1 /* 2 * Core driver for the pin control subsystem 3 * 4 * Copyright (C) 2011-2012 ST-Ericsson SA 5 * Written on behalf of Linaro for ST-Ericsson 6 * Based on bits of regulator core, gpio core and clk core 7 * 8 * Author: Linus Walleij <linus.walleij@linaro.org> 9 * 10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 11 * 12 * License terms: GNU General Public License (GPL) version 2 13 */ 14 #define pr_fmt(fmt) "pinctrl core: " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/err.h> 22 #include <linux/list.h> 23 #include <linux/sysfs.h> 24 #include <linux/debugfs.h> 25 #include <linux/seq_file.h> 26 #include <linux/pinctrl/pinctrl.h> 27 #include <linux/pinctrl/machine.h> 28 #include "core.h" 29 #include "pinmux.h" 30 #include "pinconf.h" 31 32 /** 33 * struct pinctrl_maps - a list item containing part of the mapping table 34 * @node: mapping table list node 35 * @maps: array of mapping table entries 36 * @num_maps: the number of entries in @maps 37 */ 38 struct pinctrl_maps { 39 struct list_head node; 40 struct pinctrl_map const *maps; 41 unsigned num_maps; 42 }; 43 44 /* Mutex taken by all entry points */ 45 DEFINE_MUTEX(pinctrl_mutex); 46 47 /* Global list of pin control devices (struct pinctrl_dev) */ 48 static LIST_HEAD(pinctrldev_list); 49 50 /* List of pin controller handles (struct pinctrl) */ 51 static LIST_HEAD(pinctrl_list); 52 53 /* List of pinctrl maps (struct pinctrl_maps) */ 54 static LIST_HEAD(pinctrl_maps); 55 56 #define for_each_maps(_maps_node_, _i_, _map_) \ 57 list_for_each_entry(_maps_node_, &pinctrl_maps, node) \ 58 for (_i_ = 0, _map_ = &_maps_node_->maps[_i_]; \ 59 _i_ < _maps_node_->num_maps; \ 60 i++, _map_ = &_maps_node_->maps[_i_]) 61 62 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 63 { 64 /* We're not allowed to register devices without name */ 65 return pctldev->desc->name; 66 } 67 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 68 69 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 70 { 71 return pctldev->driver_data; 72 } 73 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 74 75 /** 76 * get_pinctrl_dev_from_devname() - look up pin controller device 77 * @devname: the name of a device instance, as returned by dev_name() 78 * 79 * Looks up a pin control device matching a certain device name or pure device 80 * pointer, the pure device pointer will take precedence. 81 */ 82 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 83 { 84 struct pinctrl_dev *pctldev = NULL; 85 bool found = false; 86 87 if (!devname) 88 return NULL; 89 90 list_for_each_entry(pctldev, &pinctrldev_list, node) { 91 if (!strcmp(dev_name(pctldev->dev), devname)) { 92 /* Matched on device name */ 93 found = true; 94 break; 95 } 96 } 97 98 return found ? pctldev : NULL; 99 } 100 101 /** 102 * pin_get_from_name() - look up a pin number from a name 103 * @pctldev: the pin control device to lookup the pin on 104 * @name: the name of the pin to look up 105 */ 106 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 107 { 108 unsigned i, pin; 109 110 /* The pin number can be retrived from the pin controller descriptor */ 111 for (i = 0; i < pctldev->desc->npins; i++) { 112 struct pin_desc *desc; 113 114 pin = pctldev->desc->pins[i].number; 115 desc = pin_desc_get(pctldev, pin); 116 /* Pin space may be sparse */ 117 if (desc == NULL) 118 continue; 119 if (desc->name && !strcmp(name, desc->name)) 120 return pin; 121 } 122 123 return -EINVAL; 124 } 125 126 /** 127 * pin_is_valid() - check if pin exists on controller 128 * @pctldev: the pin control device to check the pin on 129 * @pin: pin to check, use the local pin controller index number 130 * 131 * This tells us whether a certain pin exist on a certain pin controller or 132 * not. Pin lists may be sparse, so some pins may not exist. 133 */ 134 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 135 { 136 struct pin_desc *pindesc; 137 138 if (pin < 0) 139 return false; 140 141 mutex_lock(&pinctrl_mutex); 142 pindesc = pin_desc_get(pctldev, pin); 143 mutex_unlock(&pinctrl_mutex); 144 145 return pindesc != NULL; 146 } 147 EXPORT_SYMBOL_GPL(pin_is_valid); 148 149 /* Deletes a range of pin descriptors */ 150 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 151 const struct pinctrl_pin_desc *pins, 152 unsigned num_pins) 153 { 154 int i; 155 156 for (i = 0; i < num_pins; i++) { 157 struct pin_desc *pindesc; 158 159 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 160 pins[i].number); 161 if (pindesc != NULL) { 162 radix_tree_delete(&pctldev->pin_desc_tree, 163 pins[i].number); 164 if (pindesc->dynamic_name) 165 kfree(pindesc->name); 166 } 167 kfree(pindesc); 168 } 169 } 170 171 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 172 unsigned number, const char *name) 173 { 174 struct pin_desc *pindesc; 175 176 pindesc = pin_desc_get(pctldev, number); 177 if (pindesc != NULL) { 178 pr_err("pin %d already registered on %s\n", number, 179 pctldev->desc->name); 180 return -EINVAL; 181 } 182 183 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 184 if (pindesc == NULL) { 185 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n"); 186 return -ENOMEM; 187 } 188 189 /* Set owner */ 190 pindesc->pctldev = pctldev; 191 192 /* Copy basic pin info */ 193 if (name) { 194 pindesc->name = name; 195 } else { 196 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number); 197 if (pindesc->name == NULL) 198 return -ENOMEM; 199 pindesc->dynamic_name = true; 200 } 201 202 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc); 203 pr_debug("registered pin %d (%s) on %s\n", 204 number, pindesc->name, pctldev->desc->name); 205 return 0; 206 } 207 208 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 209 struct pinctrl_pin_desc const *pins, 210 unsigned num_descs) 211 { 212 unsigned i; 213 int ret = 0; 214 215 for (i = 0; i < num_descs; i++) { 216 ret = pinctrl_register_one_pin(pctldev, 217 pins[i].number, pins[i].name); 218 if (ret) 219 return ret; 220 } 221 222 return 0; 223 } 224 225 /** 226 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 227 * @pctldev: pin controller device to check 228 * @gpio: gpio pin to check taken from the global GPIO pin space 229 * 230 * Tries to match a GPIO pin number to the ranges handled by a certain pin 231 * controller, return the range or NULL 232 */ 233 static struct pinctrl_gpio_range * 234 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 235 { 236 struct pinctrl_gpio_range *range = NULL; 237 238 /* Loop over the ranges */ 239 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 240 /* Check if we're in the valid range */ 241 if (gpio >= range->base && 242 gpio < range->base + range->npins) { 243 return range; 244 } 245 } 246 247 return NULL; 248 } 249 250 /** 251 * pinctrl_get_device_gpio_range() - find device for GPIO range 252 * @gpio: the pin to locate the pin controller for 253 * @outdev: the pin control device if found 254 * @outrange: the GPIO range if found 255 * 256 * Find the pin controller handling a certain GPIO pin from the pinspace of 257 * the GPIO subsystem, return the device and the matching GPIO range. Returns 258 * negative if the GPIO range could not be found in any device. 259 */ 260 static int pinctrl_get_device_gpio_range(unsigned gpio, 261 struct pinctrl_dev **outdev, 262 struct pinctrl_gpio_range **outrange) 263 { 264 struct pinctrl_dev *pctldev = NULL; 265 266 /* Loop over the pin controllers */ 267 list_for_each_entry(pctldev, &pinctrldev_list, node) { 268 struct pinctrl_gpio_range *range; 269 270 range = pinctrl_match_gpio_range(pctldev, gpio); 271 if (range != NULL) { 272 *outdev = pctldev; 273 *outrange = range; 274 return 0; 275 } 276 } 277 278 return -EINVAL; 279 } 280 281 /** 282 * pinctrl_add_gpio_range() - register a GPIO range for a controller 283 * @pctldev: pin controller device to add the range to 284 * @range: the GPIO range to add 285 * 286 * This adds a range of GPIOs to be handled by a certain pin controller. Call 287 * this to register handled ranges after registering your pin controller. 288 */ 289 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 290 struct pinctrl_gpio_range *range) 291 { 292 mutex_lock(&pinctrl_mutex); 293 list_add_tail(&range->node, &pctldev->gpio_ranges); 294 mutex_unlock(&pinctrl_mutex); 295 } 296 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 297 298 /** 299 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller 300 * @pctldev: pin controller device to remove the range from 301 * @range: the GPIO range to remove 302 */ 303 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 304 struct pinctrl_gpio_range *range) 305 { 306 mutex_lock(&pinctrl_mutex); 307 list_del(&range->node); 308 mutex_unlock(&pinctrl_mutex); 309 } 310 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 311 312 /** 313 * pinctrl_get_group_selector() - returns the group selector for a group 314 * @pctldev: the pin controller handling the group 315 * @pin_group: the pin group to look up 316 */ 317 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 318 const char *pin_group) 319 { 320 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 321 unsigned group_selector = 0; 322 323 while (pctlops->list_groups(pctldev, group_selector) >= 0) { 324 const char *gname = pctlops->get_group_name(pctldev, 325 group_selector); 326 if (!strcmp(gname, pin_group)) { 327 dev_dbg(pctldev->dev, 328 "found group selector %u for %s\n", 329 group_selector, 330 pin_group); 331 return group_selector; 332 } 333 334 group_selector++; 335 } 336 337 dev_err(pctldev->dev, "does not have pin group %s\n", 338 pin_group); 339 340 return -EINVAL; 341 } 342 343 /** 344 * pinctrl_request_gpio() - request a single pin to be used in as GPIO 345 * @gpio: the GPIO pin number from the GPIO subsystem number space 346 * 347 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 348 * as part of their gpio_request() semantics, platforms and individual drivers 349 * shall *NOT* request GPIO pins to be muxed in. 350 */ 351 int pinctrl_request_gpio(unsigned gpio) 352 { 353 struct pinctrl_dev *pctldev; 354 struct pinctrl_gpio_range *range; 355 int ret; 356 int pin; 357 358 mutex_lock(&pinctrl_mutex); 359 360 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 361 if (ret) { 362 mutex_unlock(&pinctrl_mutex); 363 return -EINVAL; 364 } 365 366 /* Convert to the pin controllers number space */ 367 pin = gpio - range->base + range->pin_base; 368 369 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 370 371 mutex_unlock(&pinctrl_mutex); 372 return ret; 373 } 374 EXPORT_SYMBOL_GPL(pinctrl_request_gpio); 375 376 /** 377 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO 378 * @gpio: the GPIO pin number from the GPIO subsystem number space 379 * 380 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 381 * as part of their gpio_free() semantics, platforms and individual drivers 382 * shall *NOT* request GPIO pins to be muxed out. 383 */ 384 void pinctrl_free_gpio(unsigned gpio) 385 { 386 struct pinctrl_dev *pctldev; 387 struct pinctrl_gpio_range *range; 388 int ret; 389 int pin; 390 391 mutex_lock(&pinctrl_mutex); 392 393 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 394 if (ret) { 395 mutex_unlock(&pinctrl_mutex); 396 return; 397 } 398 399 /* Convert to the pin controllers number space */ 400 pin = gpio - range->base + range->pin_base; 401 402 pinmux_free_gpio(pctldev, pin, range); 403 404 mutex_unlock(&pinctrl_mutex); 405 } 406 EXPORT_SYMBOL_GPL(pinctrl_free_gpio); 407 408 static int pinctrl_gpio_direction(unsigned gpio, bool input) 409 { 410 struct pinctrl_dev *pctldev; 411 struct pinctrl_gpio_range *range; 412 int ret; 413 int pin; 414 415 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 416 if (ret) 417 return ret; 418 419 /* Convert to the pin controllers number space */ 420 pin = gpio - range->base + range->pin_base; 421 422 return pinmux_gpio_direction(pctldev, range, pin, input); 423 } 424 425 /** 426 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 427 * @gpio: the GPIO pin number from the GPIO subsystem number space 428 * 429 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 430 * as part of their gpio_direction_input() semantics, platforms and individual 431 * drivers shall *NOT* touch pin control GPIO calls. 432 */ 433 int pinctrl_gpio_direction_input(unsigned gpio) 434 { 435 int ret; 436 mutex_lock(&pinctrl_mutex); 437 ret = pinctrl_gpio_direction(gpio, true); 438 mutex_unlock(&pinctrl_mutex); 439 return ret; 440 } 441 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 442 443 /** 444 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 445 * @gpio: the GPIO pin number from the GPIO subsystem number space 446 * 447 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 448 * as part of their gpio_direction_output() semantics, platforms and individual 449 * drivers shall *NOT* touch pin control GPIO calls. 450 */ 451 int pinctrl_gpio_direction_output(unsigned gpio) 452 { 453 int ret; 454 mutex_lock(&pinctrl_mutex); 455 ret = pinctrl_gpio_direction(gpio, false); 456 mutex_unlock(&pinctrl_mutex); 457 return ret; 458 } 459 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 460 461 static struct pinctrl_state *find_state(struct pinctrl *p, 462 const char *name) 463 { 464 struct pinctrl_state *state; 465 466 list_for_each_entry(state, &p->states, node) 467 if (!strcmp(state->name, name)) 468 return state; 469 470 return NULL; 471 } 472 473 static struct pinctrl_state *create_state(struct pinctrl *p, 474 const char *name) 475 { 476 struct pinctrl_state *state; 477 478 state = kzalloc(sizeof(*state), GFP_KERNEL); 479 if (state == NULL) { 480 dev_err(p->dev, 481 "failed to alloc struct pinctrl_state\n"); 482 return ERR_PTR(-ENOMEM); 483 } 484 485 state->name = name; 486 INIT_LIST_HEAD(&state->settings); 487 488 list_add_tail(&state->node, &p->states); 489 490 return state; 491 } 492 493 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map) 494 { 495 struct pinctrl_state *state; 496 struct pinctrl_setting *setting; 497 int ret; 498 499 state = find_state(p, map->name); 500 if (!state) 501 state = create_state(p, map->name); 502 if (IS_ERR(state)) 503 return PTR_ERR(state); 504 505 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 506 return 0; 507 508 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 509 if (setting == NULL) { 510 dev_err(p->dev, 511 "failed to alloc struct pinctrl_setting\n"); 512 return -ENOMEM; 513 } 514 515 setting->type = map->type; 516 517 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name); 518 if (setting->pctldev == NULL) { 519 dev_err(p->dev, "unknown pinctrl device %s in map entry", 520 map->ctrl_dev_name); 521 kfree(setting); 522 /* Eventually, this should trigger deferred probe */ 523 return -ENODEV; 524 } 525 526 switch (map->type) { 527 case PIN_MAP_TYPE_MUX_GROUP: 528 ret = pinmux_map_to_setting(map, setting); 529 break; 530 case PIN_MAP_TYPE_CONFIGS_PIN: 531 case PIN_MAP_TYPE_CONFIGS_GROUP: 532 ret = pinconf_map_to_setting(map, setting); 533 break; 534 default: 535 ret = -EINVAL; 536 break; 537 } 538 if (ret < 0) { 539 kfree(setting); 540 return ret; 541 } 542 543 list_add_tail(&setting->node, &state->settings); 544 545 return 0; 546 } 547 548 static struct pinctrl *find_pinctrl(struct device *dev) 549 { 550 struct pinctrl *p; 551 552 list_for_each_entry(p, &pinctrl_list, node) 553 if (p->dev == dev) 554 return p; 555 556 return NULL; 557 } 558 559 static void pinctrl_put_locked(struct pinctrl *p, bool inlist); 560 561 static struct pinctrl *create_pinctrl(struct device *dev) 562 { 563 struct pinctrl *p; 564 const char *devname; 565 struct pinctrl_maps *maps_node; 566 int i; 567 struct pinctrl_map const *map; 568 int ret; 569 570 /* 571 * create the state cookie holder struct pinctrl for each 572 * mapping, this is what consumers will get when requesting 573 * a pin control handle with pinctrl_get() 574 */ 575 p = kzalloc(sizeof(*p), GFP_KERNEL); 576 if (p == NULL) { 577 dev_err(dev, "failed to alloc struct pinctrl\n"); 578 return ERR_PTR(-ENOMEM); 579 } 580 p->dev = dev; 581 INIT_LIST_HEAD(&p->states); 582 583 devname = dev_name(dev); 584 585 /* Iterate over the pin control maps to locate the right ones */ 586 for_each_maps(maps_node, i, map) { 587 /* Map must be for this device */ 588 if (strcmp(map->dev_name, devname)) 589 continue; 590 591 ret = add_setting(p, map); 592 if (ret < 0) { 593 pinctrl_put_locked(p, false); 594 return ERR_PTR(ret); 595 } 596 } 597 598 /* Add the pinmux to the global list */ 599 list_add_tail(&p->node, &pinctrl_list); 600 601 return p; 602 } 603 604 static struct pinctrl *pinctrl_get_locked(struct device *dev) 605 { 606 struct pinctrl *p; 607 608 if (WARN_ON(!dev)) 609 return ERR_PTR(-EINVAL); 610 611 p = find_pinctrl(dev); 612 if (p != NULL) 613 return ERR_PTR(-EBUSY); 614 615 p = create_pinctrl(dev); 616 if (IS_ERR(p)) 617 return p; 618 619 return p; 620 } 621 622 /** 623 * pinctrl_get() - retrieves the pinctrl handle for a device 624 * @dev: the device to obtain the handle for 625 */ 626 struct pinctrl *pinctrl_get(struct device *dev) 627 { 628 struct pinctrl *p; 629 630 mutex_lock(&pinctrl_mutex); 631 p = pinctrl_get_locked(dev); 632 mutex_unlock(&pinctrl_mutex); 633 634 return p; 635 } 636 EXPORT_SYMBOL_GPL(pinctrl_get); 637 638 static void pinctrl_put_locked(struct pinctrl *p, bool inlist) 639 { 640 struct pinctrl_state *state, *n1; 641 struct pinctrl_setting *setting, *n2; 642 643 list_for_each_entry_safe(state, n1, &p->states, node) { 644 list_for_each_entry_safe(setting, n2, &state->settings, node) { 645 switch (setting->type) { 646 case PIN_MAP_TYPE_MUX_GROUP: 647 if (state == p->state) 648 pinmux_disable_setting(setting); 649 pinmux_free_setting(setting); 650 break; 651 case PIN_MAP_TYPE_CONFIGS_PIN: 652 case PIN_MAP_TYPE_CONFIGS_GROUP: 653 pinconf_free_setting(setting); 654 break; 655 default: 656 break; 657 } 658 list_del(&setting->node); 659 kfree(setting); 660 } 661 list_del(&state->node); 662 kfree(state); 663 } 664 665 if (inlist) 666 list_del(&p->node); 667 kfree(p); 668 } 669 670 /** 671 * pinctrl_put() - release a previously claimed pinctrl handle 672 * @p: the pinctrl handle to release 673 */ 674 void pinctrl_put(struct pinctrl *p) 675 { 676 mutex_lock(&pinctrl_mutex); 677 pinctrl_put_locked(p, true); 678 mutex_unlock(&pinctrl_mutex); 679 } 680 EXPORT_SYMBOL_GPL(pinctrl_put); 681 682 static struct pinctrl_state *pinctrl_lookup_state_locked(struct pinctrl *p, 683 const char *name) 684 { 685 struct pinctrl_state *state; 686 687 state = find_state(p, name); 688 if (!state) 689 return ERR_PTR(-ENODEV); 690 691 return state; 692 } 693 694 /** 695 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 696 * @p: the pinctrl handle to retrieve the state from 697 * @name: the state name to retrieve 698 */ 699 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, const char *name) 700 { 701 struct pinctrl_state *s; 702 703 mutex_lock(&pinctrl_mutex); 704 s = pinctrl_lookup_state_locked(p, name); 705 mutex_unlock(&pinctrl_mutex); 706 707 return s; 708 } 709 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 710 711 static int pinctrl_select_state_locked(struct pinctrl *p, 712 struct pinctrl_state *state) 713 { 714 struct pinctrl_setting *setting, *setting2; 715 int ret; 716 717 if (p->state == state) 718 return 0; 719 720 if (p->state) { 721 /* 722 * The set of groups with a mux configuration in the old state 723 * may not be identical to the set of groups with a mux setting 724 * in the new state. While this might be unusual, it's entirely 725 * possible for the "user"-supplied mapping table to be written 726 * that way. For each group that was configured in the old state 727 * but not in the new state, this code puts that group into a 728 * safe/disabled state. 729 */ 730 list_for_each_entry(setting, &p->state->settings, node) { 731 bool found = false; 732 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 733 continue; 734 list_for_each_entry(setting2, &state->settings, node) { 735 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP) 736 continue; 737 if (setting2->data.mux.group == 738 setting->data.mux.group) { 739 found = true; 740 break; 741 } 742 } 743 if (!found) 744 pinmux_disable_setting(setting); 745 } 746 } 747 748 p->state = state; 749 750 /* Apply all the settings for the new state */ 751 list_for_each_entry(setting, &state->settings, node) { 752 switch (setting->type) { 753 case PIN_MAP_TYPE_MUX_GROUP: 754 ret = pinmux_enable_setting(setting); 755 break; 756 case PIN_MAP_TYPE_CONFIGS_PIN: 757 case PIN_MAP_TYPE_CONFIGS_GROUP: 758 ret = pinconf_apply_setting(setting); 759 break; 760 default: 761 ret = -EINVAL; 762 break; 763 } 764 if (ret < 0) { 765 /* FIXME: Difficult to return to prev state */ 766 return ret; 767 } 768 } 769 770 return 0; 771 } 772 773 /** 774 * pinctrl_select() - select/activate/program a pinctrl state to HW 775 * @p: the pinctrl handle for the device that requests configuratio 776 * @state: the state handle to select/activate/program 777 */ 778 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 779 { 780 int ret; 781 782 mutex_lock(&pinctrl_mutex); 783 ret = pinctrl_select_state_locked(p, state); 784 mutex_unlock(&pinctrl_mutex); 785 786 return ret; 787 } 788 EXPORT_SYMBOL_GPL(pinctrl_select_state); 789 790 /** 791 * pinctrl_register_mappings() - register a set of pin controller mappings 792 * @maps: the pincontrol mappings table to register. This should probably be 793 * marked with __initdata so it can be discarded after boot. This 794 * function will perform a shallow copy for the mapping entries. 795 * @num_maps: the number of maps in the mapping table 796 */ 797 int pinctrl_register_mappings(struct pinctrl_map const *maps, 798 unsigned num_maps) 799 { 800 int i, ret; 801 struct pinctrl_maps *maps_node; 802 803 pr_debug("add %d pinmux maps\n", num_maps); 804 805 /* First sanity check the new mapping */ 806 for (i = 0; i < num_maps; i++) { 807 if (!maps[i].dev_name) { 808 pr_err("failed to register map %s (%d): no device given\n", 809 maps[i].name, i); 810 return -EINVAL; 811 } 812 813 if (!maps[i].name) { 814 pr_err("failed to register map %d: no map name given\n", 815 i); 816 return -EINVAL; 817 } 818 819 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 820 !maps[i].ctrl_dev_name) { 821 pr_err("failed to register map %s (%d): no pin control device given\n", 822 maps[i].name, i); 823 return -EINVAL; 824 } 825 826 switch (maps[i].type) { 827 case PIN_MAP_TYPE_DUMMY_STATE: 828 break; 829 case PIN_MAP_TYPE_MUX_GROUP: 830 ret = pinmux_validate_map(&maps[i], i); 831 if (ret < 0) 832 return 0; 833 break; 834 case PIN_MAP_TYPE_CONFIGS_PIN: 835 case PIN_MAP_TYPE_CONFIGS_GROUP: 836 ret = pinconf_validate_map(&maps[i], i); 837 if (ret < 0) 838 return 0; 839 break; 840 default: 841 pr_err("failed to register map %s (%d): invalid type given\n", 842 maps[i].name, i); 843 return -EINVAL; 844 } 845 } 846 847 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 848 if (!maps_node) { 849 pr_err("failed to alloc struct pinctrl_maps\n"); 850 return -ENOMEM; 851 } 852 853 maps_node->num_maps = num_maps; 854 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, GFP_KERNEL); 855 if (!maps_node->maps) { 856 pr_err("failed to duplicate mapping table\n"); 857 kfree(maps_node); 858 return -ENOMEM; 859 } 860 861 mutex_lock(&pinctrl_mutex); 862 list_add_tail(&maps_node->node, &pinctrl_maps); 863 mutex_unlock(&pinctrl_mutex); 864 865 return 0; 866 } 867 868 #ifdef CONFIG_DEBUG_FS 869 870 static int pinctrl_pins_show(struct seq_file *s, void *what) 871 { 872 struct pinctrl_dev *pctldev = s->private; 873 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 874 unsigned i, pin; 875 876 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 877 878 mutex_lock(&pinctrl_mutex); 879 880 /* The pin number can be retrived from the pin controller descriptor */ 881 for (i = 0; i < pctldev->desc->npins; i++) { 882 struct pin_desc *desc; 883 884 pin = pctldev->desc->pins[i].number; 885 desc = pin_desc_get(pctldev, pin); 886 /* Pin space may be sparse */ 887 if (desc == NULL) 888 continue; 889 890 seq_printf(s, "pin %d (%s) ", pin, 891 desc->name ? desc->name : "unnamed"); 892 893 /* Driver-specific info per pin */ 894 if (ops->pin_dbg_show) 895 ops->pin_dbg_show(pctldev, s, pin); 896 897 seq_puts(s, "\n"); 898 } 899 900 mutex_unlock(&pinctrl_mutex); 901 902 return 0; 903 } 904 905 static int pinctrl_groups_show(struct seq_file *s, void *what) 906 { 907 struct pinctrl_dev *pctldev = s->private; 908 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 909 unsigned selector = 0; 910 911 /* No grouping */ 912 if (!ops) 913 return 0; 914 915 mutex_lock(&pinctrl_mutex); 916 917 seq_puts(s, "registered pin groups:\n"); 918 while (ops->list_groups(pctldev, selector) >= 0) { 919 const unsigned *pins; 920 unsigned num_pins; 921 const char *gname = ops->get_group_name(pctldev, selector); 922 int ret; 923 int i; 924 925 ret = ops->get_group_pins(pctldev, selector, 926 &pins, &num_pins); 927 if (ret) 928 seq_printf(s, "%s [ERROR GETTING PINS]\n", 929 gname); 930 else { 931 seq_printf(s, "group: %s, pins = [ ", gname); 932 for (i = 0; i < num_pins; i++) 933 seq_printf(s, "%d ", pins[i]); 934 seq_puts(s, "]\n"); 935 } 936 selector++; 937 } 938 939 mutex_unlock(&pinctrl_mutex); 940 941 return 0; 942 } 943 944 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 945 { 946 struct pinctrl_dev *pctldev = s->private; 947 struct pinctrl_gpio_range *range = NULL; 948 949 seq_puts(s, "GPIO ranges handled:\n"); 950 951 mutex_lock(&pinctrl_mutex); 952 953 /* Loop over the ranges */ 954 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 955 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 956 range->id, range->name, 957 range->base, (range->base + range->npins - 1), 958 range->pin_base, 959 (range->pin_base + range->npins - 1)); 960 } 961 962 mutex_unlock(&pinctrl_mutex); 963 964 return 0; 965 } 966 967 static int pinctrl_devices_show(struct seq_file *s, void *what) 968 { 969 struct pinctrl_dev *pctldev; 970 971 seq_puts(s, "name [pinmux] [pinconf]\n"); 972 973 mutex_lock(&pinctrl_mutex); 974 975 list_for_each_entry(pctldev, &pinctrldev_list, node) { 976 seq_printf(s, "%s ", pctldev->desc->name); 977 if (pctldev->desc->pmxops) 978 seq_puts(s, "yes "); 979 else 980 seq_puts(s, "no "); 981 if (pctldev->desc->confops) 982 seq_puts(s, "yes"); 983 else 984 seq_puts(s, "no"); 985 seq_puts(s, "\n"); 986 } 987 988 mutex_unlock(&pinctrl_mutex); 989 990 return 0; 991 } 992 993 static inline const char *map_type(enum pinctrl_map_type type) 994 { 995 static const char * const names[] = { 996 "INVALID", 997 "DUMMY_STATE", 998 "MUX_GROUP", 999 "CONFIGS_PIN", 1000 "CONFIGS_GROUP", 1001 }; 1002 1003 if (type >= ARRAY_SIZE(names)) 1004 return "UNKNOWN"; 1005 1006 return names[type]; 1007 } 1008 1009 static int pinctrl_maps_show(struct seq_file *s, void *what) 1010 { 1011 struct pinctrl_maps *maps_node; 1012 int i; 1013 struct pinctrl_map const *map; 1014 1015 seq_puts(s, "Pinctrl maps:\n"); 1016 1017 mutex_lock(&pinctrl_mutex); 1018 1019 for_each_maps(maps_node, i, map) { 1020 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1021 map->dev_name, map->name, map_type(map->type), 1022 map->type); 1023 1024 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1025 seq_printf(s, "controlling device %s\n", 1026 map->ctrl_dev_name); 1027 1028 switch (map->type) { 1029 case PIN_MAP_TYPE_MUX_GROUP: 1030 pinmux_show_map(s, map); 1031 break; 1032 case PIN_MAP_TYPE_CONFIGS_PIN: 1033 case PIN_MAP_TYPE_CONFIGS_GROUP: 1034 pinconf_show_map(s, map); 1035 break; 1036 default: 1037 break; 1038 } 1039 1040 seq_printf(s, "\n"); 1041 } 1042 1043 mutex_unlock(&pinctrl_mutex); 1044 1045 return 0; 1046 } 1047 1048 static int pinctrl_show(struct seq_file *s, void *what) 1049 { 1050 struct pinctrl *p; 1051 struct pinctrl_state *state; 1052 struct pinctrl_setting *setting; 1053 1054 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1055 1056 mutex_lock(&pinctrl_mutex); 1057 1058 list_for_each_entry(p, &pinctrl_list, node) { 1059 seq_printf(s, "device: %s current state: %s\n", 1060 dev_name(p->dev), 1061 p->state ? p->state->name : "none"); 1062 1063 list_for_each_entry(state, &p->states, node) { 1064 seq_printf(s, " state: %s\n", state->name); 1065 1066 list_for_each_entry(setting, &state->settings, node) { 1067 struct pinctrl_dev *pctldev = setting->pctldev; 1068 1069 seq_printf(s, " type: %s controller %s ", 1070 map_type(setting->type), 1071 pinctrl_dev_get_name(pctldev)); 1072 1073 switch (setting->type) { 1074 case PIN_MAP_TYPE_MUX_GROUP: 1075 pinmux_show_setting(s, setting); 1076 break; 1077 case PIN_MAP_TYPE_CONFIGS_PIN: 1078 case PIN_MAP_TYPE_CONFIGS_GROUP: 1079 pinconf_show_setting(s, setting); 1080 break; 1081 default: 1082 break; 1083 } 1084 } 1085 } 1086 } 1087 1088 mutex_unlock(&pinctrl_mutex); 1089 1090 return 0; 1091 } 1092 1093 static int pinctrl_pins_open(struct inode *inode, struct file *file) 1094 { 1095 return single_open(file, pinctrl_pins_show, inode->i_private); 1096 } 1097 1098 static int pinctrl_groups_open(struct inode *inode, struct file *file) 1099 { 1100 return single_open(file, pinctrl_groups_show, inode->i_private); 1101 } 1102 1103 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) 1104 { 1105 return single_open(file, pinctrl_gpioranges_show, inode->i_private); 1106 } 1107 1108 static int pinctrl_devices_open(struct inode *inode, struct file *file) 1109 { 1110 return single_open(file, pinctrl_devices_show, NULL); 1111 } 1112 1113 static int pinctrl_maps_open(struct inode *inode, struct file *file) 1114 { 1115 return single_open(file, pinctrl_maps_show, NULL); 1116 } 1117 1118 static int pinctrl_open(struct inode *inode, struct file *file) 1119 { 1120 return single_open(file, pinctrl_show, NULL); 1121 } 1122 1123 static const struct file_operations pinctrl_pins_ops = { 1124 .open = pinctrl_pins_open, 1125 .read = seq_read, 1126 .llseek = seq_lseek, 1127 .release = single_release, 1128 }; 1129 1130 static const struct file_operations pinctrl_groups_ops = { 1131 .open = pinctrl_groups_open, 1132 .read = seq_read, 1133 .llseek = seq_lseek, 1134 .release = single_release, 1135 }; 1136 1137 static const struct file_operations pinctrl_gpioranges_ops = { 1138 .open = pinctrl_gpioranges_open, 1139 .read = seq_read, 1140 .llseek = seq_lseek, 1141 .release = single_release, 1142 }; 1143 1144 static const struct file_operations pinctrl_devices_ops = { 1145 .open = pinctrl_devices_open, 1146 .read = seq_read, 1147 .llseek = seq_lseek, 1148 .release = single_release, 1149 }; 1150 1151 static const struct file_operations pinctrl_maps_ops = { 1152 .open = pinctrl_maps_open, 1153 .read = seq_read, 1154 .llseek = seq_lseek, 1155 .release = single_release, 1156 }; 1157 1158 static const struct file_operations pinctrl_ops = { 1159 .open = pinctrl_open, 1160 .read = seq_read, 1161 .llseek = seq_lseek, 1162 .release = single_release, 1163 }; 1164 1165 static struct dentry *debugfs_root; 1166 1167 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1168 { 1169 struct dentry *device_root; 1170 1171 device_root = debugfs_create_dir(dev_name(pctldev->dev), 1172 debugfs_root); 1173 pctldev->device_root = device_root; 1174 1175 if (IS_ERR(device_root) || !device_root) { 1176 pr_warn("failed to create debugfs directory for %s\n", 1177 dev_name(pctldev->dev)); 1178 return; 1179 } 1180 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1181 device_root, pctldev, &pinctrl_pins_ops); 1182 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1183 device_root, pctldev, &pinctrl_groups_ops); 1184 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1185 device_root, pctldev, &pinctrl_gpioranges_ops); 1186 pinmux_init_device_debugfs(device_root, pctldev); 1187 pinconf_init_device_debugfs(device_root, pctldev); 1188 } 1189 1190 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1191 { 1192 debugfs_remove_recursive(pctldev->device_root); 1193 } 1194 1195 static void pinctrl_init_debugfs(void) 1196 { 1197 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1198 if (IS_ERR(debugfs_root) || !debugfs_root) { 1199 pr_warn("failed to create debugfs directory\n"); 1200 debugfs_root = NULL; 1201 return; 1202 } 1203 1204 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1205 debugfs_root, NULL, &pinctrl_devices_ops); 1206 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1207 debugfs_root, NULL, &pinctrl_maps_ops); 1208 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1209 debugfs_root, NULL, &pinctrl_ops); 1210 } 1211 1212 #else /* CONFIG_DEBUG_FS */ 1213 1214 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1215 { 1216 } 1217 1218 static void pinctrl_init_debugfs(void) 1219 { 1220 } 1221 1222 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1223 { 1224 } 1225 1226 #endif 1227 1228 /** 1229 * pinctrl_register() - register a pin controller device 1230 * @pctldesc: descriptor for this pin controller 1231 * @dev: parent device for this pin controller 1232 * @driver_data: private pin controller data for this pin controller 1233 */ 1234 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 1235 struct device *dev, void *driver_data) 1236 { 1237 struct pinctrl_dev *pctldev; 1238 int ret; 1239 1240 if (pctldesc == NULL) 1241 return NULL; 1242 if (pctldesc->name == NULL) 1243 return NULL; 1244 1245 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1246 if (pctldev == NULL) { 1247 dev_err(dev, "failed to alloc struct pinctrl_dev\n"); 1248 return NULL; 1249 } 1250 1251 /* Initialize pin control device struct */ 1252 pctldev->owner = pctldesc->owner; 1253 pctldev->desc = pctldesc; 1254 pctldev->driver_data = driver_data; 1255 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1256 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1257 pctldev->dev = dev; 1258 1259 /* If we're implementing pinmuxing, check the ops for sanity */ 1260 if (pctldesc->pmxops) { 1261 ret = pinmux_check_ops(pctldev); 1262 if (ret) { 1263 pr_err("%s pinmux ops lacks necessary functions\n", 1264 pctldesc->name); 1265 goto out_err; 1266 } 1267 } 1268 1269 /* If we're implementing pinconfig, check the ops for sanity */ 1270 if (pctldesc->confops) { 1271 ret = pinconf_check_ops(pctldev); 1272 if (ret) { 1273 pr_err("%s pin config ops lacks necessary functions\n", 1274 pctldesc->name); 1275 goto out_err; 1276 } 1277 } 1278 1279 /* Register all the pins */ 1280 pr_debug("try to register %d pins on %s...\n", 1281 pctldesc->npins, pctldesc->name); 1282 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1283 if (ret) { 1284 pr_err("error during pin registration\n"); 1285 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1286 pctldesc->npins); 1287 goto out_err; 1288 } 1289 1290 mutex_lock(&pinctrl_mutex); 1291 1292 list_add_tail(&pctldev->node, &pinctrldev_list); 1293 1294 pctldev->p = pinctrl_get_locked(pctldev->dev); 1295 if (!IS_ERR(pctldev->p)) { 1296 struct pinctrl_state *s = 1297 pinctrl_lookup_state_locked(pctldev->p, 1298 PINCTRL_STATE_DEFAULT); 1299 if (!IS_ERR(s)) 1300 pinctrl_select_state_locked(pctldev->p, s); 1301 } 1302 1303 mutex_unlock(&pinctrl_mutex); 1304 1305 pinctrl_init_device_debugfs(pctldev); 1306 1307 return pctldev; 1308 1309 out_err: 1310 kfree(pctldev); 1311 return NULL; 1312 } 1313 EXPORT_SYMBOL_GPL(pinctrl_register); 1314 1315 /** 1316 * pinctrl_unregister() - unregister pinmux 1317 * @pctldev: pin controller to unregister 1318 * 1319 * Called by pinmux drivers to unregister a pinmux. 1320 */ 1321 void pinctrl_unregister(struct pinctrl_dev *pctldev) 1322 { 1323 if (pctldev == NULL) 1324 return; 1325 1326 pinctrl_remove_device_debugfs(pctldev); 1327 1328 mutex_lock(&pinctrl_mutex); 1329 1330 if (!IS_ERR(pctldev->p)) 1331 pinctrl_put_locked(pctldev->p, true); 1332 1333 /* TODO: check that no pinmuxes are still active? */ 1334 list_del(&pctldev->node); 1335 /* Destroy descriptor tree */ 1336 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 1337 pctldev->desc->npins); 1338 kfree(pctldev); 1339 1340 mutex_unlock(&pinctrl_mutex); 1341 } 1342 EXPORT_SYMBOL_GPL(pinctrl_unregister); 1343 1344 static int __init pinctrl_init(void) 1345 { 1346 pr_info("initialized pinctrl subsystem\n"); 1347 pinctrl_init_debugfs(); 1348 return 0; 1349 } 1350 1351 /* init early since many drivers really need to initialized pinmux early */ 1352 core_initcall(pinctrl_init); 1353