1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Core driver for the pin control subsystem 4 * 5 * Copyright (C) 2011-2012 ST-Ericsson SA 6 * Written on behalf of Linaro for ST-Ericsson 7 * Based on bits of regulator core, gpio core and clk core 8 * 9 * Author: Linus Walleij <linus.walleij@linaro.org> 10 * 11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 12 */ 13 #define pr_fmt(fmt) "pinctrl core: " fmt 14 15 #include <linux/array_size.h> 16 #include <linux/cleanup.h> 17 #include <linux/debugfs.h> 18 #include <linux/device.h> 19 #include <linux/err.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kref.h> 23 #include <linux/list.h> 24 #include <linux/seq_file.h> 25 #include <linux/slab.h> 26 27 #include <linux/gpio.h> 28 #include <linux/gpio/driver.h> 29 30 #include <linux/pinctrl/consumer.h> 31 #include <linux/pinctrl/devinfo.h> 32 #include <linux/pinctrl/machine.h> 33 #include <linux/pinctrl/pinctrl.h> 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinconf.h" 38 #include "pinmux.h" 39 40 static bool pinctrl_dummy_state; 41 42 /* Mutex taken to protect pinctrl_list */ 43 static DEFINE_MUTEX(pinctrl_list_mutex); 44 45 /* Mutex taken to protect pinctrl_maps */ 46 DEFINE_MUTEX(pinctrl_maps_mutex); 47 48 /* Mutex taken to protect pinctrldev_list */ 49 static DEFINE_MUTEX(pinctrldev_list_mutex); 50 51 /* Global list of pin control devices (struct pinctrl_dev) */ 52 static LIST_HEAD(pinctrldev_list); 53 54 /* List of pin controller handles (struct pinctrl) */ 55 static LIST_HEAD(pinctrl_list); 56 57 /* List of pinctrl maps (struct pinctrl_maps) */ 58 LIST_HEAD(pinctrl_maps); 59 60 61 /** 62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 63 * 64 * Usually this function is called by platforms without pinctrl driver support 65 * but run with some shared drivers using pinctrl APIs. 66 * After calling this function, the pinctrl core will return successfully 67 * with creating a dummy state for the driver to keep going smoothly. 68 */ 69 void pinctrl_provide_dummies(void) 70 { 71 pinctrl_dummy_state = true; 72 } 73 74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 75 { 76 /* We're not allowed to register devices without name */ 77 return pctldev->desc->name; 78 } 79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 80 81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 82 { 83 return dev_name(pctldev->dev); 84 } 85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 86 87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 88 { 89 return pctldev->driver_data; 90 } 91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 92 93 /** 94 * get_pinctrl_dev_from_devname() - look up pin controller device 95 * @devname: the name of a device instance, as returned by dev_name() 96 * 97 * Looks up a pin control device matching a certain device name or pure device 98 * pointer, the pure device pointer will take precedence. 99 */ 100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 101 { 102 struct pinctrl_dev *pctldev; 103 104 if (!devname) 105 return NULL; 106 107 mutex_lock(&pinctrldev_list_mutex); 108 109 list_for_each_entry(pctldev, &pinctrldev_list, node) { 110 if (!strcmp(dev_name(pctldev->dev), devname)) { 111 /* Matched on device name */ 112 mutex_unlock(&pinctrldev_list_mutex); 113 return pctldev; 114 } 115 } 116 117 mutex_unlock(&pinctrldev_list_mutex); 118 119 return NULL; 120 } 121 122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 123 { 124 struct pinctrl_dev *pctldev; 125 126 mutex_lock(&pinctrldev_list_mutex); 127 128 list_for_each_entry(pctldev, &pinctrldev_list, node) 129 if (device_match_of_node(pctldev->dev, np)) { 130 mutex_unlock(&pinctrldev_list_mutex); 131 return pctldev; 132 } 133 134 mutex_unlock(&pinctrldev_list_mutex); 135 136 return NULL; 137 } 138 139 /** 140 * pin_get_from_name() - look up a pin number from a name 141 * @pctldev: the pin control device to lookup the pin on 142 * @name: the name of the pin to look up 143 */ 144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 145 { 146 unsigned int i, pin; 147 148 /* The pin number can be retrived from the pin controller descriptor */ 149 for (i = 0; i < pctldev->desc->npins; i++) { 150 struct pin_desc *desc; 151 152 pin = pctldev->desc->pins[i].number; 153 desc = pin_desc_get(pctldev, pin); 154 /* Pin space may be sparse */ 155 if (desc && !strcmp(name, desc->name)) 156 return pin; 157 } 158 159 return -EINVAL; 160 } 161 162 /** 163 * pin_get_name() - look up a pin name from a pin id 164 * @pctldev: the pin control device to lookup the pin on 165 * @pin: pin number/id to look up 166 */ 167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned int pin) 168 { 169 const struct pin_desc *desc; 170 171 desc = pin_desc_get(pctldev, pin); 172 if (!desc) { 173 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 174 pin); 175 return NULL; 176 } 177 178 return desc->name; 179 } 180 EXPORT_SYMBOL_GPL(pin_get_name); 181 182 /* Deletes a range of pin descriptors */ 183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 184 const struct pinctrl_pin_desc *pins, 185 unsigned int num_pins) 186 { 187 int i; 188 189 for (i = 0; i < num_pins; i++) { 190 struct pin_desc *pindesc; 191 192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 193 pins[i].number); 194 if (pindesc) { 195 radix_tree_delete(&pctldev->pin_desc_tree, 196 pins[i].number); 197 if (pindesc->dynamic_name) 198 kfree(pindesc->name); 199 } 200 kfree(pindesc); 201 } 202 } 203 204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 205 const struct pinctrl_pin_desc *pin) 206 { 207 struct pin_desc *pindesc; 208 int error; 209 210 pindesc = pin_desc_get(pctldev, pin->number); 211 if (pindesc) { 212 dev_err(pctldev->dev, "pin %d already registered\n", 213 pin->number); 214 return -EINVAL; 215 } 216 217 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 218 if (!pindesc) 219 return -ENOMEM; 220 221 /* Set owner */ 222 pindesc->pctldev = pctldev; 223 224 /* Copy basic pin info */ 225 if (pin->name) { 226 pindesc->name = pin->name; 227 } else { 228 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 229 if (!pindesc->name) { 230 error = -ENOMEM; 231 goto failed; 232 } 233 pindesc->dynamic_name = true; 234 } 235 236 pindesc->drv_data = pin->drv_data; 237 238 error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 239 if (error) 240 goto failed; 241 242 pr_debug("registered pin %d (%s) on %s\n", 243 pin->number, pindesc->name, pctldev->desc->name); 244 return 0; 245 246 failed: 247 kfree(pindesc); 248 return error; 249 } 250 251 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 252 const struct pinctrl_pin_desc *pins, 253 unsigned int num_descs) 254 { 255 unsigned int i; 256 int ret = 0; 257 258 for (i = 0; i < num_descs; i++) { 259 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 260 if (ret) 261 return ret; 262 } 263 264 return 0; 265 } 266 267 /** 268 * gpio_to_pin() - GPIO range GPIO number to pin number translation 269 * @range: GPIO range used for the translation 270 * @gc: GPIO chip structure from the GPIO subsystem 271 * @offset: hardware offset of the GPIO relative to the controller 272 * 273 * Finds the pin number for a given GPIO using the specified GPIO range 274 * as a base for translation. The distinction between linear GPIO ranges 275 * and pin list based GPIO ranges is managed correctly by this function. 276 * 277 * This function assumes the gpio is part of the specified GPIO range, use 278 * only after making sure this is the case (e.g. by calling it on the 279 * result of successful pinctrl_get_device_gpio_range calls)! 280 */ 281 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 282 struct gpio_chip *gc, unsigned int offset) 283 { 284 unsigned int pin = gc->base + offset - range->base; 285 if (range->pins) 286 return range->pins[pin]; 287 else 288 return range->pin_base + pin; 289 } 290 291 /** 292 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 293 * @pctldev: pin controller device to check 294 * @gc: GPIO chip structure from the GPIO subsystem 295 * @offset: hardware offset of the GPIO relative to the controller 296 * 297 * Tries to match a GPIO pin number to the ranges handled by a certain pin 298 * controller, return the range or NULL 299 */ 300 static struct pinctrl_gpio_range * 301 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, struct gpio_chip *gc, 302 unsigned int offset) 303 { 304 struct pinctrl_gpio_range *range; 305 306 mutex_lock(&pctldev->mutex); 307 /* Loop over the ranges */ 308 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 309 /* Check if we're in the valid range */ 310 if ((gc->base + offset) >= range->base && 311 (gc->base + offset) < range->base + range->npins) { 312 mutex_unlock(&pctldev->mutex); 313 return range; 314 } 315 } 316 mutex_unlock(&pctldev->mutex); 317 return NULL; 318 } 319 320 /** 321 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 322 * the same GPIO chip are in range 323 * @gc: GPIO chip structure from the GPIO subsystem 324 * @offset: hardware offset of the GPIO relative to the controller 325 * 326 * This function is complement of pinctrl_match_gpio_range(). If the return 327 * value of pinctrl_match_gpio_range() is NULL, this function could be used 328 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 329 * of the same GPIO chip don't have back-end pinctrl interface. 330 * If the return value is true, it means that pinctrl device is ready & the 331 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 332 * is false, it means that pinctrl device may not be ready. 333 */ 334 #ifdef CONFIG_GPIOLIB 335 static bool pinctrl_ready_for_gpio_range(struct gpio_chip *gc, 336 unsigned int offset) 337 { 338 struct pinctrl_dev *pctldev; 339 struct pinctrl_gpio_range *range = NULL; 340 341 mutex_lock(&pinctrldev_list_mutex); 342 343 /* Loop over the pin controllers */ 344 list_for_each_entry(pctldev, &pinctrldev_list, node) { 345 /* Loop over the ranges */ 346 mutex_lock(&pctldev->mutex); 347 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 348 /* Check if any gpio range overlapped with gpio chip */ 349 if (range->base + range->npins - 1 < gc->base || 350 range->base > gc->base + gc->ngpio - 1) 351 continue; 352 mutex_unlock(&pctldev->mutex); 353 mutex_unlock(&pinctrldev_list_mutex); 354 return true; 355 } 356 mutex_unlock(&pctldev->mutex); 357 } 358 359 mutex_unlock(&pinctrldev_list_mutex); 360 361 return false; 362 } 363 #else 364 static inline bool 365 pinctrl_ready_for_gpio_range(struct gpio_chip *gc, unsigned int offset) 366 { 367 return true; 368 } 369 #endif 370 371 /** 372 * pinctrl_get_device_gpio_range() - find device for GPIO range 373 * @gc: GPIO chip structure from the GPIO subsystem 374 * @offset: hardware offset of the GPIO relative to the controller 375 * @outdev: the pin control device if found 376 * @outrange: the GPIO range if found 377 * 378 * Find the pin controller handling a certain GPIO pin from the pinspace of 379 * the GPIO subsystem, return the device and the matching GPIO range. Returns 380 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 381 * may still have not been registered. 382 */ 383 static int pinctrl_get_device_gpio_range(struct gpio_chip *gc, 384 unsigned int offset, 385 struct pinctrl_dev **outdev, 386 struct pinctrl_gpio_range **outrange) 387 { 388 struct pinctrl_dev *pctldev; 389 390 mutex_lock(&pinctrldev_list_mutex); 391 392 /* Loop over the pin controllers */ 393 list_for_each_entry(pctldev, &pinctrldev_list, node) { 394 struct pinctrl_gpio_range *range; 395 396 range = pinctrl_match_gpio_range(pctldev, gc, offset); 397 if (range) { 398 *outdev = pctldev; 399 *outrange = range; 400 mutex_unlock(&pinctrldev_list_mutex); 401 return 0; 402 } 403 } 404 405 mutex_unlock(&pinctrldev_list_mutex); 406 407 return -EPROBE_DEFER; 408 } 409 410 /** 411 * pinctrl_add_gpio_range() - register a GPIO range for a controller 412 * @pctldev: pin controller device to add the range to 413 * @range: the GPIO range to add 414 * 415 * This adds a range of GPIOs to be handled by a certain pin controller. Call 416 * this to register handled ranges after registering your pin controller. 417 */ 418 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 419 struct pinctrl_gpio_range *range) 420 { 421 mutex_lock(&pctldev->mutex); 422 list_add_tail(&range->node, &pctldev->gpio_ranges); 423 mutex_unlock(&pctldev->mutex); 424 } 425 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 426 427 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 428 struct pinctrl_gpio_range *ranges, 429 unsigned int nranges) 430 { 431 int i; 432 433 for (i = 0; i < nranges; i++) 434 pinctrl_add_gpio_range(pctldev, &ranges[i]); 435 } 436 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 437 438 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 439 struct pinctrl_gpio_range *range) 440 { 441 struct pinctrl_dev *pctldev; 442 443 pctldev = get_pinctrl_dev_from_devname(devname); 444 445 /* 446 * If we can't find this device, let's assume that is because 447 * it has not probed yet, so the driver trying to register this 448 * range need to defer probing. 449 */ 450 if (!pctldev) 451 return ERR_PTR(-EPROBE_DEFER); 452 453 pinctrl_add_gpio_range(pctldev, range); 454 455 return pctldev; 456 } 457 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 458 459 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 460 const unsigned int **pins, unsigned int *num_pins) 461 { 462 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 463 int gs; 464 465 if (!pctlops->get_group_pins) 466 return -EINVAL; 467 468 gs = pinctrl_get_group_selector(pctldev, pin_group); 469 if (gs < 0) 470 return gs; 471 472 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 473 } 474 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 475 476 struct pinctrl_gpio_range * 477 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 478 unsigned int pin) 479 { 480 struct pinctrl_gpio_range *range; 481 482 /* Loop over the ranges */ 483 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 484 /* Check if we're in the valid range */ 485 if (range->pins) { 486 int a; 487 for (a = 0; a < range->npins; a++) { 488 if (range->pins[a] == pin) 489 return range; 490 } 491 } else if (pin >= range->pin_base && 492 pin < range->pin_base + range->npins) 493 return range; 494 } 495 496 return NULL; 497 } 498 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 499 500 /** 501 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 502 * @pctldev: the pin controller device to look in 503 * @pin: a controller-local number to find the range for 504 */ 505 struct pinctrl_gpio_range * 506 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 507 unsigned int pin) 508 { 509 struct pinctrl_gpio_range *range; 510 511 mutex_lock(&pctldev->mutex); 512 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 513 mutex_unlock(&pctldev->mutex); 514 515 return range; 516 } 517 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 518 519 /** 520 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller 521 * @pctldev: pin controller device to remove the range from 522 * @range: the GPIO range to remove 523 */ 524 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 525 struct pinctrl_gpio_range *range) 526 { 527 mutex_lock(&pctldev->mutex); 528 list_del(&range->node); 529 mutex_unlock(&pctldev->mutex); 530 } 531 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 532 533 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 534 535 /** 536 * pinctrl_generic_get_group_count() - returns the number of pin groups 537 * @pctldev: pin controller device 538 */ 539 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 540 { 541 return pctldev->num_groups; 542 } 543 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 544 545 /** 546 * pinctrl_generic_get_group_name() - returns the name of a pin group 547 * @pctldev: pin controller device 548 * @selector: group number 549 */ 550 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 551 unsigned int selector) 552 { 553 struct group_desc *group; 554 555 group = radix_tree_lookup(&pctldev->pin_group_tree, 556 selector); 557 if (!group) 558 return NULL; 559 560 return group->grp.name; 561 } 562 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 563 564 /** 565 * pinctrl_generic_get_group_pins() - gets the pin group pins 566 * @pctldev: pin controller device 567 * @selector: group number 568 * @pins: pins in the group 569 * @num_pins: number of pins in the group 570 */ 571 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 572 unsigned int selector, 573 const unsigned int **pins, 574 unsigned int *num_pins) 575 { 576 struct group_desc *group; 577 578 group = radix_tree_lookup(&pctldev->pin_group_tree, 579 selector); 580 if (!group) { 581 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 582 __func__, selector); 583 return -EINVAL; 584 } 585 586 *pins = group->grp.pins; 587 *num_pins = group->grp.npins; 588 589 return 0; 590 } 591 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 592 593 /** 594 * pinctrl_generic_get_group() - returns a pin group based on the number 595 * @pctldev: pin controller device 596 * @selector: group number 597 */ 598 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 599 unsigned int selector) 600 { 601 struct group_desc *group; 602 603 group = radix_tree_lookup(&pctldev->pin_group_tree, 604 selector); 605 if (!group) 606 return NULL; 607 608 return group; 609 } 610 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 611 612 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev, 613 const char *function) 614 { 615 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 616 int ngroups = ops->get_groups_count(pctldev); 617 int selector = 0; 618 619 /* See if this pctldev has this group */ 620 while (selector < ngroups) { 621 const char *gname = ops->get_group_name(pctldev, selector); 622 623 if (gname && !strcmp(function, gname)) 624 return selector; 625 626 selector++; 627 } 628 629 return -EINVAL; 630 } 631 632 /** 633 * pinctrl_generic_add_group() - adds a new pin group 634 * @pctldev: pin controller device 635 * @name: name of the pin group 636 * @pins: pins in the pin group 637 * @num_pins: number of pins in the pin group 638 * @data: pin controller driver specific data 639 * 640 * Note that the caller must take care of locking. 641 */ 642 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 643 const unsigned int *pins, int num_pins, void *data) 644 { 645 struct group_desc *group; 646 int selector, error; 647 648 if (!name) 649 return -EINVAL; 650 651 selector = pinctrl_generic_group_name_to_selector(pctldev, name); 652 if (selector >= 0) 653 return selector; 654 655 selector = pctldev->num_groups; 656 657 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 658 if (!group) 659 return -ENOMEM; 660 661 *group = PINCTRL_GROUP_DESC(name, pins, num_pins, data); 662 663 error = radix_tree_insert(&pctldev->pin_group_tree, selector, group); 664 if (error) 665 return error; 666 667 pctldev->num_groups++; 668 669 return selector; 670 } 671 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 672 673 /** 674 * pinctrl_generic_remove_group() - removes a numbered pin group 675 * @pctldev: pin controller device 676 * @selector: group number 677 * 678 * Note that the caller must take care of locking. 679 */ 680 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 681 unsigned int selector) 682 { 683 struct group_desc *group; 684 685 group = radix_tree_lookup(&pctldev->pin_group_tree, 686 selector); 687 if (!group) 688 return -ENOENT; 689 690 radix_tree_delete(&pctldev->pin_group_tree, selector); 691 devm_kfree(pctldev->dev, group); 692 693 pctldev->num_groups--; 694 695 return 0; 696 } 697 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 698 699 /** 700 * pinctrl_generic_free_groups() - removes all pin groups 701 * @pctldev: pin controller device 702 * 703 * Note that the caller must take care of locking. The pinctrl groups 704 * are allocated with devm_kzalloc() so no need to free them here. 705 */ 706 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 707 { 708 struct radix_tree_iter iter; 709 void __rcu **slot; 710 711 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 712 radix_tree_delete(&pctldev->pin_group_tree, iter.index); 713 714 pctldev->num_groups = 0; 715 } 716 717 #else 718 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 719 { 720 } 721 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 722 723 /** 724 * pinctrl_get_group_selector() - returns the group selector for a group 725 * @pctldev: the pin controller handling the group 726 * @pin_group: the pin group to look up 727 */ 728 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 729 const char *pin_group) 730 { 731 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 732 unsigned int ngroups = pctlops->get_groups_count(pctldev); 733 unsigned int group_selector = 0; 734 735 while (group_selector < ngroups) { 736 const char *gname = pctlops->get_group_name(pctldev, 737 group_selector); 738 if (gname && !strcmp(gname, pin_group)) { 739 dev_dbg(pctldev->dev, 740 "found group selector %u for %s\n", 741 group_selector, 742 pin_group); 743 return group_selector; 744 } 745 746 group_selector++; 747 } 748 749 dev_err(pctldev->dev, "does not have pin group %s\n", 750 pin_group); 751 752 return -EINVAL; 753 } 754 755 bool pinctrl_gpio_can_use_line(struct gpio_chip *gc, unsigned int offset) 756 { 757 struct pinctrl_dev *pctldev; 758 struct pinctrl_gpio_range *range; 759 bool result; 760 int pin; 761 762 /* 763 * Try to obtain GPIO range, if it fails 764 * we're probably dealing with GPIO driver 765 * without a backing pin controller - bail out. 766 */ 767 if (pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range)) 768 return true; 769 770 mutex_lock(&pctldev->mutex); 771 772 /* Convert to the pin controllers number space */ 773 pin = gpio_to_pin(range, gc, offset); 774 775 result = pinmux_can_be_used_for_gpio(pctldev, pin); 776 777 mutex_unlock(&pctldev->mutex); 778 779 return result; 780 } 781 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line); 782 783 /** 784 * pinctrl_gpio_request() - request a single pin to be used as GPIO 785 * @gc: GPIO chip structure from the GPIO subsystem 786 * @offset: hardware offset of the GPIO relative to the controller 787 * 788 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 789 * as part of their gpio_request() semantics, platforms and individual drivers 790 * shall *NOT* request GPIO pins to be muxed in. 791 */ 792 int pinctrl_gpio_request(struct gpio_chip *gc, unsigned int offset) 793 { 794 struct pinctrl_gpio_range *range; 795 struct pinctrl_dev *pctldev; 796 int ret, pin; 797 798 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range); 799 if (ret) { 800 if (pinctrl_ready_for_gpio_range(gc, offset)) 801 ret = 0; 802 return ret; 803 } 804 805 mutex_lock(&pctldev->mutex); 806 807 /* Convert to the pin controllers number space */ 808 pin = gpio_to_pin(range, gc, offset); 809 810 ret = pinmux_request_gpio(pctldev, range, pin, gc->base + offset); 811 812 mutex_unlock(&pctldev->mutex); 813 814 return ret; 815 } 816 EXPORT_SYMBOL_GPL(pinctrl_gpio_request); 817 818 /** 819 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO 820 * @gc: GPIO chip structure from the GPIO subsystem 821 * @offset: hardware offset of the GPIO relative to the controller 822 * 823 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 824 * as part of their gpio_request() semantics, platforms and individual drivers 825 * shall *NOT* request GPIO pins to be muxed in. 826 */ 827 void pinctrl_gpio_free(struct gpio_chip *gc, unsigned int offset) 828 { 829 struct pinctrl_gpio_range *range; 830 struct pinctrl_dev *pctldev; 831 int ret, pin; 832 833 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range); 834 if (ret) 835 return; 836 837 mutex_lock(&pctldev->mutex); 838 839 /* Convert to the pin controllers number space */ 840 pin = gpio_to_pin(range, gc, offset); 841 842 pinmux_free_gpio(pctldev, pin, range); 843 844 mutex_unlock(&pctldev->mutex); 845 } 846 EXPORT_SYMBOL_GPL(pinctrl_gpio_free); 847 848 static int pinctrl_gpio_direction(struct gpio_chip *gc, unsigned int offset, 849 bool input) 850 { 851 struct pinctrl_dev *pctldev; 852 struct pinctrl_gpio_range *range; 853 int ret; 854 int pin; 855 856 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range); 857 if (ret) { 858 return ret; 859 } 860 861 mutex_lock(&pctldev->mutex); 862 863 /* Convert to the pin controllers number space */ 864 pin = gpio_to_pin(range, gc, offset); 865 ret = pinmux_gpio_direction(pctldev, range, pin, input); 866 867 mutex_unlock(&pctldev->mutex); 868 869 return ret; 870 } 871 872 /** 873 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 874 * @gc: GPIO chip structure from the GPIO subsystem 875 * @offset: hardware offset of the GPIO relative to the controller 876 * 877 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 878 * as part of their gpio_direction_input() semantics, platforms and individual 879 * drivers shall *NOT* touch pin control GPIO calls. 880 */ 881 int pinctrl_gpio_direction_input(struct gpio_chip *gc, unsigned int offset) 882 { 883 return pinctrl_gpio_direction(gc, offset, true); 884 } 885 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 886 887 /** 888 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 889 * @gc: GPIO chip structure from the GPIO subsystem 890 * @offset: hardware offset of the GPIO relative to the controller 891 * 892 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 893 * as part of their gpio_direction_output() semantics, platforms and individual 894 * drivers shall *NOT* touch pin control GPIO calls. 895 */ 896 int pinctrl_gpio_direction_output(struct gpio_chip *gc, unsigned int offset) 897 { 898 return pinctrl_gpio_direction(gc, offset, false); 899 } 900 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 901 902 /** 903 * pinctrl_gpio_set_config() - Apply config to given GPIO pin 904 * @gc: GPIO chip structure from the GPIO subsystem 905 * @offset: hardware offset of the GPIO relative to the controller 906 * @config: the configuration to apply to the GPIO 907 * 908 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 909 * they need to call the underlying pin controller to change GPIO config 910 * (for example set debounce time). 911 */ 912 int pinctrl_gpio_set_config(struct gpio_chip *gc, unsigned int offset, 913 unsigned long config) 914 { 915 unsigned long configs[] = { config }; 916 struct pinctrl_gpio_range *range; 917 struct pinctrl_dev *pctldev; 918 int ret, pin; 919 920 ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range); 921 if (ret) 922 return ret; 923 924 mutex_lock(&pctldev->mutex); 925 pin = gpio_to_pin(range, gc, offset); 926 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 927 mutex_unlock(&pctldev->mutex); 928 929 return ret; 930 } 931 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 932 933 static struct pinctrl_state *find_state(struct pinctrl *p, 934 const char *name) 935 { 936 struct pinctrl_state *state; 937 938 list_for_each_entry(state, &p->states, node) 939 if (!strcmp(state->name, name)) 940 return state; 941 942 return NULL; 943 } 944 945 static struct pinctrl_state *create_state(struct pinctrl *p, 946 const char *name) 947 { 948 struct pinctrl_state *state; 949 950 state = kzalloc(sizeof(*state), GFP_KERNEL); 951 if (!state) 952 return ERR_PTR(-ENOMEM); 953 954 state->name = name; 955 INIT_LIST_HEAD(&state->settings); 956 957 list_add_tail(&state->node, &p->states); 958 959 return state; 960 } 961 962 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 963 const struct pinctrl_map *map) 964 { 965 struct pinctrl_state *state; 966 struct pinctrl_setting *setting; 967 int ret; 968 969 state = find_state(p, map->name); 970 if (!state) 971 state = create_state(p, map->name); 972 if (IS_ERR(state)) 973 return PTR_ERR(state); 974 975 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 976 return 0; 977 978 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 979 if (!setting) 980 return -ENOMEM; 981 982 setting->type = map->type; 983 984 if (pctldev) 985 setting->pctldev = pctldev; 986 else 987 setting->pctldev = 988 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 989 if (!setting->pctldev) { 990 kfree(setting); 991 /* Do not defer probing of hogs (circular loop) */ 992 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 993 return -ENODEV; 994 /* 995 * OK let us guess that the driver is not there yet, and 996 * let's defer obtaining this pinctrl handle to later... 997 */ 998 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 999 map->ctrl_dev_name); 1000 return -EPROBE_DEFER; 1001 } 1002 1003 setting->dev_name = map->dev_name; 1004 1005 switch (map->type) { 1006 case PIN_MAP_TYPE_MUX_GROUP: 1007 ret = pinmux_map_to_setting(map, setting); 1008 break; 1009 case PIN_MAP_TYPE_CONFIGS_PIN: 1010 case PIN_MAP_TYPE_CONFIGS_GROUP: 1011 ret = pinconf_map_to_setting(map, setting); 1012 break; 1013 default: 1014 ret = -EINVAL; 1015 break; 1016 } 1017 if (ret < 0) { 1018 kfree(setting); 1019 return ret; 1020 } 1021 1022 list_add_tail(&setting->node, &state->settings); 1023 1024 return 0; 1025 } 1026 1027 static struct pinctrl *find_pinctrl(struct device *dev) 1028 { 1029 struct pinctrl *p; 1030 1031 mutex_lock(&pinctrl_list_mutex); 1032 list_for_each_entry(p, &pinctrl_list, node) 1033 if (p->dev == dev) { 1034 mutex_unlock(&pinctrl_list_mutex); 1035 return p; 1036 } 1037 1038 mutex_unlock(&pinctrl_list_mutex); 1039 return NULL; 1040 } 1041 1042 static void pinctrl_free(struct pinctrl *p, bool inlist); 1043 1044 static struct pinctrl *create_pinctrl(struct device *dev, 1045 struct pinctrl_dev *pctldev) 1046 { 1047 struct pinctrl *p; 1048 const char *devname; 1049 struct pinctrl_maps *maps_node; 1050 const struct pinctrl_map *map; 1051 int ret; 1052 1053 /* 1054 * create the state cookie holder struct pinctrl for each 1055 * mapping, this is what consumers will get when requesting 1056 * a pin control handle with pinctrl_get() 1057 */ 1058 p = kzalloc(sizeof(*p), GFP_KERNEL); 1059 if (!p) 1060 return ERR_PTR(-ENOMEM); 1061 p->dev = dev; 1062 INIT_LIST_HEAD(&p->states); 1063 INIT_LIST_HEAD(&p->dt_maps); 1064 1065 ret = pinctrl_dt_to_map(p, pctldev); 1066 if (ret < 0) { 1067 kfree(p); 1068 return ERR_PTR(ret); 1069 } 1070 1071 devname = dev_name(dev); 1072 1073 mutex_lock(&pinctrl_maps_mutex); 1074 /* Iterate over the pin control maps to locate the right ones */ 1075 for_each_pin_map(maps_node, map) { 1076 /* Map must be for this device */ 1077 if (strcmp(map->dev_name, devname)) 1078 continue; 1079 /* 1080 * If pctldev is not null, we are claiming hog for it, 1081 * that means, setting that is served by pctldev by itself. 1082 * 1083 * Thus we must skip map that is for this device but is served 1084 * by other device. 1085 */ 1086 if (pctldev && 1087 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name)) 1088 continue; 1089 1090 ret = add_setting(p, pctldev, map); 1091 /* 1092 * At this point the adding of a setting may: 1093 * 1094 * - Defer, if the pinctrl device is not yet available 1095 * - Fail, if the pinctrl device is not yet available, 1096 * AND the setting is a hog. We cannot defer that, since 1097 * the hog will kick in immediately after the device 1098 * is registered. 1099 * 1100 * If the error returned was not -EPROBE_DEFER then we 1101 * accumulate the errors to see if we end up with 1102 * an -EPROBE_DEFER later, as that is the worst case. 1103 */ 1104 if (ret == -EPROBE_DEFER) { 1105 pinctrl_free(p, false); 1106 mutex_unlock(&pinctrl_maps_mutex); 1107 return ERR_PTR(ret); 1108 } 1109 } 1110 mutex_unlock(&pinctrl_maps_mutex); 1111 1112 if (ret < 0) { 1113 /* If some other error than deferral occurred, return here */ 1114 pinctrl_free(p, false); 1115 return ERR_PTR(ret); 1116 } 1117 1118 kref_init(&p->users); 1119 1120 /* Add the pinctrl handle to the global list */ 1121 mutex_lock(&pinctrl_list_mutex); 1122 list_add_tail(&p->node, &pinctrl_list); 1123 mutex_unlock(&pinctrl_list_mutex); 1124 1125 return p; 1126 } 1127 1128 /** 1129 * pinctrl_get() - retrieves the pinctrl handle for a device 1130 * @dev: the device to obtain the handle for 1131 */ 1132 struct pinctrl *pinctrl_get(struct device *dev) 1133 { 1134 struct pinctrl *p; 1135 1136 if (WARN_ON(!dev)) 1137 return ERR_PTR(-EINVAL); 1138 1139 /* 1140 * See if somebody else (such as the device core) has already 1141 * obtained a handle to the pinctrl for this device. In that case, 1142 * return another pointer to it. 1143 */ 1144 p = find_pinctrl(dev); 1145 if (p) { 1146 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1147 kref_get(&p->users); 1148 return p; 1149 } 1150 1151 return create_pinctrl(dev, NULL); 1152 } 1153 EXPORT_SYMBOL_GPL(pinctrl_get); 1154 1155 static void pinctrl_free_setting(bool disable_setting, 1156 struct pinctrl_setting *setting) 1157 { 1158 switch (setting->type) { 1159 case PIN_MAP_TYPE_MUX_GROUP: 1160 if (disable_setting) 1161 pinmux_disable_setting(setting); 1162 pinmux_free_setting(setting); 1163 break; 1164 case PIN_MAP_TYPE_CONFIGS_PIN: 1165 case PIN_MAP_TYPE_CONFIGS_GROUP: 1166 pinconf_free_setting(setting); 1167 break; 1168 default: 1169 break; 1170 } 1171 } 1172 1173 static void pinctrl_free(struct pinctrl *p, bool inlist) 1174 { 1175 struct pinctrl_state *state, *n1; 1176 struct pinctrl_setting *setting, *n2; 1177 1178 mutex_lock(&pinctrl_list_mutex); 1179 list_for_each_entry_safe(state, n1, &p->states, node) { 1180 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1181 pinctrl_free_setting(state == p->state, setting); 1182 list_del(&setting->node); 1183 kfree(setting); 1184 } 1185 list_del(&state->node); 1186 kfree(state); 1187 } 1188 1189 pinctrl_dt_free_maps(p); 1190 1191 if (inlist) 1192 list_del(&p->node); 1193 kfree(p); 1194 mutex_unlock(&pinctrl_list_mutex); 1195 } 1196 1197 /** 1198 * pinctrl_release() - release the pinctrl handle 1199 * @kref: the kref in the pinctrl being released 1200 */ 1201 static void pinctrl_release(struct kref *kref) 1202 { 1203 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1204 1205 pinctrl_free(p, true); 1206 } 1207 1208 /** 1209 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1210 * @p: the pinctrl handle to release 1211 */ 1212 void pinctrl_put(struct pinctrl *p) 1213 { 1214 kref_put(&p->users, pinctrl_release); 1215 } 1216 EXPORT_SYMBOL_GPL(pinctrl_put); 1217 1218 /** 1219 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1220 * @p: the pinctrl handle to retrieve the state from 1221 * @name: the state name to retrieve 1222 */ 1223 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1224 const char *name) 1225 { 1226 struct pinctrl_state *state; 1227 1228 state = find_state(p, name); 1229 if (!state) { 1230 if (pinctrl_dummy_state) { 1231 /* create dummy state */ 1232 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1233 name); 1234 state = create_state(p, name); 1235 } else 1236 state = ERR_PTR(-ENODEV); 1237 } 1238 1239 return state; 1240 } 1241 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1242 1243 static void pinctrl_link_add(struct pinctrl_dev *pctldev, 1244 struct device *consumer) 1245 { 1246 if (pctldev->desc->link_consumers) 1247 device_link_add(consumer, pctldev->dev, 1248 DL_FLAG_PM_RUNTIME | 1249 DL_FLAG_AUTOREMOVE_CONSUMER); 1250 } 1251 1252 /** 1253 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW 1254 * @p: the pinctrl handle for the device that requests configuration 1255 * @state: the state handle to select/activate/program 1256 */ 1257 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state) 1258 { 1259 struct pinctrl_setting *setting, *setting2; 1260 struct pinctrl_state *old_state = READ_ONCE(p->state); 1261 int ret; 1262 1263 if (old_state) { 1264 /* 1265 * For each pinmux setting in the old state, forget SW's record 1266 * of mux owner for that pingroup. Any pingroups which are 1267 * still owned by the new state will be re-acquired by the call 1268 * to pinmux_enable_setting() in the loop below. 1269 */ 1270 list_for_each_entry(setting, &old_state->settings, node) { 1271 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1272 continue; 1273 pinmux_disable_setting(setting); 1274 } 1275 } 1276 1277 p->state = NULL; 1278 1279 /* Apply all the settings for the new state - pinmux first */ 1280 list_for_each_entry(setting, &state->settings, node) { 1281 switch (setting->type) { 1282 case PIN_MAP_TYPE_MUX_GROUP: 1283 ret = pinmux_enable_setting(setting); 1284 break; 1285 case PIN_MAP_TYPE_CONFIGS_PIN: 1286 case PIN_MAP_TYPE_CONFIGS_GROUP: 1287 ret = 0; 1288 break; 1289 default: 1290 ret = -EINVAL; 1291 break; 1292 } 1293 1294 if (ret < 0) 1295 goto unapply_new_state; 1296 1297 /* Do not link hogs (circular dependency) */ 1298 if (p != setting->pctldev->p) 1299 pinctrl_link_add(setting->pctldev, p->dev); 1300 } 1301 1302 /* Apply all the settings for the new state - pinconf after */ 1303 list_for_each_entry(setting, &state->settings, node) { 1304 switch (setting->type) { 1305 case PIN_MAP_TYPE_MUX_GROUP: 1306 ret = 0; 1307 break; 1308 case PIN_MAP_TYPE_CONFIGS_PIN: 1309 case PIN_MAP_TYPE_CONFIGS_GROUP: 1310 ret = pinconf_apply_setting(setting); 1311 break; 1312 default: 1313 ret = -EINVAL; 1314 break; 1315 } 1316 1317 if (ret < 0) { 1318 goto unapply_new_state; 1319 } 1320 1321 /* Do not link hogs (circular dependency) */ 1322 if (p != setting->pctldev->p) 1323 pinctrl_link_add(setting->pctldev, p->dev); 1324 } 1325 1326 p->state = state; 1327 1328 return 0; 1329 1330 unapply_new_state: 1331 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1332 1333 list_for_each_entry(setting2, &state->settings, node) { 1334 if (&setting2->node == &setting->node) 1335 break; 1336 /* 1337 * All we can do here is pinmux_disable_setting. 1338 * That means that some pins are muxed differently now 1339 * than they were before applying the setting (We can't 1340 * "unmux a pin"!), but it's not a big deal since the pins 1341 * are free to be muxed by another apply_setting. 1342 */ 1343 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1344 pinmux_disable_setting(setting2); 1345 } 1346 1347 /* There's no infinite recursive loop here because p->state is NULL */ 1348 if (old_state) 1349 pinctrl_select_state(p, old_state); 1350 1351 return ret; 1352 } 1353 1354 /** 1355 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1356 * @p: the pinctrl handle for the device that requests configuration 1357 * @state: the state handle to select/activate/program 1358 */ 1359 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1360 { 1361 if (p->state == state) 1362 return 0; 1363 1364 return pinctrl_commit_state(p, state); 1365 } 1366 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1367 1368 static void devm_pinctrl_release(struct device *dev, void *res) 1369 { 1370 pinctrl_put(*(struct pinctrl **)res); 1371 } 1372 1373 /** 1374 * devm_pinctrl_get() - Resource managed pinctrl_get() 1375 * @dev: the device to obtain the handle for 1376 * 1377 * If there is a need to explicitly destroy the returned struct pinctrl, 1378 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1379 */ 1380 struct pinctrl *devm_pinctrl_get(struct device *dev) 1381 { 1382 struct pinctrl **ptr, *p; 1383 1384 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1385 if (!ptr) 1386 return ERR_PTR(-ENOMEM); 1387 1388 p = pinctrl_get(dev); 1389 if (!IS_ERR(p)) { 1390 *ptr = p; 1391 devres_add(dev, ptr); 1392 } else { 1393 devres_free(ptr); 1394 } 1395 1396 return p; 1397 } 1398 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1399 1400 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1401 { 1402 struct pinctrl **p = res; 1403 1404 return *p == data; 1405 } 1406 1407 /** 1408 * devm_pinctrl_put() - Resource managed pinctrl_put() 1409 * @p: the pinctrl handle to release 1410 * 1411 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1412 * this function will not need to be called and the resource management 1413 * code will ensure that the resource is freed. 1414 */ 1415 void devm_pinctrl_put(struct pinctrl *p) 1416 { 1417 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1418 devm_pinctrl_match, p)); 1419 } 1420 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1421 1422 /** 1423 * pinctrl_register_mappings() - register a set of pin controller mappings 1424 * @maps: the pincontrol mappings table to register. Note the pinctrl-core 1425 * keeps a reference to the passed in maps, so they should _not_ be 1426 * marked with __initdata. 1427 * @num_maps: the number of maps in the mapping table 1428 */ 1429 int pinctrl_register_mappings(const struct pinctrl_map *maps, 1430 unsigned int num_maps) 1431 { 1432 int i, ret; 1433 struct pinctrl_maps *maps_node; 1434 1435 pr_debug("add %u pinctrl maps\n", num_maps); 1436 1437 /* First sanity check the new mapping */ 1438 for (i = 0; i < num_maps; i++) { 1439 if (!maps[i].dev_name) { 1440 pr_err("failed to register map %s (%d): no device given\n", 1441 maps[i].name, i); 1442 return -EINVAL; 1443 } 1444 1445 if (!maps[i].name) { 1446 pr_err("failed to register map %d: no map name given\n", 1447 i); 1448 return -EINVAL; 1449 } 1450 1451 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1452 !maps[i].ctrl_dev_name) { 1453 pr_err("failed to register map %s (%d): no pin control device given\n", 1454 maps[i].name, i); 1455 return -EINVAL; 1456 } 1457 1458 switch (maps[i].type) { 1459 case PIN_MAP_TYPE_DUMMY_STATE: 1460 break; 1461 case PIN_MAP_TYPE_MUX_GROUP: 1462 ret = pinmux_validate_map(&maps[i], i); 1463 if (ret < 0) 1464 return ret; 1465 break; 1466 case PIN_MAP_TYPE_CONFIGS_PIN: 1467 case PIN_MAP_TYPE_CONFIGS_GROUP: 1468 ret = pinconf_validate_map(&maps[i], i); 1469 if (ret < 0) 1470 return ret; 1471 break; 1472 default: 1473 pr_err("failed to register map %s (%d): invalid type given\n", 1474 maps[i].name, i); 1475 return -EINVAL; 1476 } 1477 } 1478 1479 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1480 if (!maps_node) 1481 return -ENOMEM; 1482 1483 maps_node->maps = maps; 1484 maps_node->num_maps = num_maps; 1485 1486 mutex_lock(&pinctrl_maps_mutex); 1487 list_add_tail(&maps_node->node, &pinctrl_maps); 1488 mutex_unlock(&pinctrl_maps_mutex); 1489 1490 return 0; 1491 } 1492 EXPORT_SYMBOL_GPL(pinctrl_register_mappings); 1493 1494 /** 1495 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings 1496 * @map: the pincontrol mappings table passed to pinctrl_register_mappings() 1497 * when registering the mappings. 1498 */ 1499 void pinctrl_unregister_mappings(const struct pinctrl_map *map) 1500 { 1501 struct pinctrl_maps *maps_node; 1502 1503 mutex_lock(&pinctrl_maps_mutex); 1504 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1505 if (maps_node->maps == map) { 1506 list_del(&maps_node->node); 1507 kfree(maps_node); 1508 mutex_unlock(&pinctrl_maps_mutex); 1509 return; 1510 } 1511 } 1512 mutex_unlock(&pinctrl_maps_mutex); 1513 } 1514 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings); 1515 1516 /** 1517 * pinctrl_force_sleep() - turn a given controller device into sleep state 1518 * @pctldev: pin controller device 1519 */ 1520 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1521 { 1522 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1523 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep); 1524 return 0; 1525 } 1526 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1527 1528 /** 1529 * pinctrl_force_default() - turn a given controller device into default state 1530 * @pctldev: pin controller device 1531 */ 1532 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1533 { 1534 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1535 return pinctrl_commit_state(pctldev->p, pctldev->hog_default); 1536 return 0; 1537 } 1538 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1539 1540 /** 1541 * pinctrl_init_done() - tell pinctrl probe is done 1542 * 1543 * We'll use this time to switch the pins from "init" to "default" unless the 1544 * driver selected some other state. 1545 * 1546 * @dev: device to that's done probing 1547 */ 1548 int pinctrl_init_done(struct device *dev) 1549 { 1550 struct dev_pin_info *pins = dev->pins; 1551 int ret; 1552 1553 if (!pins) 1554 return 0; 1555 1556 if (IS_ERR(pins->init_state)) 1557 return 0; /* No such state */ 1558 1559 if (pins->p->state != pins->init_state) 1560 return 0; /* Not at init anyway */ 1561 1562 if (IS_ERR(pins->default_state)) 1563 return 0; /* No default state */ 1564 1565 ret = pinctrl_select_state(pins->p, pins->default_state); 1566 if (ret) 1567 dev_err(dev, "failed to activate default pinctrl state\n"); 1568 1569 return ret; 1570 } 1571 1572 static int pinctrl_select_bound_state(struct device *dev, 1573 struct pinctrl_state *state) 1574 { 1575 struct dev_pin_info *pins = dev->pins; 1576 int ret; 1577 1578 if (IS_ERR(state)) 1579 return 0; /* No such state */ 1580 ret = pinctrl_select_state(pins->p, state); 1581 if (ret) 1582 dev_err(dev, "failed to activate pinctrl state %s\n", 1583 state->name); 1584 return ret; 1585 } 1586 1587 /** 1588 * pinctrl_select_default_state() - select default pinctrl state 1589 * @dev: device to select default state for 1590 */ 1591 int pinctrl_select_default_state(struct device *dev) 1592 { 1593 if (!dev->pins) 1594 return 0; 1595 1596 return pinctrl_select_bound_state(dev, dev->pins->default_state); 1597 } 1598 EXPORT_SYMBOL_GPL(pinctrl_select_default_state); 1599 1600 #ifdef CONFIG_PM 1601 1602 /** 1603 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1604 * @dev: device to select default state for 1605 */ 1606 int pinctrl_pm_select_default_state(struct device *dev) 1607 { 1608 return pinctrl_select_default_state(dev); 1609 } 1610 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1611 1612 /** 1613 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1614 * @dev: device to select sleep state for 1615 */ 1616 int pinctrl_pm_select_sleep_state(struct device *dev) 1617 { 1618 if (!dev->pins) 1619 return 0; 1620 1621 return pinctrl_select_bound_state(dev, dev->pins->sleep_state); 1622 } 1623 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1624 1625 /** 1626 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1627 * @dev: device to select idle state for 1628 */ 1629 int pinctrl_pm_select_idle_state(struct device *dev) 1630 { 1631 if (!dev->pins) 1632 return 0; 1633 1634 return pinctrl_select_bound_state(dev, dev->pins->idle_state); 1635 } 1636 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1637 #endif 1638 1639 #ifdef CONFIG_DEBUG_FS 1640 1641 static int pinctrl_pins_show(struct seq_file *s, void *what) 1642 { 1643 struct pinctrl_dev *pctldev = s->private; 1644 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1645 unsigned int i, pin; 1646 #ifdef CONFIG_GPIOLIB 1647 struct gpio_device *gdev __free(gpio_device_put) = NULL; 1648 struct pinctrl_gpio_range *range; 1649 int gpio_num; 1650 #endif 1651 1652 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1653 1654 mutex_lock(&pctldev->mutex); 1655 1656 /* The pin number can be retrived from the pin controller descriptor */ 1657 for (i = 0; i < pctldev->desc->npins; i++) { 1658 struct pin_desc *desc; 1659 1660 pin = pctldev->desc->pins[i].number; 1661 desc = pin_desc_get(pctldev, pin); 1662 /* Pin space may be sparse */ 1663 if (!desc) 1664 continue; 1665 1666 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1667 1668 #ifdef CONFIG_GPIOLIB 1669 gpio_num = -1; 1670 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1671 if ((pin >= range->pin_base) && 1672 (pin < (range->pin_base + range->npins))) { 1673 gpio_num = range->base + (pin - range->pin_base); 1674 break; 1675 } 1676 } 1677 if (gpio_num >= 0) 1678 /* 1679 * FIXME: gpio_num comes from the global GPIO numberspace. 1680 * we need to get rid of the range->base eventually and 1681 * get the descriptor directly from the gpio_chip. 1682 */ 1683 gdev = gpiod_to_gpio_device(gpio_to_desc(gpio_num)); 1684 if (gdev) 1685 seq_printf(s, "%u:%s ", 1686 gpio_num - gpio_device_get_base(gdev), 1687 gpio_device_get_label(gdev)); 1688 else 1689 seq_puts(s, "0:? "); 1690 #endif 1691 1692 /* Driver-specific info per pin */ 1693 if (ops->pin_dbg_show) 1694 ops->pin_dbg_show(pctldev, s, pin); 1695 1696 seq_puts(s, "\n"); 1697 } 1698 1699 mutex_unlock(&pctldev->mutex); 1700 1701 return 0; 1702 } 1703 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins); 1704 1705 static int pinctrl_groups_show(struct seq_file *s, void *what) 1706 { 1707 struct pinctrl_dev *pctldev = s->private; 1708 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1709 unsigned int ngroups, selector = 0; 1710 1711 mutex_lock(&pctldev->mutex); 1712 1713 ngroups = ops->get_groups_count(pctldev); 1714 1715 seq_puts(s, "registered pin groups:\n"); 1716 while (selector < ngroups) { 1717 const unsigned int *pins = NULL; 1718 unsigned int num_pins = 0; 1719 const char *gname = ops->get_group_name(pctldev, selector); 1720 const char *pname; 1721 int ret = 0; 1722 int i; 1723 1724 if (ops->get_group_pins) 1725 ret = ops->get_group_pins(pctldev, selector, 1726 &pins, &num_pins); 1727 if (ret) 1728 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1729 gname); 1730 else { 1731 seq_printf(s, "group: %s\n", gname); 1732 for (i = 0; i < num_pins; i++) { 1733 pname = pin_get_name(pctldev, pins[i]); 1734 if (WARN_ON(!pname)) { 1735 mutex_unlock(&pctldev->mutex); 1736 return -EINVAL; 1737 } 1738 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1739 } 1740 seq_puts(s, "\n"); 1741 } 1742 selector++; 1743 } 1744 1745 mutex_unlock(&pctldev->mutex); 1746 1747 return 0; 1748 } 1749 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups); 1750 1751 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1752 { 1753 struct pinctrl_dev *pctldev = s->private; 1754 struct pinctrl_gpio_range *range; 1755 1756 seq_puts(s, "GPIO ranges handled:\n"); 1757 1758 mutex_lock(&pctldev->mutex); 1759 1760 /* Loop over the ranges */ 1761 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1762 if (range->pins) { 1763 int a; 1764 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1765 range->id, range->name, 1766 range->base, (range->base + range->npins - 1)); 1767 for (a = 0; a < range->npins - 1; a++) 1768 seq_printf(s, "%u, ", range->pins[a]); 1769 seq_printf(s, "%u}\n", range->pins[a]); 1770 } 1771 else 1772 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1773 range->id, range->name, 1774 range->base, (range->base + range->npins - 1), 1775 range->pin_base, 1776 (range->pin_base + range->npins - 1)); 1777 } 1778 1779 mutex_unlock(&pctldev->mutex); 1780 1781 return 0; 1782 } 1783 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges); 1784 1785 static int pinctrl_devices_show(struct seq_file *s, void *what) 1786 { 1787 struct pinctrl_dev *pctldev; 1788 1789 seq_puts(s, "name [pinmux] [pinconf]\n"); 1790 1791 mutex_lock(&pinctrldev_list_mutex); 1792 1793 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1794 seq_printf(s, "%s ", pctldev->desc->name); 1795 if (pctldev->desc->pmxops) 1796 seq_puts(s, "yes "); 1797 else 1798 seq_puts(s, "no "); 1799 if (pctldev->desc->confops) 1800 seq_puts(s, "yes"); 1801 else 1802 seq_puts(s, "no"); 1803 seq_puts(s, "\n"); 1804 } 1805 1806 mutex_unlock(&pinctrldev_list_mutex); 1807 1808 return 0; 1809 } 1810 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices); 1811 1812 static inline const char *map_type(enum pinctrl_map_type type) 1813 { 1814 static const char * const names[] = { 1815 "INVALID", 1816 "DUMMY_STATE", 1817 "MUX_GROUP", 1818 "CONFIGS_PIN", 1819 "CONFIGS_GROUP", 1820 }; 1821 1822 if (type >= ARRAY_SIZE(names)) 1823 return "UNKNOWN"; 1824 1825 return names[type]; 1826 } 1827 1828 static int pinctrl_maps_show(struct seq_file *s, void *what) 1829 { 1830 struct pinctrl_maps *maps_node; 1831 const struct pinctrl_map *map; 1832 1833 seq_puts(s, "Pinctrl maps:\n"); 1834 1835 mutex_lock(&pinctrl_maps_mutex); 1836 for_each_pin_map(maps_node, map) { 1837 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1838 map->dev_name, map->name, map_type(map->type), 1839 map->type); 1840 1841 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1842 seq_printf(s, "controlling device %s\n", 1843 map->ctrl_dev_name); 1844 1845 switch (map->type) { 1846 case PIN_MAP_TYPE_MUX_GROUP: 1847 pinmux_show_map(s, map); 1848 break; 1849 case PIN_MAP_TYPE_CONFIGS_PIN: 1850 case PIN_MAP_TYPE_CONFIGS_GROUP: 1851 pinconf_show_map(s, map); 1852 break; 1853 default: 1854 break; 1855 } 1856 1857 seq_putc(s, '\n'); 1858 } 1859 mutex_unlock(&pinctrl_maps_mutex); 1860 1861 return 0; 1862 } 1863 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps); 1864 1865 static int pinctrl_show(struct seq_file *s, void *what) 1866 { 1867 struct pinctrl *p; 1868 struct pinctrl_state *state; 1869 struct pinctrl_setting *setting; 1870 1871 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1872 1873 mutex_lock(&pinctrl_list_mutex); 1874 1875 list_for_each_entry(p, &pinctrl_list, node) { 1876 seq_printf(s, "device: %s current state: %s\n", 1877 dev_name(p->dev), 1878 p->state ? p->state->name : "none"); 1879 1880 list_for_each_entry(state, &p->states, node) { 1881 seq_printf(s, " state: %s\n", state->name); 1882 1883 list_for_each_entry(setting, &state->settings, node) { 1884 struct pinctrl_dev *pctldev = setting->pctldev; 1885 1886 seq_printf(s, " type: %s controller %s ", 1887 map_type(setting->type), 1888 pinctrl_dev_get_name(pctldev)); 1889 1890 switch (setting->type) { 1891 case PIN_MAP_TYPE_MUX_GROUP: 1892 pinmux_show_setting(s, setting); 1893 break; 1894 case PIN_MAP_TYPE_CONFIGS_PIN: 1895 case PIN_MAP_TYPE_CONFIGS_GROUP: 1896 pinconf_show_setting(s, setting); 1897 break; 1898 default: 1899 break; 1900 } 1901 } 1902 } 1903 } 1904 1905 mutex_unlock(&pinctrl_list_mutex); 1906 1907 return 0; 1908 } 1909 DEFINE_SHOW_ATTRIBUTE(pinctrl); 1910 1911 static struct dentry *debugfs_root; 1912 1913 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1914 { 1915 struct dentry *device_root; 1916 const char *debugfs_name; 1917 1918 if (pctldev->desc->name && 1919 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) { 1920 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL, 1921 "%s-%s", dev_name(pctldev->dev), 1922 pctldev->desc->name); 1923 if (!debugfs_name) { 1924 pr_warn("failed to determine debugfs dir name for %s\n", 1925 dev_name(pctldev->dev)); 1926 return; 1927 } 1928 } else { 1929 debugfs_name = dev_name(pctldev->dev); 1930 } 1931 1932 device_root = debugfs_create_dir(debugfs_name, debugfs_root); 1933 pctldev->device_root = device_root; 1934 1935 if (IS_ERR(device_root) || !device_root) { 1936 pr_warn("failed to create debugfs directory for %s\n", 1937 dev_name(pctldev->dev)); 1938 return; 1939 } 1940 debugfs_create_file("pins", 0444, 1941 device_root, pctldev, &pinctrl_pins_fops); 1942 debugfs_create_file("pingroups", 0444, 1943 device_root, pctldev, &pinctrl_groups_fops); 1944 debugfs_create_file("gpio-ranges", 0444, 1945 device_root, pctldev, &pinctrl_gpioranges_fops); 1946 if (pctldev->desc->pmxops) 1947 pinmux_init_device_debugfs(device_root, pctldev); 1948 if (pctldev->desc->confops) 1949 pinconf_init_device_debugfs(device_root, pctldev); 1950 } 1951 1952 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1953 { 1954 debugfs_remove_recursive(pctldev->device_root); 1955 } 1956 1957 static void pinctrl_init_debugfs(void) 1958 { 1959 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1960 if (IS_ERR(debugfs_root) || !debugfs_root) { 1961 pr_warn("failed to create debugfs directory\n"); 1962 debugfs_root = NULL; 1963 return; 1964 } 1965 1966 debugfs_create_file("pinctrl-devices", 0444, 1967 debugfs_root, NULL, &pinctrl_devices_fops); 1968 debugfs_create_file("pinctrl-maps", 0444, 1969 debugfs_root, NULL, &pinctrl_maps_fops); 1970 debugfs_create_file("pinctrl-handles", 0444, 1971 debugfs_root, NULL, &pinctrl_fops); 1972 } 1973 1974 #else /* CONFIG_DEBUG_FS */ 1975 1976 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1977 { 1978 } 1979 1980 static void pinctrl_init_debugfs(void) 1981 { 1982 } 1983 1984 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1985 { 1986 } 1987 1988 #endif 1989 1990 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1991 { 1992 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1993 1994 if (!ops || 1995 !ops->get_groups_count || 1996 !ops->get_group_name) 1997 return -EINVAL; 1998 1999 return 0; 2000 } 2001 2002 /** 2003 * pinctrl_init_controller() - init a pin controller device 2004 * @pctldesc: descriptor for this pin controller 2005 * @dev: parent device for this pin controller 2006 * @driver_data: private pin controller data for this pin controller 2007 */ 2008 static struct pinctrl_dev * 2009 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev, 2010 void *driver_data) 2011 { 2012 struct pinctrl_dev *pctldev; 2013 int ret; 2014 2015 if (!pctldesc) 2016 return ERR_PTR(-EINVAL); 2017 if (!pctldesc->name) 2018 return ERR_PTR(-EINVAL); 2019 2020 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 2021 if (!pctldev) 2022 return ERR_PTR(-ENOMEM); 2023 2024 /* Initialize pin control device struct */ 2025 pctldev->owner = pctldesc->owner; 2026 pctldev->desc = pctldesc; 2027 pctldev->driver_data = driver_data; 2028 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 2029 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 2030 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 2031 #endif 2032 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 2033 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 2034 #endif 2035 INIT_LIST_HEAD(&pctldev->gpio_ranges); 2036 INIT_LIST_HEAD(&pctldev->node); 2037 pctldev->dev = dev; 2038 mutex_init(&pctldev->mutex); 2039 2040 /* check core ops for sanity */ 2041 ret = pinctrl_check_ops(pctldev); 2042 if (ret) { 2043 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 2044 goto out_err; 2045 } 2046 2047 /* If we're implementing pinmuxing, check the ops for sanity */ 2048 if (pctldesc->pmxops) { 2049 ret = pinmux_check_ops(pctldev); 2050 if (ret) 2051 goto out_err; 2052 } 2053 2054 /* If we're implementing pinconfig, check the ops for sanity */ 2055 if (pctldesc->confops) { 2056 ret = pinconf_check_ops(pctldev); 2057 if (ret) 2058 goto out_err; 2059 } 2060 2061 /* Register all the pins */ 2062 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 2063 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 2064 if (ret) { 2065 dev_err(dev, "error during pin registration\n"); 2066 pinctrl_free_pindescs(pctldev, pctldesc->pins, 2067 pctldesc->npins); 2068 goto out_err; 2069 } 2070 2071 return pctldev; 2072 2073 out_err: 2074 mutex_destroy(&pctldev->mutex); 2075 kfree(pctldev); 2076 return ERR_PTR(ret); 2077 } 2078 2079 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 2080 { 2081 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 2082 if (PTR_ERR(pctldev->p) == -ENODEV) { 2083 dev_dbg(pctldev->dev, "no hogs found\n"); 2084 2085 return 0; 2086 } 2087 2088 if (IS_ERR(pctldev->p)) { 2089 dev_err(pctldev->dev, "error claiming hogs: %li\n", 2090 PTR_ERR(pctldev->p)); 2091 2092 return PTR_ERR(pctldev->p); 2093 } 2094 2095 pctldev->hog_default = 2096 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2097 if (IS_ERR(pctldev->hog_default)) { 2098 dev_dbg(pctldev->dev, 2099 "failed to lookup the default state\n"); 2100 } else { 2101 if (pinctrl_select_state(pctldev->p, 2102 pctldev->hog_default)) 2103 dev_err(pctldev->dev, 2104 "failed to select default state\n"); 2105 } 2106 2107 pctldev->hog_sleep = 2108 pinctrl_lookup_state(pctldev->p, 2109 PINCTRL_STATE_SLEEP); 2110 if (IS_ERR(pctldev->hog_sleep)) 2111 dev_dbg(pctldev->dev, 2112 "failed to lookup the sleep state\n"); 2113 2114 return 0; 2115 } 2116 2117 int pinctrl_enable(struct pinctrl_dev *pctldev) 2118 { 2119 int error; 2120 2121 error = pinctrl_claim_hogs(pctldev); 2122 if (error) { 2123 dev_err(pctldev->dev, "could not claim hogs: %i\n", 2124 error); 2125 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2126 pctldev->desc->npins); 2127 mutex_destroy(&pctldev->mutex); 2128 kfree(pctldev); 2129 2130 return error; 2131 } 2132 2133 mutex_lock(&pinctrldev_list_mutex); 2134 list_add_tail(&pctldev->node, &pinctrldev_list); 2135 mutex_unlock(&pinctrldev_list_mutex); 2136 2137 pinctrl_init_device_debugfs(pctldev); 2138 2139 return 0; 2140 } 2141 EXPORT_SYMBOL_GPL(pinctrl_enable); 2142 2143 /** 2144 * pinctrl_register() - register a pin controller device 2145 * @pctldesc: descriptor for this pin controller 2146 * @dev: parent device for this pin controller 2147 * @driver_data: private pin controller data for this pin controller 2148 * 2149 * Note that pinctrl_register() is known to have problems as the pin 2150 * controller driver functions are called before the driver has a 2151 * struct pinctrl_dev handle. To avoid issues later on, please use the 2152 * new pinctrl_register_and_init() below instead. 2153 */ 2154 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 2155 struct device *dev, void *driver_data) 2156 { 2157 struct pinctrl_dev *pctldev; 2158 int error; 2159 2160 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2161 if (IS_ERR(pctldev)) 2162 return pctldev; 2163 2164 error = pinctrl_enable(pctldev); 2165 if (error) 2166 return ERR_PTR(error); 2167 2168 return pctldev; 2169 } 2170 EXPORT_SYMBOL_GPL(pinctrl_register); 2171 2172 /** 2173 * pinctrl_register_and_init() - register and init pin controller device 2174 * @pctldesc: descriptor for this pin controller 2175 * @dev: parent device for this pin controller 2176 * @driver_data: private pin controller data for this pin controller 2177 * @pctldev: pin controller device 2178 * 2179 * Note that pinctrl_enable() still needs to be manually called after 2180 * this once the driver is ready. 2181 */ 2182 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, 2183 struct device *dev, void *driver_data, 2184 struct pinctrl_dev **pctldev) 2185 { 2186 struct pinctrl_dev *p; 2187 2188 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2189 if (IS_ERR(p)) 2190 return PTR_ERR(p); 2191 2192 /* 2193 * We have pinctrl_start() call functions in the pin controller 2194 * driver with create_pinctrl() for at least dt_node_to_map(). So 2195 * let's make sure pctldev is properly initialized for the 2196 * pin controller driver before we do anything. 2197 */ 2198 *pctldev = p; 2199 2200 return 0; 2201 } 2202 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2203 2204 /** 2205 * pinctrl_unregister() - unregister pinmux 2206 * @pctldev: pin controller to unregister 2207 * 2208 * Called by pinmux drivers to unregister a pinmux. 2209 */ 2210 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2211 { 2212 struct pinctrl_gpio_range *range, *n; 2213 2214 if (!pctldev) 2215 return; 2216 2217 mutex_lock(&pctldev->mutex); 2218 pinctrl_remove_device_debugfs(pctldev); 2219 mutex_unlock(&pctldev->mutex); 2220 2221 if (!IS_ERR_OR_NULL(pctldev->p)) 2222 pinctrl_put(pctldev->p); 2223 2224 mutex_lock(&pinctrldev_list_mutex); 2225 mutex_lock(&pctldev->mutex); 2226 /* TODO: check that no pinmuxes are still active? */ 2227 list_del(&pctldev->node); 2228 pinmux_generic_free_functions(pctldev); 2229 pinctrl_generic_free_groups(pctldev); 2230 /* Destroy descriptor tree */ 2231 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2232 pctldev->desc->npins); 2233 /* remove gpio ranges map */ 2234 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2235 list_del(&range->node); 2236 2237 mutex_unlock(&pctldev->mutex); 2238 mutex_destroy(&pctldev->mutex); 2239 kfree(pctldev); 2240 mutex_unlock(&pinctrldev_list_mutex); 2241 } 2242 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2243 2244 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2245 { 2246 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2247 2248 pinctrl_unregister(pctldev); 2249 } 2250 2251 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2252 { 2253 struct pctldev **r = res; 2254 2255 if (WARN_ON(!r || !*r)) 2256 return 0; 2257 2258 return *r == data; 2259 } 2260 2261 /** 2262 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2263 * @dev: parent device for this pin controller 2264 * @pctldesc: descriptor for this pin controller 2265 * @driver_data: private pin controller data for this pin controller 2266 * 2267 * Returns an error pointer if pincontrol register failed. Otherwise 2268 * it returns valid pinctrl handle. 2269 * 2270 * The pinctrl device will be automatically released when the device is unbound. 2271 */ 2272 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2273 struct pinctrl_desc *pctldesc, 2274 void *driver_data) 2275 { 2276 struct pinctrl_dev **ptr, *pctldev; 2277 2278 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2279 if (!ptr) 2280 return ERR_PTR(-ENOMEM); 2281 2282 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2283 if (IS_ERR(pctldev)) { 2284 devres_free(ptr); 2285 return pctldev; 2286 } 2287 2288 *ptr = pctldev; 2289 devres_add(dev, ptr); 2290 2291 return pctldev; 2292 } 2293 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2294 2295 /** 2296 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2297 * @dev: parent device for this pin controller 2298 * @pctldesc: descriptor for this pin controller 2299 * @driver_data: private pin controller data for this pin controller 2300 * @pctldev: pin controller device 2301 * 2302 * Returns zero on success or an error number on failure. 2303 * 2304 * The pinctrl device will be automatically released when the device is unbound. 2305 */ 2306 int devm_pinctrl_register_and_init(struct device *dev, 2307 struct pinctrl_desc *pctldesc, 2308 void *driver_data, 2309 struct pinctrl_dev **pctldev) 2310 { 2311 struct pinctrl_dev **ptr; 2312 int error; 2313 2314 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2315 if (!ptr) 2316 return -ENOMEM; 2317 2318 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2319 if (error) { 2320 devres_free(ptr); 2321 return error; 2322 } 2323 2324 *ptr = *pctldev; 2325 devres_add(dev, ptr); 2326 2327 return 0; 2328 } 2329 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2330 2331 /** 2332 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2333 * @dev: device for which resource was allocated 2334 * @pctldev: the pinctrl device to unregister. 2335 */ 2336 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2337 { 2338 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2339 devm_pinctrl_dev_match, pctldev)); 2340 } 2341 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2342 2343 static int __init pinctrl_init(void) 2344 { 2345 pr_info("initialized pinctrl subsystem\n"); 2346 pinctrl_init_debugfs(); 2347 return 0; 2348 } 2349 2350 /* init early since many drivers really need to initialized pinmux early */ 2351 core_initcall(pinctrl_init); 2352