xref: /linux/drivers/pinctrl/core.c (revision 3607ac37a4f378cd5f673d6bdb3776e45a899e2c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Core driver for the pin control subsystem
4  *
5  * Copyright (C) 2011-2012 ST-Ericsson SA
6  * Written on behalf of Linaro for ST-Ericsson
7  * Based on bits of regulator core, gpio core and clk core
8  *
9  * Author: Linus Walleij <linus.walleij@linaro.org>
10  *
11  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12  */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14 
15 #include <linux/array_size.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/export.h>
20 #include <linux/init.h>
21 #include <linux/kref.h>
22 #include <linux/list.h>
23 #include <linux/seq_file.h>
24 #include <linux/slab.h>
25 
26 #include <linux/gpio/driver.h>
27 
28 #include <linux/pinctrl/consumer.h>
29 #include <linux/pinctrl/devinfo.h>
30 #include <linux/pinctrl/machine.h>
31 #include <linux/pinctrl/pinctrl.h>
32 
33 #ifdef CONFIG_GPIOLIB
34 #include "../gpio/gpiolib.h"
35 #endif
36 
37 #include "core.h"
38 #include "devicetree.h"
39 #include "pinconf.h"
40 #include "pinmux.h"
41 
42 static bool pinctrl_dummy_state;
43 
44 /* Mutex taken to protect pinctrl_list */
45 static DEFINE_MUTEX(pinctrl_list_mutex);
46 
47 /* Mutex taken to protect pinctrl_maps */
48 DEFINE_MUTEX(pinctrl_maps_mutex);
49 
50 /* Mutex taken to protect pinctrldev_list */
51 static DEFINE_MUTEX(pinctrldev_list_mutex);
52 
53 /* Global list of pin control devices (struct pinctrl_dev) */
54 static LIST_HEAD(pinctrldev_list);
55 
56 /* List of pin controller handles (struct pinctrl) */
57 static LIST_HEAD(pinctrl_list);
58 
59 /* List of pinctrl maps (struct pinctrl_maps) */
60 LIST_HEAD(pinctrl_maps);
61 
62 
63 /**
64  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
65  *
66  * Usually this function is called by platforms without pinctrl driver support
67  * but run with some shared drivers using pinctrl APIs.
68  * After calling this function, the pinctrl core will return successfully
69  * with creating a dummy state for the driver to keep going smoothly.
70  */
71 void pinctrl_provide_dummies(void)
72 {
73 	pinctrl_dummy_state = true;
74 }
75 
76 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
77 {
78 	/* We're not allowed to register devices without name */
79 	return pctldev->desc->name;
80 }
81 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
82 
83 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
84 {
85 	return dev_name(pctldev->dev);
86 }
87 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
88 
89 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
90 {
91 	return pctldev->driver_data;
92 }
93 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
94 
95 /**
96  * get_pinctrl_dev_from_devname() - look up pin controller device
97  * @devname: the name of a device instance, as returned by dev_name()
98  *
99  * Looks up a pin control device matching a certain device name or pure device
100  * pointer, the pure device pointer will take precedence.
101  */
102 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
103 {
104 	struct pinctrl_dev *pctldev;
105 
106 	if (!devname)
107 		return NULL;
108 
109 	mutex_lock(&pinctrldev_list_mutex);
110 
111 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
112 		if (!strcmp(dev_name(pctldev->dev), devname)) {
113 			/* Matched on device name */
114 			mutex_unlock(&pinctrldev_list_mutex);
115 			return pctldev;
116 		}
117 	}
118 
119 	mutex_unlock(&pinctrldev_list_mutex);
120 
121 	return NULL;
122 }
123 
124 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
125 {
126 	struct pinctrl_dev *pctldev;
127 
128 	mutex_lock(&pinctrldev_list_mutex);
129 
130 	list_for_each_entry(pctldev, &pinctrldev_list, node)
131 		if (device_match_of_node(pctldev->dev, np)) {
132 			mutex_unlock(&pinctrldev_list_mutex);
133 			return pctldev;
134 		}
135 
136 	mutex_unlock(&pinctrldev_list_mutex);
137 
138 	return NULL;
139 }
140 
141 /**
142  * pin_get_from_name() - look up a pin number from a name
143  * @pctldev: the pin control device to lookup the pin on
144  * @name: the name of the pin to look up
145  */
146 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
147 {
148 	unsigned i, pin;
149 
150 	/* The pin number can be retrived from the pin controller descriptor */
151 	for (i = 0; i < pctldev->desc->npins; i++) {
152 		struct pin_desc *desc;
153 
154 		pin = pctldev->desc->pins[i].number;
155 		desc = pin_desc_get(pctldev, pin);
156 		/* Pin space may be sparse */
157 		if (desc && !strcmp(name, desc->name))
158 			return pin;
159 	}
160 
161 	return -EINVAL;
162 }
163 
164 /**
165  * pin_get_name() - look up a pin name from a pin id
166  * @pctldev: the pin control device to lookup the pin on
167  * @pin: pin number/id to look up
168  */
169 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
170 {
171 	const struct pin_desc *desc;
172 
173 	desc = pin_desc_get(pctldev, pin);
174 	if (!desc) {
175 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
176 			pin);
177 		return NULL;
178 	}
179 
180 	return desc->name;
181 }
182 EXPORT_SYMBOL_GPL(pin_get_name);
183 
184 /* Deletes a range of pin descriptors */
185 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
186 				  const struct pinctrl_pin_desc *pins,
187 				  unsigned num_pins)
188 {
189 	int i;
190 
191 	for (i = 0; i < num_pins; i++) {
192 		struct pin_desc *pindesc;
193 
194 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
195 					    pins[i].number);
196 		if (pindesc) {
197 			radix_tree_delete(&pctldev->pin_desc_tree,
198 					  pins[i].number);
199 			if (pindesc->dynamic_name)
200 				kfree(pindesc->name);
201 		}
202 		kfree(pindesc);
203 	}
204 }
205 
206 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
207 				    const struct pinctrl_pin_desc *pin)
208 {
209 	struct pin_desc *pindesc;
210 	int error;
211 
212 	pindesc = pin_desc_get(pctldev, pin->number);
213 	if (pindesc) {
214 		dev_err(pctldev->dev, "pin %d already registered\n",
215 			pin->number);
216 		return -EINVAL;
217 	}
218 
219 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
220 	if (!pindesc)
221 		return -ENOMEM;
222 
223 	/* Set owner */
224 	pindesc->pctldev = pctldev;
225 
226 	/* Copy basic pin info */
227 	if (pin->name) {
228 		pindesc->name = pin->name;
229 	} else {
230 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
231 		if (!pindesc->name) {
232 			error = -ENOMEM;
233 			goto failed;
234 		}
235 		pindesc->dynamic_name = true;
236 	}
237 
238 	pindesc->drv_data = pin->drv_data;
239 
240 	error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
241 	if (error)
242 		goto failed;
243 
244 	pr_debug("registered pin %d (%s) on %s\n",
245 		 pin->number, pindesc->name, pctldev->desc->name);
246 	return 0;
247 
248 failed:
249 	kfree(pindesc);
250 	return error;
251 }
252 
253 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
254 				 const struct pinctrl_pin_desc *pins,
255 				 unsigned num_descs)
256 {
257 	unsigned i;
258 	int ret = 0;
259 
260 	for (i = 0; i < num_descs; i++) {
261 		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
262 		if (ret)
263 			return ret;
264 	}
265 
266 	return 0;
267 }
268 
269 /**
270  * gpio_to_pin() - GPIO range GPIO number to pin number translation
271  * @range: GPIO range used for the translation
272  * @gpio: gpio pin to translate to a pin number
273  *
274  * Finds the pin number for a given GPIO using the specified GPIO range
275  * as a base for translation. The distinction between linear GPIO ranges
276  * and pin list based GPIO ranges is managed correctly by this function.
277  *
278  * This function assumes the gpio is part of the specified GPIO range, use
279  * only after making sure this is the case (e.g. by calling it on the
280  * result of successful pinctrl_get_device_gpio_range calls)!
281  */
282 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
283 				unsigned int gpio)
284 {
285 	unsigned int offset = gpio - range->base;
286 	if (range->pins)
287 		return range->pins[offset];
288 	else
289 		return range->pin_base + offset;
290 }
291 
292 /**
293  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
294  * @pctldev: pin controller device to check
295  * @gpio: gpio pin to check taken from the global GPIO pin space
296  *
297  * Tries to match a GPIO pin number to the ranges handled by a certain pin
298  * controller, return the range or NULL
299  */
300 static struct pinctrl_gpio_range *
301 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
302 {
303 	struct pinctrl_gpio_range *range;
304 
305 	mutex_lock(&pctldev->mutex);
306 	/* Loop over the ranges */
307 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
308 		/* Check if we're in the valid range */
309 		if (gpio >= range->base &&
310 		    gpio < range->base + range->npins) {
311 			mutex_unlock(&pctldev->mutex);
312 			return range;
313 		}
314 	}
315 	mutex_unlock(&pctldev->mutex);
316 	return NULL;
317 }
318 
319 /**
320  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
321  * the same GPIO chip are in range
322  * @gpio: gpio pin to check taken from the global GPIO pin space
323  *
324  * This function is complement of pinctrl_match_gpio_range(). If the return
325  * value of pinctrl_match_gpio_range() is NULL, this function could be used
326  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
327  * of the same GPIO chip don't have back-end pinctrl interface.
328  * If the return value is true, it means that pinctrl device is ready & the
329  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
330  * is false, it means that pinctrl device may not be ready.
331  */
332 #ifdef CONFIG_GPIOLIB
333 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
334 {
335 	struct pinctrl_dev *pctldev;
336 	struct pinctrl_gpio_range *range = NULL;
337 	/*
338 	 * FIXME: "gpio" here is a number in the global GPIO numberspace.
339 	 * get rid of this from the ranges eventually and get the GPIO
340 	 * descriptor from the gpio_chip.
341 	 */
342 	struct gpio_chip *chip = gpiod_to_chip(gpio_to_desc(gpio));
343 
344 	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
345 		return false;
346 
347 	mutex_lock(&pinctrldev_list_mutex);
348 
349 	/* Loop over the pin controllers */
350 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
351 		/* Loop over the ranges */
352 		mutex_lock(&pctldev->mutex);
353 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
354 			/* Check if any gpio range overlapped with gpio chip */
355 			if (range->base + range->npins - 1 < chip->base ||
356 			    range->base > chip->base + chip->ngpio - 1)
357 				continue;
358 			mutex_unlock(&pctldev->mutex);
359 			mutex_unlock(&pinctrldev_list_mutex);
360 			return true;
361 		}
362 		mutex_unlock(&pctldev->mutex);
363 	}
364 
365 	mutex_unlock(&pinctrldev_list_mutex);
366 
367 	return false;
368 }
369 #else
370 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
371 #endif
372 
373 /**
374  * pinctrl_get_device_gpio_range() - find device for GPIO range
375  * @gpio: the pin to locate the pin controller for
376  * @outdev: the pin control device if found
377  * @outrange: the GPIO range if found
378  *
379  * Find the pin controller handling a certain GPIO pin from the pinspace of
380  * the GPIO subsystem, return the device and the matching GPIO range. Returns
381  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
382  * may still have not been registered.
383  */
384 static int pinctrl_get_device_gpio_range(unsigned gpio,
385 					 struct pinctrl_dev **outdev,
386 					 struct pinctrl_gpio_range **outrange)
387 {
388 	struct pinctrl_dev *pctldev;
389 
390 	mutex_lock(&pinctrldev_list_mutex);
391 
392 	/* Loop over the pin controllers */
393 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
394 		struct pinctrl_gpio_range *range;
395 
396 		range = pinctrl_match_gpio_range(pctldev, gpio);
397 		if (range) {
398 			*outdev = pctldev;
399 			*outrange = range;
400 			mutex_unlock(&pinctrldev_list_mutex);
401 			return 0;
402 		}
403 	}
404 
405 	mutex_unlock(&pinctrldev_list_mutex);
406 
407 	return -EPROBE_DEFER;
408 }
409 
410 /**
411  * pinctrl_add_gpio_range() - register a GPIO range for a controller
412  * @pctldev: pin controller device to add the range to
413  * @range: the GPIO range to add
414  *
415  * This adds a range of GPIOs to be handled by a certain pin controller. Call
416  * this to register handled ranges after registering your pin controller.
417  */
418 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
419 			    struct pinctrl_gpio_range *range)
420 {
421 	mutex_lock(&pctldev->mutex);
422 	list_add_tail(&range->node, &pctldev->gpio_ranges);
423 	mutex_unlock(&pctldev->mutex);
424 }
425 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
426 
427 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
428 			     struct pinctrl_gpio_range *ranges,
429 			     unsigned nranges)
430 {
431 	int i;
432 
433 	for (i = 0; i < nranges; i++)
434 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
435 }
436 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
437 
438 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
439 		struct pinctrl_gpio_range *range)
440 {
441 	struct pinctrl_dev *pctldev;
442 
443 	pctldev = get_pinctrl_dev_from_devname(devname);
444 
445 	/*
446 	 * If we can't find this device, let's assume that is because
447 	 * it has not probed yet, so the driver trying to register this
448 	 * range need to defer probing.
449 	 */
450 	if (!pctldev)
451 		return ERR_PTR(-EPROBE_DEFER);
452 
453 	pinctrl_add_gpio_range(pctldev, range);
454 
455 	return pctldev;
456 }
457 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
458 
459 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
460 				const unsigned **pins, unsigned *num_pins)
461 {
462 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
463 	int gs;
464 
465 	if (!pctlops->get_group_pins)
466 		return -EINVAL;
467 
468 	gs = pinctrl_get_group_selector(pctldev, pin_group);
469 	if (gs < 0)
470 		return gs;
471 
472 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
473 }
474 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
475 
476 struct pinctrl_gpio_range *
477 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
478 					unsigned int pin)
479 {
480 	struct pinctrl_gpio_range *range;
481 
482 	/* Loop over the ranges */
483 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
484 		/* Check if we're in the valid range */
485 		if (range->pins) {
486 			int a;
487 			for (a = 0; a < range->npins; a++) {
488 				if (range->pins[a] == pin)
489 					return range;
490 			}
491 		} else if (pin >= range->pin_base &&
492 			   pin < range->pin_base + range->npins)
493 			return range;
494 	}
495 
496 	return NULL;
497 }
498 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
499 
500 /**
501  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
502  * @pctldev: the pin controller device to look in
503  * @pin: a controller-local number to find the range for
504  */
505 struct pinctrl_gpio_range *
506 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
507 				 unsigned int pin)
508 {
509 	struct pinctrl_gpio_range *range;
510 
511 	mutex_lock(&pctldev->mutex);
512 	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
513 	mutex_unlock(&pctldev->mutex);
514 
515 	return range;
516 }
517 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
518 
519 /**
520  * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
521  * @pctldev: pin controller device to remove the range from
522  * @range: the GPIO range to remove
523  */
524 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
525 			       struct pinctrl_gpio_range *range)
526 {
527 	mutex_lock(&pctldev->mutex);
528 	list_del(&range->node);
529 	mutex_unlock(&pctldev->mutex);
530 }
531 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
532 
533 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
534 
535 /**
536  * pinctrl_generic_get_group_count() - returns the number of pin groups
537  * @pctldev: pin controller device
538  */
539 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
540 {
541 	return pctldev->num_groups;
542 }
543 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
544 
545 /**
546  * pinctrl_generic_get_group_name() - returns the name of a pin group
547  * @pctldev: pin controller device
548  * @selector: group number
549  */
550 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
551 					   unsigned int selector)
552 {
553 	struct group_desc *group;
554 
555 	group = radix_tree_lookup(&pctldev->pin_group_tree,
556 				  selector);
557 	if (!group)
558 		return NULL;
559 
560 	return group->name;
561 }
562 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
563 
564 /**
565  * pinctrl_generic_get_group_pins() - gets the pin group pins
566  * @pctldev: pin controller device
567  * @selector: group number
568  * @pins: pins in the group
569  * @num_pins: number of pins in the group
570  */
571 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
572 				   unsigned int selector,
573 				   const unsigned int **pins,
574 				   unsigned int *num_pins)
575 {
576 	struct group_desc *group;
577 
578 	group = radix_tree_lookup(&pctldev->pin_group_tree,
579 				  selector);
580 	if (!group) {
581 		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
582 			__func__, selector);
583 		return -EINVAL;
584 	}
585 
586 	*pins = group->pins;
587 	*num_pins = group->num_pins;
588 
589 	return 0;
590 }
591 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
592 
593 /**
594  * pinctrl_generic_get_group() - returns a pin group based on the number
595  * @pctldev: pin controller device
596  * @selector: group number
597  */
598 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
599 					     unsigned int selector)
600 {
601 	struct group_desc *group;
602 
603 	group = radix_tree_lookup(&pctldev->pin_group_tree,
604 				  selector);
605 	if (!group)
606 		return NULL;
607 
608 	return group;
609 }
610 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
611 
612 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
613 						  const char *function)
614 {
615 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
616 	int ngroups = ops->get_groups_count(pctldev);
617 	int selector = 0;
618 
619 	/* See if this pctldev has this group */
620 	while (selector < ngroups) {
621 		const char *gname = ops->get_group_name(pctldev, selector);
622 
623 		if (gname && !strcmp(function, gname))
624 			return selector;
625 
626 		selector++;
627 	}
628 
629 	return -EINVAL;
630 }
631 
632 /**
633  * pinctrl_generic_add_group() - adds a new pin group
634  * @pctldev: pin controller device
635  * @name: name of the pin group
636  * @pins: pins in the pin group
637  * @num_pins: number of pins in the pin group
638  * @data: pin controller driver specific data
639  *
640  * Note that the caller must take care of locking.
641  */
642 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
643 			      int *pins, int num_pins, void *data)
644 {
645 	struct group_desc *group;
646 	int selector, error;
647 
648 	if (!name)
649 		return -EINVAL;
650 
651 	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
652 	if (selector >= 0)
653 		return selector;
654 
655 	selector = pctldev->num_groups;
656 
657 	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
658 	if (!group)
659 		return -ENOMEM;
660 
661 	group->name = name;
662 	group->pins = pins;
663 	group->num_pins = num_pins;
664 	group->data = data;
665 
666 	error = radix_tree_insert(&pctldev->pin_group_tree, selector, group);
667 	if (error)
668 		return error;
669 
670 	pctldev->num_groups++;
671 
672 	return selector;
673 }
674 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
675 
676 /**
677  * pinctrl_generic_remove_group() - removes a numbered pin group
678  * @pctldev: pin controller device
679  * @selector: group number
680  *
681  * Note that the caller must take care of locking.
682  */
683 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
684 				 unsigned int selector)
685 {
686 	struct group_desc *group;
687 
688 	group = radix_tree_lookup(&pctldev->pin_group_tree,
689 				  selector);
690 	if (!group)
691 		return -ENOENT;
692 
693 	radix_tree_delete(&pctldev->pin_group_tree, selector);
694 	devm_kfree(pctldev->dev, group);
695 
696 	pctldev->num_groups--;
697 
698 	return 0;
699 }
700 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
701 
702 /**
703  * pinctrl_generic_free_groups() - removes all pin groups
704  * @pctldev: pin controller device
705  *
706  * Note that the caller must take care of locking. The pinctrl groups
707  * are allocated with devm_kzalloc() so no need to free them here.
708  */
709 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
710 {
711 	struct radix_tree_iter iter;
712 	void __rcu **slot;
713 
714 	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
715 		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
716 
717 	pctldev->num_groups = 0;
718 }
719 
720 #else
721 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
722 {
723 }
724 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
725 
726 /**
727  * pinctrl_get_group_selector() - returns the group selector for a group
728  * @pctldev: the pin controller handling the group
729  * @pin_group: the pin group to look up
730  */
731 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
732 			       const char *pin_group)
733 {
734 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
735 	unsigned ngroups = pctlops->get_groups_count(pctldev);
736 	unsigned group_selector = 0;
737 
738 	while (group_selector < ngroups) {
739 		const char *gname = pctlops->get_group_name(pctldev,
740 							    group_selector);
741 		if (gname && !strcmp(gname, pin_group)) {
742 			dev_dbg(pctldev->dev,
743 				"found group selector %u for %s\n",
744 				group_selector,
745 				pin_group);
746 			return group_selector;
747 		}
748 
749 		group_selector++;
750 	}
751 
752 	dev_err(pctldev->dev, "does not have pin group %s\n",
753 		pin_group);
754 
755 	return -EINVAL;
756 }
757 
758 bool pinctrl_gpio_can_use_line(unsigned gpio)
759 {
760 	struct pinctrl_dev *pctldev;
761 	struct pinctrl_gpio_range *range;
762 	bool result;
763 	int pin;
764 
765 	/*
766 	 * Try to obtain GPIO range, if it fails
767 	 * we're probably dealing with GPIO driver
768 	 * without a backing pin controller - bail out.
769 	 */
770 	if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
771 		return true;
772 
773 	mutex_lock(&pctldev->mutex);
774 
775 	/* Convert to the pin controllers number space */
776 	pin = gpio_to_pin(range, gpio);
777 
778 	result = pinmux_can_be_used_for_gpio(pctldev, pin);
779 
780 	mutex_unlock(&pctldev->mutex);
781 
782 	return result;
783 }
784 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
785 
786 bool pinctrl_gpio_can_use_line_new(struct gpio_chip *gc, unsigned int offset)
787 {
788 	return pinctrl_gpio_can_use_line(gc->base + offset);
789 }
790 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line_new);
791 
792 /* This function is deprecated and will be removed. Don't use. */
793 int pinctrl_gpio_request(unsigned gpio)
794 {
795 	struct pinctrl_dev *pctldev;
796 	struct pinctrl_gpio_range *range;
797 	int ret;
798 	int pin;
799 
800 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
801 	if (ret) {
802 		if (pinctrl_ready_for_gpio_range(gpio))
803 			ret = 0;
804 		return ret;
805 	}
806 
807 	mutex_lock(&pctldev->mutex);
808 
809 	/* Convert to the pin controllers number space */
810 	pin = gpio_to_pin(range, gpio);
811 
812 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
813 
814 	mutex_unlock(&pctldev->mutex);
815 
816 	return ret;
817 }
818 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
819 
820 /**
821  * pinctrl_gpio_request_new() - request a single pin to be used as GPIO
822  * @gc: GPIO chip structure from the GPIO subsystem
823  * @offset: hardware offset of the GPIO relative to the controller
824  *
825  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
826  * as part of their gpio_request() semantics, platforms and individual drivers
827  * shall *NOT* request GPIO pins to be muxed in.
828  */
829 int pinctrl_gpio_request_new(struct gpio_chip *gc, unsigned int offset)
830 {
831 	return pinctrl_gpio_request(gc->base + offset);
832 }
833 EXPORT_SYMBOL_GPL(pinctrl_gpio_request_new);
834 
835 /* This function is deprecated and will be removed. Don't use. */
836 void pinctrl_gpio_free(unsigned gpio)
837 {
838 	struct pinctrl_dev *pctldev;
839 	struct pinctrl_gpio_range *range;
840 	int ret;
841 	int pin;
842 
843 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
844 	if (ret) {
845 		return;
846 	}
847 	mutex_lock(&pctldev->mutex);
848 
849 	/* Convert to the pin controllers number space */
850 	pin = gpio_to_pin(range, gpio);
851 
852 	pinmux_free_gpio(pctldev, pin, range);
853 
854 	mutex_unlock(&pctldev->mutex);
855 }
856 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
857 
858 /**
859  * pinctrl_gpio_free_new() - free control on a single pin, currently used as GPIO
860  * @gc: GPIO chip structure from the GPIO subsystem
861  * @offset: hardware offset of the GPIO relative to the controller
862  *
863  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
864  * as part of their gpio_request() semantics, platforms and individual drivers
865  * shall *NOT* request GPIO pins to be muxed in.
866  */
867 void pinctrl_gpio_free_new(struct gpio_chip *gc, unsigned int offset)
868 {
869 	return pinctrl_gpio_free(gc->base + offset);
870 }
871 EXPORT_SYMBOL_GPL(pinctrl_gpio_free_new);
872 
873 static int pinctrl_gpio_direction(unsigned gpio, bool input)
874 {
875 	struct pinctrl_dev *pctldev;
876 	struct pinctrl_gpio_range *range;
877 	int ret;
878 	int pin;
879 
880 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
881 	if (ret) {
882 		return ret;
883 	}
884 
885 	mutex_lock(&pctldev->mutex);
886 
887 	/* Convert to the pin controllers number space */
888 	pin = gpio_to_pin(range, gpio);
889 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
890 
891 	mutex_unlock(&pctldev->mutex);
892 
893 	return ret;
894 }
895 
896 /* This function is deprecated and will be removed. Don't use. */
897 int pinctrl_gpio_direction_input(unsigned gpio)
898 {
899 	return pinctrl_gpio_direction(gpio, true);
900 }
901 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
902 
903 /**
904  * pinctrl_gpio_direction_input_new() - request a GPIO pin to go into input mode
905  * @gc: GPIO chip structure from the GPIO subsystem
906  * @offset: hardware offset of the GPIO relative to the controller
907  *
908  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
909  * as part of their gpio_direction_input() semantics, platforms and individual
910  * drivers shall *NOT* touch pin control GPIO calls.
911  */
912 int pinctrl_gpio_direction_input_new(struct gpio_chip *gc, unsigned int offset)
913 {
914 	return pinctrl_gpio_direction_input(gc->base + offset);
915 }
916 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input_new);
917 
918 /* This function is deprecated and will be removed. Don't use. */
919 int pinctrl_gpio_direction_output(unsigned gpio)
920 {
921 	return pinctrl_gpio_direction(gpio, false);
922 }
923 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
924 
925 /**
926  * pinctrl_gpio_direction_output_new() - request a GPIO pin to go into output
927  *                                       mode
928  * @gc: GPIO chip structure from the GPIO subsystem
929  * @offset: hardware offset of the GPIO relative to the controller
930  *
931  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
932  * as part of their gpio_direction_output() semantics, platforms and individual
933  * drivers shall *NOT* touch pin control GPIO calls.
934  */
935 int pinctrl_gpio_direction_output_new(struct gpio_chip *gc, unsigned int offset)
936 {
937 	return pinctrl_gpio_direction_output(gc->base + offset);
938 }
939 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output_new);
940 
941 /* This function is deprecated and will be removed. Don't use. */
942 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
943 {
944 	unsigned long configs[] = { config };
945 	struct pinctrl_gpio_range *range;
946 	struct pinctrl_dev *pctldev;
947 	int ret, pin;
948 
949 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
950 	if (ret)
951 		return ret;
952 
953 	mutex_lock(&pctldev->mutex);
954 	pin = gpio_to_pin(range, gpio);
955 	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
956 	mutex_unlock(&pctldev->mutex);
957 
958 	return ret;
959 }
960 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
961 
962 /**
963  * pinctrl_gpio_set_config_new() - Apply config to given GPIO pin
964  * @gc: GPIO chip structure from the GPIO subsystem
965  * @offset: hardware offset of the GPIO relative to the controller
966  * @config: the configuration to apply to the GPIO
967  *
968  * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
969  * they need to call the underlying pin controller to change GPIO config
970  * (for example set debounce time).
971  */
972 int pinctrl_gpio_set_config_new(struct gpio_chip *gc, unsigned int offset,
973 				unsigned long config)
974 {
975 	return pinctrl_gpio_set_config(gc->base + offset, config);
976 }
977 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config_new);
978 
979 static struct pinctrl_state *find_state(struct pinctrl *p,
980 					const char *name)
981 {
982 	struct pinctrl_state *state;
983 
984 	list_for_each_entry(state, &p->states, node)
985 		if (!strcmp(state->name, name))
986 			return state;
987 
988 	return NULL;
989 }
990 
991 static struct pinctrl_state *create_state(struct pinctrl *p,
992 					  const char *name)
993 {
994 	struct pinctrl_state *state;
995 
996 	state = kzalloc(sizeof(*state), GFP_KERNEL);
997 	if (!state)
998 		return ERR_PTR(-ENOMEM);
999 
1000 	state->name = name;
1001 	INIT_LIST_HEAD(&state->settings);
1002 
1003 	list_add_tail(&state->node, &p->states);
1004 
1005 	return state;
1006 }
1007 
1008 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
1009 		       const struct pinctrl_map *map)
1010 {
1011 	struct pinctrl_state *state;
1012 	struct pinctrl_setting *setting;
1013 	int ret;
1014 
1015 	state = find_state(p, map->name);
1016 	if (!state)
1017 		state = create_state(p, map->name);
1018 	if (IS_ERR(state))
1019 		return PTR_ERR(state);
1020 
1021 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
1022 		return 0;
1023 
1024 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
1025 	if (!setting)
1026 		return -ENOMEM;
1027 
1028 	setting->type = map->type;
1029 
1030 	if (pctldev)
1031 		setting->pctldev = pctldev;
1032 	else
1033 		setting->pctldev =
1034 			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
1035 	if (!setting->pctldev) {
1036 		kfree(setting);
1037 		/* Do not defer probing of hogs (circular loop) */
1038 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
1039 			return -ENODEV;
1040 		/*
1041 		 * OK let us guess that the driver is not there yet, and
1042 		 * let's defer obtaining this pinctrl handle to later...
1043 		 */
1044 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
1045 			map->ctrl_dev_name);
1046 		return -EPROBE_DEFER;
1047 	}
1048 
1049 	setting->dev_name = map->dev_name;
1050 
1051 	switch (map->type) {
1052 	case PIN_MAP_TYPE_MUX_GROUP:
1053 		ret = pinmux_map_to_setting(map, setting);
1054 		break;
1055 	case PIN_MAP_TYPE_CONFIGS_PIN:
1056 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1057 		ret = pinconf_map_to_setting(map, setting);
1058 		break;
1059 	default:
1060 		ret = -EINVAL;
1061 		break;
1062 	}
1063 	if (ret < 0) {
1064 		kfree(setting);
1065 		return ret;
1066 	}
1067 
1068 	list_add_tail(&setting->node, &state->settings);
1069 
1070 	return 0;
1071 }
1072 
1073 static struct pinctrl *find_pinctrl(struct device *dev)
1074 {
1075 	struct pinctrl *p;
1076 
1077 	mutex_lock(&pinctrl_list_mutex);
1078 	list_for_each_entry(p, &pinctrl_list, node)
1079 		if (p->dev == dev) {
1080 			mutex_unlock(&pinctrl_list_mutex);
1081 			return p;
1082 		}
1083 
1084 	mutex_unlock(&pinctrl_list_mutex);
1085 	return NULL;
1086 }
1087 
1088 static void pinctrl_free(struct pinctrl *p, bool inlist);
1089 
1090 static struct pinctrl *create_pinctrl(struct device *dev,
1091 				      struct pinctrl_dev *pctldev)
1092 {
1093 	struct pinctrl *p;
1094 	const char *devname;
1095 	struct pinctrl_maps *maps_node;
1096 	const struct pinctrl_map *map;
1097 	int ret;
1098 
1099 	/*
1100 	 * create the state cookie holder struct pinctrl for each
1101 	 * mapping, this is what consumers will get when requesting
1102 	 * a pin control handle with pinctrl_get()
1103 	 */
1104 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1105 	if (!p)
1106 		return ERR_PTR(-ENOMEM);
1107 	p->dev = dev;
1108 	INIT_LIST_HEAD(&p->states);
1109 	INIT_LIST_HEAD(&p->dt_maps);
1110 
1111 	ret = pinctrl_dt_to_map(p, pctldev);
1112 	if (ret < 0) {
1113 		kfree(p);
1114 		return ERR_PTR(ret);
1115 	}
1116 
1117 	devname = dev_name(dev);
1118 
1119 	mutex_lock(&pinctrl_maps_mutex);
1120 	/* Iterate over the pin control maps to locate the right ones */
1121 	for_each_pin_map(maps_node, map) {
1122 		/* Map must be for this device */
1123 		if (strcmp(map->dev_name, devname))
1124 			continue;
1125 		/*
1126 		 * If pctldev is not null, we are claiming hog for it,
1127 		 * that means, setting that is served by pctldev by itself.
1128 		 *
1129 		 * Thus we must skip map that is for this device but is served
1130 		 * by other device.
1131 		 */
1132 		if (pctldev &&
1133 		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1134 			continue;
1135 
1136 		ret = add_setting(p, pctldev, map);
1137 		/*
1138 		 * At this point the adding of a setting may:
1139 		 *
1140 		 * - Defer, if the pinctrl device is not yet available
1141 		 * - Fail, if the pinctrl device is not yet available,
1142 		 *   AND the setting is a hog. We cannot defer that, since
1143 		 *   the hog will kick in immediately after the device
1144 		 *   is registered.
1145 		 *
1146 		 * If the error returned was not -EPROBE_DEFER then we
1147 		 * accumulate the errors to see if we end up with
1148 		 * an -EPROBE_DEFER later, as that is the worst case.
1149 		 */
1150 		if (ret == -EPROBE_DEFER) {
1151 			pinctrl_free(p, false);
1152 			mutex_unlock(&pinctrl_maps_mutex);
1153 			return ERR_PTR(ret);
1154 		}
1155 	}
1156 	mutex_unlock(&pinctrl_maps_mutex);
1157 
1158 	if (ret < 0) {
1159 		/* If some other error than deferral occurred, return here */
1160 		pinctrl_free(p, false);
1161 		return ERR_PTR(ret);
1162 	}
1163 
1164 	kref_init(&p->users);
1165 
1166 	/* Add the pinctrl handle to the global list */
1167 	mutex_lock(&pinctrl_list_mutex);
1168 	list_add_tail(&p->node, &pinctrl_list);
1169 	mutex_unlock(&pinctrl_list_mutex);
1170 
1171 	return p;
1172 }
1173 
1174 /**
1175  * pinctrl_get() - retrieves the pinctrl handle for a device
1176  * @dev: the device to obtain the handle for
1177  */
1178 struct pinctrl *pinctrl_get(struct device *dev)
1179 {
1180 	struct pinctrl *p;
1181 
1182 	if (WARN_ON(!dev))
1183 		return ERR_PTR(-EINVAL);
1184 
1185 	/*
1186 	 * See if somebody else (such as the device core) has already
1187 	 * obtained a handle to the pinctrl for this device. In that case,
1188 	 * return another pointer to it.
1189 	 */
1190 	p = find_pinctrl(dev);
1191 	if (p) {
1192 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1193 		kref_get(&p->users);
1194 		return p;
1195 	}
1196 
1197 	return create_pinctrl(dev, NULL);
1198 }
1199 EXPORT_SYMBOL_GPL(pinctrl_get);
1200 
1201 static void pinctrl_free_setting(bool disable_setting,
1202 				 struct pinctrl_setting *setting)
1203 {
1204 	switch (setting->type) {
1205 	case PIN_MAP_TYPE_MUX_GROUP:
1206 		if (disable_setting)
1207 			pinmux_disable_setting(setting);
1208 		pinmux_free_setting(setting);
1209 		break;
1210 	case PIN_MAP_TYPE_CONFIGS_PIN:
1211 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1212 		pinconf_free_setting(setting);
1213 		break;
1214 	default:
1215 		break;
1216 	}
1217 }
1218 
1219 static void pinctrl_free(struct pinctrl *p, bool inlist)
1220 {
1221 	struct pinctrl_state *state, *n1;
1222 	struct pinctrl_setting *setting, *n2;
1223 
1224 	mutex_lock(&pinctrl_list_mutex);
1225 	list_for_each_entry_safe(state, n1, &p->states, node) {
1226 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1227 			pinctrl_free_setting(state == p->state, setting);
1228 			list_del(&setting->node);
1229 			kfree(setting);
1230 		}
1231 		list_del(&state->node);
1232 		kfree(state);
1233 	}
1234 
1235 	pinctrl_dt_free_maps(p);
1236 
1237 	if (inlist)
1238 		list_del(&p->node);
1239 	kfree(p);
1240 	mutex_unlock(&pinctrl_list_mutex);
1241 }
1242 
1243 /**
1244  * pinctrl_release() - release the pinctrl handle
1245  * @kref: the kref in the pinctrl being released
1246  */
1247 static void pinctrl_release(struct kref *kref)
1248 {
1249 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1250 
1251 	pinctrl_free(p, true);
1252 }
1253 
1254 /**
1255  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1256  * @p: the pinctrl handle to release
1257  */
1258 void pinctrl_put(struct pinctrl *p)
1259 {
1260 	kref_put(&p->users, pinctrl_release);
1261 }
1262 EXPORT_SYMBOL_GPL(pinctrl_put);
1263 
1264 /**
1265  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1266  * @p: the pinctrl handle to retrieve the state from
1267  * @name: the state name to retrieve
1268  */
1269 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1270 						 const char *name)
1271 {
1272 	struct pinctrl_state *state;
1273 
1274 	state = find_state(p, name);
1275 	if (!state) {
1276 		if (pinctrl_dummy_state) {
1277 			/* create dummy state */
1278 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1279 				name);
1280 			state = create_state(p, name);
1281 		} else
1282 			state = ERR_PTR(-ENODEV);
1283 	}
1284 
1285 	return state;
1286 }
1287 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1288 
1289 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1290 			     struct device *consumer)
1291 {
1292 	if (pctldev->desc->link_consumers)
1293 		device_link_add(consumer, pctldev->dev,
1294 				DL_FLAG_PM_RUNTIME |
1295 				DL_FLAG_AUTOREMOVE_CONSUMER);
1296 }
1297 
1298 /**
1299  * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1300  * @p: the pinctrl handle for the device that requests configuration
1301  * @state: the state handle to select/activate/program
1302  */
1303 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1304 {
1305 	struct pinctrl_setting *setting, *setting2;
1306 	struct pinctrl_state *old_state = p->state;
1307 	int ret;
1308 
1309 	if (p->state) {
1310 		/*
1311 		 * For each pinmux setting in the old state, forget SW's record
1312 		 * of mux owner for that pingroup. Any pingroups which are
1313 		 * still owned by the new state will be re-acquired by the call
1314 		 * to pinmux_enable_setting() in the loop below.
1315 		 */
1316 		list_for_each_entry(setting, &p->state->settings, node) {
1317 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1318 				continue;
1319 			pinmux_disable_setting(setting);
1320 		}
1321 	}
1322 
1323 	p->state = NULL;
1324 
1325 	/* Apply all the settings for the new state - pinmux first */
1326 	list_for_each_entry(setting, &state->settings, node) {
1327 		switch (setting->type) {
1328 		case PIN_MAP_TYPE_MUX_GROUP:
1329 			ret = pinmux_enable_setting(setting);
1330 			break;
1331 		case PIN_MAP_TYPE_CONFIGS_PIN:
1332 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1333 			ret = 0;
1334 			break;
1335 		default:
1336 			ret = -EINVAL;
1337 			break;
1338 		}
1339 
1340 		if (ret < 0)
1341 			goto unapply_new_state;
1342 
1343 		/* Do not link hogs (circular dependency) */
1344 		if (p != setting->pctldev->p)
1345 			pinctrl_link_add(setting->pctldev, p->dev);
1346 	}
1347 
1348 	/* Apply all the settings for the new state - pinconf after */
1349 	list_for_each_entry(setting, &state->settings, node) {
1350 		switch (setting->type) {
1351 		case PIN_MAP_TYPE_MUX_GROUP:
1352 			ret = 0;
1353 			break;
1354 		case PIN_MAP_TYPE_CONFIGS_PIN:
1355 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1356 			ret = pinconf_apply_setting(setting);
1357 			break;
1358 		default:
1359 			ret = -EINVAL;
1360 			break;
1361 		}
1362 
1363 		if (ret < 0) {
1364 			goto unapply_new_state;
1365 		}
1366 
1367 		/* Do not link hogs (circular dependency) */
1368 		if (p != setting->pctldev->p)
1369 			pinctrl_link_add(setting->pctldev, p->dev);
1370 	}
1371 
1372 	p->state = state;
1373 
1374 	return 0;
1375 
1376 unapply_new_state:
1377 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1378 
1379 	list_for_each_entry(setting2, &state->settings, node) {
1380 		if (&setting2->node == &setting->node)
1381 			break;
1382 		/*
1383 		 * All we can do here is pinmux_disable_setting.
1384 		 * That means that some pins are muxed differently now
1385 		 * than they were before applying the setting (We can't
1386 		 * "unmux a pin"!), but it's not a big deal since the pins
1387 		 * are free to be muxed by another apply_setting.
1388 		 */
1389 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1390 			pinmux_disable_setting(setting2);
1391 	}
1392 
1393 	/* There's no infinite recursive loop here because p->state is NULL */
1394 	if (old_state)
1395 		pinctrl_select_state(p, old_state);
1396 
1397 	return ret;
1398 }
1399 
1400 /**
1401  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1402  * @p: the pinctrl handle for the device that requests configuration
1403  * @state: the state handle to select/activate/program
1404  */
1405 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1406 {
1407 	if (p->state == state)
1408 		return 0;
1409 
1410 	return pinctrl_commit_state(p, state);
1411 }
1412 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1413 
1414 static void devm_pinctrl_release(struct device *dev, void *res)
1415 {
1416 	pinctrl_put(*(struct pinctrl **)res);
1417 }
1418 
1419 /**
1420  * devm_pinctrl_get() - Resource managed pinctrl_get()
1421  * @dev: the device to obtain the handle for
1422  *
1423  * If there is a need to explicitly destroy the returned struct pinctrl,
1424  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1425  */
1426 struct pinctrl *devm_pinctrl_get(struct device *dev)
1427 {
1428 	struct pinctrl **ptr, *p;
1429 
1430 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1431 	if (!ptr)
1432 		return ERR_PTR(-ENOMEM);
1433 
1434 	p = pinctrl_get(dev);
1435 	if (!IS_ERR(p)) {
1436 		*ptr = p;
1437 		devres_add(dev, ptr);
1438 	} else {
1439 		devres_free(ptr);
1440 	}
1441 
1442 	return p;
1443 }
1444 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1445 
1446 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1447 {
1448 	struct pinctrl **p = res;
1449 
1450 	return *p == data;
1451 }
1452 
1453 /**
1454  * devm_pinctrl_put() - Resource managed pinctrl_put()
1455  * @p: the pinctrl handle to release
1456  *
1457  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1458  * this function will not need to be called and the resource management
1459  * code will ensure that the resource is freed.
1460  */
1461 void devm_pinctrl_put(struct pinctrl *p)
1462 {
1463 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1464 			       devm_pinctrl_match, p));
1465 }
1466 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1467 
1468 /**
1469  * pinctrl_register_mappings() - register a set of pin controller mappings
1470  * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1471  *	keeps a reference to the passed in maps, so they should _not_ be
1472  *	marked with __initdata.
1473  * @num_maps: the number of maps in the mapping table
1474  */
1475 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1476 			      unsigned num_maps)
1477 {
1478 	int i, ret;
1479 	struct pinctrl_maps *maps_node;
1480 
1481 	pr_debug("add %u pinctrl maps\n", num_maps);
1482 
1483 	/* First sanity check the new mapping */
1484 	for (i = 0; i < num_maps; i++) {
1485 		if (!maps[i].dev_name) {
1486 			pr_err("failed to register map %s (%d): no device given\n",
1487 			       maps[i].name, i);
1488 			return -EINVAL;
1489 		}
1490 
1491 		if (!maps[i].name) {
1492 			pr_err("failed to register map %d: no map name given\n",
1493 			       i);
1494 			return -EINVAL;
1495 		}
1496 
1497 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1498 				!maps[i].ctrl_dev_name) {
1499 			pr_err("failed to register map %s (%d): no pin control device given\n",
1500 			       maps[i].name, i);
1501 			return -EINVAL;
1502 		}
1503 
1504 		switch (maps[i].type) {
1505 		case PIN_MAP_TYPE_DUMMY_STATE:
1506 			break;
1507 		case PIN_MAP_TYPE_MUX_GROUP:
1508 			ret = pinmux_validate_map(&maps[i], i);
1509 			if (ret < 0)
1510 				return ret;
1511 			break;
1512 		case PIN_MAP_TYPE_CONFIGS_PIN:
1513 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1514 			ret = pinconf_validate_map(&maps[i], i);
1515 			if (ret < 0)
1516 				return ret;
1517 			break;
1518 		default:
1519 			pr_err("failed to register map %s (%d): invalid type given\n",
1520 			       maps[i].name, i);
1521 			return -EINVAL;
1522 		}
1523 	}
1524 
1525 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1526 	if (!maps_node)
1527 		return -ENOMEM;
1528 
1529 	maps_node->maps = maps;
1530 	maps_node->num_maps = num_maps;
1531 
1532 	mutex_lock(&pinctrl_maps_mutex);
1533 	list_add_tail(&maps_node->node, &pinctrl_maps);
1534 	mutex_unlock(&pinctrl_maps_mutex);
1535 
1536 	return 0;
1537 }
1538 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1539 
1540 /**
1541  * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1542  * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1543  *	when registering the mappings.
1544  */
1545 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1546 {
1547 	struct pinctrl_maps *maps_node;
1548 
1549 	mutex_lock(&pinctrl_maps_mutex);
1550 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1551 		if (maps_node->maps == map) {
1552 			list_del(&maps_node->node);
1553 			kfree(maps_node);
1554 			mutex_unlock(&pinctrl_maps_mutex);
1555 			return;
1556 		}
1557 	}
1558 	mutex_unlock(&pinctrl_maps_mutex);
1559 }
1560 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1561 
1562 /**
1563  * pinctrl_force_sleep() - turn a given controller device into sleep state
1564  * @pctldev: pin controller device
1565  */
1566 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1567 {
1568 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1569 		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1570 	return 0;
1571 }
1572 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1573 
1574 /**
1575  * pinctrl_force_default() - turn a given controller device into default state
1576  * @pctldev: pin controller device
1577  */
1578 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1579 {
1580 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1581 		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1582 	return 0;
1583 }
1584 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1585 
1586 /**
1587  * pinctrl_init_done() - tell pinctrl probe is done
1588  *
1589  * We'll use this time to switch the pins from "init" to "default" unless the
1590  * driver selected some other state.
1591  *
1592  * @dev: device to that's done probing
1593  */
1594 int pinctrl_init_done(struct device *dev)
1595 {
1596 	struct dev_pin_info *pins = dev->pins;
1597 	int ret;
1598 
1599 	if (!pins)
1600 		return 0;
1601 
1602 	if (IS_ERR(pins->init_state))
1603 		return 0; /* No such state */
1604 
1605 	if (pins->p->state != pins->init_state)
1606 		return 0; /* Not at init anyway */
1607 
1608 	if (IS_ERR(pins->default_state))
1609 		return 0; /* No default state */
1610 
1611 	ret = pinctrl_select_state(pins->p, pins->default_state);
1612 	if (ret)
1613 		dev_err(dev, "failed to activate default pinctrl state\n");
1614 
1615 	return ret;
1616 }
1617 
1618 static int pinctrl_select_bound_state(struct device *dev,
1619 				      struct pinctrl_state *state)
1620 {
1621 	struct dev_pin_info *pins = dev->pins;
1622 	int ret;
1623 
1624 	if (IS_ERR(state))
1625 		return 0; /* No such state */
1626 	ret = pinctrl_select_state(pins->p, state);
1627 	if (ret)
1628 		dev_err(dev, "failed to activate pinctrl state %s\n",
1629 			state->name);
1630 	return ret;
1631 }
1632 
1633 /**
1634  * pinctrl_select_default_state() - select default pinctrl state
1635  * @dev: device to select default state for
1636  */
1637 int pinctrl_select_default_state(struct device *dev)
1638 {
1639 	if (!dev->pins)
1640 		return 0;
1641 
1642 	return pinctrl_select_bound_state(dev, dev->pins->default_state);
1643 }
1644 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1645 
1646 #ifdef CONFIG_PM
1647 
1648 /**
1649  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1650  * @dev: device to select default state for
1651  */
1652 int pinctrl_pm_select_default_state(struct device *dev)
1653 {
1654 	return pinctrl_select_default_state(dev);
1655 }
1656 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1657 
1658 /**
1659  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1660  * @dev: device to select sleep state for
1661  */
1662 int pinctrl_pm_select_sleep_state(struct device *dev)
1663 {
1664 	if (!dev->pins)
1665 		return 0;
1666 
1667 	return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1668 }
1669 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1670 
1671 /**
1672  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1673  * @dev: device to select idle state for
1674  */
1675 int pinctrl_pm_select_idle_state(struct device *dev)
1676 {
1677 	if (!dev->pins)
1678 		return 0;
1679 
1680 	return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1681 }
1682 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1683 #endif
1684 
1685 #ifdef CONFIG_DEBUG_FS
1686 
1687 static int pinctrl_pins_show(struct seq_file *s, void *what)
1688 {
1689 	struct pinctrl_dev *pctldev = s->private;
1690 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1691 	unsigned i, pin;
1692 #ifdef CONFIG_GPIOLIB
1693 	struct pinctrl_gpio_range *range;
1694 	struct gpio_chip *chip;
1695 	int gpio_num;
1696 #endif
1697 
1698 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1699 
1700 	mutex_lock(&pctldev->mutex);
1701 
1702 	/* The pin number can be retrived from the pin controller descriptor */
1703 	for (i = 0; i < pctldev->desc->npins; i++) {
1704 		struct pin_desc *desc;
1705 
1706 		pin = pctldev->desc->pins[i].number;
1707 		desc = pin_desc_get(pctldev, pin);
1708 		/* Pin space may be sparse */
1709 		if (!desc)
1710 			continue;
1711 
1712 		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1713 
1714 #ifdef CONFIG_GPIOLIB
1715 		gpio_num = -1;
1716 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1717 			if ((pin >= range->pin_base) &&
1718 			    (pin < (range->pin_base + range->npins))) {
1719 				gpio_num = range->base + (pin - range->pin_base);
1720 				break;
1721 			}
1722 		}
1723 		if (gpio_num >= 0)
1724 			/*
1725 			 * FIXME: gpio_num comes from the global GPIO numberspace.
1726 			 * we need to get rid of the range->base eventually and
1727 			 * get the descriptor directly from the gpio_chip.
1728 			 */
1729 			chip = gpiod_to_chip(gpio_to_desc(gpio_num));
1730 		else
1731 			chip = NULL;
1732 		if (chip)
1733 			seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
1734 		else
1735 			seq_puts(s, "0:? ");
1736 #endif
1737 
1738 		/* Driver-specific info per pin */
1739 		if (ops->pin_dbg_show)
1740 			ops->pin_dbg_show(pctldev, s, pin);
1741 
1742 		seq_puts(s, "\n");
1743 	}
1744 
1745 	mutex_unlock(&pctldev->mutex);
1746 
1747 	return 0;
1748 }
1749 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1750 
1751 static int pinctrl_groups_show(struct seq_file *s, void *what)
1752 {
1753 	struct pinctrl_dev *pctldev = s->private;
1754 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1755 	unsigned ngroups, selector = 0;
1756 
1757 	mutex_lock(&pctldev->mutex);
1758 
1759 	ngroups = ops->get_groups_count(pctldev);
1760 
1761 	seq_puts(s, "registered pin groups:\n");
1762 	while (selector < ngroups) {
1763 		const unsigned *pins = NULL;
1764 		unsigned num_pins = 0;
1765 		const char *gname = ops->get_group_name(pctldev, selector);
1766 		const char *pname;
1767 		int ret = 0;
1768 		int i;
1769 
1770 		if (ops->get_group_pins)
1771 			ret = ops->get_group_pins(pctldev, selector,
1772 						  &pins, &num_pins);
1773 		if (ret)
1774 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1775 				   gname);
1776 		else {
1777 			seq_printf(s, "group: %s\n", gname);
1778 			for (i = 0; i < num_pins; i++) {
1779 				pname = pin_get_name(pctldev, pins[i]);
1780 				if (WARN_ON(!pname)) {
1781 					mutex_unlock(&pctldev->mutex);
1782 					return -EINVAL;
1783 				}
1784 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1785 			}
1786 			seq_puts(s, "\n");
1787 		}
1788 		selector++;
1789 	}
1790 
1791 	mutex_unlock(&pctldev->mutex);
1792 
1793 	return 0;
1794 }
1795 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1796 
1797 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1798 {
1799 	struct pinctrl_dev *pctldev = s->private;
1800 	struct pinctrl_gpio_range *range;
1801 
1802 	seq_puts(s, "GPIO ranges handled:\n");
1803 
1804 	mutex_lock(&pctldev->mutex);
1805 
1806 	/* Loop over the ranges */
1807 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1808 		if (range->pins) {
1809 			int a;
1810 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1811 				range->id, range->name,
1812 				range->base, (range->base + range->npins - 1));
1813 			for (a = 0; a < range->npins - 1; a++)
1814 				seq_printf(s, "%u, ", range->pins[a]);
1815 			seq_printf(s, "%u}\n", range->pins[a]);
1816 		}
1817 		else
1818 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1819 				range->id, range->name,
1820 				range->base, (range->base + range->npins - 1),
1821 				range->pin_base,
1822 				(range->pin_base + range->npins - 1));
1823 	}
1824 
1825 	mutex_unlock(&pctldev->mutex);
1826 
1827 	return 0;
1828 }
1829 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1830 
1831 static int pinctrl_devices_show(struct seq_file *s, void *what)
1832 {
1833 	struct pinctrl_dev *pctldev;
1834 
1835 	seq_puts(s, "name [pinmux] [pinconf]\n");
1836 
1837 	mutex_lock(&pinctrldev_list_mutex);
1838 
1839 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1840 		seq_printf(s, "%s ", pctldev->desc->name);
1841 		if (pctldev->desc->pmxops)
1842 			seq_puts(s, "yes ");
1843 		else
1844 			seq_puts(s, "no ");
1845 		if (pctldev->desc->confops)
1846 			seq_puts(s, "yes");
1847 		else
1848 			seq_puts(s, "no");
1849 		seq_puts(s, "\n");
1850 	}
1851 
1852 	mutex_unlock(&pinctrldev_list_mutex);
1853 
1854 	return 0;
1855 }
1856 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1857 
1858 static inline const char *map_type(enum pinctrl_map_type type)
1859 {
1860 	static const char * const names[] = {
1861 		"INVALID",
1862 		"DUMMY_STATE",
1863 		"MUX_GROUP",
1864 		"CONFIGS_PIN",
1865 		"CONFIGS_GROUP",
1866 	};
1867 
1868 	if (type >= ARRAY_SIZE(names))
1869 		return "UNKNOWN";
1870 
1871 	return names[type];
1872 }
1873 
1874 static int pinctrl_maps_show(struct seq_file *s, void *what)
1875 {
1876 	struct pinctrl_maps *maps_node;
1877 	const struct pinctrl_map *map;
1878 
1879 	seq_puts(s, "Pinctrl maps:\n");
1880 
1881 	mutex_lock(&pinctrl_maps_mutex);
1882 	for_each_pin_map(maps_node, map) {
1883 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1884 			   map->dev_name, map->name, map_type(map->type),
1885 			   map->type);
1886 
1887 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1888 			seq_printf(s, "controlling device %s\n",
1889 				   map->ctrl_dev_name);
1890 
1891 		switch (map->type) {
1892 		case PIN_MAP_TYPE_MUX_GROUP:
1893 			pinmux_show_map(s, map);
1894 			break;
1895 		case PIN_MAP_TYPE_CONFIGS_PIN:
1896 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1897 			pinconf_show_map(s, map);
1898 			break;
1899 		default:
1900 			break;
1901 		}
1902 
1903 		seq_putc(s, '\n');
1904 	}
1905 	mutex_unlock(&pinctrl_maps_mutex);
1906 
1907 	return 0;
1908 }
1909 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1910 
1911 static int pinctrl_show(struct seq_file *s, void *what)
1912 {
1913 	struct pinctrl *p;
1914 	struct pinctrl_state *state;
1915 	struct pinctrl_setting *setting;
1916 
1917 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1918 
1919 	mutex_lock(&pinctrl_list_mutex);
1920 
1921 	list_for_each_entry(p, &pinctrl_list, node) {
1922 		seq_printf(s, "device: %s current state: %s\n",
1923 			   dev_name(p->dev),
1924 			   p->state ? p->state->name : "none");
1925 
1926 		list_for_each_entry(state, &p->states, node) {
1927 			seq_printf(s, "  state: %s\n", state->name);
1928 
1929 			list_for_each_entry(setting, &state->settings, node) {
1930 				struct pinctrl_dev *pctldev = setting->pctldev;
1931 
1932 				seq_printf(s, "    type: %s controller %s ",
1933 					   map_type(setting->type),
1934 					   pinctrl_dev_get_name(pctldev));
1935 
1936 				switch (setting->type) {
1937 				case PIN_MAP_TYPE_MUX_GROUP:
1938 					pinmux_show_setting(s, setting);
1939 					break;
1940 				case PIN_MAP_TYPE_CONFIGS_PIN:
1941 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1942 					pinconf_show_setting(s, setting);
1943 					break;
1944 				default:
1945 					break;
1946 				}
1947 			}
1948 		}
1949 	}
1950 
1951 	mutex_unlock(&pinctrl_list_mutex);
1952 
1953 	return 0;
1954 }
1955 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1956 
1957 static struct dentry *debugfs_root;
1958 
1959 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1960 {
1961 	struct dentry *device_root;
1962 	const char *debugfs_name;
1963 
1964 	if (pctldev->desc->name &&
1965 			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1966 		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1967 				"%s-%s", dev_name(pctldev->dev),
1968 				pctldev->desc->name);
1969 		if (!debugfs_name) {
1970 			pr_warn("failed to determine debugfs dir name for %s\n",
1971 				dev_name(pctldev->dev));
1972 			return;
1973 		}
1974 	} else {
1975 		debugfs_name = dev_name(pctldev->dev);
1976 	}
1977 
1978 	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1979 	pctldev->device_root = device_root;
1980 
1981 	if (IS_ERR(device_root) || !device_root) {
1982 		pr_warn("failed to create debugfs directory for %s\n",
1983 			dev_name(pctldev->dev));
1984 		return;
1985 	}
1986 	debugfs_create_file("pins", 0444,
1987 			    device_root, pctldev, &pinctrl_pins_fops);
1988 	debugfs_create_file("pingroups", 0444,
1989 			    device_root, pctldev, &pinctrl_groups_fops);
1990 	debugfs_create_file("gpio-ranges", 0444,
1991 			    device_root, pctldev, &pinctrl_gpioranges_fops);
1992 	if (pctldev->desc->pmxops)
1993 		pinmux_init_device_debugfs(device_root, pctldev);
1994 	if (pctldev->desc->confops)
1995 		pinconf_init_device_debugfs(device_root, pctldev);
1996 }
1997 
1998 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1999 {
2000 	debugfs_remove_recursive(pctldev->device_root);
2001 }
2002 
2003 static void pinctrl_init_debugfs(void)
2004 {
2005 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
2006 	if (IS_ERR(debugfs_root) || !debugfs_root) {
2007 		pr_warn("failed to create debugfs directory\n");
2008 		debugfs_root = NULL;
2009 		return;
2010 	}
2011 
2012 	debugfs_create_file("pinctrl-devices", 0444,
2013 			    debugfs_root, NULL, &pinctrl_devices_fops);
2014 	debugfs_create_file("pinctrl-maps", 0444,
2015 			    debugfs_root, NULL, &pinctrl_maps_fops);
2016 	debugfs_create_file("pinctrl-handles", 0444,
2017 			    debugfs_root, NULL, &pinctrl_fops);
2018 }
2019 
2020 #else /* CONFIG_DEBUG_FS */
2021 
2022 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
2023 {
2024 }
2025 
2026 static void pinctrl_init_debugfs(void)
2027 {
2028 }
2029 
2030 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
2031 {
2032 }
2033 
2034 #endif
2035 
2036 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
2037 {
2038 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
2039 
2040 	if (!ops ||
2041 	    !ops->get_groups_count ||
2042 	    !ops->get_group_name)
2043 		return -EINVAL;
2044 
2045 	return 0;
2046 }
2047 
2048 /**
2049  * pinctrl_init_controller() - init a pin controller device
2050  * @pctldesc: descriptor for this pin controller
2051  * @dev: parent device for this pin controller
2052  * @driver_data: private pin controller data for this pin controller
2053  */
2054 static struct pinctrl_dev *
2055 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
2056 			void *driver_data)
2057 {
2058 	struct pinctrl_dev *pctldev;
2059 	int ret;
2060 
2061 	if (!pctldesc)
2062 		return ERR_PTR(-EINVAL);
2063 	if (!pctldesc->name)
2064 		return ERR_PTR(-EINVAL);
2065 
2066 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2067 	if (!pctldev)
2068 		return ERR_PTR(-ENOMEM);
2069 
2070 	/* Initialize pin control device struct */
2071 	pctldev->owner = pctldesc->owner;
2072 	pctldev->desc = pctldesc;
2073 	pctldev->driver_data = driver_data;
2074 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2075 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2076 	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2077 #endif
2078 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2079 	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2080 #endif
2081 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
2082 	INIT_LIST_HEAD(&pctldev->node);
2083 	pctldev->dev = dev;
2084 	mutex_init(&pctldev->mutex);
2085 
2086 	/* check core ops for sanity */
2087 	ret = pinctrl_check_ops(pctldev);
2088 	if (ret) {
2089 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
2090 		goto out_err;
2091 	}
2092 
2093 	/* If we're implementing pinmuxing, check the ops for sanity */
2094 	if (pctldesc->pmxops) {
2095 		ret = pinmux_check_ops(pctldev);
2096 		if (ret)
2097 			goto out_err;
2098 	}
2099 
2100 	/* If we're implementing pinconfig, check the ops for sanity */
2101 	if (pctldesc->confops) {
2102 		ret = pinconf_check_ops(pctldev);
2103 		if (ret)
2104 			goto out_err;
2105 	}
2106 
2107 	/* Register all the pins */
2108 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2109 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2110 	if (ret) {
2111 		dev_err(dev, "error during pin registration\n");
2112 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
2113 				      pctldesc->npins);
2114 		goto out_err;
2115 	}
2116 
2117 	return pctldev;
2118 
2119 out_err:
2120 	mutex_destroy(&pctldev->mutex);
2121 	kfree(pctldev);
2122 	return ERR_PTR(ret);
2123 }
2124 
2125 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2126 {
2127 	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2128 	if (PTR_ERR(pctldev->p) == -ENODEV) {
2129 		dev_dbg(pctldev->dev, "no hogs found\n");
2130 
2131 		return 0;
2132 	}
2133 
2134 	if (IS_ERR(pctldev->p)) {
2135 		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2136 			PTR_ERR(pctldev->p));
2137 
2138 		return PTR_ERR(pctldev->p);
2139 	}
2140 
2141 	pctldev->hog_default =
2142 		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2143 	if (IS_ERR(pctldev->hog_default)) {
2144 		dev_dbg(pctldev->dev,
2145 			"failed to lookup the default state\n");
2146 	} else {
2147 		if (pinctrl_select_state(pctldev->p,
2148 					 pctldev->hog_default))
2149 			dev_err(pctldev->dev,
2150 				"failed to select default state\n");
2151 	}
2152 
2153 	pctldev->hog_sleep =
2154 		pinctrl_lookup_state(pctldev->p,
2155 				     PINCTRL_STATE_SLEEP);
2156 	if (IS_ERR(pctldev->hog_sleep))
2157 		dev_dbg(pctldev->dev,
2158 			"failed to lookup the sleep state\n");
2159 
2160 	return 0;
2161 }
2162 
2163 int pinctrl_enable(struct pinctrl_dev *pctldev)
2164 {
2165 	int error;
2166 
2167 	error = pinctrl_claim_hogs(pctldev);
2168 	if (error) {
2169 		dev_err(pctldev->dev, "could not claim hogs: %i\n",
2170 			error);
2171 		pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2172 				      pctldev->desc->npins);
2173 		mutex_destroy(&pctldev->mutex);
2174 		kfree(pctldev);
2175 
2176 		return error;
2177 	}
2178 
2179 	mutex_lock(&pinctrldev_list_mutex);
2180 	list_add_tail(&pctldev->node, &pinctrldev_list);
2181 	mutex_unlock(&pinctrldev_list_mutex);
2182 
2183 	pinctrl_init_device_debugfs(pctldev);
2184 
2185 	return 0;
2186 }
2187 EXPORT_SYMBOL_GPL(pinctrl_enable);
2188 
2189 /**
2190  * pinctrl_register() - register a pin controller device
2191  * @pctldesc: descriptor for this pin controller
2192  * @dev: parent device for this pin controller
2193  * @driver_data: private pin controller data for this pin controller
2194  *
2195  * Note that pinctrl_register() is known to have problems as the pin
2196  * controller driver functions are called before the driver has a
2197  * struct pinctrl_dev handle. To avoid issues later on, please use the
2198  * new pinctrl_register_and_init() below instead.
2199  */
2200 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2201 				    struct device *dev, void *driver_data)
2202 {
2203 	struct pinctrl_dev *pctldev;
2204 	int error;
2205 
2206 	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2207 	if (IS_ERR(pctldev))
2208 		return pctldev;
2209 
2210 	error = pinctrl_enable(pctldev);
2211 	if (error)
2212 		return ERR_PTR(error);
2213 
2214 	return pctldev;
2215 }
2216 EXPORT_SYMBOL_GPL(pinctrl_register);
2217 
2218 /**
2219  * pinctrl_register_and_init() - register and init pin controller device
2220  * @pctldesc: descriptor for this pin controller
2221  * @dev: parent device for this pin controller
2222  * @driver_data: private pin controller data for this pin controller
2223  * @pctldev: pin controller device
2224  *
2225  * Note that pinctrl_enable() still needs to be manually called after
2226  * this once the driver is ready.
2227  */
2228 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2229 			      struct device *dev, void *driver_data,
2230 			      struct pinctrl_dev **pctldev)
2231 {
2232 	struct pinctrl_dev *p;
2233 
2234 	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2235 	if (IS_ERR(p))
2236 		return PTR_ERR(p);
2237 
2238 	/*
2239 	 * We have pinctrl_start() call functions in the pin controller
2240 	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2241 	 * let's make sure pctldev is properly initialized for the
2242 	 * pin controller driver before we do anything.
2243 	 */
2244 	*pctldev = p;
2245 
2246 	return 0;
2247 }
2248 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2249 
2250 /**
2251  * pinctrl_unregister() - unregister pinmux
2252  * @pctldev: pin controller to unregister
2253  *
2254  * Called by pinmux drivers to unregister a pinmux.
2255  */
2256 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2257 {
2258 	struct pinctrl_gpio_range *range, *n;
2259 
2260 	if (!pctldev)
2261 		return;
2262 
2263 	mutex_lock(&pctldev->mutex);
2264 	pinctrl_remove_device_debugfs(pctldev);
2265 	mutex_unlock(&pctldev->mutex);
2266 
2267 	if (!IS_ERR_OR_NULL(pctldev->p))
2268 		pinctrl_put(pctldev->p);
2269 
2270 	mutex_lock(&pinctrldev_list_mutex);
2271 	mutex_lock(&pctldev->mutex);
2272 	/* TODO: check that no pinmuxes are still active? */
2273 	list_del(&pctldev->node);
2274 	pinmux_generic_free_functions(pctldev);
2275 	pinctrl_generic_free_groups(pctldev);
2276 	/* Destroy descriptor tree */
2277 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2278 			      pctldev->desc->npins);
2279 	/* remove gpio ranges map */
2280 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2281 		list_del(&range->node);
2282 
2283 	mutex_unlock(&pctldev->mutex);
2284 	mutex_destroy(&pctldev->mutex);
2285 	kfree(pctldev);
2286 	mutex_unlock(&pinctrldev_list_mutex);
2287 }
2288 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2289 
2290 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2291 {
2292 	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2293 
2294 	pinctrl_unregister(pctldev);
2295 }
2296 
2297 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2298 {
2299 	struct pctldev **r = res;
2300 
2301 	if (WARN_ON(!r || !*r))
2302 		return 0;
2303 
2304 	return *r == data;
2305 }
2306 
2307 /**
2308  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2309  * @dev: parent device for this pin controller
2310  * @pctldesc: descriptor for this pin controller
2311  * @driver_data: private pin controller data for this pin controller
2312  *
2313  * Returns an error pointer if pincontrol register failed. Otherwise
2314  * it returns valid pinctrl handle.
2315  *
2316  * The pinctrl device will be automatically released when the device is unbound.
2317  */
2318 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2319 					  struct pinctrl_desc *pctldesc,
2320 					  void *driver_data)
2321 {
2322 	struct pinctrl_dev **ptr, *pctldev;
2323 
2324 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2325 	if (!ptr)
2326 		return ERR_PTR(-ENOMEM);
2327 
2328 	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2329 	if (IS_ERR(pctldev)) {
2330 		devres_free(ptr);
2331 		return pctldev;
2332 	}
2333 
2334 	*ptr = pctldev;
2335 	devres_add(dev, ptr);
2336 
2337 	return pctldev;
2338 }
2339 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2340 
2341 /**
2342  * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2343  * @dev: parent device for this pin controller
2344  * @pctldesc: descriptor for this pin controller
2345  * @driver_data: private pin controller data for this pin controller
2346  * @pctldev: pin controller device
2347  *
2348  * Returns zero on success or an error number on failure.
2349  *
2350  * The pinctrl device will be automatically released when the device is unbound.
2351  */
2352 int devm_pinctrl_register_and_init(struct device *dev,
2353 				   struct pinctrl_desc *pctldesc,
2354 				   void *driver_data,
2355 				   struct pinctrl_dev **pctldev)
2356 {
2357 	struct pinctrl_dev **ptr;
2358 	int error;
2359 
2360 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2361 	if (!ptr)
2362 		return -ENOMEM;
2363 
2364 	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2365 	if (error) {
2366 		devres_free(ptr);
2367 		return error;
2368 	}
2369 
2370 	*ptr = *pctldev;
2371 	devres_add(dev, ptr);
2372 
2373 	return 0;
2374 }
2375 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2376 
2377 /**
2378  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2379  * @dev: device for which resource was allocated
2380  * @pctldev: the pinctrl device to unregister.
2381  */
2382 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2383 {
2384 	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2385 			       devm_pinctrl_dev_match, pctldev));
2386 }
2387 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2388 
2389 static int __init pinctrl_init(void)
2390 {
2391 	pr_info("initialized pinctrl subsystem\n");
2392 	pinctrl_init_debugfs();
2393 	return 0;
2394 }
2395 
2396 /* init early since many drivers really need to initialized pinmux early */
2397 core_initcall(pinctrl_init);
2398