p, 2181 pctldev->hog_default)) 2182 dev_err(pctldev->dev, 2183 "failed to select default state\n"); 2184 } 2185 2186 pctldev->hog_sleep = 2187 pinctrl_lookup_state(pctldev->p, 2188 PINCTRL_STATE_SLEEP); 2189 if (IS_ERR(pctldev->hog_sleep)) 2190 dev_dbg(pctldev->dev, 2191 "failed to lookup the sleep state\n"); 2192 2193 return 0; 2194 } 2195 2196 int pinctrl_enable(struct pinctrl_dev *pctldev) 2197 { 2198 int error; 2199 2200 error = pinctrl_claim_hogs(pctldev); 2201 if (error) { 2202 dev_err(pctldev->dev, "could not claim hogs: %i\n", error); 2203 return error; 2204 } 2205 2206 mutex_lock(&pinctrldev_list_mutex); 2207 list_add_tail(&pctldev->node, &pinctrldev_list); 2208 mutex_unlock(&pinctrldev_list_mutex); 2209 2210 pinctrl_init_device_debugfs(pctldev); 2211 2212 return 0; 2213 } 2214 EXPORT_SYMBOL_GPL(pinctrl_enable); 2215 2216 /** 2217 * pinctrl_register() - register a pin controller device 2218 * @pctldesc: descriptor for this pin controller 2219 * @dev: parent device for this pin controller 2220 * @driver_data: private pin controller data for this pin controller 2221 * 2222 * Note that pinctrl_register() is known to have problems as the pin 2223 * controller driver functions are called before the driver has a 2224 * struct pinctrl_dev handle. To avoid issues later on, please use the 2225 * new pinctrl_register_and_init() below instead. 2226 */ 2227 struct pinctrl_dev *pinctrl_register(const struct pinctrl_desc *pctldesc, 2228 struct device *dev, void *driver_data) 2229 { 2230 struct pinctrl_dev *pctldev; 2231 int error; 2232 2233 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2234 if (IS_ERR(pctldev)) 2235 return pctldev; 2236 2237 error = pinctrl_enable(pctldev); 2238 if (error) { 2239 pinctrl_uninit_controller(pctldev, pctldesc); 2240 return ERR_PTR(error); 2241 } 2242 2243 return pctldev; 2244 } 2245 EXPORT_SYMBOL_GPL(pinctrl_register); 2246 2247 /** 2248 * pinctrl_register_and_init() - register and init pin controller device 2249 * @pctldesc: descriptor for this pin controller 2250 * @dev: parent device for this pin controller 2251 * @driver_data: private pin controller data for this pin controller 2252 * @pctldev: pin controller device 2253 * 2254 * Note that pinctrl_enable() still needs to be manually called after 2255 * this once the driver is ready. 2256 */ 2257 int pinctrl_register_and_init(const struct pinctrl_desc *pctldesc, 2258 struct device *dev, void *driver_data, 2259 struct pinctrl_dev **pctldev) 2260 { 2261 struct pinctrl_dev *p; 2262 2263 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2264 if (IS_ERR(p)) 2265 return PTR_ERR(p); 2266 2267 /* 2268 * We have pinctrl_start() call functions in the pin controller 2269 * driver with create_pinctrl() for at least dt_node_to_map(). So 2270 * let's make sure pctldev is properly initialized for the 2271 * pin controller driver before we do anything. 2272 */ 2273 *pctldev = p; 2274 2275 return 0; 2276 } 2277 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2278 2279 /** 2280 * pinctrl_unregister() - unregister pinmux 2281 * @pctldev: pin controller to unregister 2282 * 2283 * Called by pinmux drivers to unregister a pinmux. 2284 */ 2285 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2286 { 2287 struct pinctrl_gpio_range *range, *n; 2288 2289 if (!pctldev) 2290 return; 2291 2292 mutex_lock(&pctldev->mutex); 2293 pinctrl_remove_device_debugfs(pctldev); 2294 mutex_unlock(&pctldev->mutex); 2295 2296 if (!IS_ERR_OR_NULL(pctldev->p)) 2297 pinctrl_put(pctldev->p); 2298 2299 mutex_lock(&pinctrldev_list_mutex); 2300 mutex_lock(&pctldev->mutex); 2301 /* TODO: check that no pinmuxes are still active? */ 2302 list_del(&pctldev->node); 2303 pinmux_generic_free_functions(pctldev); 2304 pinctrl_generic_free_groups(pctldev); 2305 /* Destroy descriptor tree */ 2306 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2307 pctldev->desc->npins); 2308 /* remove gpio ranges map */ 2309 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2310 list_del(&range->node); 2311 2312 mutex_unlock(&pctldev->mutex); 2313 mutex_destroy(&pctldev->mutex); 2314 kfree(pctldev); 2315 mutex_unlock(&pinctrldev_list_mutex); 2316 } 2317 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2318 2319 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2320 { 2321 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2322 2323 pinctrl_unregister(pctldev); 2324 } 2325 2326 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2327 { 2328 struct pctldev **r = res; 2329 2330 if (WARN_ON(!r || !*r)) 2331 return 0; 2332 2333 return *r == data; 2334 } 2335 2336 /** 2337 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2338 * @dev: parent device for this pin controller 2339 * @pctldesc: descriptor for this pin controller 2340 * @driver_data: private pin controller data for this pin controller 2341 * 2342 * Returns an error pointer if pincontrol register failed. Otherwise 2343 * it returns valid pinctrl handle. 2344 * 2345 * The pinctrl device will be automatically released when the device is unbound. 2346 */ 2347 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2348 const struct pinctrl_desc *pctldesc, 2349 void *driver_data) 2350 { 2351 struct pinctrl_dev **ptr, *pctldev; 2352 2353 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2354 if (!ptr) 2355 return ERR_PTR(-ENOMEM); 2356 2357 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2358 if (IS_ERR(pctldev)) { 2359 devres_free(ptr); 2360 return pctldev; 2361 } 2362 2363 *ptr = pctldev; 2364 devres_add(dev, ptr); 2365 2366 return pctldev; 2367 } 2368 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2369 2370 /** 2371 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2372 * @dev: parent device for this pin controller 2373 * @pctldesc: descriptor for this pin controller 2374 * @driver_data: private pin controller data for this pin controller 2375 * @pctldev: pin controller device 2376 * 2377 * Returns zero on success or an error number on failure. 2378 * 2379 * The pinctrl device will be automatically released when the device is unbound. 2380 */ 2381 int devm_pinctrl_register_and_init(struct device *dev, 2382 const struct pinctrl_desc *pctldesc, 2383 void *driver_data, 2384 struct pinctrl_dev **pctldev) 2385 { 2386 struct pinctrl_dev **ptr; 2387 int error; 2388 2389 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2390 if (!ptr) 2391 return -ENOMEM; 2392 2393 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2394 if (error) { 2395 devres_free(ptr); 2396 return error; 2397 } 2398 2399 *ptr = *pctldev; 2400 devres_add(dev, ptr); 2401 2402 return 0; 2403 } 2404 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2405 2406 /** 2407 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2408 * @dev: device for which resource was allocated 2409 * @pctldev: the pinctrl device to unregister. 2410 */ 2411 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2412 { 2413 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2414 devm_pinctrl_dev_match, pctldev)); 2415 } 2416 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2417 2418 static int __init pinctrl_init(void) 2419 { 2420 pr_debug("initialized pinctrl subsystem\n"); 2421 pinctrl_init_debugfs(); 2422 return 0; 2423 } 2424 2425 /* init early since many drivers really need to initialized pinmux early */ 2426 core_initcall(pinctrl_init); 2427