xref: /linux/drivers/pinctrl/core.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * Core driver for the pin control subsystem
3  *
4  * Copyright (C) 2011-2012 ST-Ericsson SA
5  * Written on behalf of Linaro for ST-Ericsson
6  * Based on bits of regulator core, gpio core and clk core
7  *
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11  *
12  * License terms: GNU General Public License (GPL) version 2
13  */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/err.h>
22 #include <linux/list.h>
23 #include <linux/sysfs.h>
24 #include <linux/debugfs.h>
25 #include <linux/seq_file.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/pinctrl/pinctrl.h>
28 #include <linux/pinctrl/machine.h>
29 #include "core.h"
30 #include "devicetree.h"
31 #include "pinmux.h"
32 #include "pinconf.h"
33 
34 /**
35  * struct pinctrl_maps - a list item containing part of the mapping table
36  * @node: mapping table list node
37  * @maps: array of mapping table entries
38  * @num_maps: the number of entries in @maps
39  */
40 struct pinctrl_maps {
41 	struct list_head node;
42 	struct pinctrl_map const *maps;
43 	unsigned num_maps;
44 };
45 
46 static bool pinctrl_dummy_state;
47 
48 /* Mutex taken by all entry points */
49 DEFINE_MUTEX(pinctrl_mutex);
50 
51 /* Global list of pin control devices (struct pinctrl_dev) */
52 LIST_HEAD(pinctrldev_list);
53 
54 /* List of pin controller handles (struct pinctrl) */
55 static LIST_HEAD(pinctrl_list);
56 
57 /* List of pinctrl maps (struct pinctrl_maps) */
58 static LIST_HEAD(pinctrl_maps);
59 
60 #define for_each_maps(_maps_node_, _i_, _map_) \
61 	list_for_each_entry(_maps_node_, &pinctrl_maps, node) \
62 		for (_i_ = 0, _map_ = &_maps_node_->maps[_i_]; \
63 			_i_ < _maps_node_->num_maps; \
64 			_i_++, _map_ = &_maps_node_->maps[_i_])
65 
66 /**
67  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
68  *
69  * Usually this function is called by platforms without pinctrl driver support
70  * but run with some shared drivers using pinctrl APIs.
71  * After calling this function, the pinctrl core will return successfully
72  * with creating a dummy state for the driver to keep going smoothly.
73  */
74 void pinctrl_provide_dummies(void)
75 {
76 	pinctrl_dummy_state = true;
77 }
78 
79 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
80 {
81 	/* We're not allowed to register devices without name */
82 	return pctldev->desc->name;
83 }
84 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
85 
86 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
87 {
88 	return pctldev->driver_data;
89 }
90 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
91 
92 /**
93  * get_pinctrl_dev_from_devname() - look up pin controller device
94  * @devname: the name of a device instance, as returned by dev_name()
95  *
96  * Looks up a pin control device matching a certain device name or pure device
97  * pointer, the pure device pointer will take precedence.
98  */
99 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
100 {
101 	struct pinctrl_dev *pctldev = NULL;
102 	bool found = false;
103 
104 	if (!devname)
105 		return NULL;
106 
107 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
108 		if (!strcmp(dev_name(pctldev->dev), devname)) {
109 			/* Matched on device name */
110 			found = true;
111 			break;
112 		}
113 	}
114 
115 	return found ? pctldev : NULL;
116 }
117 
118 /**
119  * pin_get_from_name() - look up a pin number from a name
120  * @pctldev: the pin control device to lookup the pin on
121  * @name: the name of the pin to look up
122  */
123 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
124 {
125 	unsigned i, pin;
126 
127 	/* The pin number can be retrived from the pin controller descriptor */
128 	for (i = 0; i < pctldev->desc->npins; i++) {
129 		struct pin_desc *desc;
130 
131 		pin = pctldev->desc->pins[i].number;
132 		desc = pin_desc_get(pctldev, pin);
133 		/* Pin space may be sparse */
134 		if (desc == NULL)
135 			continue;
136 		if (desc->name && !strcmp(name, desc->name))
137 			return pin;
138 	}
139 
140 	return -EINVAL;
141 }
142 
143 /**
144  * pin_get_name_from_id() - look up a pin name from a pin id
145  * @pctldev: the pin control device to lookup the pin on
146  * @name: the name of the pin to look up
147  */
148 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
149 {
150 	const struct pin_desc *desc;
151 
152 	desc = pin_desc_get(pctldev, pin);
153 	if (desc == NULL) {
154 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
155 			pin);
156 		return NULL;
157 	}
158 
159 	return desc->name;
160 }
161 
162 /**
163  * pin_is_valid() - check if pin exists on controller
164  * @pctldev: the pin control device to check the pin on
165  * @pin: pin to check, use the local pin controller index number
166  *
167  * This tells us whether a certain pin exist on a certain pin controller or
168  * not. Pin lists may be sparse, so some pins may not exist.
169  */
170 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
171 {
172 	struct pin_desc *pindesc;
173 
174 	if (pin < 0)
175 		return false;
176 
177 	mutex_lock(&pinctrl_mutex);
178 	pindesc = pin_desc_get(pctldev, pin);
179 	mutex_unlock(&pinctrl_mutex);
180 
181 	return pindesc != NULL;
182 }
183 EXPORT_SYMBOL_GPL(pin_is_valid);
184 
185 /* Deletes a range of pin descriptors */
186 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
187 				  const struct pinctrl_pin_desc *pins,
188 				  unsigned num_pins)
189 {
190 	int i;
191 
192 	for (i = 0; i < num_pins; i++) {
193 		struct pin_desc *pindesc;
194 
195 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
196 					    pins[i].number);
197 		if (pindesc != NULL) {
198 			radix_tree_delete(&pctldev->pin_desc_tree,
199 					  pins[i].number);
200 			if (pindesc->dynamic_name)
201 				kfree(pindesc->name);
202 		}
203 		kfree(pindesc);
204 	}
205 }
206 
207 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
208 				    unsigned number, const char *name)
209 {
210 	struct pin_desc *pindesc;
211 
212 	pindesc = pin_desc_get(pctldev, number);
213 	if (pindesc != NULL) {
214 		pr_err("pin %d already registered on %s\n", number,
215 		       pctldev->desc->name);
216 		return -EINVAL;
217 	}
218 
219 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
220 	if (pindesc == NULL) {
221 		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
222 		return -ENOMEM;
223 	}
224 
225 	/* Set owner */
226 	pindesc->pctldev = pctldev;
227 
228 	/* Copy basic pin info */
229 	if (name) {
230 		pindesc->name = name;
231 	} else {
232 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
233 		if (pindesc->name == NULL)
234 			return -ENOMEM;
235 		pindesc->dynamic_name = true;
236 	}
237 
238 	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
239 	pr_debug("registered pin %d (%s) on %s\n",
240 		 number, pindesc->name, pctldev->desc->name);
241 	return 0;
242 }
243 
244 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
245 				 struct pinctrl_pin_desc const *pins,
246 				 unsigned num_descs)
247 {
248 	unsigned i;
249 	int ret = 0;
250 
251 	for (i = 0; i < num_descs; i++) {
252 		ret = pinctrl_register_one_pin(pctldev,
253 					       pins[i].number, pins[i].name);
254 		if (ret)
255 			return ret;
256 	}
257 
258 	return 0;
259 }
260 
261 /**
262  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
263  * @pctldev: pin controller device to check
264  * @gpio: gpio pin to check taken from the global GPIO pin space
265  *
266  * Tries to match a GPIO pin number to the ranges handled by a certain pin
267  * controller, return the range or NULL
268  */
269 static struct pinctrl_gpio_range *
270 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
271 {
272 	struct pinctrl_gpio_range *range = NULL;
273 
274 	/* Loop over the ranges */
275 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
276 		/* Check if we're in the valid range */
277 		if (gpio >= range->base &&
278 		    gpio < range->base + range->npins) {
279 			return range;
280 		}
281 	}
282 
283 	return NULL;
284 }
285 
286 /**
287  * pinctrl_get_device_gpio_range() - find device for GPIO range
288  * @gpio: the pin to locate the pin controller for
289  * @outdev: the pin control device if found
290  * @outrange: the GPIO range if found
291  *
292  * Find the pin controller handling a certain GPIO pin from the pinspace of
293  * the GPIO subsystem, return the device and the matching GPIO range. Returns
294  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
295  * may still have not been registered.
296  */
297 static int pinctrl_get_device_gpio_range(unsigned gpio,
298 					 struct pinctrl_dev **outdev,
299 					 struct pinctrl_gpio_range **outrange)
300 {
301 	struct pinctrl_dev *pctldev = NULL;
302 
303 	/* Loop over the pin controllers */
304 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
305 		struct pinctrl_gpio_range *range;
306 
307 		range = pinctrl_match_gpio_range(pctldev, gpio);
308 		if (range != NULL) {
309 			*outdev = pctldev;
310 			*outrange = range;
311 			return 0;
312 		}
313 	}
314 
315 	return -EPROBE_DEFER;
316 }
317 
318 /**
319  * pinctrl_add_gpio_range() - register a GPIO range for a controller
320  * @pctldev: pin controller device to add the range to
321  * @range: the GPIO range to add
322  *
323  * This adds a range of GPIOs to be handled by a certain pin controller. Call
324  * this to register handled ranges after registering your pin controller.
325  */
326 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
327 			    struct pinctrl_gpio_range *range)
328 {
329 	mutex_lock(&pinctrl_mutex);
330 	list_add_tail(&range->node, &pctldev->gpio_ranges);
331 	mutex_unlock(&pinctrl_mutex);
332 }
333 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
334 
335 /**
336  * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
337  * @pctldev: pin controller device to remove the range from
338  * @range: the GPIO range to remove
339  */
340 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
341 			       struct pinctrl_gpio_range *range)
342 {
343 	mutex_lock(&pinctrl_mutex);
344 	list_del(&range->node);
345 	mutex_unlock(&pinctrl_mutex);
346 }
347 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
348 
349 /**
350  * pinctrl_get_group_selector() - returns the group selector for a group
351  * @pctldev: the pin controller handling the group
352  * @pin_group: the pin group to look up
353  */
354 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
355 			       const char *pin_group)
356 {
357 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
358 	unsigned ngroups = pctlops->get_groups_count(pctldev);
359 	unsigned group_selector = 0;
360 
361 	while (group_selector < ngroups) {
362 		const char *gname = pctlops->get_group_name(pctldev,
363 							    group_selector);
364 		if (!strcmp(gname, pin_group)) {
365 			dev_dbg(pctldev->dev,
366 				"found group selector %u for %s\n",
367 				group_selector,
368 				pin_group);
369 			return group_selector;
370 		}
371 
372 		group_selector++;
373 	}
374 
375 	dev_err(pctldev->dev, "does not have pin group %s\n",
376 		pin_group);
377 
378 	return -EINVAL;
379 }
380 
381 /**
382  * pinctrl_request_gpio() - request a single pin to be used in as GPIO
383  * @gpio: the GPIO pin number from the GPIO subsystem number space
384  *
385  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
386  * as part of their gpio_request() semantics, platforms and individual drivers
387  * shall *NOT* request GPIO pins to be muxed in.
388  */
389 int pinctrl_request_gpio(unsigned gpio)
390 {
391 	struct pinctrl_dev *pctldev;
392 	struct pinctrl_gpio_range *range;
393 	int ret;
394 	int pin;
395 
396 	mutex_lock(&pinctrl_mutex);
397 
398 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
399 	if (ret) {
400 		mutex_unlock(&pinctrl_mutex);
401 		return ret;
402 	}
403 
404 	/* Convert to the pin controllers number space */
405 	pin = gpio - range->base + range->pin_base;
406 
407 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
408 
409 	mutex_unlock(&pinctrl_mutex);
410 	return ret;
411 }
412 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
413 
414 /**
415  * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
416  * @gpio: the GPIO pin number from the GPIO subsystem number space
417  *
418  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
419  * as part of their gpio_free() semantics, platforms and individual drivers
420  * shall *NOT* request GPIO pins to be muxed out.
421  */
422 void pinctrl_free_gpio(unsigned gpio)
423 {
424 	struct pinctrl_dev *pctldev;
425 	struct pinctrl_gpio_range *range;
426 	int ret;
427 	int pin;
428 
429 	mutex_lock(&pinctrl_mutex);
430 
431 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
432 	if (ret) {
433 		mutex_unlock(&pinctrl_mutex);
434 		return;
435 	}
436 
437 	/* Convert to the pin controllers number space */
438 	pin = gpio - range->base + range->pin_base;
439 
440 	pinmux_free_gpio(pctldev, pin, range);
441 
442 	mutex_unlock(&pinctrl_mutex);
443 }
444 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
445 
446 static int pinctrl_gpio_direction(unsigned gpio, bool input)
447 {
448 	struct pinctrl_dev *pctldev;
449 	struct pinctrl_gpio_range *range;
450 	int ret;
451 	int pin;
452 
453 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
454 	if (ret)
455 		return ret;
456 
457 	/* Convert to the pin controllers number space */
458 	pin = gpio - range->base + range->pin_base;
459 
460 	return pinmux_gpio_direction(pctldev, range, pin, input);
461 }
462 
463 /**
464  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
465  * @gpio: the GPIO pin number from the GPIO subsystem number space
466  *
467  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
468  * as part of their gpio_direction_input() semantics, platforms and individual
469  * drivers shall *NOT* touch pin control GPIO calls.
470  */
471 int pinctrl_gpio_direction_input(unsigned gpio)
472 {
473 	int ret;
474 	mutex_lock(&pinctrl_mutex);
475 	ret = pinctrl_gpio_direction(gpio, true);
476 	mutex_unlock(&pinctrl_mutex);
477 	return ret;
478 }
479 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
480 
481 /**
482  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
483  * @gpio: the GPIO pin number from the GPIO subsystem number space
484  *
485  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
486  * as part of their gpio_direction_output() semantics, platforms and individual
487  * drivers shall *NOT* touch pin control GPIO calls.
488  */
489 int pinctrl_gpio_direction_output(unsigned gpio)
490 {
491 	int ret;
492 	mutex_lock(&pinctrl_mutex);
493 	ret = pinctrl_gpio_direction(gpio, false);
494 	mutex_unlock(&pinctrl_mutex);
495 	return ret;
496 }
497 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
498 
499 static struct pinctrl_state *find_state(struct pinctrl *p,
500 					const char *name)
501 {
502 	struct pinctrl_state *state;
503 
504 	list_for_each_entry(state, &p->states, node)
505 		if (!strcmp(state->name, name))
506 			return state;
507 
508 	return NULL;
509 }
510 
511 static struct pinctrl_state *create_state(struct pinctrl *p,
512 					  const char *name)
513 {
514 	struct pinctrl_state *state;
515 
516 	state = kzalloc(sizeof(*state), GFP_KERNEL);
517 	if (state == NULL) {
518 		dev_err(p->dev,
519 			"failed to alloc struct pinctrl_state\n");
520 		return ERR_PTR(-ENOMEM);
521 	}
522 
523 	state->name = name;
524 	INIT_LIST_HEAD(&state->settings);
525 
526 	list_add_tail(&state->node, &p->states);
527 
528 	return state;
529 }
530 
531 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
532 {
533 	struct pinctrl_state *state;
534 	struct pinctrl_setting *setting;
535 	int ret;
536 
537 	state = find_state(p, map->name);
538 	if (!state)
539 		state = create_state(p, map->name);
540 	if (IS_ERR(state))
541 		return PTR_ERR(state);
542 
543 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
544 		return 0;
545 
546 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
547 	if (setting == NULL) {
548 		dev_err(p->dev,
549 			"failed to alloc struct pinctrl_setting\n");
550 		return -ENOMEM;
551 	}
552 
553 	setting->type = map->type;
554 
555 	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
556 	if (setting->pctldev == NULL) {
557 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
558 			map->ctrl_dev_name);
559 		kfree(setting);
560 		/*
561 		 * OK let us guess that the driver is not there yet, and
562 		 * let's defer obtaining this pinctrl handle to later...
563 		 */
564 		return -EPROBE_DEFER;
565 	}
566 
567 	switch (map->type) {
568 	case PIN_MAP_TYPE_MUX_GROUP:
569 		ret = pinmux_map_to_setting(map, setting);
570 		break;
571 	case PIN_MAP_TYPE_CONFIGS_PIN:
572 	case PIN_MAP_TYPE_CONFIGS_GROUP:
573 		ret = pinconf_map_to_setting(map, setting);
574 		break;
575 	default:
576 		ret = -EINVAL;
577 		break;
578 	}
579 	if (ret < 0) {
580 		kfree(setting);
581 		return ret;
582 	}
583 
584 	list_add_tail(&setting->node, &state->settings);
585 
586 	return 0;
587 }
588 
589 static struct pinctrl *find_pinctrl(struct device *dev)
590 {
591 	struct pinctrl *p;
592 
593 	list_for_each_entry(p, &pinctrl_list, node)
594 		if (p->dev == dev)
595 			return p;
596 
597 	return NULL;
598 }
599 
600 static void pinctrl_put_locked(struct pinctrl *p, bool inlist);
601 
602 static struct pinctrl *create_pinctrl(struct device *dev)
603 {
604 	struct pinctrl *p;
605 	const char *devname;
606 	struct pinctrl_maps *maps_node;
607 	int i;
608 	struct pinctrl_map const *map;
609 	int ret;
610 
611 	/*
612 	 * create the state cookie holder struct pinctrl for each
613 	 * mapping, this is what consumers will get when requesting
614 	 * a pin control handle with pinctrl_get()
615 	 */
616 	p = kzalloc(sizeof(*p), GFP_KERNEL);
617 	if (p == NULL) {
618 		dev_err(dev, "failed to alloc struct pinctrl\n");
619 		return ERR_PTR(-ENOMEM);
620 	}
621 	p->dev = dev;
622 	INIT_LIST_HEAD(&p->states);
623 	INIT_LIST_HEAD(&p->dt_maps);
624 
625 	ret = pinctrl_dt_to_map(p);
626 	if (ret < 0) {
627 		kfree(p);
628 		return ERR_PTR(ret);
629 	}
630 
631 	devname = dev_name(dev);
632 
633 	/* Iterate over the pin control maps to locate the right ones */
634 	for_each_maps(maps_node, i, map) {
635 		/* Map must be for this device */
636 		if (strcmp(map->dev_name, devname))
637 			continue;
638 
639 		ret = add_setting(p, map);
640 		if (ret < 0) {
641 			pinctrl_put_locked(p, false);
642 			return ERR_PTR(ret);
643 		}
644 	}
645 
646 	/* Add the pinmux to the global list */
647 	list_add_tail(&p->node, &pinctrl_list);
648 
649 	return p;
650 }
651 
652 static struct pinctrl *pinctrl_get_locked(struct device *dev)
653 {
654 	struct pinctrl *p;
655 
656 	if (WARN_ON(!dev))
657 		return ERR_PTR(-EINVAL);
658 
659 	p = find_pinctrl(dev);
660 	if (p != NULL)
661 		return ERR_PTR(-EBUSY);
662 
663 	p = create_pinctrl(dev);
664 	if (IS_ERR(p))
665 		return p;
666 
667 	return p;
668 }
669 
670 /**
671  * pinctrl_get() - retrieves the pinctrl handle for a device
672  * @dev: the device to obtain the handle for
673  */
674 struct pinctrl *pinctrl_get(struct device *dev)
675 {
676 	struct pinctrl *p;
677 
678 	mutex_lock(&pinctrl_mutex);
679 	p = pinctrl_get_locked(dev);
680 	mutex_unlock(&pinctrl_mutex);
681 
682 	return p;
683 }
684 EXPORT_SYMBOL_GPL(pinctrl_get);
685 
686 static void pinctrl_put_locked(struct pinctrl *p, bool inlist)
687 {
688 	struct pinctrl_state *state, *n1;
689 	struct pinctrl_setting *setting, *n2;
690 
691 	list_for_each_entry_safe(state, n1, &p->states, node) {
692 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
693 			switch (setting->type) {
694 			case PIN_MAP_TYPE_MUX_GROUP:
695 				if (state == p->state)
696 					pinmux_disable_setting(setting);
697 				pinmux_free_setting(setting);
698 				break;
699 			case PIN_MAP_TYPE_CONFIGS_PIN:
700 			case PIN_MAP_TYPE_CONFIGS_GROUP:
701 				pinconf_free_setting(setting);
702 				break;
703 			default:
704 				break;
705 			}
706 			list_del(&setting->node);
707 			kfree(setting);
708 		}
709 		list_del(&state->node);
710 		kfree(state);
711 	}
712 
713 	pinctrl_dt_free_maps(p);
714 
715 	if (inlist)
716 		list_del(&p->node);
717 	kfree(p);
718 }
719 
720 /**
721  * pinctrl_put() - release a previously claimed pinctrl handle
722  * @p: the pinctrl handle to release
723  */
724 void pinctrl_put(struct pinctrl *p)
725 {
726 	mutex_lock(&pinctrl_mutex);
727 	pinctrl_put_locked(p, true);
728 	mutex_unlock(&pinctrl_mutex);
729 }
730 EXPORT_SYMBOL_GPL(pinctrl_put);
731 
732 static struct pinctrl_state *pinctrl_lookup_state_locked(struct pinctrl *p,
733 							 const char *name)
734 {
735 	struct pinctrl_state *state;
736 
737 	state = find_state(p, name);
738 	if (!state) {
739 		if (pinctrl_dummy_state) {
740 			/* create dummy state */
741 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
742 				name);
743 			state = create_state(p, name);
744 			if (IS_ERR(state))
745 				return state;
746 		} else {
747 			return ERR_PTR(-ENODEV);
748 		}
749 	}
750 
751 	return state;
752 }
753 
754 /**
755  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
756  * @p: the pinctrl handle to retrieve the state from
757  * @name: the state name to retrieve
758  */
759 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, const char *name)
760 {
761 	struct pinctrl_state *s;
762 
763 	mutex_lock(&pinctrl_mutex);
764 	s = pinctrl_lookup_state_locked(p, name);
765 	mutex_unlock(&pinctrl_mutex);
766 
767 	return s;
768 }
769 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
770 
771 static int pinctrl_select_state_locked(struct pinctrl *p,
772 				       struct pinctrl_state *state)
773 {
774 	struct pinctrl_setting *setting, *setting2;
775 	int ret;
776 
777 	if (p->state == state)
778 		return 0;
779 
780 	if (p->state) {
781 		/*
782 		 * The set of groups with a mux configuration in the old state
783 		 * may not be identical to the set of groups with a mux setting
784 		 * in the new state. While this might be unusual, it's entirely
785 		 * possible for the "user"-supplied mapping table to be written
786 		 * that way. For each group that was configured in the old state
787 		 * but not in the new state, this code puts that group into a
788 		 * safe/disabled state.
789 		 */
790 		list_for_each_entry(setting, &p->state->settings, node) {
791 			bool found = false;
792 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
793 				continue;
794 			list_for_each_entry(setting2, &state->settings, node) {
795 				if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
796 					continue;
797 				if (setting2->data.mux.group ==
798 						setting->data.mux.group) {
799 					found = true;
800 					break;
801 				}
802 			}
803 			if (!found)
804 				pinmux_disable_setting(setting);
805 		}
806 	}
807 
808 	p->state = state;
809 
810 	/* Apply all the settings for the new state */
811 	list_for_each_entry(setting, &state->settings, node) {
812 		switch (setting->type) {
813 		case PIN_MAP_TYPE_MUX_GROUP:
814 			ret = pinmux_enable_setting(setting);
815 			break;
816 		case PIN_MAP_TYPE_CONFIGS_PIN:
817 		case PIN_MAP_TYPE_CONFIGS_GROUP:
818 			ret = pinconf_apply_setting(setting);
819 			break;
820 		default:
821 			ret = -EINVAL;
822 			break;
823 		}
824 		if (ret < 0) {
825 			/* FIXME: Difficult to return to prev state */
826 			return ret;
827 		}
828 	}
829 
830 	return 0;
831 }
832 
833 /**
834  * pinctrl_select() - select/activate/program a pinctrl state to HW
835  * @p: the pinctrl handle for the device that requests configuratio
836  * @state: the state handle to select/activate/program
837  */
838 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
839 {
840 	int ret;
841 
842 	mutex_lock(&pinctrl_mutex);
843 	ret = pinctrl_select_state_locked(p, state);
844 	mutex_unlock(&pinctrl_mutex);
845 
846 	return ret;
847 }
848 EXPORT_SYMBOL_GPL(pinctrl_select_state);
849 
850 static void devm_pinctrl_release(struct device *dev, void *res)
851 {
852 	pinctrl_put(*(struct pinctrl **)res);
853 }
854 
855 /**
856  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
857  * @dev: the device to obtain the handle for
858  *
859  * If there is a need to explicitly destroy the returned struct pinctrl,
860  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
861  */
862 struct pinctrl *devm_pinctrl_get(struct device *dev)
863 {
864 	struct pinctrl **ptr, *p;
865 
866 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
867 	if (!ptr)
868 		return ERR_PTR(-ENOMEM);
869 
870 	p = pinctrl_get(dev);
871 	if (!IS_ERR(p)) {
872 		*ptr = p;
873 		devres_add(dev, ptr);
874 	} else {
875 		devres_free(ptr);
876 	}
877 
878 	return p;
879 }
880 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
881 
882 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
883 {
884 	struct pinctrl **p = res;
885 
886 	return *p == data;
887 }
888 
889 /**
890  * devm_pinctrl_put() - Resource managed pinctrl_put()
891  * @p: the pinctrl handle to release
892  *
893  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
894  * this function will not need to be called and the resource management
895  * code will ensure that the resource is freed.
896  */
897 void devm_pinctrl_put(struct pinctrl *p)
898 {
899 	WARN_ON(devres_destroy(p->dev, devm_pinctrl_release,
900 			       devm_pinctrl_match, p));
901 	pinctrl_put(p);
902 }
903 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
904 
905 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
906 			 bool dup, bool locked)
907 {
908 	int i, ret;
909 	struct pinctrl_maps *maps_node;
910 
911 	pr_debug("add %d pinmux maps\n", num_maps);
912 
913 	/* First sanity check the new mapping */
914 	for (i = 0; i < num_maps; i++) {
915 		if (!maps[i].dev_name) {
916 			pr_err("failed to register map %s (%d): no device given\n",
917 			       maps[i].name, i);
918 			return -EINVAL;
919 		}
920 
921 		if (!maps[i].name) {
922 			pr_err("failed to register map %d: no map name given\n",
923 			       i);
924 			return -EINVAL;
925 		}
926 
927 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
928 				!maps[i].ctrl_dev_name) {
929 			pr_err("failed to register map %s (%d): no pin control device given\n",
930 			       maps[i].name, i);
931 			return -EINVAL;
932 		}
933 
934 		switch (maps[i].type) {
935 		case PIN_MAP_TYPE_DUMMY_STATE:
936 			break;
937 		case PIN_MAP_TYPE_MUX_GROUP:
938 			ret = pinmux_validate_map(&maps[i], i);
939 			if (ret < 0)
940 				return ret;
941 			break;
942 		case PIN_MAP_TYPE_CONFIGS_PIN:
943 		case PIN_MAP_TYPE_CONFIGS_GROUP:
944 			ret = pinconf_validate_map(&maps[i], i);
945 			if (ret < 0)
946 				return ret;
947 			break;
948 		default:
949 			pr_err("failed to register map %s (%d): invalid type given\n",
950 			       maps[i].name, i);
951 			return -EINVAL;
952 		}
953 	}
954 
955 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
956 	if (!maps_node) {
957 		pr_err("failed to alloc struct pinctrl_maps\n");
958 		return -ENOMEM;
959 	}
960 
961 	maps_node->num_maps = num_maps;
962 	if (dup) {
963 		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
964 					  GFP_KERNEL);
965 		if (!maps_node->maps) {
966 			pr_err("failed to duplicate mapping table\n");
967 			kfree(maps_node);
968 			return -ENOMEM;
969 		}
970 	} else {
971 		maps_node->maps = maps;
972 	}
973 
974 	if (!locked)
975 		mutex_lock(&pinctrl_mutex);
976 	list_add_tail(&maps_node->node, &pinctrl_maps);
977 	if (!locked)
978 		mutex_unlock(&pinctrl_mutex);
979 
980 	return 0;
981 }
982 
983 /**
984  * pinctrl_register_mappings() - register a set of pin controller mappings
985  * @maps: the pincontrol mappings table to register. This should probably be
986  *	marked with __initdata so it can be discarded after boot. This
987  *	function will perform a shallow copy for the mapping entries.
988  * @num_maps: the number of maps in the mapping table
989  */
990 int pinctrl_register_mappings(struct pinctrl_map const *maps,
991 			      unsigned num_maps)
992 {
993 	return pinctrl_register_map(maps, num_maps, true, false);
994 }
995 
996 void pinctrl_unregister_map(struct pinctrl_map const *map)
997 {
998 	struct pinctrl_maps *maps_node;
999 
1000 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1001 		if (maps_node->maps == map) {
1002 			list_del(&maps_node->node);
1003 			return;
1004 		}
1005 	}
1006 }
1007 
1008 #ifdef CONFIG_DEBUG_FS
1009 
1010 static int pinctrl_pins_show(struct seq_file *s, void *what)
1011 {
1012 	struct pinctrl_dev *pctldev = s->private;
1013 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1014 	unsigned i, pin;
1015 
1016 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1017 
1018 	mutex_lock(&pinctrl_mutex);
1019 
1020 	/* The pin number can be retrived from the pin controller descriptor */
1021 	for (i = 0; i < pctldev->desc->npins; i++) {
1022 		struct pin_desc *desc;
1023 
1024 		pin = pctldev->desc->pins[i].number;
1025 		desc = pin_desc_get(pctldev, pin);
1026 		/* Pin space may be sparse */
1027 		if (desc == NULL)
1028 			continue;
1029 
1030 		seq_printf(s, "pin %d (%s) ", pin,
1031 			   desc->name ? desc->name : "unnamed");
1032 
1033 		/* Driver-specific info per pin */
1034 		if (ops->pin_dbg_show)
1035 			ops->pin_dbg_show(pctldev, s, pin);
1036 
1037 		seq_puts(s, "\n");
1038 	}
1039 
1040 	mutex_unlock(&pinctrl_mutex);
1041 
1042 	return 0;
1043 }
1044 
1045 static int pinctrl_groups_show(struct seq_file *s, void *what)
1046 {
1047 	struct pinctrl_dev *pctldev = s->private;
1048 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1049 	unsigned ngroups, selector = 0;
1050 
1051 	ngroups = ops->get_groups_count(pctldev);
1052 	mutex_lock(&pinctrl_mutex);
1053 
1054 	seq_puts(s, "registered pin groups:\n");
1055 	while (selector < ngroups) {
1056 		const unsigned *pins;
1057 		unsigned num_pins;
1058 		const char *gname = ops->get_group_name(pctldev, selector);
1059 		const char *pname;
1060 		int ret;
1061 		int i;
1062 
1063 		ret = ops->get_group_pins(pctldev, selector,
1064 					  &pins, &num_pins);
1065 		if (ret)
1066 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1067 				   gname);
1068 		else {
1069 			seq_printf(s, "group: %s\n", gname);
1070 			for (i = 0; i < num_pins; i++) {
1071 				pname = pin_get_name(pctldev, pins[i]);
1072 				if (WARN_ON(!pname))
1073 					return -EINVAL;
1074 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1075 			}
1076 			seq_puts(s, "\n");
1077 		}
1078 		selector++;
1079 	}
1080 
1081 	mutex_unlock(&pinctrl_mutex);
1082 
1083 	return 0;
1084 }
1085 
1086 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1087 {
1088 	struct pinctrl_dev *pctldev = s->private;
1089 	struct pinctrl_gpio_range *range = NULL;
1090 
1091 	seq_puts(s, "GPIO ranges handled:\n");
1092 
1093 	mutex_lock(&pinctrl_mutex);
1094 
1095 	/* Loop over the ranges */
1096 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1097 		seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1098 			   range->id, range->name,
1099 			   range->base, (range->base + range->npins - 1),
1100 			   range->pin_base,
1101 			   (range->pin_base + range->npins - 1));
1102 	}
1103 
1104 	mutex_unlock(&pinctrl_mutex);
1105 
1106 	return 0;
1107 }
1108 
1109 static int pinctrl_devices_show(struct seq_file *s, void *what)
1110 {
1111 	struct pinctrl_dev *pctldev;
1112 
1113 	seq_puts(s, "name [pinmux] [pinconf]\n");
1114 
1115 	mutex_lock(&pinctrl_mutex);
1116 
1117 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1118 		seq_printf(s, "%s ", pctldev->desc->name);
1119 		if (pctldev->desc->pmxops)
1120 			seq_puts(s, "yes ");
1121 		else
1122 			seq_puts(s, "no ");
1123 		if (pctldev->desc->confops)
1124 			seq_puts(s, "yes");
1125 		else
1126 			seq_puts(s, "no");
1127 		seq_puts(s, "\n");
1128 	}
1129 
1130 	mutex_unlock(&pinctrl_mutex);
1131 
1132 	return 0;
1133 }
1134 
1135 static inline const char *map_type(enum pinctrl_map_type type)
1136 {
1137 	static const char * const names[] = {
1138 		"INVALID",
1139 		"DUMMY_STATE",
1140 		"MUX_GROUP",
1141 		"CONFIGS_PIN",
1142 		"CONFIGS_GROUP",
1143 	};
1144 
1145 	if (type >= ARRAY_SIZE(names))
1146 		return "UNKNOWN";
1147 
1148 	return names[type];
1149 }
1150 
1151 static int pinctrl_maps_show(struct seq_file *s, void *what)
1152 {
1153 	struct pinctrl_maps *maps_node;
1154 	int i;
1155 	struct pinctrl_map const *map;
1156 
1157 	seq_puts(s, "Pinctrl maps:\n");
1158 
1159 	mutex_lock(&pinctrl_mutex);
1160 
1161 	for_each_maps(maps_node, i, map) {
1162 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1163 			   map->dev_name, map->name, map_type(map->type),
1164 			   map->type);
1165 
1166 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1167 			seq_printf(s, "controlling device %s\n",
1168 				   map->ctrl_dev_name);
1169 
1170 		switch (map->type) {
1171 		case PIN_MAP_TYPE_MUX_GROUP:
1172 			pinmux_show_map(s, map);
1173 			break;
1174 		case PIN_MAP_TYPE_CONFIGS_PIN:
1175 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1176 			pinconf_show_map(s, map);
1177 			break;
1178 		default:
1179 			break;
1180 		}
1181 
1182 		seq_printf(s, "\n");
1183 	}
1184 
1185 	mutex_unlock(&pinctrl_mutex);
1186 
1187 	return 0;
1188 }
1189 
1190 static int pinctrl_show(struct seq_file *s, void *what)
1191 {
1192 	struct pinctrl *p;
1193 	struct pinctrl_state *state;
1194 	struct pinctrl_setting *setting;
1195 
1196 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1197 
1198 	mutex_lock(&pinctrl_mutex);
1199 
1200 	list_for_each_entry(p, &pinctrl_list, node) {
1201 		seq_printf(s, "device: %s current state: %s\n",
1202 			   dev_name(p->dev),
1203 			   p->state ? p->state->name : "none");
1204 
1205 		list_for_each_entry(state, &p->states, node) {
1206 			seq_printf(s, "  state: %s\n", state->name);
1207 
1208 			list_for_each_entry(setting, &state->settings, node) {
1209 				struct pinctrl_dev *pctldev = setting->pctldev;
1210 
1211 				seq_printf(s, "    type: %s controller %s ",
1212 					   map_type(setting->type),
1213 					   pinctrl_dev_get_name(pctldev));
1214 
1215 				switch (setting->type) {
1216 				case PIN_MAP_TYPE_MUX_GROUP:
1217 					pinmux_show_setting(s, setting);
1218 					break;
1219 				case PIN_MAP_TYPE_CONFIGS_PIN:
1220 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1221 					pinconf_show_setting(s, setting);
1222 					break;
1223 				default:
1224 					break;
1225 				}
1226 			}
1227 		}
1228 	}
1229 
1230 	mutex_unlock(&pinctrl_mutex);
1231 
1232 	return 0;
1233 }
1234 
1235 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1236 {
1237 	return single_open(file, pinctrl_pins_show, inode->i_private);
1238 }
1239 
1240 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1241 {
1242 	return single_open(file, pinctrl_groups_show, inode->i_private);
1243 }
1244 
1245 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1246 {
1247 	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1248 }
1249 
1250 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1251 {
1252 	return single_open(file, pinctrl_devices_show, NULL);
1253 }
1254 
1255 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1256 {
1257 	return single_open(file, pinctrl_maps_show, NULL);
1258 }
1259 
1260 static int pinctrl_open(struct inode *inode, struct file *file)
1261 {
1262 	return single_open(file, pinctrl_show, NULL);
1263 }
1264 
1265 static const struct file_operations pinctrl_pins_ops = {
1266 	.open		= pinctrl_pins_open,
1267 	.read		= seq_read,
1268 	.llseek		= seq_lseek,
1269 	.release	= single_release,
1270 };
1271 
1272 static const struct file_operations pinctrl_groups_ops = {
1273 	.open		= pinctrl_groups_open,
1274 	.read		= seq_read,
1275 	.llseek		= seq_lseek,
1276 	.release	= single_release,
1277 };
1278 
1279 static const struct file_operations pinctrl_gpioranges_ops = {
1280 	.open		= pinctrl_gpioranges_open,
1281 	.read		= seq_read,
1282 	.llseek		= seq_lseek,
1283 	.release	= single_release,
1284 };
1285 
1286 static const struct file_operations pinctrl_devices_ops = {
1287 	.open		= pinctrl_devices_open,
1288 	.read		= seq_read,
1289 	.llseek		= seq_lseek,
1290 	.release	= single_release,
1291 };
1292 
1293 static const struct file_operations pinctrl_maps_ops = {
1294 	.open		= pinctrl_maps_open,
1295 	.read		= seq_read,
1296 	.llseek		= seq_lseek,
1297 	.release	= single_release,
1298 };
1299 
1300 static const struct file_operations pinctrl_ops = {
1301 	.open		= pinctrl_open,
1302 	.read		= seq_read,
1303 	.llseek		= seq_lseek,
1304 	.release	= single_release,
1305 };
1306 
1307 static struct dentry *debugfs_root;
1308 
1309 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1310 {
1311 	struct dentry *device_root;
1312 
1313 	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1314 					 debugfs_root);
1315 	pctldev->device_root = device_root;
1316 
1317 	if (IS_ERR(device_root) || !device_root) {
1318 		pr_warn("failed to create debugfs directory for %s\n",
1319 			dev_name(pctldev->dev));
1320 		return;
1321 	}
1322 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1323 			    device_root, pctldev, &pinctrl_pins_ops);
1324 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1325 			    device_root, pctldev, &pinctrl_groups_ops);
1326 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1327 			    device_root, pctldev, &pinctrl_gpioranges_ops);
1328 	pinmux_init_device_debugfs(device_root, pctldev);
1329 	pinconf_init_device_debugfs(device_root, pctldev);
1330 }
1331 
1332 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1333 {
1334 	debugfs_remove_recursive(pctldev->device_root);
1335 }
1336 
1337 static void pinctrl_init_debugfs(void)
1338 {
1339 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1340 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1341 		pr_warn("failed to create debugfs directory\n");
1342 		debugfs_root = NULL;
1343 		return;
1344 	}
1345 
1346 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1347 			    debugfs_root, NULL, &pinctrl_devices_ops);
1348 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1349 			    debugfs_root, NULL, &pinctrl_maps_ops);
1350 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1351 			    debugfs_root, NULL, &pinctrl_ops);
1352 }
1353 
1354 #else /* CONFIG_DEBUG_FS */
1355 
1356 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1357 {
1358 }
1359 
1360 static void pinctrl_init_debugfs(void)
1361 {
1362 }
1363 
1364 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1365 {
1366 }
1367 
1368 #endif
1369 
1370 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1371 {
1372 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1373 
1374 	if (!ops ||
1375 	    !ops->get_groups_count ||
1376 	    !ops->get_group_name ||
1377 	    !ops->get_group_pins)
1378 		return -EINVAL;
1379 
1380 	if (ops->dt_node_to_map && !ops->dt_free_map)
1381 		return -EINVAL;
1382 
1383 	return 0;
1384 }
1385 
1386 /**
1387  * pinctrl_register() - register a pin controller device
1388  * @pctldesc: descriptor for this pin controller
1389  * @dev: parent device for this pin controller
1390  * @driver_data: private pin controller data for this pin controller
1391  */
1392 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1393 				    struct device *dev, void *driver_data)
1394 {
1395 	struct pinctrl_dev *pctldev;
1396 	int ret;
1397 
1398 	if (pctldesc == NULL)
1399 		return NULL;
1400 	if (pctldesc->name == NULL)
1401 		return NULL;
1402 
1403 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1404 	if (pctldev == NULL) {
1405 		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1406 		return NULL;
1407 	}
1408 
1409 	/* Initialize pin control device struct */
1410 	pctldev->owner = pctldesc->owner;
1411 	pctldev->desc = pctldesc;
1412 	pctldev->driver_data = driver_data;
1413 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1414 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1415 	pctldev->dev = dev;
1416 
1417 	/* check core ops for sanity */
1418 	ret = pinctrl_check_ops(pctldev);
1419 	if (ret) {
1420 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1421 		goto out_err;
1422 	}
1423 
1424 	/* If we're implementing pinmuxing, check the ops for sanity */
1425 	if (pctldesc->pmxops) {
1426 		ret = pinmux_check_ops(pctldev);
1427 		if (ret)
1428 			goto out_err;
1429 	}
1430 
1431 	/* If we're implementing pinconfig, check the ops for sanity */
1432 	if (pctldesc->confops) {
1433 		ret = pinconf_check_ops(pctldev);
1434 		if (ret)
1435 			goto out_err;
1436 	}
1437 
1438 	/* Register all the pins */
1439 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1440 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1441 	if (ret) {
1442 		dev_err(dev, "error during pin registration\n");
1443 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1444 				      pctldesc->npins);
1445 		goto out_err;
1446 	}
1447 
1448 	mutex_lock(&pinctrl_mutex);
1449 
1450 	list_add_tail(&pctldev->node, &pinctrldev_list);
1451 
1452 	pctldev->p = pinctrl_get_locked(pctldev->dev);
1453 	if (!IS_ERR(pctldev->p)) {
1454 		struct pinctrl_state *s =
1455 			pinctrl_lookup_state_locked(pctldev->p,
1456 						    PINCTRL_STATE_DEFAULT);
1457 		if (IS_ERR(s)) {
1458 			dev_dbg(dev, "failed to lookup the default state\n");
1459 		} else {
1460 			ret = pinctrl_select_state_locked(pctldev->p, s);
1461 			if (ret) {
1462 				dev_err(dev,
1463 					"failed to select default state\n");
1464 			}
1465 		}
1466 	}
1467 
1468 	mutex_unlock(&pinctrl_mutex);
1469 
1470 	pinctrl_init_device_debugfs(pctldev);
1471 
1472 	return pctldev;
1473 
1474 out_err:
1475 	kfree(pctldev);
1476 	return NULL;
1477 }
1478 EXPORT_SYMBOL_GPL(pinctrl_register);
1479 
1480 /**
1481  * pinctrl_unregister() - unregister pinmux
1482  * @pctldev: pin controller to unregister
1483  *
1484  * Called by pinmux drivers to unregister a pinmux.
1485  */
1486 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1487 {
1488 	if (pctldev == NULL)
1489 		return;
1490 
1491 	pinctrl_remove_device_debugfs(pctldev);
1492 
1493 	mutex_lock(&pinctrl_mutex);
1494 
1495 	if (!IS_ERR(pctldev->p))
1496 		pinctrl_put_locked(pctldev->p, true);
1497 
1498 	/* TODO: check that no pinmuxes are still active? */
1499 	list_del(&pctldev->node);
1500 	/* Destroy descriptor tree */
1501 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1502 			      pctldev->desc->npins);
1503 	kfree(pctldev);
1504 
1505 	mutex_unlock(&pinctrl_mutex);
1506 }
1507 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1508 
1509 static int __init pinctrl_init(void)
1510 {
1511 	pr_info("initialized pinctrl subsystem\n");
1512 	pinctrl_init_debugfs();
1513 	return 0;
1514 }
1515 
1516 /* init early since many drivers really need to initialized pinmux early */
1517 core_initcall(pinctrl_init);
1518