1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Core driver for the pin control subsystem 4 * 5 * Copyright (C) 2011-2012 ST-Ericsson SA 6 * Written on behalf of Linaro for ST-Ericsson 7 * Based on bits of regulator core, gpio core and clk core 8 * 9 * Author: Linus Walleij <linus.walleij@linaro.org> 10 * 11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 12 */ 13 #define pr_fmt(fmt) "pinctrl core: " fmt 14 15 #include <linux/array_size.h> 16 #include <linux/debugfs.h> 17 #include <linux/device.h> 18 #include <linux/err.h> 19 #include <linux/export.h> 20 #include <linux/init.h> 21 #include <linux/kref.h> 22 #include <linux/list.h> 23 #include <linux/seq_file.h> 24 #include <linux/slab.h> 25 26 #include <linux/gpio/driver.h> 27 28 #include <linux/pinctrl/consumer.h> 29 #include <linux/pinctrl/devinfo.h> 30 #include <linux/pinctrl/machine.h> 31 #include <linux/pinctrl/pinctrl.h> 32 33 #ifdef CONFIG_GPIOLIB 34 #include "../gpio/gpiolib.h" 35 #endif 36 37 #include "core.h" 38 #include "devicetree.h" 39 #include "pinconf.h" 40 #include "pinmux.h" 41 42 static bool pinctrl_dummy_state; 43 44 /* Mutex taken to protect pinctrl_list */ 45 static DEFINE_MUTEX(pinctrl_list_mutex); 46 47 /* Mutex taken to protect pinctrl_maps */ 48 DEFINE_MUTEX(pinctrl_maps_mutex); 49 50 /* Mutex taken to protect pinctrldev_list */ 51 static DEFINE_MUTEX(pinctrldev_list_mutex); 52 53 /* Global list of pin control devices (struct pinctrl_dev) */ 54 static LIST_HEAD(pinctrldev_list); 55 56 /* List of pin controller handles (struct pinctrl) */ 57 static LIST_HEAD(pinctrl_list); 58 59 /* List of pinctrl maps (struct pinctrl_maps) */ 60 LIST_HEAD(pinctrl_maps); 61 62 63 /** 64 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 65 * 66 * Usually this function is called by platforms without pinctrl driver support 67 * but run with some shared drivers using pinctrl APIs. 68 * After calling this function, the pinctrl core will return successfully 69 * with creating a dummy state for the driver to keep going smoothly. 70 */ 71 void pinctrl_provide_dummies(void) 72 { 73 pinctrl_dummy_state = true; 74 } 75 76 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 77 { 78 /* We're not allowed to register devices without name */ 79 return pctldev->desc->name; 80 } 81 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 82 83 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 84 { 85 return dev_name(pctldev->dev); 86 } 87 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 88 89 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 90 { 91 return pctldev->driver_data; 92 } 93 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 94 95 /** 96 * get_pinctrl_dev_from_devname() - look up pin controller device 97 * @devname: the name of a device instance, as returned by dev_name() 98 * 99 * Looks up a pin control device matching a certain device name or pure device 100 * pointer, the pure device pointer will take precedence. 101 */ 102 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 103 { 104 struct pinctrl_dev *pctldev; 105 106 if (!devname) 107 return NULL; 108 109 mutex_lock(&pinctrldev_list_mutex); 110 111 list_for_each_entry(pctldev, &pinctrldev_list, node) { 112 if (!strcmp(dev_name(pctldev->dev), devname)) { 113 /* Matched on device name */ 114 mutex_unlock(&pinctrldev_list_mutex); 115 return pctldev; 116 } 117 } 118 119 mutex_unlock(&pinctrldev_list_mutex); 120 121 return NULL; 122 } 123 124 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 125 { 126 struct pinctrl_dev *pctldev; 127 128 mutex_lock(&pinctrldev_list_mutex); 129 130 list_for_each_entry(pctldev, &pinctrldev_list, node) 131 if (device_match_of_node(pctldev->dev, np)) { 132 mutex_unlock(&pinctrldev_list_mutex); 133 return pctldev; 134 } 135 136 mutex_unlock(&pinctrldev_list_mutex); 137 138 return NULL; 139 } 140 141 /** 142 * pin_get_from_name() - look up a pin number from a name 143 * @pctldev: the pin control device to lookup the pin on 144 * @name: the name of the pin to look up 145 */ 146 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 147 { 148 unsigned i, pin; 149 150 /* The pin number can be retrived from the pin controller descriptor */ 151 for (i = 0; i < pctldev->desc->npins; i++) { 152 struct pin_desc *desc; 153 154 pin = pctldev->desc->pins[i].number; 155 desc = pin_desc_get(pctldev, pin); 156 /* Pin space may be sparse */ 157 if (desc && !strcmp(name, desc->name)) 158 return pin; 159 } 160 161 return -EINVAL; 162 } 163 164 /** 165 * pin_get_name() - look up a pin name from a pin id 166 * @pctldev: the pin control device to lookup the pin on 167 * @pin: pin number/id to look up 168 */ 169 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 170 { 171 const struct pin_desc *desc; 172 173 desc = pin_desc_get(pctldev, pin); 174 if (!desc) { 175 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 176 pin); 177 return NULL; 178 } 179 180 return desc->name; 181 } 182 EXPORT_SYMBOL_GPL(pin_get_name); 183 184 /* Deletes a range of pin descriptors */ 185 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 186 const struct pinctrl_pin_desc *pins, 187 unsigned num_pins) 188 { 189 int i; 190 191 for (i = 0; i < num_pins; i++) { 192 struct pin_desc *pindesc; 193 194 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 195 pins[i].number); 196 if (pindesc) { 197 radix_tree_delete(&pctldev->pin_desc_tree, 198 pins[i].number); 199 if (pindesc->dynamic_name) 200 kfree(pindesc->name); 201 } 202 kfree(pindesc); 203 } 204 } 205 206 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 207 const struct pinctrl_pin_desc *pin) 208 { 209 struct pin_desc *pindesc; 210 int error; 211 212 pindesc = pin_desc_get(pctldev, pin->number); 213 if (pindesc) { 214 dev_err(pctldev->dev, "pin %d already registered\n", 215 pin->number); 216 return -EINVAL; 217 } 218 219 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 220 if (!pindesc) 221 return -ENOMEM; 222 223 /* Set owner */ 224 pindesc->pctldev = pctldev; 225 226 /* Copy basic pin info */ 227 if (pin->name) { 228 pindesc->name = pin->name; 229 } else { 230 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 231 if (!pindesc->name) { 232 error = -ENOMEM; 233 goto failed; 234 } 235 pindesc->dynamic_name = true; 236 } 237 238 pindesc->drv_data = pin->drv_data; 239 240 error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 241 if (error) 242 goto failed; 243 244 pr_debug("registered pin %d (%s) on %s\n", 245 pin->number, pindesc->name, pctldev->desc->name); 246 return 0; 247 248 failed: 249 kfree(pindesc); 250 return error; 251 } 252 253 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 254 const struct pinctrl_pin_desc *pins, 255 unsigned num_descs) 256 { 257 unsigned i; 258 int ret = 0; 259 260 for (i = 0; i < num_descs; i++) { 261 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 262 if (ret) 263 return ret; 264 } 265 266 return 0; 267 } 268 269 /** 270 * gpio_to_pin() - GPIO range GPIO number to pin number translation 271 * @range: GPIO range used for the translation 272 * @gpio: gpio pin to translate to a pin number 273 * 274 * Finds the pin number for a given GPIO using the specified GPIO range 275 * as a base for translation. The distinction between linear GPIO ranges 276 * and pin list based GPIO ranges is managed correctly by this function. 277 * 278 * This function assumes the gpio is part of the specified GPIO range, use 279 * only after making sure this is the case (e.g. by calling it on the 280 * result of successful pinctrl_get_device_gpio_range calls)! 281 */ 282 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 283 unsigned int gpio) 284 { 285 unsigned int offset = gpio - range->base; 286 if (range->pins) 287 return range->pins[offset]; 288 else 289 return range->pin_base + offset; 290 } 291 292 /** 293 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 294 * @pctldev: pin controller device to check 295 * @gpio: gpio pin to check taken from the global GPIO pin space 296 * 297 * Tries to match a GPIO pin number to the ranges handled by a certain pin 298 * controller, return the range or NULL 299 */ 300 static struct pinctrl_gpio_range * 301 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 302 { 303 struct pinctrl_gpio_range *range; 304 305 mutex_lock(&pctldev->mutex); 306 /* Loop over the ranges */ 307 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 308 /* Check if we're in the valid range */ 309 if (gpio >= range->base && 310 gpio < range->base + range->npins) { 311 mutex_unlock(&pctldev->mutex); 312 return range; 313 } 314 } 315 mutex_unlock(&pctldev->mutex); 316 return NULL; 317 } 318 319 /** 320 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 321 * the same GPIO chip are in range 322 * @gpio: gpio pin to check taken from the global GPIO pin space 323 * 324 * This function is complement of pinctrl_match_gpio_range(). If the return 325 * value of pinctrl_match_gpio_range() is NULL, this function could be used 326 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 327 * of the same GPIO chip don't have back-end pinctrl interface. 328 * If the return value is true, it means that pinctrl device is ready & the 329 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 330 * is false, it means that pinctrl device may not be ready. 331 */ 332 #ifdef CONFIG_GPIOLIB 333 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 334 { 335 struct pinctrl_dev *pctldev; 336 struct pinctrl_gpio_range *range = NULL; 337 /* 338 * FIXME: "gpio" here is a number in the global GPIO numberspace. 339 * get rid of this from the ranges eventually and get the GPIO 340 * descriptor from the gpio_chip. 341 */ 342 struct gpio_chip *chip = gpiod_to_chip(gpio_to_desc(gpio)); 343 344 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 345 return false; 346 347 mutex_lock(&pinctrldev_list_mutex); 348 349 /* Loop over the pin controllers */ 350 list_for_each_entry(pctldev, &pinctrldev_list, node) { 351 /* Loop over the ranges */ 352 mutex_lock(&pctldev->mutex); 353 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 354 /* Check if any gpio range overlapped with gpio chip */ 355 if (range->base + range->npins - 1 < chip->base || 356 range->base > chip->base + chip->ngpio - 1) 357 continue; 358 mutex_unlock(&pctldev->mutex); 359 mutex_unlock(&pinctrldev_list_mutex); 360 return true; 361 } 362 mutex_unlock(&pctldev->mutex); 363 } 364 365 mutex_unlock(&pinctrldev_list_mutex); 366 367 return false; 368 } 369 #else 370 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 371 #endif 372 373 /** 374 * pinctrl_get_device_gpio_range() - find device for GPIO range 375 * @gpio: the pin to locate the pin controller for 376 * @outdev: the pin control device if found 377 * @outrange: the GPIO range if found 378 * 379 * Find the pin controller handling a certain GPIO pin from the pinspace of 380 * the GPIO subsystem, return the device and the matching GPIO range. Returns 381 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 382 * may still have not been registered. 383 */ 384 static int pinctrl_get_device_gpio_range(unsigned gpio, 385 struct pinctrl_dev **outdev, 386 struct pinctrl_gpio_range **outrange) 387 { 388 struct pinctrl_dev *pctldev; 389 390 mutex_lock(&pinctrldev_list_mutex); 391 392 /* Loop over the pin controllers */ 393 list_for_each_entry(pctldev, &pinctrldev_list, node) { 394 struct pinctrl_gpio_range *range; 395 396 range = pinctrl_match_gpio_range(pctldev, gpio); 397 if (range) { 398 *outdev = pctldev; 399 *outrange = range; 400 mutex_unlock(&pinctrldev_list_mutex); 401 return 0; 402 } 403 } 404 405 mutex_unlock(&pinctrldev_list_mutex); 406 407 return -EPROBE_DEFER; 408 } 409 410 /** 411 * pinctrl_add_gpio_range() - register a GPIO range for a controller 412 * @pctldev: pin controller device to add the range to 413 * @range: the GPIO range to add 414 * 415 * This adds a range of GPIOs to be handled by a certain pin controller. Call 416 * this to register handled ranges after registering your pin controller. 417 */ 418 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 419 struct pinctrl_gpio_range *range) 420 { 421 mutex_lock(&pctldev->mutex); 422 list_add_tail(&range->node, &pctldev->gpio_ranges); 423 mutex_unlock(&pctldev->mutex); 424 } 425 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 426 427 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 428 struct pinctrl_gpio_range *ranges, 429 unsigned nranges) 430 { 431 int i; 432 433 for (i = 0; i < nranges; i++) 434 pinctrl_add_gpio_range(pctldev, &ranges[i]); 435 } 436 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 437 438 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 439 struct pinctrl_gpio_range *range) 440 { 441 struct pinctrl_dev *pctldev; 442 443 pctldev = get_pinctrl_dev_from_devname(devname); 444 445 /* 446 * If we can't find this device, let's assume that is because 447 * it has not probed yet, so the driver trying to register this 448 * range need to defer probing. 449 */ 450 if (!pctldev) 451 return ERR_PTR(-EPROBE_DEFER); 452 453 pinctrl_add_gpio_range(pctldev, range); 454 455 return pctldev; 456 } 457 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 458 459 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 460 const unsigned **pins, unsigned *num_pins) 461 { 462 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 463 int gs; 464 465 if (!pctlops->get_group_pins) 466 return -EINVAL; 467 468 gs = pinctrl_get_group_selector(pctldev, pin_group); 469 if (gs < 0) 470 return gs; 471 472 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 473 } 474 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 475 476 struct pinctrl_gpio_range * 477 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 478 unsigned int pin) 479 { 480 struct pinctrl_gpio_range *range; 481 482 /* Loop over the ranges */ 483 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 484 /* Check if we're in the valid range */ 485 if (range->pins) { 486 int a; 487 for (a = 0; a < range->npins; a++) { 488 if (range->pins[a] == pin) 489 return range; 490 } 491 } else if (pin >= range->pin_base && 492 pin < range->pin_base + range->npins) 493 return range; 494 } 495 496 return NULL; 497 } 498 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 499 500 /** 501 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 502 * @pctldev: the pin controller device to look in 503 * @pin: a controller-local number to find the range for 504 */ 505 struct pinctrl_gpio_range * 506 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 507 unsigned int pin) 508 { 509 struct pinctrl_gpio_range *range; 510 511 mutex_lock(&pctldev->mutex); 512 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 513 mutex_unlock(&pctldev->mutex); 514 515 return range; 516 } 517 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 518 519 /** 520 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller 521 * @pctldev: pin controller device to remove the range from 522 * @range: the GPIO range to remove 523 */ 524 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 525 struct pinctrl_gpio_range *range) 526 { 527 mutex_lock(&pctldev->mutex); 528 list_del(&range->node); 529 mutex_unlock(&pctldev->mutex); 530 } 531 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 532 533 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 534 535 /** 536 * pinctrl_generic_get_group_count() - returns the number of pin groups 537 * @pctldev: pin controller device 538 */ 539 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 540 { 541 return pctldev->num_groups; 542 } 543 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 544 545 /** 546 * pinctrl_generic_get_group_name() - returns the name of a pin group 547 * @pctldev: pin controller device 548 * @selector: group number 549 */ 550 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 551 unsigned int selector) 552 { 553 struct group_desc *group; 554 555 group = radix_tree_lookup(&pctldev->pin_group_tree, 556 selector); 557 if (!group) 558 return NULL; 559 560 return group->name; 561 } 562 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 563 564 /** 565 * pinctrl_generic_get_group_pins() - gets the pin group pins 566 * @pctldev: pin controller device 567 * @selector: group number 568 * @pins: pins in the group 569 * @num_pins: number of pins in the group 570 */ 571 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 572 unsigned int selector, 573 const unsigned int **pins, 574 unsigned int *num_pins) 575 { 576 struct group_desc *group; 577 578 group = radix_tree_lookup(&pctldev->pin_group_tree, 579 selector); 580 if (!group) { 581 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 582 __func__, selector); 583 return -EINVAL; 584 } 585 586 *pins = group->pins; 587 *num_pins = group->num_pins; 588 589 return 0; 590 } 591 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 592 593 /** 594 * pinctrl_generic_get_group() - returns a pin group based on the number 595 * @pctldev: pin controller device 596 * @selector: group number 597 */ 598 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 599 unsigned int selector) 600 { 601 struct group_desc *group; 602 603 group = radix_tree_lookup(&pctldev->pin_group_tree, 604 selector); 605 if (!group) 606 return NULL; 607 608 return group; 609 } 610 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 611 612 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev, 613 const char *function) 614 { 615 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 616 int ngroups = ops->get_groups_count(pctldev); 617 int selector = 0; 618 619 /* See if this pctldev has this group */ 620 while (selector < ngroups) { 621 const char *gname = ops->get_group_name(pctldev, selector); 622 623 if (gname && !strcmp(function, gname)) 624 return selector; 625 626 selector++; 627 } 628 629 return -EINVAL; 630 } 631 632 /** 633 * pinctrl_generic_add_group() - adds a new pin group 634 * @pctldev: pin controller device 635 * @name: name of the pin group 636 * @pins: pins in the pin group 637 * @num_pins: number of pins in the pin group 638 * @data: pin controller driver specific data 639 * 640 * Note that the caller must take care of locking. 641 */ 642 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 643 int *pins, int num_pins, void *data) 644 { 645 struct group_desc *group; 646 int selector, error; 647 648 if (!name) 649 return -EINVAL; 650 651 selector = pinctrl_generic_group_name_to_selector(pctldev, name); 652 if (selector >= 0) 653 return selector; 654 655 selector = pctldev->num_groups; 656 657 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 658 if (!group) 659 return -ENOMEM; 660 661 group->name = name; 662 group->pins = pins; 663 group->num_pins = num_pins; 664 group->data = data; 665 666 error = radix_tree_insert(&pctldev->pin_group_tree, selector, group); 667 if (error) 668 return error; 669 670 pctldev->num_groups++; 671 672 return selector; 673 } 674 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 675 676 /** 677 * pinctrl_generic_remove_group() - removes a numbered pin group 678 * @pctldev: pin controller device 679 * @selector: group number 680 * 681 * Note that the caller must take care of locking. 682 */ 683 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 684 unsigned int selector) 685 { 686 struct group_desc *group; 687 688 group = radix_tree_lookup(&pctldev->pin_group_tree, 689 selector); 690 if (!group) 691 return -ENOENT; 692 693 radix_tree_delete(&pctldev->pin_group_tree, selector); 694 devm_kfree(pctldev->dev, group); 695 696 pctldev->num_groups--; 697 698 return 0; 699 } 700 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 701 702 /** 703 * pinctrl_generic_free_groups() - removes all pin groups 704 * @pctldev: pin controller device 705 * 706 * Note that the caller must take care of locking. The pinctrl groups 707 * are allocated with devm_kzalloc() so no need to free them here. 708 */ 709 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 710 { 711 struct radix_tree_iter iter; 712 void __rcu **slot; 713 714 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 715 radix_tree_delete(&pctldev->pin_group_tree, iter.index); 716 717 pctldev->num_groups = 0; 718 } 719 720 #else 721 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 722 { 723 } 724 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 725 726 /** 727 * pinctrl_get_group_selector() - returns the group selector for a group 728 * @pctldev: the pin controller handling the group 729 * @pin_group: the pin group to look up 730 */ 731 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 732 const char *pin_group) 733 { 734 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 735 unsigned ngroups = pctlops->get_groups_count(pctldev); 736 unsigned group_selector = 0; 737 738 while (group_selector < ngroups) { 739 const char *gname = pctlops->get_group_name(pctldev, 740 group_selector); 741 if (gname && !strcmp(gname, pin_group)) { 742 dev_dbg(pctldev->dev, 743 "found group selector %u for %s\n", 744 group_selector, 745 pin_group); 746 return group_selector; 747 } 748 749 group_selector++; 750 } 751 752 dev_err(pctldev->dev, "does not have pin group %s\n", 753 pin_group); 754 755 return -EINVAL; 756 } 757 758 bool pinctrl_gpio_can_use_line(unsigned gpio) 759 { 760 struct pinctrl_dev *pctldev; 761 struct pinctrl_gpio_range *range; 762 bool result; 763 int pin; 764 765 /* 766 * Try to obtain GPIO range, if it fails 767 * we're probably dealing with GPIO driver 768 * without a backing pin controller - bail out. 769 */ 770 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range)) 771 return true; 772 773 mutex_lock(&pctldev->mutex); 774 775 /* Convert to the pin controllers number space */ 776 pin = gpio_to_pin(range, gpio); 777 778 result = pinmux_can_be_used_for_gpio(pctldev, pin); 779 780 mutex_unlock(&pctldev->mutex); 781 782 return result; 783 } 784 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line); 785 786 bool pinctrl_gpio_can_use_line_new(struct gpio_chip *gc, unsigned int offset) 787 { 788 return pinctrl_gpio_can_use_line(gc->base + offset); 789 } 790 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line_new); 791 792 /* This function is deprecated and will be removed. Don't use. */ 793 int pinctrl_gpio_request(unsigned gpio) 794 { 795 struct pinctrl_dev *pctldev; 796 struct pinctrl_gpio_range *range; 797 int ret; 798 int pin; 799 800 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 801 if (ret) { 802 if (pinctrl_ready_for_gpio_range(gpio)) 803 ret = 0; 804 return ret; 805 } 806 807 mutex_lock(&pctldev->mutex); 808 809 /* Convert to the pin controllers number space */ 810 pin = gpio_to_pin(range, gpio); 811 812 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 813 814 mutex_unlock(&pctldev->mutex); 815 816 return ret; 817 } 818 EXPORT_SYMBOL_GPL(pinctrl_gpio_request); 819 820 /** 821 * pinctrl_gpio_request_new() - request a single pin to be used as GPIO 822 * @gc: GPIO chip structure from the GPIO subsystem 823 * @offset: hardware offset of the GPIO relative to the controller 824 * 825 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 826 * as part of their gpio_request() semantics, platforms and individual drivers 827 * shall *NOT* request GPIO pins to be muxed in. 828 */ 829 int pinctrl_gpio_request_new(struct gpio_chip *gc, unsigned int offset) 830 { 831 return pinctrl_gpio_request(gc->base + offset); 832 } 833 EXPORT_SYMBOL_GPL(pinctrl_gpio_request_new); 834 835 /* This function is deprecated and will be removed. Don't use. */ 836 void pinctrl_gpio_free(unsigned gpio) 837 { 838 struct pinctrl_dev *pctldev; 839 struct pinctrl_gpio_range *range; 840 int ret; 841 int pin; 842 843 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 844 if (ret) { 845 return; 846 } 847 mutex_lock(&pctldev->mutex); 848 849 /* Convert to the pin controllers number space */ 850 pin = gpio_to_pin(range, gpio); 851 852 pinmux_free_gpio(pctldev, pin, range); 853 854 mutex_unlock(&pctldev->mutex); 855 } 856 EXPORT_SYMBOL_GPL(pinctrl_gpio_free); 857 858 /** 859 * pinctrl_gpio_free_new() - free control on a single pin, currently used as GPIO 860 * @gc: GPIO chip structure from the GPIO subsystem 861 * @offset: hardware offset of the GPIO relative to the controller 862 * 863 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 864 * as part of their gpio_request() semantics, platforms and individual drivers 865 * shall *NOT* request GPIO pins to be muxed in. 866 */ 867 void pinctrl_gpio_free_new(struct gpio_chip *gc, unsigned int offset) 868 { 869 return pinctrl_gpio_free(gc->base + offset); 870 } 871 EXPORT_SYMBOL_GPL(pinctrl_gpio_free_new); 872 873 static int pinctrl_gpio_direction(unsigned gpio, bool input) 874 { 875 struct pinctrl_dev *pctldev; 876 struct pinctrl_gpio_range *range; 877 int ret; 878 int pin; 879 880 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 881 if (ret) { 882 return ret; 883 } 884 885 mutex_lock(&pctldev->mutex); 886 887 /* Convert to the pin controllers number space */ 888 pin = gpio_to_pin(range, gpio); 889 ret = pinmux_gpio_direction(pctldev, range, pin, input); 890 891 mutex_unlock(&pctldev->mutex); 892 893 return ret; 894 } 895 896 /* This function is deprecated and will be removed. Don't use. */ 897 int pinctrl_gpio_direction_input(unsigned gpio) 898 { 899 return pinctrl_gpio_direction(gpio, true); 900 } 901 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 902 903 /** 904 * pinctrl_gpio_direction_input_new() - request a GPIO pin to go into input mode 905 * @gc: GPIO chip structure from the GPIO subsystem 906 * @offset: hardware offset of the GPIO relative to the controller 907 * 908 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 909 * as part of their gpio_direction_input() semantics, platforms and individual 910 * drivers shall *NOT* touch pin control GPIO calls. 911 */ 912 int pinctrl_gpio_direction_input_new(struct gpio_chip *gc, unsigned int offset) 913 { 914 return pinctrl_gpio_direction_input(gc->base + offset); 915 } 916 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input_new); 917 918 /* This function is deprecated and will be removed. Don't use. */ 919 int pinctrl_gpio_direction_output(unsigned gpio) 920 { 921 return pinctrl_gpio_direction(gpio, false); 922 } 923 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 924 925 /** 926 * pinctrl_gpio_direction_output_new() - request a GPIO pin to go into output 927 * mode 928 * @gc: GPIO chip structure from the GPIO subsystem 929 * @offset: hardware offset of the GPIO relative to the controller 930 * 931 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 932 * as part of their gpio_direction_output() semantics, platforms and individual 933 * drivers shall *NOT* touch pin control GPIO calls. 934 */ 935 int pinctrl_gpio_direction_output_new(struct gpio_chip *gc, unsigned int offset) 936 { 937 return pinctrl_gpio_direction_output(gc->base + offset); 938 } 939 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output_new); 940 941 /* This function is deprecated and will be removed. Don't use. */ 942 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config) 943 { 944 unsigned long configs[] = { config }; 945 struct pinctrl_gpio_range *range; 946 struct pinctrl_dev *pctldev; 947 int ret, pin; 948 949 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 950 if (ret) 951 return ret; 952 953 mutex_lock(&pctldev->mutex); 954 pin = gpio_to_pin(range, gpio); 955 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 956 mutex_unlock(&pctldev->mutex); 957 958 return ret; 959 } 960 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 961 962 /** 963 * pinctrl_gpio_set_config_new() - Apply config to given GPIO pin 964 * @gc: GPIO chip structure from the GPIO subsystem 965 * @offset: hardware offset of the GPIO relative to the controller 966 * @config: the configuration to apply to the GPIO 967 * 968 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 969 * they need to call the underlying pin controller to change GPIO config 970 * (for example set debounce time). 971 */ 972 int pinctrl_gpio_set_config_new(struct gpio_chip *gc, unsigned int offset, 973 unsigned long config) 974 { 975 return pinctrl_gpio_set_config(gc->base + offset, config); 976 } 977 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config_new); 978 979 static struct pinctrl_state *find_state(struct pinctrl *p, 980 const char *name) 981 { 982 struct pinctrl_state *state; 983 984 list_for_each_entry(state, &p->states, node) 985 if (!strcmp(state->name, name)) 986 return state; 987 988 return NULL; 989 } 990 991 static struct pinctrl_state *create_state(struct pinctrl *p, 992 const char *name) 993 { 994 struct pinctrl_state *state; 995 996 state = kzalloc(sizeof(*state), GFP_KERNEL); 997 if (!state) 998 return ERR_PTR(-ENOMEM); 999 1000 state->name = name; 1001 INIT_LIST_HEAD(&state->settings); 1002 1003 list_add_tail(&state->node, &p->states); 1004 1005 return state; 1006 } 1007 1008 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 1009 const struct pinctrl_map *map) 1010 { 1011 struct pinctrl_state *state; 1012 struct pinctrl_setting *setting; 1013 int ret; 1014 1015 state = find_state(p, map->name); 1016 if (!state) 1017 state = create_state(p, map->name); 1018 if (IS_ERR(state)) 1019 return PTR_ERR(state); 1020 1021 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 1022 return 0; 1023 1024 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 1025 if (!setting) 1026 return -ENOMEM; 1027 1028 setting->type = map->type; 1029 1030 if (pctldev) 1031 setting->pctldev = pctldev; 1032 else 1033 setting->pctldev = 1034 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 1035 if (!setting->pctldev) { 1036 kfree(setting); 1037 /* Do not defer probing of hogs (circular loop) */ 1038 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 1039 return -ENODEV; 1040 /* 1041 * OK let us guess that the driver is not there yet, and 1042 * let's defer obtaining this pinctrl handle to later... 1043 */ 1044 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 1045 map->ctrl_dev_name); 1046 return -EPROBE_DEFER; 1047 } 1048 1049 setting->dev_name = map->dev_name; 1050 1051 switch (map->type) { 1052 case PIN_MAP_TYPE_MUX_GROUP: 1053 ret = pinmux_map_to_setting(map, setting); 1054 break; 1055 case PIN_MAP_TYPE_CONFIGS_PIN: 1056 case PIN_MAP_TYPE_CONFIGS_GROUP: 1057 ret = pinconf_map_to_setting(map, setting); 1058 break; 1059 default: 1060 ret = -EINVAL; 1061 break; 1062 } 1063 if (ret < 0) { 1064 kfree(setting); 1065 return ret; 1066 } 1067 1068 list_add_tail(&setting->node, &state->settings); 1069 1070 return 0; 1071 } 1072 1073 static struct pinctrl *find_pinctrl(struct device *dev) 1074 { 1075 struct pinctrl *p; 1076 1077 mutex_lock(&pinctrl_list_mutex); 1078 list_for_each_entry(p, &pinctrl_list, node) 1079 if (p->dev == dev) { 1080 mutex_unlock(&pinctrl_list_mutex); 1081 return p; 1082 } 1083 1084 mutex_unlock(&pinctrl_list_mutex); 1085 return NULL; 1086 } 1087 1088 static void pinctrl_free(struct pinctrl *p, bool inlist); 1089 1090 static struct pinctrl *create_pinctrl(struct device *dev, 1091 struct pinctrl_dev *pctldev) 1092 { 1093 struct pinctrl *p; 1094 const char *devname; 1095 struct pinctrl_maps *maps_node; 1096 const struct pinctrl_map *map; 1097 int ret; 1098 1099 /* 1100 * create the state cookie holder struct pinctrl for each 1101 * mapping, this is what consumers will get when requesting 1102 * a pin control handle with pinctrl_get() 1103 */ 1104 p = kzalloc(sizeof(*p), GFP_KERNEL); 1105 if (!p) 1106 return ERR_PTR(-ENOMEM); 1107 p->dev = dev; 1108 INIT_LIST_HEAD(&p->states); 1109 INIT_LIST_HEAD(&p->dt_maps); 1110 1111 ret = pinctrl_dt_to_map(p, pctldev); 1112 if (ret < 0) { 1113 kfree(p); 1114 return ERR_PTR(ret); 1115 } 1116 1117 devname = dev_name(dev); 1118 1119 mutex_lock(&pinctrl_maps_mutex); 1120 /* Iterate over the pin control maps to locate the right ones */ 1121 for_each_pin_map(maps_node, map) { 1122 /* Map must be for this device */ 1123 if (strcmp(map->dev_name, devname)) 1124 continue; 1125 /* 1126 * If pctldev is not null, we are claiming hog for it, 1127 * that means, setting that is served by pctldev by itself. 1128 * 1129 * Thus we must skip map that is for this device but is served 1130 * by other device. 1131 */ 1132 if (pctldev && 1133 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name)) 1134 continue; 1135 1136 ret = add_setting(p, pctldev, map); 1137 /* 1138 * At this point the adding of a setting may: 1139 * 1140 * - Defer, if the pinctrl device is not yet available 1141 * - Fail, if the pinctrl device is not yet available, 1142 * AND the setting is a hog. We cannot defer that, since 1143 * the hog will kick in immediately after the device 1144 * is registered. 1145 * 1146 * If the error returned was not -EPROBE_DEFER then we 1147 * accumulate the errors to see if we end up with 1148 * an -EPROBE_DEFER later, as that is the worst case. 1149 */ 1150 if (ret == -EPROBE_DEFER) { 1151 pinctrl_free(p, false); 1152 mutex_unlock(&pinctrl_maps_mutex); 1153 return ERR_PTR(ret); 1154 } 1155 } 1156 mutex_unlock(&pinctrl_maps_mutex); 1157 1158 if (ret < 0) { 1159 /* If some other error than deferral occurred, return here */ 1160 pinctrl_free(p, false); 1161 return ERR_PTR(ret); 1162 } 1163 1164 kref_init(&p->users); 1165 1166 /* Add the pinctrl handle to the global list */ 1167 mutex_lock(&pinctrl_list_mutex); 1168 list_add_tail(&p->node, &pinctrl_list); 1169 mutex_unlock(&pinctrl_list_mutex); 1170 1171 return p; 1172 } 1173 1174 /** 1175 * pinctrl_get() - retrieves the pinctrl handle for a device 1176 * @dev: the device to obtain the handle for 1177 */ 1178 struct pinctrl *pinctrl_get(struct device *dev) 1179 { 1180 struct pinctrl *p; 1181 1182 if (WARN_ON(!dev)) 1183 return ERR_PTR(-EINVAL); 1184 1185 /* 1186 * See if somebody else (such as the device core) has already 1187 * obtained a handle to the pinctrl for this device. In that case, 1188 * return another pointer to it. 1189 */ 1190 p = find_pinctrl(dev); 1191 if (p) { 1192 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1193 kref_get(&p->users); 1194 return p; 1195 } 1196 1197 return create_pinctrl(dev, NULL); 1198 } 1199 EXPORT_SYMBOL_GPL(pinctrl_get); 1200 1201 static void pinctrl_free_setting(bool disable_setting, 1202 struct pinctrl_setting *setting) 1203 { 1204 switch (setting->type) { 1205 case PIN_MAP_TYPE_MUX_GROUP: 1206 if (disable_setting) 1207 pinmux_disable_setting(setting); 1208 pinmux_free_setting(setting); 1209 break; 1210 case PIN_MAP_TYPE_CONFIGS_PIN: 1211 case PIN_MAP_TYPE_CONFIGS_GROUP: 1212 pinconf_free_setting(setting); 1213 break; 1214 default: 1215 break; 1216 } 1217 } 1218 1219 static void pinctrl_free(struct pinctrl *p, bool inlist) 1220 { 1221 struct pinctrl_state *state, *n1; 1222 struct pinctrl_setting *setting, *n2; 1223 1224 mutex_lock(&pinctrl_list_mutex); 1225 list_for_each_entry_safe(state, n1, &p->states, node) { 1226 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1227 pinctrl_free_setting(state == p->state, setting); 1228 list_del(&setting->node); 1229 kfree(setting); 1230 } 1231 list_del(&state->node); 1232 kfree(state); 1233 } 1234 1235 pinctrl_dt_free_maps(p); 1236 1237 if (inlist) 1238 list_del(&p->node); 1239 kfree(p); 1240 mutex_unlock(&pinctrl_list_mutex); 1241 } 1242 1243 /** 1244 * pinctrl_release() - release the pinctrl handle 1245 * @kref: the kref in the pinctrl being released 1246 */ 1247 static void pinctrl_release(struct kref *kref) 1248 { 1249 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1250 1251 pinctrl_free(p, true); 1252 } 1253 1254 /** 1255 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1256 * @p: the pinctrl handle to release 1257 */ 1258 void pinctrl_put(struct pinctrl *p) 1259 { 1260 kref_put(&p->users, pinctrl_release); 1261 } 1262 EXPORT_SYMBOL_GPL(pinctrl_put); 1263 1264 /** 1265 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1266 * @p: the pinctrl handle to retrieve the state from 1267 * @name: the state name to retrieve 1268 */ 1269 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1270 const char *name) 1271 { 1272 struct pinctrl_state *state; 1273 1274 state = find_state(p, name); 1275 if (!state) { 1276 if (pinctrl_dummy_state) { 1277 /* create dummy state */ 1278 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1279 name); 1280 state = create_state(p, name); 1281 } else 1282 state = ERR_PTR(-ENODEV); 1283 } 1284 1285 return state; 1286 } 1287 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1288 1289 static void pinctrl_link_add(struct pinctrl_dev *pctldev, 1290 struct device *consumer) 1291 { 1292 if (pctldev->desc->link_consumers) 1293 device_link_add(consumer, pctldev->dev, 1294 DL_FLAG_PM_RUNTIME | 1295 DL_FLAG_AUTOREMOVE_CONSUMER); 1296 } 1297 1298 /** 1299 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW 1300 * @p: the pinctrl handle for the device that requests configuration 1301 * @state: the state handle to select/activate/program 1302 */ 1303 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state) 1304 { 1305 struct pinctrl_setting *setting, *setting2; 1306 struct pinctrl_state *old_state = p->state; 1307 int ret; 1308 1309 if (p->state) { 1310 /* 1311 * For each pinmux setting in the old state, forget SW's record 1312 * of mux owner for that pingroup. Any pingroups which are 1313 * still owned by the new state will be re-acquired by the call 1314 * to pinmux_enable_setting() in the loop below. 1315 */ 1316 list_for_each_entry(setting, &p->state->settings, node) { 1317 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1318 continue; 1319 pinmux_disable_setting(setting); 1320 } 1321 } 1322 1323 p->state = NULL; 1324 1325 /* Apply all the settings for the new state - pinmux first */ 1326 list_for_each_entry(setting, &state->settings, node) { 1327 switch (setting->type) { 1328 case PIN_MAP_TYPE_MUX_GROUP: 1329 ret = pinmux_enable_setting(setting); 1330 break; 1331 case PIN_MAP_TYPE_CONFIGS_PIN: 1332 case PIN_MAP_TYPE_CONFIGS_GROUP: 1333 ret = 0; 1334 break; 1335 default: 1336 ret = -EINVAL; 1337 break; 1338 } 1339 1340 if (ret < 0) 1341 goto unapply_new_state; 1342 1343 /* Do not link hogs (circular dependency) */ 1344 if (p != setting->pctldev->p) 1345 pinctrl_link_add(setting->pctldev, p->dev); 1346 } 1347 1348 /* Apply all the settings for the new state - pinconf after */ 1349 list_for_each_entry(setting, &state->settings, node) { 1350 switch (setting->type) { 1351 case PIN_MAP_TYPE_MUX_GROUP: 1352 ret = 0; 1353 break; 1354 case PIN_MAP_TYPE_CONFIGS_PIN: 1355 case PIN_MAP_TYPE_CONFIGS_GROUP: 1356 ret = pinconf_apply_setting(setting); 1357 break; 1358 default: 1359 ret = -EINVAL; 1360 break; 1361 } 1362 1363 if (ret < 0) { 1364 goto unapply_new_state; 1365 } 1366 1367 /* Do not link hogs (circular dependency) */ 1368 if (p != setting->pctldev->p) 1369 pinctrl_link_add(setting->pctldev, p->dev); 1370 } 1371 1372 p->state = state; 1373 1374 return 0; 1375 1376 unapply_new_state: 1377 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1378 1379 list_for_each_entry(setting2, &state->settings, node) { 1380 if (&setting2->node == &setting->node) 1381 break; 1382 /* 1383 * All we can do here is pinmux_disable_setting. 1384 * That means that some pins are muxed differently now 1385 * than they were before applying the setting (We can't 1386 * "unmux a pin"!), but it's not a big deal since the pins 1387 * are free to be muxed by another apply_setting. 1388 */ 1389 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1390 pinmux_disable_setting(setting2); 1391 } 1392 1393 /* There's no infinite recursive loop here because p->state is NULL */ 1394 if (old_state) 1395 pinctrl_select_state(p, old_state); 1396 1397 return ret; 1398 } 1399 1400 /** 1401 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1402 * @p: the pinctrl handle for the device that requests configuration 1403 * @state: the state handle to select/activate/program 1404 */ 1405 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1406 { 1407 if (p->state == state) 1408 return 0; 1409 1410 return pinctrl_commit_state(p, state); 1411 } 1412 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1413 1414 static void devm_pinctrl_release(struct device *dev, void *res) 1415 { 1416 pinctrl_put(*(struct pinctrl **)res); 1417 } 1418 1419 /** 1420 * devm_pinctrl_get() - Resource managed pinctrl_get() 1421 * @dev: the device to obtain the handle for 1422 * 1423 * If there is a need to explicitly destroy the returned struct pinctrl, 1424 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1425 */ 1426 struct pinctrl *devm_pinctrl_get(struct device *dev) 1427 { 1428 struct pinctrl **ptr, *p; 1429 1430 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1431 if (!ptr) 1432 return ERR_PTR(-ENOMEM); 1433 1434 p = pinctrl_get(dev); 1435 if (!IS_ERR(p)) { 1436 *ptr = p; 1437 devres_add(dev, ptr); 1438 } else { 1439 devres_free(ptr); 1440 } 1441 1442 return p; 1443 } 1444 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1445 1446 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1447 { 1448 struct pinctrl **p = res; 1449 1450 return *p == data; 1451 } 1452 1453 /** 1454 * devm_pinctrl_put() - Resource managed pinctrl_put() 1455 * @p: the pinctrl handle to release 1456 * 1457 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1458 * this function will not need to be called and the resource management 1459 * code will ensure that the resource is freed. 1460 */ 1461 void devm_pinctrl_put(struct pinctrl *p) 1462 { 1463 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1464 devm_pinctrl_match, p)); 1465 } 1466 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1467 1468 /** 1469 * pinctrl_register_mappings() - register a set of pin controller mappings 1470 * @maps: the pincontrol mappings table to register. Note the pinctrl-core 1471 * keeps a reference to the passed in maps, so they should _not_ be 1472 * marked with __initdata. 1473 * @num_maps: the number of maps in the mapping table 1474 */ 1475 int pinctrl_register_mappings(const struct pinctrl_map *maps, 1476 unsigned num_maps) 1477 { 1478 int i, ret; 1479 struct pinctrl_maps *maps_node; 1480 1481 pr_debug("add %u pinctrl maps\n", num_maps); 1482 1483 /* First sanity check the new mapping */ 1484 for (i = 0; i < num_maps; i++) { 1485 if (!maps[i].dev_name) { 1486 pr_err("failed to register map %s (%d): no device given\n", 1487 maps[i].name, i); 1488 return -EINVAL; 1489 } 1490 1491 if (!maps[i].name) { 1492 pr_err("failed to register map %d: no map name given\n", 1493 i); 1494 return -EINVAL; 1495 } 1496 1497 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1498 !maps[i].ctrl_dev_name) { 1499 pr_err("failed to register map %s (%d): no pin control device given\n", 1500 maps[i].name, i); 1501 return -EINVAL; 1502 } 1503 1504 switch (maps[i].type) { 1505 case PIN_MAP_TYPE_DUMMY_STATE: 1506 break; 1507 case PIN_MAP_TYPE_MUX_GROUP: 1508 ret = pinmux_validate_map(&maps[i], i); 1509 if (ret < 0) 1510 return ret; 1511 break; 1512 case PIN_MAP_TYPE_CONFIGS_PIN: 1513 case PIN_MAP_TYPE_CONFIGS_GROUP: 1514 ret = pinconf_validate_map(&maps[i], i); 1515 if (ret < 0) 1516 return ret; 1517 break; 1518 default: 1519 pr_err("failed to register map %s (%d): invalid type given\n", 1520 maps[i].name, i); 1521 return -EINVAL; 1522 } 1523 } 1524 1525 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1526 if (!maps_node) 1527 return -ENOMEM; 1528 1529 maps_node->maps = maps; 1530 maps_node->num_maps = num_maps; 1531 1532 mutex_lock(&pinctrl_maps_mutex); 1533 list_add_tail(&maps_node->node, &pinctrl_maps); 1534 mutex_unlock(&pinctrl_maps_mutex); 1535 1536 return 0; 1537 } 1538 EXPORT_SYMBOL_GPL(pinctrl_register_mappings); 1539 1540 /** 1541 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings 1542 * @map: the pincontrol mappings table passed to pinctrl_register_mappings() 1543 * when registering the mappings. 1544 */ 1545 void pinctrl_unregister_mappings(const struct pinctrl_map *map) 1546 { 1547 struct pinctrl_maps *maps_node; 1548 1549 mutex_lock(&pinctrl_maps_mutex); 1550 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1551 if (maps_node->maps == map) { 1552 list_del(&maps_node->node); 1553 kfree(maps_node); 1554 mutex_unlock(&pinctrl_maps_mutex); 1555 return; 1556 } 1557 } 1558 mutex_unlock(&pinctrl_maps_mutex); 1559 } 1560 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings); 1561 1562 /** 1563 * pinctrl_force_sleep() - turn a given controller device into sleep state 1564 * @pctldev: pin controller device 1565 */ 1566 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1567 { 1568 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1569 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep); 1570 return 0; 1571 } 1572 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1573 1574 /** 1575 * pinctrl_force_default() - turn a given controller device into default state 1576 * @pctldev: pin controller device 1577 */ 1578 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1579 { 1580 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1581 return pinctrl_commit_state(pctldev->p, pctldev->hog_default); 1582 return 0; 1583 } 1584 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1585 1586 /** 1587 * pinctrl_init_done() - tell pinctrl probe is done 1588 * 1589 * We'll use this time to switch the pins from "init" to "default" unless the 1590 * driver selected some other state. 1591 * 1592 * @dev: device to that's done probing 1593 */ 1594 int pinctrl_init_done(struct device *dev) 1595 { 1596 struct dev_pin_info *pins = dev->pins; 1597 int ret; 1598 1599 if (!pins) 1600 return 0; 1601 1602 if (IS_ERR(pins->init_state)) 1603 return 0; /* No such state */ 1604 1605 if (pins->p->state != pins->init_state) 1606 return 0; /* Not at init anyway */ 1607 1608 if (IS_ERR(pins->default_state)) 1609 return 0; /* No default state */ 1610 1611 ret = pinctrl_select_state(pins->p, pins->default_state); 1612 if (ret) 1613 dev_err(dev, "failed to activate default pinctrl state\n"); 1614 1615 return ret; 1616 } 1617 1618 static int pinctrl_select_bound_state(struct device *dev, 1619 struct pinctrl_state *state) 1620 { 1621 struct dev_pin_info *pins = dev->pins; 1622 int ret; 1623 1624 if (IS_ERR(state)) 1625 return 0; /* No such state */ 1626 ret = pinctrl_select_state(pins->p, state); 1627 if (ret) 1628 dev_err(dev, "failed to activate pinctrl state %s\n", 1629 state->name); 1630 return ret; 1631 } 1632 1633 /** 1634 * pinctrl_select_default_state() - select default pinctrl state 1635 * @dev: device to select default state for 1636 */ 1637 int pinctrl_select_default_state(struct device *dev) 1638 { 1639 if (!dev->pins) 1640 return 0; 1641 1642 return pinctrl_select_bound_state(dev, dev->pins->default_state); 1643 } 1644 EXPORT_SYMBOL_GPL(pinctrl_select_default_state); 1645 1646 #ifdef CONFIG_PM 1647 1648 /** 1649 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1650 * @dev: device to select default state for 1651 */ 1652 int pinctrl_pm_select_default_state(struct device *dev) 1653 { 1654 return pinctrl_select_default_state(dev); 1655 } 1656 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1657 1658 /** 1659 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1660 * @dev: device to select sleep state for 1661 */ 1662 int pinctrl_pm_select_sleep_state(struct device *dev) 1663 { 1664 if (!dev->pins) 1665 return 0; 1666 1667 return pinctrl_select_bound_state(dev, dev->pins->sleep_state); 1668 } 1669 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1670 1671 /** 1672 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1673 * @dev: device to select idle state for 1674 */ 1675 int pinctrl_pm_select_idle_state(struct device *dev) 1676 { 1677 if (!dev->pins) 1678 return 0; 1679 1680 return pinctrl_select_bound_state(dev, dev->pins->idle_state); 1681 } 1682 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1683 #endif 1684 1685 #ifdef CONFIG_DEBUG_FS 1686 1687 static int pinctrl_pins_show(struct seq_file *s, void *what) 1688 { 1689 struct pinctrl_dev *pctldev = s->private; 1690 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1691 unsigned i, pin; 1692 #ifdef CONFIG_GPIOLIB 1693 struct pinctrl_gpio_range *range; 1694 struct gpio_chip *chip; 1695 int gpio_num; 1696 #endif 1697 1698 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1699 1700 mutex_lock(&pctldev->mutex); 1701 1702 /* The pin number can be retrived from the pin controller descriptor */ 1703 for (i = 0; i < pctldev->desc->npins; i++) { 1704 struct pin_desc *desc; 1705 1706 pin = pctldev->desc->pins[i].number; 1707 desc = pin_desc_get(pctldev, pin); 1708 /* Pin space may be sparse */ 1709 if (!desc) 1710 continue; 1711 1712 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1713 1714 #ifdef CONFIG_GPIOLIB 1715 gpio_num = -1; 1716 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1717 if ((pin >= range->pin_base) && 1718 (pin < (range->pin_base + range->npins))) { 1719 gpio_num = range->base + (pin - range->pin_base); 1720 break; 1721 } 1722 } 1723 if (gpio_num >= 0) 1724 /* 1725 * FIXME: gpio_num comes from the global GPIO numberspace. 1726 * we need to get rid of the range->base eventually and 1727 * get the descriptor directly from the gpio_chip. 1728 */ 1729 chip = gpiod_to_chip(gpio_to_desc(gpio_num)); 1730 else 1731 chip = NULL; 1732 if (chip) 1733 seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label); 1734 else 1735 seq_puts(s, "0:? "); 1736 #endif 1737 1738 /* Driver-specific info per pin */ 1739 if (ops->pin_dbg_show) 1740 ops->pin_dbg_show(pctldev, s, pin); 1741 1742 seq_puts(s, "\n"); 1743 } 1744 1745 mutex_unlock(&pctldev->mutex); 1746 1747 return 0; 1748 } 1749 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins); 1750 1751 static int pinctrl_groups_show(struct seq_file *s, void *what) 1752 { 1753 struct pinctrl_dev *pctldev = s->private; 1754 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1755 unsigned ngroups, selector = 0; 1756 1757 mutex_lock(&pctldev->mutex); 1758 1759 ngroups = ops->get_groups_count(pctldev); 1760 1761 seq_puts(s, "registered pin groups:\n"); 1762 while (selector < ngroups) { 1763 const unsigned *pins = NULL; 1764 unsigned num_pins = 0; 1765 const char *gname = ops->get_group_name(pctldev, selector); 1766 const char *pname; 1767 int ret = 0; 1768 int i; 1769 1770 if (ops->get_group_pins) 1771 ret = ops->get_group_pins(pctldev, selector, 1772 &pins, &num_pins); 1773 if (ret) 1774 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1775 gname); 1776 else { 1777 seq_printf(s, "group: %s\n", gname); 1778 for (i = 0; i < num_pins; i++) { 1779 pname = pin_get_name(pctldev, pins[i]); 1780 if (WARN_ON(!pname)) { 1781 mutex_unlock(&pctldev->mutex); 1782 return -EINVAL; 1783 } 1784 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1785 } 1786 seq_puts(s, "\n"); 1787 } 1788 selector++; 1789 } 1790 1791 mutex_unlock(&pctldev->mutex); 1792 1793 return 0; 1794 } 1795 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups); 1796 1797 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1798 { 1799 struct pinctrl_dev *pctldev = s->private; 1800 struct pinctrl_gpio_range *range; 1801 1802 seq_puts(s, "GPIO ranges handled:\n"); 1803 1804 mutex_lock(&pctldev->mutex); 1805 1806 /* Loop over the ranges */ 1807 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1808 if (range->pins) { 1809 int a; 1810 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1811 range->id, range->name, 1812 range->base, (range->base + range->npins - 1)); 1813 for (a = 0; a < range->npins - 1; a++) 1814 seq_printf(s, "%u, ", range->pins[a]); 1815 seq_printf(s, "%u}\n", range->pins[a]); 1816 } 1817 else 1818 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1819 range->id, range->name, 1820 range->base, (range->base + range->npins - 1), 1821 range->pin_base, 1822 (range->pin_base + range->npins - 1)); 1823 } 1824 1825 mutex_unlock(&pctldev->mutex); 1826 1827 return 0; 1828 } 1829 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges); 1830 1831 static int pinctrl_devices_show(struct seq_file *s, void *what) 1832 { 1833 struct pinctrl_dev *pctldev; 1834 1835 seq_puts(s, "name [pinmux] [pinconf]\n"); 1836 1837 mutex_lock(&pinctrldev_list_mutex); 1838 1839 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1840 seq_printf(s, "%s ", pctldev->desc->name); 1841 if (pctldev->desc->pmxops) 1842 seq_puts(s, "yes "); 1843 else 1844 seq_puts(s, "no "); 1845 if (pctldev->desc->confops) 1846 seq_puts(s, "yes"); 1847 else 1848 seq_puts(s, "no"); 1849 seq_puts(s, "\n"); 1850 } 1851 1852 mutex_unlock(&pinctrldev_list_mutex); 1853 1854 return 0; 1855 } 1856 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices); 1857 1858 static inline const char *map_type(enum pinctrl_map_type type) 1859 { 1860 static const char * const names[] = { 1861 "INVALID", 1862 "DUMMY_STATE", 1863 "MUX_GROUP", 1864 "CONFIGS_PIN", 1865 "CONFIGS_GROUP", 1866 }; 1867 1868 if (type >= ARRAY_SIZE(names)) 1869 return "UNKNOWN"; 1870 1871 return names[type]; 1872 } 1873 1874 static int pinctrl_maps_show(struct seq_file *s, void *what) 1875 { 1876 struct pinctrl_maps *maps_node; 1877 const struct pinctrl_map *map; 1878 1879 seq_puts(s, "Pinctrl maps:\n"); 1880 1881 mutex_lock(&pinctrl_maps_mutex); 1882 for_each_pin_map(maps_node, map) { 1883 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1884 map->dev_name, map->name, map_type(map->type), 1885 map->type); 1886 1887 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1888 seq_printf(s, "controlling device %s\n", 1889 map->ctrl_dev_name); 1890 1891 switch (map->type) { 1892 case PIN_MAP_TYPE_MUX_GROUP: 1893 pinmux_show_map(s, map); 1894 break; 1895 case PIN_MAP_TYPE_CONFIGS_PIN: 1896 case PIN_MAP_TYPE_CONFIGS_GROUP: 1897 pinconf_show_map(s, map); 1898 break; 1899 default: 1900 break; 1901 } 1902 1903 seq_putc(s, '\n'); 1904 } 1905 mutex_unlock(&pinctrl_maps_mutex); 1906 1907 return 0; 1908 } 1909 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps); 1910 1911 static int pinctrl_show(struct seq_file *s, void *what) 1912 { 1913 struct pinctrl *p; 1914 struct pinctrl_state *state; 1915 struct pinctrl_setting *setting; 1916 1917 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1918 1919 mutex_lock(&pinctrl_list_mutex); 1920 1921 list_for_each_entry(p, &pinctrl_list, node) { 1922 seq_printf(s, "device: %s current state: %s\n", 1923 dev_name(p->dev), 1924 p->state ? p->state->name : "none"); 1925 1926 list_for_each_entry(state, &p->states, node) { 1927 seq_printf(s, " state: %s\n", state->name); 1928 1929 list_for_each_entry(setting, &state->settings, node) { 1930 struct pinctrl_dev *pctldev = setting->pctldev; 1931 1932 seq_printf(s, " type: %s controller %s ", 1933 map_type(setting->type), 1934 pinctrl_dev_get_name(pctldev)); 1935 1936 switch (setting->type) { 1937 case PIN_MAP_TYPE_MUX_GROUP: 1938 pinmux_show_setting(s, setting); 1939 break; 1940 case PIN_MAP_TYPE_CONFIGS_PIN: 1941 case PIN_MAP_TYPE_CONFIGS_GROUP: 1942 pinconf_show_setting(s, setting); 1943 break; 1944 default: 1945 break; 1946 } 1947 } 1948 } 1949 } 1950 1951 mutex_unlock(&pinctrl_list_mutex); 1952 1953 return 0; 1954 } 1955 DEFINE_SHOW_ATTRIBUTE(pinctrl); 1956 1957 static struct dentry *debugfs_root; 1958 1959 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1960 { 1961 struct dentry *device_root; 1962 const char *debugfs_name; 1963 1964 if (pctldev->desc->name && 1965 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) { 1966 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL, 1967 "%s-%s", dev_name(pctldev->dev), 1968 pctldev->desc->name); 1969 if (!debugfs_name) { 1970 pr_warn("failed to determine debugfs dir name for %s\n", 1971 dev_name(pctldev->dev)); 1972 return; 1973 } 1974 } else { 1975 debugfs_name = dev_name(pctldev->dev); 1976 } 1977 1978 device_root = debugfs_create_dir(debugfs_name, debugfs_root); 1979 pctldev->device_root = device_root; 1980 1981 if (IS_ERR(device_root) || !device_root) { 1982 pr_warn("failed to create debugfs directory for %s\n", 1983 dev_name(pctldev->dev)); 1984 return; 1985 } 1986 debugfs_create_file("pins", 0444, 1987 device_root, pctldev, &pinctrl_pins_fops); 1988 debugfs_create_file("pingroups", 0444, 1989 device_root, pctldev, &pinctrl_groups_fops); 1990 debugfs_create_file("gpio-ranges", 0444, 1991 device_root, pctldev, &pinctrl_gpioranges_fops); 1992 if (pctldev->desc->pmxops) 1993 pinmux_init_device_debugfs(device_root, pctldev); 1994 if (pctldev->desc->confops) 1995 pinconf_init_device_debugfs(device_root, pctldev); 1996 } 1997 1998 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1999 { 2000 debugfs_remove_recursive(pctldev->device_root); 2001 } 2002 2003 static void pinctrl_init_debugfs(void) 2004 { 2005 debugfs_root = debugfs_create_dir("pinctrl", NULL); 2006 if (IS_ERR(debugfs_root) || !debugfs_root) { 2007 pr_warn("failed to create debugfs directory\n"); 2008 debugfs_root = NULL; 2009 return; 2010 } 2011 2012 debugfs_create_file("pinctrl-devices", 0444, 2013 debugfs_root, NULL, &pinctrl_devices_fops); 2014 debugfs_create_file("pinctrl-maps", 0444, 2015 debugfs_root, NULL, &pinctrl_maps_fops); 2016 debugfs_create_file("pinctrl-handles", 0444, 2017 debugfs_root, NULL, &pinctrl_fops); 2018 } 2019 2020 #else /* CONFIG_DEBUG_FS */ 2021 2022 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 2023 { 2024 } 2025 2026 static void pinctrl_init_debugfs(void) 2027 { 2028 } 2029 2030 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 2031 { 2032 } 2033 2034 #endif 2035 2036 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 2037 { 2038 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 2039 2040 if (!ops || 2041 !ops->get_groups_count || 2042 !ops->get_group_name) 2043 return -EINVAL; 2044 2045 return 0; 2046 } 2047 2048 /** 2049 * pinctrl_init_controller() - init a pin controller device 2050 * @pctldesc: descriptor for this pin controller 2051 * @dev: parent device for this pin controller 2052 * @driver_data: private pin controller data for this pin controller 2053 */ 2054 static struct pinctrl_dev * 2055 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev, 2056 void *driver_data) 2057 { 2058 struct pinctrl_dev *pctldev; 2059 int ret; 2060 2061 if (!pctldesc) 2062 return ERR_PTR(-EINVAL); 2063 if (!pctldesc->name) 2064 return ERR_PTR(-EINVAL); 2065 2066 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 2067 if (!pctldev) 2068 return ERR_PTR(-ENOMEM); 2069 2070 /* Initialize pin control device struct */ 2071 pctldev->owner = pctldesc->owner; 2072 pctldev->desc = pctldesc; 2073 pctldev->driver_data = driver_data; 2074 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 2075 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 2076 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 2077 #endif 2078 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 2079 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 2080 #endif 2081 INIT_LIST_HEAD(&pctldev->gpio_ranges); 2082 INIT_LIST_HEAD(&pctldev->node); 2083 pctldev->dev = dev; 2084 mutex_init(&pctldev->mutex); 2085 2086 /* check core ops for sanity */ 2087 ret = pinctrl_check_ops(pctldev); 2088 if (ret) { 2089 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 2090 goto out_err; 2091 } 2092 2093 /* If we're implementing pinmuxing, check the ops for sanity */ 2094 if (pctldesc->pmxops) { 2095 ret = pinmux_check_ops(pctldev); 2096 if (ret) 2097 goto out_err; 2098 } 2099 2100 /* If we're implementing pinconfig, check the ops for sanity */ 2101 if (pctldesc->confops) { 2102 ret = pinconf_check_ops(pctldev); 2103 if (ret) 2104 goto out_err; 2105 } 2106 2107 /* Register all the pins */ 2108 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 2109 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 2110 if (ret) { 2111 dev_err(dev, "error during pin registration\n"); 2112 pinctrl_free_pindescs(pctldev, pctldesc->pins, 2113 pctldesc->npins); 2114 goto out_err; 2115 } 2116 2117 return pctldev; 2118 2119 out_err: 2120 mutex_destroy(&pctldev->mutex); 2121 kfree(pctldev); 2122 return ERR_PTR(ret); 2123 } 2124 2125 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 2126 { 2127 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 2128 if (PTR_ERR(pctldev->p) == -ENODEV) { 2129 dev_dbg(pctldev->dev, "no hogs found\n"); 2130 2131 return 0; 2132 } 2133 2134 if (IS_ERR(pctldev->p)) { 2135 dev_err(pctldev->dev, "error claiming hogs: %li\n", 2136 PTR_ERR(pctldev->p)); 2137 2138 return PTR_ERR(pctldev->p); 2139 } 2140 2141 pctldev->hog_default = 2142 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2143 if (IS_ERR(pctldev->hog_default)) { 2144 dev_dbg(pctldev->dev, 2145 "failed to lookup the default state\n"); 2146 } else { 2147 if (pinctrl_select_state(pctldev->p, 2148 pctldev->hog_default)) 2149 dev_err(pctldev->dev, 2150 "failed to select default state\n"); 2151 } 2152 2153 pctldev->hog_sleep = 2154 pinctrl_lookup_state(pctldev->p, 2155 PINCTRL_STATE_SLEEP); 2156 if (IS_ERR(pctldev->hog_sleep)) 2157 dev_dbg(pctldev->dev, 2158 "failed to lookup the sleep state\n"); 2159 2160 return 0; 2161 } 2162 2163 int pinctrl_enable(struct pinctrl_dev *pctldev) 2164 { 2165 int error; 2166 2167 error = pinctrl_claim_hogs(pctldev); 2168 if (error) { 2169 dev_err(pctldev->dev, "could not claim hogs: %i\n", 2170 error); 2171 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2172 pctldev->desc->npins); 2173 mutex_destroy(&pctldev->mutex); 2174 kfree(pctldev); 2175 2176 return error; 2177 } 2178 2179 mutex_lock(&pinctrldev_list_mutex); 2180 list_add_tail(&pctldev->node, &pinctrldev_list); 2181 mutex_unlock(&pinctrldev_list_mutex); 2182 2183 pinctrl_init_device_debugfs(pctldev); 2184 2185 return 0; 2186 } 2187 EXPORT_SYMBOL_GPL(pinctrl_enable); 2188 2189 /** 2190 * pinctrl_register() - register a pin controller device 2191 * @pctldesc: descriptor for this pin controller 2192 * @dev: parent device for this pin controller 2193 * @driver_data: private pin controller data for this pin controller 2194 * 2195 * Note that pinctrl_register() is known to have problems as the pin 2196 * controller driver functions are called before the driver has a 2197 * struct pinctrl_dev handle. To avoid issues later on, please use the 2198 * new pinctrl_register_and_init() below instead. 2199 */ 2200 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 2201 struct device *dev, void *driver_data) 2202 { 2203 struct pinctrl_dev *pctldev; 2204 int error; 2205 2206 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2207 if (IS_ERR(pctldev)) 2208 return pctldev; 2209 2210 error = pinctrl_enable(pctldev); 2211 if (error) 2212 return ERR_PTR(error); 2213 2214 return pctldev; 2215 } 2216 EXPORT_SYMBOL_GPL(pinctrl_register); 2217 2218 /** 2219 * pinctrl_register_and_init() - register and init pin controller device 2220 * @pctldesc: descriptor for this pin controller 2221 * @dev: parent device for this pin controller 2222 * @driver_data: private pin controller data for this pin controller 2223 * @pctldev: pin controller device 2224 * 2225 * Note that pinctrl_enable() still needs to be manually called after 2226 * this once the driver is ready. 2227 */ 2228 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, 2229 struct device *dev, void *driver_data, 2230 struct pinctrl_dev **pctldev) 2231 { 2232 struct pinctrl_dev *p; 2233 2234 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2235 if (IS_ERR(p)) 2236 return PTR_ERR(p); 2237 2238 /* 2239 * We have pinctrl_start() call functions in the pin controller 2240 * driver with create_pinctrl() for at least dt_node_to_map(). So 2241 * let's make sure pctldev is properly initialized for the 2242 * pin controller driver before we do anything. 2243 */ 2244 *pctldev = p; 2245 2246 return 0; 2247 } 2248 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2249 2250 /** 2251 * pinctrl_unregister() - unregister pinmux 2252 * @pctldev: pin controller to unregister 2253 * 2254 * Called by pinmux drivers to unregister a pinmux. 2255 */ 2256 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2257 { 2258 struct pinctrl_gpio_range *range, *n; 2259 2260 if (!pctldev) 2261 return; 2262 2263 mutex_lock(&pctldev->mutex); 2264 pinctrl_remove_device_debugfs(pctldev); 2265 mutex_unlock(&pctldev->mutex); 2266 2267 if (!IS_ERR_OR_NULL(pctldev->p)) 2268 pinctrl_put(pctldev->p); 2269 2270 mutex_lock(&pinctrldev_list_mutex); 2271 mutex_lock(&pctldev->mutex); 2272 /* TODO: check that no pinmuxes are still active? */ 2273 list_del(&pctldev->node); 2274 pinmux_generic_free_functions(pctldev); 2275 pinctrl_generic_free_groups(pctldev); 2276 /* Destroy descriptor tree */ 2277 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2278 pctldev->desc->npins); 2279 /* remove gpio ranges map */ 2280 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2281 list_del(&range->node); 2282 2283 mutex_unlock(&pctldev->mutex); 2284 mutex_destroy(&pctldev->mutex); 2285 kfree(pctldev); 2286 mutex_unlock(&pinctrldev_list_mutex); 2287 } 2288 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2289 2290 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2291 { 2292 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2293 2294 pinctrl_unregister(pctldev); 2295 } 2296 2297 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2298 { 2299 struct pctldev **r = res; 2300 2301 if (WARN_ON(!r || !*r)) 2302 return 0; 2303 2304 return *r == data; 2305 } 2306 2307 /** 2308 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2309 * @dev: parent device for this pin controller 2310 * @pctldesc: descriptor for this pin controller 2311 * @driver_data: private pin controller data for this pin controller 2312 * 2313 * Returns an error pointer if pincontrol register failed. Otherwise 2314 * it returns valid pinctrl handle. 2315 * 2316 * The pinctrl device will be automatically released when the device is unbound. 2317 */ 2318 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2319 struct pinctrl_desc *pctldesc, 2320 void *driver_data) 2321 { 2322 struct pinctrl_dev **ptr, *pctldev; 2323 2324 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2325 if (!ptr) 2326 return ERR_PTR(-ENOMEM); 2327 2328 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2329 if (IS_ERR(pctldev)) { 2330 devres_free(ptr); 2331 return pctldev; 2332 } 2333 2334 *ptr = pctldev; 2335 devres_add(dev, ptr); 2336 2337 return pctldev; 2338 } 2339 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2340 2341 /** 2342 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2343 * @dev: parent device for this pin controller 2344 * @pctldesc: descriptor for this pin controller 2345 * @driver_data: private pin controller data for this pin controller 2346 * @pctldev: pin controller device 2347 * 2348 * Returns zero on success or an error number on failure. 2349 * 2350 * The pinctrl device will be automatically released when the device is unbound. 2351 */ 2352 int devm_pinctrl_register_and_init(struct device *dev, 2353 struct pinctrl_desc *pctldesc, 2354 void *driver_data, 2355 struct pinctrl_dev **pctldev) 2356 { 2357 struct pinctrl_dev **ptr; 2358 int error; 2359 2360 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2361 if (!ptr) 2362 return -ENOMEM; 2363 2364 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2365 if (error) { 2366 devres_free(ptr); 2367 return error; 2368 } 2369 2370 *ptr = *pctldev; 2371 devres_add(dev, ptr); 2372 2373 return 0; 2374 } 2375 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2376 2377 /** 2378 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2379 * @dev: device for which resource was allocated 2380 * @pctldev: the pinctrl device to unregister. 2381 */ 2382 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2383 { 2384 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2385 devm_pinctrl_dev_match, pctldev)); 2386 } 2387 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2388 2389 static int __init pinctrl_init(void) 2390 { 2391 pr_info("initialized pinctrl subsystem\n"); 2392 pinctrl_init_debugfs(); 2393 return 0; 2394 } 2395 2396 /* init early since many drivers really need to initialized pinmux early */ 2397 core_initcall(pinctrl_init); 2398