xref: /linux/drivers/pinctrl/core.c (revision 23b0f90ba871f096474e1c27c3d14f455189d2d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Core driver for the pin control subsystem
4  *
5  * Copyright (C) 2011-2012 ST-Ericsson SA
6  * Written on behalf of Linaro for ST-Ericsson
7  * Based on bits of regulator core, gpio core and clk core
8  *
9  * Author: Linus Walleij <linus.walleij@linaro.org>
10  *
11  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12  */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14 
15 #include <linux/array_size.h>
16 #include <linux/cleanup.h>
17 #include <linux/debugfs.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kref.h>
23 #include <linux/list.h>
24 #include <linux/seq_file.h>
25 #include <linux/slab.h>
26 
27 #include <linux/gpio.h>
28 #include <linux/gpio/driver.h>
29 
30 #include <linux/pinctrl/consumer.h>
31 #include <linux/pinctrl/devinfo.h>
32 #include <linux/pinctrl/machine.h>
33 #include <linux/pinctrl/pinctrl.h>
34 
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinconf.h"
38 #include "pinmux.h"
39 
40 static bool pinctrl_dummy_state;
41 
42 /* Mutex taken to protect pinctrl_list */
43 static DEFINE_MUTEX(pinctrl_list_mutex);
44 
45 /* Mutex taken to protect pinctrl_maps */
46 DEFINE_MUTEX(pinctrl_maps_mutex);
47 
48 /* Mutex taken to protect pinctrldev_list */
49 static DEFINE_MUTEX(pinctrldev_list_mutex);
50 
51 /* Global list of pin control devices (struct pinctrl_dev) */
52 static LIST_HEAD(pinctrldev_list);
53 
54 /* List of pin controller handles (struct pinctrl) */
55 static LIST_HEAD(pinctrl_list);
56 
57 /* List of pinctrl maps (struct pinctrl_maps) */
58 LIST_HEAD(pinctrl_maps);
59 
60 
61 /**
62  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63  *
64  * Usually this function is called by platforms without pinctrl driver support
65  * but run with some shared drivers using pinctrl APIs.
66  * After calling this function, the pinctrl core will return successfully
67  * with creating a dummy state for the driver to keep going smoothly.
68  */
69 void pinctrl_provide_dummies(void)
70 {
71 	pinctrl_dummy_state = true;
72 }
73 EXPORT_SYMBOL_GPL(pinctrl_provide_dummies);
74 
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 	/* We're not allowed to register devices without name */
78 	return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81 
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 	return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87 
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 	return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93 
94 /**
95  * get_pinctrl_dev_from_devname() - look up pin controller device
96  * @devname: the name of a device instance, as returned by dev_name()
97  *
98  * Looks up a pin control device matching a certain device name or pure device
99  * pointer, the pure device pointer will take precedence.
100  */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 	struct pinctrl_dev *pctldev;
104 
105 	if (!devname)
106 		return NULL;
107 
108 	mutex_lock(&pinctrldev_list_mutex);
109 
110 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 		if (!strcmp(dev_name(pctldev->dev), devname)) {
112 			/* Matched on device name */
113 			mutex_unlock(&pinctrldev_list_mutex);
114 			return pctldev;
115 		}
116 	}
117 
118 	mutex_unlock(&pinctrldev_list_mutex);
119 
120 	return NULL;
121 }
122 
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 	struct pinctrl_dev *pctldev;
126 
127 	mutex_lock(&pinctrldev_list_mutex);
128 
129 	list_for_each_entry(pctldev, &pinctrldev_list, node)
130 		if (device_match_of_node(pctldev->dev, np)) {
131 			mutex_unlock(&pinctrldev_list_mutex);
132 			return pctldev;
133 		}
134 
135 	mutex_unlock(&pinctrldev_list_mutex);
136 
137 	return NULL;
138 }
139 
140 /**
141  * pin_get_from_name() - look up a pin number from a name
142  * @pctldev: the pin control device to lookup the pin on
143  * @name: the name of the pin to look up
144  */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 	unsigned int i, pin;
148 
149 	/* The pin number can be retrived from the pin controller descriptor */
150 	for (i = 0; i < pctldev->desc->npins; i++) {
151 		struct pin_desc *desc;
152 
153 		pin = pctldev->desc->pins[i].number;
154 		desc = pin_desc_get(pctldev, pin);
155 		/* Pin space may be sparse */
156 		if (desc && !strcmp(name, desc->name))
157 			return pin;
158 	}
159 
160 	return -EINVAL;
161 }
162 
163 /**
164  * pin_get_name() - look up a pin name from a pin id
165  * @pctldev: the pin control device to lookup the pin on
166  * @pin: pin number/id to look up
167  */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned int pin)
169 {
170 	const struct pin_desc *desc;
171 
172 	desc = pin_desc_get(pctldev, pin);
173 	if (!desc) {
174 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 			pin);
176 		return NULL;
177 	}
178 
179 	return desc->name;
180 }
181 EXPORT_SYMBOL_GPL(pin_get_name);
182 
183 /* Deletes a range of pin descriptors */
184 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
185 				  const struct pinctrl_pin_desc *pins,
186 				  unsigned int num_pins)
187 {
188 	int i;
189 
190 	for (i = 0; i < num_pins; i++) {
191 		struct pin_desc *pindesc;
192 
193 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
194 					    pins[i].number);
195 		if (pindesc) {
196 			radix_tree_delete(&pctldev->pin_desc_tree,
197 					  pins[i].number);
198 			if (pindesc->dynamic_name)
199 				kfree(pindesc->name);
200 		}
201 		kfree(pindesc);
202 	}
203 }
204 
205 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
206 				    const struct pinctrl_pin_desc *pin)
207 {
208 	struct pin_desc *pindesc;
209 	int error;
210 
211 	pindesc = pin_desc_get(pctldev, pin->number);
212 	if (pindesc) {
213 		dev_err(pctldev->dev, "pin %d already registered\n",
214 			pin->number);
215 		return -EINVAL;
216 	}
217 
218 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
219 	if (!pindesc)
220 		return -ENOMEM;
221 
222 	/* Set owner */
223 	pindesc->pctldev = pctldev;
224 #ifdef CONFIG_PINMUX
225 	mutex_init(&pindesc->mux_lock);
226 #endif
227 
228 	/* Copy basic pin info */
229 	if (pin->name) {
230 		pindesc->name = pin->name;
231 	} else {
232 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
233 		if (!pindesc->name) {
234 			error = -ENOMEM;
235 			goto failed;
236 		}
237 		pindesc->dynamic_name = true;
238 	}
239 
240 	pindesc->drv_data = pin->drv_data;
241 
242 	error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
243 	if (error)
244 		goto failed;
245 
246 	pr_debug("registered pin %d (%s) on %s\n",
247 		 pin->number, pindesc->name, pctldev->desc->name);
248 	return 0;
249 
250 failed:
251 	kfree(pindesc);
252 	return error;
253 }
254 
255 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
256 				 const struct pinctrl_pin_desc *pins,
257 				 unsigned int num_descs)
258 {
259 	unsigned int i;
260 	int ret = 0;
261 
262 	for (i = 0; i < num_descs; i++) {
263 		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	return 0;
269 }
270 
271 /**
272  * gpio_to_pin() - GPIO range GPIO number to pin number translation
273  * @range: GPIO range used for the translation
274  * @gc: GPIO chip structure from the GPIO subsystem
275  * @offset: hardware offset of the GPIO relative to the controller
276  *
277  * Finds the pin number for a given GPIO using the specified GPIO range
278  * as a base for translation. The distinction between linear GPIO ranges
279  * and pin list based GPIO ranges is managed correctly by this function.
280  *
281  * This function assumes the gpio is part of the specified GPIO range, use
282  * only after making sure this is the case (e.g. by calling it on the
283  * result of successful pinctrl_get_device_gpio_range calls)!
284  */
285 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
286 			      struct gpio_chip *gc, unsigned int offset)
287 {
288 	unsigned int pin = gc->base + offset - range->base;
289 	if (range->pins)
290 		return range->pins[pin];
291 	else
292 		return range->pin_base + pin;
293 }
294 
295 /**
296  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
297  * @pctldev: pin controller device to check
298  * @gc: GPIO chip structure from the GPIO subsystem
299  * @offset: hardware offset of the GPIO relative to the controller
300  *
301  * Tries to match a GPIO pin number to the ranges handled by a certain pin
302  * controller, return the range or NULL
303  */
304 static struct pinctrl_gpio_range *
305 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, struct gpio_chip *gc,
306 			 unsigned int offset)
307 {
308 	struct pinctrl_gpio_range *range;
309 
310 	mutex_lock(&pctldev->mutex);
311 	/* Loop over the ranges */
312 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
313 		/* Check if we're in the valid range */
314 		if ((gc->base + offset) >= range->base &&
315 		    (gc->base + offset) < range->base + range->npins) {
316 			mutex_unlock(&pctldev->mutex);
317 			return range;
318 		}
319 	}
320 	mutex_unlock(&pctldev->mutex);
321 	return NULL;
322 }
323 
324 /**
325  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
326  * the same GPIO chip are in range
327  * @gc: GPIO chip structure from the GPIO subsystem
328  * @offset: hardware offset of the GPIO relative to the controller
329  *
330  * This function is complement of pinctrl_match_gpio_range(). If the return
331  * value of pinctrl_match_gpio_range() is NULL, this function could be used
332  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
333  * of the same GPIO chip don't have back-end pinctrl interface.
334  * If the return value is true, it means that pinctrl device is ready & the
335  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
336  * is false, it means that pinctrl device may not be ready.
337  */
338 #ifdef CONFIG_GPIOLIB
339 static bool pinctrl_ready_for_gpio_range(struct gpio_chip *gc,
340 					 unsigned int offset)
341 {
342 	struct pinctrl_dev *pctldev;
343 	struct pinctrl_gpio_range *range = NULL;
344 
345 	mutex_lock(&pinctrldev_list_mutex);
346 
347 	/* Loop over the pin controllers */
348 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
349 		/* Loop over the ranges */
350 		mutex_lock(&pctldev->mutex);
351 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
352 			/* Check if any gpio range overlapped with gpio chip */
353 			if (range->base + range->npins - 1 < gc->base ||
354 			    range->base > gc->base + gc->ngpio - 1)
355 				continue;
356 			mutex_unlock(&pctldev->mutex);
357 			mutex_unlock(&pinctrldev_list_mutex);
358 			return true;
359 		}
360 		mutex_unlock(&pctldev->mutex);
361 	}
362 
363 	mutex_unlock(&pinctrldev_list_mutex);
364 
365 	return false;
366 }
367 #else
368 static inline bool
369 pinctrl_ready_for_gpio_range(struct gpio_chip *gc, unsigned int offset)
370 {
371 	return true;
372 }
373 #endif
374 
375 /**
376  * pinctrl_get_device_gpio_range() - find device for GPIO range
377  * @gc: GPIO chip structure from the GPIO subsystem
378  * @offset: hardware offset of the GPIO relative to the controller
379  * @outdev: the pin control device if found
380  * @outrange: the GPIO range if found
381  *
382  * Find the pin controller handling a certain GPIO pin from the pinspace of
383  * the GPIO subsystem, return the device and the matching GPIO range. Returns
384  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
385  * may still have not been registered.
386  */
387 static int pinctrl_get_device_gpio_range(struct gpio_chip *gc,
388 					 unsigned int offset,
389 					 struct pinctrl_dev **outdev,
390 					 struct pinctrl_gpio_range **outrange)
391 {
392 	struct pinctrl_dev *pctldev;
393 
394 	mutex_lock(&pinctrldev_list_mutex);
395 
396 	/* Loop over the pin controllers */
397 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
398 		struct pinctrl_gpio_range *range;
399 
400 		range = pinctrl_match_gpio_range(pctldev, gc, offset);
401 		if (range) {
402 			*outdev = pctldev;
403 			*outrange = range;
404 			mutex_unlock(&pinctrldev_list_mutex);
405 			return 0;
406 		}
407 	}
408 
409 	mutex_unlock(&pinctrldev_list_mutex);
410 
411 	return -EPROBE_DEFER;
412 }
413 
414 /**
415  * pinctrl_add_gpio_range() - register a GPIO range for a controller
416  * @pctldev: pin controller device to add the range to
417  * @range: the GPIO range to add
418  *
419  * DEPRECATED: Don't use this function in new code.  See section 2 of
420  * Documentation/devicetree/bindings/gpio/gpio.txt on how to bind pinctrl and
421  * gpio drivers.
422  *
423  * This adds a range of GPIOs to be handled by a certain pin controller. Call
424  * this to register handled ranges after registering your pin controller.
425  */
426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
427 			    struct pinctrl_gpio_range *range)
428 {
429 	mutex_lock(&pctldev->mutex);
430 	list_add_tail(&range->node, &pctldev->gpio_ranges);
431 	mutex_unlock(&pctldev->mutex);
432 }
433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
434 
435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
436 			     struct pinctrl_gpio_range *ranges,
437 			     unsigned int nranges)
438 {
439 	int i;
440 
441 	for (i = 0; i < nranges; i++)
442 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
443 }
444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
445 
446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447 		struct pinctrl_gpio_range *range)
448 {
449 	struct pinctrl_dev *pctldev;
450 
451 	pctldev = get_pinctrl_dev_from_devname(devname);
452 
453 	/*
454 	 * If we can't find this device, let's assume that is because
455 	 * it has not probed yet, so the driver trying to register this
456 	 * range need to defer probing.
457 	 */
458 	if (!pctldev)
459 		return ERR_PTR(-EPROBE_DEFER);
460 
461 	pinctrl_add_gpio_range(pctldev, range);
462 
463 	return pctldev;
464 }
465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
466 
467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
468 			   const unsigned int **pins, unsigned int *num_pins)
469 {
470 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
471 	int gs;
472 
473 	if (!pctlops->get_group_pins)
474 		return -EINVAL;
475 
476 	gs = pinctrl_get_group_selector(pctldev, pin_group);
477 	if (gs < 0)
478 		return gs;
479 
480 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
481 }
482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
483 
484 struct pinctrl_gpio_range *
485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
486 					unsigned int pin)
487 {
488 	struct pinctrl_gpio_range *range;
489 
490 	/* Loop over the ranges */
491 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
492 		/* Check if we're in the valid range */
493 		if (range->pins) {
494 			int a;
495 			for (a = 0; a < range->npins; a++) {
496 				if (range->pins[a] == pin)
497 					return range;
498 			}
499 		} else if (pin >= range->pin_base &&
500 			   pin < range->pin_base + range->npins)
501 			return range;
502 	}
503 
504 	return NULL;
505 }
506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
507 
508 /**
509  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
510  * @pctldev: the pin controller device to look in
511  * @pin: a controller-local number to find the range for
512  */
513 struct pinctrl_gpio_range *
514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
515 				 unsigned int pin)
516 {
517 	struct pinctrl_gpio_range *range;
518 
519 	mutex_lock(&pctldev->mutex);
520 	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
521 	mutex_unlock(&pctldev->mutex);
522 
523 	return range;
524 }
525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
526 
527 /**
528  * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
529  * @pctldev: pin controller device to remove the range from
530  * @range: the GPIO range to remove
531  */
532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
533 			       struct pinctrl_gpio_range *range)
534 {
535 	mutex_lock(&pctldev->mutex);
536 	list_del(&range->node);
537 	mutex_unlock(&pctldev->mutex);
538 }
539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
540 
541 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
542 
543 /**
544  * pinctrl_generic_get_group_count() - returns the number of pin groups
545  * @pctldev: pin controller device
546  */
547 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
548 {
549 	return pctldev->num_groups;
550 }
551 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
552 
553 /**
554  * pinctrl_generic_get_group_name() - returns the name of a pin group
555  * @pctldev: pin controller device
556  * @selector: group number
557  */
558 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
559 					   unsigned int selector)
560 {
561 	struct group_desc *group;
562 
563 	group = radix_tree_lookup(&pctldev->pin_group_tree,
564 				  selector);
565 	if (!group)
566 		return NULL;
567 
568 	return group->grp.name;
569 }
570 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
571 
572 /**
573  * pinctrl_generic_get_group_pins() - gets the pin group pins
574  * @pctldev: pin controller device
575  * @selector: group number
576  * @pins: pins in the group
577  * @num_pins: number of pins in the group
578  */
579 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
580 				   unsigned int selector,
581 				   const unsigned int **pins,
582 				   unsigned int *num_pins)
583 {
584 	struct group_desc *group;
585 
586 	group = radix_tree_lookup(&pctldev->pin_group_tree,
587 				  selector);
588 	if (!group) {
589 		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
590 			__func__, selector);
591 		return -EINVAL;
592 	}
593 
594 	*pins = group->grp.pins;
595 	*num_pins = group->grp.npins;
596 
597 	return 0;
598 }
599 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
600 
601 /**
602  * pinctrl_generic_get_group() - returns a pin group based on the number
603  * @pctldev: pin controller device
604  * @selector: group number
605  */
606 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
607 					     unsigned int selector)
608 {
609 	struct group_desc *group;
610 
611 	group = radix_tree_lookup(&pctldev->pin_group_tree,
612 				  selector);
613 	if (!group)
614 		return NULL;
615 
616 	return group;
617 }
618 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
619 
620 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
621 						  const char *function)
622 {
623 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
624 	int ngroups = ops->get_groups_count(pctldev);
625 	int selector = 0;
626 
627 	/* See if this pctldev has this group */
628 	while (selector < ngroups) {
629 		const char *gname = ops->get_group_name(pctldev, selector);
630 
631 		if (gname && !strcmp(function, gname))
632 			return selector;
633 
634 		selector++;
635 	}
636 
637 	return -EINVAL;
638 }
639 
640 /**
641  * pinctrl_generic_add_group() - adds a new pin group
642  * @pctldev: pin controller device
643  * @name: name of the pin group
644  * @pins: pins in the pin group
645  * @num_pins: number of pins in the pin group
646  * @data: pin controller driver specific data
647  *
648  * Note that the caller must take care of locking.
649  */
650 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
651 			      const unsigned int *pins, int num_pins, void *data)
652 {
653 	struct group_desc *group;
654 	int selector, error;
655 
656 	if (!name)
657 		return -EINVAL;
658 
659 	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
660 	if (selector >= 0)
661 		return selector;
662 
663 	selector = pctldev->num_groups;
664 
665 	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
666 	if (!group)
667 		return -ENOMEM;
668 
669 	*group = PINCTRL_GROUP_DESC(name, pins, num_pins, data);
670 
671 	error = radix_tree_insert(&pctldev->pin_group_tree, selector, group);
672 	if (error)
673 		return error;
674 
675 	pctldev->num_groups++;
676 
677 	return selector;
678 }
679 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
680 
681 /**
682  * pinctrl_generic_remove_group() - removes a numbered pin group
683  * @pctldev: pin controller device
684  * @selector: group number
685  *
686  * Note that the caller must take care of locking.
687  */
688 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
689 				 unsigned int selector)
690 {
691 	struct group_desc *group;
692 
693 	group = radix_tree_lookup(&pctldev->pin_group_tree,
694 				  selector);
695 	if (!group)
696 		return -ENOENT;
697 
698 	radix_tree_delete(&pctldev->pin_group_tree, selector);
699 	devm_kfree(pctldev->dev, group);
700 
701 	pctldev->num_groups--;
702 
703 	return 0;
704 }
705 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
706 
707 /**
708  * pinctrl_generic_free_groups() - removes all pin groups
709  * @pctldev: pin controller device
710  *
711  * Note that the caller must take care of locking. The pinctrl groups
712  * are allocated with devm_kzalloc() so no need to free them here.
713  */
714 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
715 {
716 	struct radix_tree_iter iter;
717 	void __rcu **slot;
718 
719 	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
720 		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
721 
722 	pctldev->num_groups = 0;
723 }
724 
725 #else
726 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
727 {
728 }
729 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
730 
731 /**
732  * pinctrl_get_group_selector() - returns the group selector for a group
733  * @pctldev: the pin controller handling the group
734  * @pin_group: the pin group to look up
735  */
736 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
737 			       const char *pin_group)
738 {
739 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
740 	unsigned int ngroups = pctlops->get_groups_count(pctldev);
741 	unsigned int group_selector = 0;
742 
743 	while (group_selector < ngroups) {
744 		const char *gname = pctlops->get_group_name(pctldev,
745 							    group_selector);
746 		if (gname && !strcmp(gname, pin_group)) {
747 			dev_dbg(pctldev->dev,
748 				"found group selector %u for %s\n",
749 				group_selector,
750 				pin_group);
751 			return group_selector;
752 		}
753 
754 		group_selector++;
755 	}
756 
757 	dev_err(pctldev->dev, "does not have pin group %s\n",
758 		pin_group);
759 
760 	return -EINVAL;
761 }
762 
763 bool pinctrl_gpio_can_use_line(struct gpio_chip *gc, unsigned int offset)
764 {
765 	struct pinctrl_dev *pctldev;
766 	struct pinctrl_gpio_range *range;
767 	bool result;
768 	int pin;
769 
770 	/*
771 	 * Try to obtain GPIO range, if it fails
772 	 * we're probably dealing with GPIO driver
773 	 * without a backing pin controller - bail out.
774 	 */
775 	if (pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range))
776 		return true;
777 
778 	mutex_lock(&pctldev->mutex);
779 
780 	/* Convert to the pin controllers number space */
781 	pin = gpio_to_pin(range, gc, offset);
782 
783 	result = pinmux_can_be_used_for_gpio(pctldev, pin);
784 
785 	mutex_unlock(&pctldev->mutex);
786 
787 	return result;
788 }
789 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
790 
791 /**
792  * pinctrl_gpio_request() - request a single pin to be used as GPIO
793  * @gc: GPIO chip structure from the GPIO subsystem
794  * @offset: hardware offset of the GPIO relative to the controller
795  *
796  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
797  * as part of their gpio_request() semantics, platforms and individual drivers
798  * shall *NOT* request GPIO pins to be muxed in.
799  */
800 int pinctrl_gpio_request(struct gpio_chip *gc, unsigned int offset)
801 {
802 	struct pinctrl_gpio_range *range;
803 	struct pinctrl_dev *pctldev;
804 	int ret, pin;
805 
806 	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
807 	if (ret) {
808 		if (pinctrl_ready_for_gpio_range(gc, offset))
809 			ret = 0;
810 		return ret;
811 	}
812 
813 	mutex_lock(&pctldev->mutex);
814 
815 	/* Convert to the pin controllers number space */
816 	pin = gpio_to_pin(range, gc, offset);
817 
818 	ret = pinmux_request_gpio(pctldev, range, pin, gc->base + offset);
819 
820 	mutex_unlock(&pctldev->mutex);
821 
822 	return ret;
823 }
824 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
825 
826 /**
827  * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
828  * @gc: GPIO chip structure from the GPIO subsystem
829  * @offset: hardware offset of the GPIO relative to the controller
830  *
831  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
832  * as part of their gpio_request() semantics, platforms and individual drivers
833  * shall *NOT* request GPIO pins to be muxed in.
834  */
835 void pinctrl_gpio_free(struct gpio_chip *gc, unsigned int offset)
836 {
837 	struct pinctrl_gpio_range *range;
838 	struct pinctrl_dev *pctldev;
839 	int ret, pin;
840 
841 	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
842 	if (ret)
843 		return;
844 
845 	mutex_lock(&pctldev->mutex);
846 
847 	/* Convert to the pin controllers number space */
848 	pin = gpio_to_pin(range, gc, offset);
849 
850 	pinmux_free_gpio(pctldev, pin, range);
851 
852 	mutex_unlock(&pctldev->mutex);
853 }
854 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
855 
856 static int pinctrl_gpio_direction(struct gpio_chip *gc, unsigned int offset,
857 				  bool input)
858 {
859 	struct pinctrl_dev *pctldev;
860 	struct pinctrl_gpio_range *range;
861 	int ret;
862 	int pin;
863 
864 	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
865 	if (ret) {
866 		return ret;
867 	}
868 
869 	mutex_lock(&pctldev->mutex);
870 
871 	/* Convert to the pin controllers number space */
872 	pin = gpio_to_pin(range, gc, offset);
873 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
874 
875 	mutex_unlock(&pctldev->mutex);
876 
877 	return ret;
878 }
879 
880 /**
881  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
882  * @gc: GPIO chip structure from the GPIO subsystem
883  * @offset: hardware offset of the GPIO relative to the controller
884  *
885  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
886  * as part of their gpio_direction_input() semantics, platforms and individual
887  * drivers shall *NOT* touch pin control GPIO calls.
888  */
889 int pinctrl_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
890 {
891 	return pinctrl_gpio_direction(gc, offset, true);
892 }
893 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
894 
895 /**
896  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
897  * @gc: GPIO chip structure from the GPIO subsystem
898  * @offset: hardware offset of the GPIO relative to the controller
899  *
900  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
901  * as part of their gpio_direction_output() semantics, platforms and individual
902  * drivers shall *NOT* touch pin control GPIO calls.
903  */
904 int pinctrl_gpio_direction_output(struct gpio_chip *gc, unsigned int offset)
905 {
906 	return pinctrl_gpio_direction(gc, offset, false);
907 }
908 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
909 
910 /**
911  * pinctrl_gpio_set_config() - Apply config to given GPIO pin
912  * @gc: GPIO chip structure from the GPIO subsystem
913  * @offset: hardware offset of the GPIO relative to the controller
914  * @config: the configuration to apply to the GPIO
915  *
916  * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
917  * they need to call the underlying pin controller to change GPIO config
918  * (for example set debounce time).
919  */
920 int pinctrl_gpio_set_config(struct gpio_chip *gc, unsigned int offset,
921 				unsigned long config)
922 {
923 	unsigned long configs[] = { config };
924 	struct pinctrl_gpio_range *range;
925 	struct pinctrl_dev *pctldev;
926 	int ret, pin;
927 
928 	ret = pinctrl_get_device_gpio_range(gc, offset, &pctldev, &range);
929 	if (ret)
930 		return ret;
931 
932 	mutex_lock(&pctldev->mutex);
933 	pin = gpio_to_pin(range, gc, offset);
934 	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
935 	mutex_unlock(&pctldev->mutex);
936 
937 	return ret;
938 }
939 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
940 
941 static struct pinctrl_state *find_state(struct pinctrl *p,
942 					const char *name)
943 {
944 	struct pinctrl_state *state;
945 
946 	list_for_each_entry(state, &p->states, node)
947 		if (!strcmp(state->name, name))
948 			return state;
949 
950 	return NULL;
951 }
952 
953 static struct pinctrl_state *create_state(struct pinctrl *p,
954 					  const char *name)
955 {
956 	struct pinctrl_state *state;
957 
958 	state = kzalloc(sizeof(*state), GFP_KERNEL);
959 	if (!state)
960 		return ERR_PTR(-ENOMEM);
961 
962 	state->name = name;
963 	INIT_LIST_HEAD(&state->settings);
964 
965 	list_add_tail(&state->node, &p->states);
966 
967 	return state;
968 }
969 
970 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
971 		       const struct pinctrl_map *map)
972 {
973 	struct pinctrl_state *state;
974 	struct pinctrl_setting *setting;
975 	int ret;
976 
977 	state = find_state(p, map->name);
978 	if (!state)
979 		state = create_state(p, map->name);
980 	if (IS_ERR(state))
981 		return PTR_ERR(state);
982 
983 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
984 		return 0;
985 
986 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
987 	if (!setting)
988 		return -ENOMEM;
989 
990 	setting->type = map->type;
991 
992 	if (pctldev)
993 		setting->pctldev = pctldev;
994 	else
995 		setting->pctldev =
996 			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
997 	if (!setting->pctldev) {
998 		kfree(setting);
999 		/* Do not defer probing of hogs (circular loop) */
1000 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
1001 			return -ENODEV;
1002 		/*
1003 		 * OK let us guess that the driver is not there yet, and
1004 		 * let's defer obtaining this pinctrl handle to later...
1005 		 */
1006 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
1007 			map->ctrl_dev_name);
1008 		return -EPROBE_DEFER;
1009 	}
1010 
1011 	setting->dev_name = map->dev_name;
1012 
1013 	switch (map->type) {
1014 	case PIN_MAP_TYPE_MUX_GROUP:
1015 		ret = pinmux_map_to_setting(map, setting);
1016 		break;
1017 	case PIN_MAP_TYPE_CONFIGS_PIN:
1018 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1019 		ret = pinconf_map_to_setting(map, setting);
1020 		break;
1021 	default:
1022 		ret = -EINVAL;
1023 		break;
1024 	}
1025 	if (ret < 0) {
1026 		kfree(setting);
1027 		return ret;
1028 	}
1029 
1030 	list_add_tail(&setting->node, &state->settings);
1031 
1032 	return 0;
1033 }
1034 
1035 static struct pinctrl *find_pinctrl(struct device *dev)
1036 {
1037 	struct pinctrl *p;
1038 
1039 	mutex_lock(&pinctrl_list_mutex);
1040 	list_for_each_entry(p, &pinctrl_list, node)
1041 		if (p->dev == dev) {
1042 			mutex_unlock(&pinctrl_list_mutex);
1043 			return p;
1044 		}
1045 
1046 	mutex_unlock(&pinctrl_list_mutex);
1047 	return NULL;
1048 }
1049 
1050 static void pinctrl_free(struct pinctrl *p, bool inlist);
1051 
1052 static struct pinctrl *create_pinctrl(struct device *dev,
1053 				      struct pinctrl_dev *pctldev)
1054 {
1055 	struct pinctrl *p;
1056 	const char *devname;
1057 	struct pinctrl_maps *maps_node;
1058 	const struct pinctrl_map *map;
1059 	int ret;
1060 
1061 	/*
1062 	 * create the state cookie holder struct pinctrl for each
1063 	 * mapping, this is what consumers will get when requesting
1064 	 * a pin control handle with pinctrl_get()
1065 	 */
1066 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1067 	if (!p)
1068 		return ERR_PTR(-ENOMEM);
1069 	p->dev = dev;
1070 	INIT_LIST_HEAD(&p->states);
1071 	INIT_LIST_HEAD(&p->dt_maps);
1072 
1073 	ret = pinctrl_dt_to_map(p, pctldev);
1074 	if (ret < 0) {
1075 		kfree(p);
1076 		return ERR_PTR(ret);
1077 	}
1078 
1079 	devname = dev_name(dev);
1080 
1081 	mutex_lock(&pinctrl_maps_mutex);
1082 	/* Iterate over the pin control maps to locate the right ones */
1083 	for_each_pin_map(maps_node, map) {
1084 		/* Map must be for this device */
1085 		if (strcmp(map->dev_name, devname))
1086 			continue;
1087 		/*
1088 		 * If pctldev is not null, we are claiming hog for it,
1089 		 * that means, setting that is served by pctldev by itself.
1090 		 *
1091 		 * Thus we must skip map that is for this device but is served
1092 		 * by other device.
1093 		 */
1094 		if (pctldev &&
1095 		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1096 			continue;
1097 
1098 		ret = add_setting(p, pctldev, map);
1099 		/*
1100 		 * At this point the adding of a setting may:
1101 		 *
1102 		 * - Defer, if the pinctrl device is not yet available
1103 		 * - Fail, if the pinctrl device is not yet available,
1104 		 *   AND the setting is a hog. We cannot defer that, since
1105 		 *   the hog will kick in immediately after the device
1106 		 *   is registered.
1107 		 *
1108 		 * If the error returned was not -EPROBE_DEFER then we
1109 		 * accumulate the errors to see if we end up with
1110 		 * an -EPROBE_DEFER later, as that is the worst case.
1111 		 */
1112 		if (ret == -EPROBE_DEFER) {
1113 			mutex_unlock(&pinctrl_maps_mutex);
1114 			pinctrl_free(p, false);
1115 			return ERR_PTR(ret);
1116 		}
1117 	}
1118 	mutex_unlock(&pinctrl_maps_mutex);
1119 
1120 	if (ret < 0) {
1121 		/* If some other error than deferral occurred, return here */
1122 		pinctrl_free(p, false);
1123 		return ERR_PTR(ret);
1124 	}
1125 
1126 	kref_init(&p->users);
1127 
1128 	/* Add the pinctrl handle to the global list */
1129 	mutex_lock(&pinctrl_list_mutex);
1130 	list_add_tail(&p->node, &pinctrl_list);
1131 	mutex_unlock(&pinctrl_list_mutex);
1132 
1133 	return p;
1134 }
1135 
1136 /**
1137  * pinctrl_get() - retrieves the pinctrl handle for a device
1138  * @dev: the device to obtain the handle for
1139  */
1140 struct pinctrl *pinctrl_get(struct device *dev)
1141 {
1142 	struct pinctrl *p;
1143 
1144 	if (WARN_ON(!dev))
1145 		return ERR_PTR(-EINVAL);
1146 
1147 	/*
1148 	 * See if somebody else (such as the device core) has already
1149 	 * obtained a handle to the pinctrl for this device. In that case,
1150 	 * return another pointer to it.
1151 	 */
1152 	p = find_pinctrl(dev);
1153 	if (p) {
1154 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1155 		kref_get(&p->users);
1156 		return p;
1157 	}
1158 
1159 	return create_pinctrl(dev, NULL);
1160 }
1161 EXPORT_SYMBOL_GPL(pinctrl_get);
1162 
1163 static void pinctrl_free_setting(bool disable_setting,
1164 				 struct pinctrl_setting *setting)
1165 {
1166 	switch (setting->type) {
1167 	case PIN_MAP_TYPE_MUX_GROUP:
1168 		if (disable_setting)
1169 			pinmux_disable_setting(setting);
1170 		pinmux_free_setting(setting);
1171 		break;
1172 	case PIN_MAP_TYPE_CONFIGS_PIN:
1173 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1174 		pinconf_free_setting(setting);
1175 		break;
1176 	default:
1177 		break;
1178 	}
1179 }
1180 
1181 static void pinctrl_free(struct pinctrl *p, bool inlist)
1182 {
1183 	struct pinctrl_state *state, *n1;
1184 	struct pinctrl_setting *setting, *n2;
1185 
1186 	mutex_lock(&pinctrl_list_mutex);
1187 	list_for_each_entry_safe(state, n1, &p->states, node) {
1188 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1189 			pinctrl_free_setting(state == p->state, setting);
1190 			list_del(&setting->node);
1191 			kfree(setting);
1192 		}
1193 		list_del(&state->node);
1194 		kfree(state);
1195 	}
1196 
1197 	pinctrl_dt_free_maps(p);
1198 
1199 	if (inlist)
1200 		list_del(&p->node);
1201 	kfree(p);
1202 	mutex_unlock(&pinctrl_list_mutex);
1203 }
1204 
1205 /**
1206  * pinctrl_release() - release the pinctrl handle
1207  * @kref: the kref in the pinctrl being released
1208  */
1209 static void pinctrl_release(struct kref *kref)
1210 {
1211 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1212 
1213 	pinctrl_free(p, true);
1214 }
1215 
1216 /**
1217  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1218  * @p: the pinctrl handle to release
1219  */
1220 void pinctrl_put(struct pinctrl *p)
1221 {
1222 	kref_put(&p->users, pinctrl_release);
1223 }
1224 EXPORT_SYMBOL_GPL(pinctrl_put);
1225 
1226 /**
1227  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1228  * @p: the pinctrl handle to retrieve the state from
1229  * @name: the state name to retrieve
1230  */
1231 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1232 						 const char *name)
1233 {
1234 	struct pinctrl_state *state;
1235 
1236 	state = find_state(p, name);
1237 	if (!state) {
1238 		if (pinctrl_dummy_state) {
1239 			/* create dummy state */
1240 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1241 				name);
1242 			state = create_state(p, name);
1243 		} else
1244 			state = ERR_PTR(-ENODEV);
1245 	}
1246 
1247 	return state;
1248 }
1249 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1250 
1251 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1252 			     struct device *consumer)
1253 {
1254 	if (pctldev->desc->link_consumers)
1255 		device_link_add(consumer, pctldev->dev,
1256 				DL_FLAG_PM_RUNTIME |
1257 				DL_FLAG_AUTOREMOVE_CONSUMER);
1258 }
1259 
1260 static void pinctrl_cond_disable_mux_setting(struct pinctrl_state *state,
1261 					     struct pinctrl_setting *target_setting)
1262 {
1263 	struct pinctrl_setting *setting;
1264 
1265 	list_for_each_entry(setting, &state->settings, node) {
1266 		if (target_setting && (&setting->node == &target_setting->node))
1267 			break;
1268 
1269 		if (setting->type == PIN_MAP_TYPE_MUX_GROUP)
1270 			pinmux_disable_setting(setting);
1271 	}
1272 }
1273 
1274 /**
1275  * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1276  * @p: the pinctrl handle for the device that requests configuration
1277  * @state: the state handle to select/activate/program
1278  */
1279 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1280 {
1281 	struct pinctrl_setting *setting;
1282 	struct pinctrl_state *old_state = READ_ONCE(p->state);
1283 	int ret;
1284 
1285 	if (old_state) {
1286 		/*
1287 		 * For each pinmux setting in the old state, forget SW's record
1288 		 * of mux owner for that pingroup. Any pingroups which are
1289 		 * still owned by the new state will be re-acquired by the call
1290 		 * to pinmux_enable_setting() in the loop below.
1291 		 */
1292 		pinctrl_cond_disable_mux_setting(old_state, NULL);
1293 	}
1294 
1295 	p->state = NULL;
1296 
1297 	/* Apply all the settings for the new state - pinmux first */
1298 	list_for_each_entry(setting, &state->settings, node) {
1299 		switch (setting->type) {
1300 		case PIN_MAP_TYPE_MUX_GROUP:
1301 			ret = pinmux_enable_setting(setting);
1302 			break;
1303 		case PIN_MAP_TYPE_CONFIGS_PIN:
1304 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1305 			ret = 0;
1306 			break;
1307 		default:
1308 			ret = -EINVAL;
1309 			break;
1310 		}
1311 
1312 		if (ret < 0)
1313 			goto unapply_new_state;
1314 
1315 		/* Do not link hogs (circular dependency) */
1316 		if (p != setting->pctldev->p)
1317 			pinctrl_link_add(setting->pctldev, p->dev);
1318 	}
1319 
1320 	/* Apply all the settings for the new state - pinconf after */
1321 	list_for_each_entry(setting, &state->settings, node) {
1322 		switch (setting->type) {
1323 		case PIN_MAP_TYPE_MUX_GROUP:
1324 			ret = 0;
1325 			break;
1326 		case PIN_MAP_TYPE_CONFIGS_PIN:
1327 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1328 			ret = pinconf_apply_setting(setting);
1329 			break;
1330 		default:
1331 			ret = -EINVAL;
1332 			break;
1333 		}
1334 
1335 		if (ret < 0) {
1336 			goto unapply_mux_setting;
1337 		}
1338 
1339 		/* Do not link hogs (circular dependency) */
1340 		if (p != setting->pctldev->p)
1341 			pinctrl_link_add(setting->pctldev, p->dev);
1342 	}
1343 
1344 	p->state = state;
1345 
1346 	return 0;
1347 
1348 unapply_mux_setting:
1349 	pinctrl_cond_disable_mux_setting(state, NULL);
1350 	goto restore_old_state;
1351 
1352 unapply_new_state:
1353 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1354 
1355 	/*
1356 	 * All we can do here is pinmux_disable_setting.
1357 	 * That means that some pins are muxed differently now
1358 	 * than they were before applying the setting (We can't
1359 	 * "unmux a pin"!), but it's not a big deal since the pins
1360 	 * are free to be muxed by another apply_setting.
1361 	 */
1362 	pinctrl_cond_disable_mux_setting(state, setting);
1363 
1364 restore_old_state:
1365 	/* There's no infinite recursive loop here because p->state is NULL */
1366 	if (old_state)
1367 		pinctrl_select_state(p, old_state);
1368 
1369 	return ret;
1370 }
1371 
1372 /**
1373  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1374  * @p: the pinctrl handle for the device that requests configuration
1375  * @state: the state handle to select/activate/program
1376  */
1377 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1378 {
1379 	if (p->state == state)
1380 		return 0;
1381 
1382 	return pinctrl_commit_state(p, state);
1383 }
1384 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1385 
1386 static void devm_pinctrl_release(void *p)
1387 {
1388 	pinctrl_put(p);
1389 }
1390 
1391 /**
1392  * devm_pinctrl_get() - Resource managed pinctrl_get()
1393  * @dev: the device to obtain the handle for
1394  *
1395  * If there is a need to explicitly destroy the returned struct pinctrl,
1396  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1397  */
1398 struct pinctrl *devm_pinctrl_get(struct device *dev)
1399 {
1400 	struct pinctrl *p;
1401 	int ret;
1402 
1403 	p = pinctrl_get(dev);
1404 	if (IS_ERR(p))
1405 		return p;
1406 
1407 	ret = devm_add_action_or_reset(dev, devm_pinctrl_release, p);
1408 	if (ret)
1409 		return ERR_PTR(ret);
1410 
1411 	return p;
1412 }
1413 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1414 
1415 /**
1416  * devm_pinctrl_put() - Resource managed pinctrl_put()
1417  * @p: the pinctrl handle to release
1418  *
1419  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1420  * this function will not need to be called and the resource management
1421  * code will ensure that the resource is freed.
1422  */
1423 void devm_pinctrl_put(struct pinctrl *p)
1424 {
1425 	devm_release_action(p->dev, devm_pinctrl_release, p);
1426 }
1427 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1428 
1429 /**
1430  * pinctrl_register_mappings() - register a set of pin controller mappings
1431  * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1432  *	keeps a reference to the passed in maps, so they should _not_ be
1433  *	marked with __initdata.
1434  * @num_maps: the number of maps in the mapping table
1435  */
1436 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1437 			      unsigned int num_maps)
1438 {
1439 	int i, ret;
1440 	struct pinctrl_maps *maps_node;
1441 
1442 	pr_debug("add %u pinctrl maps\n", num_maps);
1443 
1444 	/* First sanity check the new mapping */
1445 	for (i = 0; i < num_maps; i++) {
1446 		if (!maps[i].dev_name) {
1447 			pr_err("failed to register map %s (%d): no device given\n",
1448 			       maps[i].name, i);
1449 			return -EINVAL;
1450 		}
1451 
1452 		if (!maps[i].name) {
1453 			pr_err("failed to register map %d: no map name given\n",
1454 			       i);
1455 			return -EINVAL;
1456 		}
1457 
1458 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1459 				!maps[i].ctrl_dev_name) {
1460 			pr_err("failed to register map %s (%d): no pin control device given\n",
1461 			       maps[i].name, i);
1462 			return -EINVAL;
1463 		}
1464 
1465 		switch (maps[i].type) {
1466 		case PIN_MAP_TYPE_DUMMY_STATE:
1467 			break;
1468 		case PIN_MAP_TYPE_MUX_GROUP:
1469 			ret = pinmux_validate_map(&maps[i], i);
1470 			if (ret < 0)
1471 				return ret;
1472 			break;
1473 		case PIN_MAP_TYPE_CONFIGS_PIN:
1474 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1475 			ret = pinconf_validate_map(&maps[i], i);
1476 			if (ret < 0)
1477 				return ret;
1478 			break;
1479 		default:
1480 			pr_err("failed to register map %s (%d): invalid type given\n",
1481 			       maps[i].name, i);
1482 			return -EINVAL;
1483 		}
1484 	}
1485 
1486 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1487 	if (!maps_node)
1488 		return -ENOMEM;
1489 
1490 	maps_node->maps = maps;
1491 	maps_node->num_maps = num_maps;
1492 
1493 	mutex_lock(&pinctrl_maps_mutex);
1494 	list_add_tail(&maps_node->node, &pinctrl_maps);
1495 	mutex_unlock(&pinctrl_maps_mutex);
1496 
1497 	return 0;
1498 }
1499 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1500 
1501 /**
1502  * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1503  * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1504  *	when registering the mappings.
1505  */
1506 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1507 {
1508 	struct pinctrl_maps *maps_node;
1509 
1510 	mutex_lock(&pinctrl_maps_mutex);
1511 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1512 		if (maps_node->maps == map) {
1513 			list_del(&maps_node->node);
1514 			kfree(maps_node);
1515 			mutex_unlock(&pinctrl_maps_mutex);
1516 			return;
1517 		}
1518 	}
1519 	mutex_unlock(&pinctrl_maps_mutex);
1520 }
1521 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1522 
1523 static void devm_pinctrl_unregister_mappings(void *maps)
1524 {
1525 	pinctrl_unregister_mappings(maps);
1526 }
1527 
1528 /**
1529  * devm_pinctrl_register_mappings() - Resource managed pinctrl_register_mappings()
1530  * @dev: device for which mappings are registered
1531  * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1532  *	keeps a reference to the passed in maps, so they should _not_ be
1533  *	marked with __initdata.
1534  * @num_maps: the number of maps in the mapping table
1535  *
1536  * Returns: 0 on success, or negative errno on failure.
1537  */
1538 int devm_pinctrl_register_mappings(struct device *dev,
1539 				   const struct pinctrl_map *maps,
1540 				   unsigned int num_maps)
1541 {
1542 	int ret;
1543 
1544 	ret = pinctrl_register_mappings(maps, num_maps);
1545 	if (ret)
1546 		return ret;
1547 
1548 	return devm_add_action_or_reset(dev, devm_pinctrl_unregister_mappings, (void *)maps);
1549 }
1550 EXPORT_SYMBOL_GPL(devm_pinctrl_register_mappings);
1551 
1552 /**
1553  * pinctrl_force_sleep() - turn a given controller device into sleep state
1554  * @pctldev: pin controller device
1555  */
1556 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1557 {
1558 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1559 		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1560 	return 0;
1561 }
1562 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1563 
1564 /**
1565  * pinctrl_force_default() - turn a given controller device into default state
1566  * @pctldev: pin controller device
1567  */
1568 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1569 {
1570 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1571 		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1572 	return 0;
1573 }
1574 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1575 
1576 /**
1577  * pinctrl_init_done() - tell pinctrl probe is done
1578  *
1579  * We'll use this time to switch the pins from "init" to "default" unless the
1580  * driver selected some other state.
1581  *
1582  * @dev: device to that's done probing
1583  */
1584 int pinctrl_init_done(struct device *dev)
1585 {
1586 	struct dev_pin_info *pins = dev->pins;
1587 	int ret;
1588 
1589 	if (!pins)
1590 		return 0;
1591 
1592 	if (IS_ERR(pins->init_state))
1593 		return 0; /* No such state */
1594 
1595 	if (pins->p->state != pins->init_state)
1596 		return 0; /* Not at init anyway */
1597 
1598 	if (IS_ERR(pins->default_state))
1599 		return 0; /* No default state */
1600 
1601 	ret = pinctrl_select_state(pins->p, pins->default_state);
1602 	if (ret)
1603 		dev_err(dev, "failed to activate default pinctrl state\n");
1604 
1605 	return ret;
1606 }
1607 
1608 static int pinctrl_select_bound_state(struct device *dev,
1609 				      struct pinctrl_state *state)
1610 {
1611 	struct dev_pin_info *pins = dev->pins;
1612 	int ret;
1613 
1614 	if (IS_ERR(state))
1615 		return 0; /* No such state */
1616 	ret = pinctrl_select_state(pins->p, state);
1617 	if (ret)
1618 		dev_err(dev, "failed to activate pinctrl state %s\n",
1619 			state->name);
1620 	return ret;
1621 }
1622 
1623 /**
1624  * pinctrl_select_default_state() - select default pinctrl state
1625  * @dev: device to select default state for
1626  */
1627 int pinctrl_select_default_state(struct device *dev)
1628 {
1629 	if (!dev->pins)
1630 		return 0;
1631 
1632 	return pinctrl_select_bound_state(dev, dev->pins->default_state);
1633 }
1634 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1635 
1636 #ifdef CONFIG_PM
1637 
1638 /**
1639  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1640  * @dev: device to select default state for
1641  */
1642 int pinctrl_pm_select_default_state(struct device *dev)
1643 {
1644 	return pinctrl_select_default_state(dev);
1645 }
1646 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1647 
1648 /**
1649  * pinctrl_pm_select_init_state() - select init pinctrl state for PM
1650  * @dev: device to select init state for
1651  */
1652 int pinctrl_pm_select_init_state(struct device *dev)
1653 {
1654 	if (!dev->pins)
1655 		return 0;
1656 
1657 	return pinctrl_select_bound_state(dev, dev->pins->init_state);
1658 }
1659 EXPORT_SYMBOL_GPL(pinctrl_pm_select_init_state);
1660 
1661 /**
1662  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1663  * @dev: device to select sleep state for
1664  */
1665 int pinctrl_pm_select_sleep_state(struct device *dev)
1666 {
1667 	if (!dev->pins)
1668 		return 0;
1669 
1670 	return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1671 }
1672 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1673 
1674 /**
1675  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1676  * @dev: device to select idle state for
1677  */
1678 int pinctrl_pm_select_idle_state(struct device *dev)
1679 {
1680 	if (!dev->pins)
1681 		return 0;
1682 
1683 	return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1684 }
1685 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1686 #endif
1687 
1688 #ifdef CONFIG_DEBUG_FS
1689 
1690 static int pinctrl_pins_show(struct seq_file *s, void *what)
1691 {
1692 	struct pinctrl_dev *pctldev = s->private;
1693 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1694 	unsigned int i, pin;
1695 #ifdef CONFIG_GPIOLIB
1696 	struct gpio_device *gdev = NULL;
1697 	struct pinctrl_gpio_range *range;
1698 	int gpio_num;
1699 #endif
1700 
1701 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1702 
1703 	mutex_lock(&pctldev->mutex);
1704 
1705 	/* The pin number can be retrived from the pin controller descriptor */
1706 	for (i = 0; i < pctldev->desc->npins; i++) {
1707 		struct pin_desc *desc;
1708 
1709 		pin = pctldev->desc->pins[i].number;
1710 		desc = pin_desc_get(pctldev, pin);
1711 		/* Pin space may be sparse */
1712 		if (!desc)
1713 			continue;
1714 
1715 		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1716 
1717 #ifdef CONFIG_GPIOLIB
1718 		gdev = NULL;
1719 		gpio_num = -1;
1720 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1721 			if (range->pins != NULL) {
1722 				for (int i = 0; i < range->npins; ++i) {
1723 					if (range->pins[i] == pin) {
1724 						gpio_num = range->base + i;
1725 						break;
1726 					}
1727 				}
1728 			} else if ((pin >= range->pin_base) &&
1729 				   (pin < (range->pin_base + range->npins))) {
1730 				gpio_num =
1731 					range->base + (pin - range->pin_base);
1732 			}
1733 			if (gpio_num != -1)
1734 				break;
1735 		}
1736 		if (gpio_num >= 0)
1737 			/*
1738 			 * FIXME: gpio_num comes from the global GPIO numberspace.
1739 			 * we need to get rid of the range->base eventually and
1740 			 * get the descriptor directly from the gpio_chip.
1741 			 */
1742 			gdev = gpiod_to_gpio_device(gpio_to_desc(gpio_num));
1743 		if (gdev)
1744 			seq_printf(s, "%u:%s ",
1745 				   gpio_num - gpio_device_get_base(gdev),
1746 				   gpio_device_get_label(gdev));
1747 		else
1748 			seq_puts(s, "0:? ");
1749 #endif
1750 
1751 		/* Driver-specific info per pin */
1752 		if (ops->pin_dbg_show)
1753 			ops->pin_dbg_show(pctldev, s, pin);
1754 
1755 		seq_puts(s, "\n");
1756 	}
1757 
1758 	mutex_unlock(&pctldev->mutex);
1759 
1760 	return 0;
1761 }
1762 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1763 
1764 static int pinctrl_groups_show(struct seq_file *s, void *what)
1765 {
1766 	struct pinctrl_dev *pctldev = s->private;
1767 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1768 	unsigned int ngroups, selector = 0;
1769 
1770 	mutex_lock(&pctldev->mutex);
1771 
1772 	ngroups = ops->get_groups_count(pctldev);
1773 
1774 	seq_puts(s, "registered pin groups:\n");
1775 	while (selector < ngroups) {
1776 		const unsigned int *pins = NULL;
1777 		unsigned int num_pins = 0;
1778 		const char *gname = ops->get_group_name(pctldev, selector);
1779 		const char *pname;
1780 		int ret = 0;
1781 		int i;
1782 
1783 		if (ops->get_group_pins)
1784 			ret = ops->get_group_pins(pctldev, selector,
1785 						  &pins, &num_pins);
1786 		if (ret)
1787 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1788 				   gname);
1789 		else {
1790 			seq_printf(s, "group: %s\n", gname);
1791 			for (i = 0; i < num_pins; i++) {
1792 				pname = pin_get_name(pctldev, pins[i]);
1793 				if (WARN_ON(!pname)) {
1794 					mutex_unlock(&pctldev->mutex);
1795 					return -EINVAL;
1796 				}
1797 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1798 			}
1799 			seq_puts(s, "\n");
1800 		}
1801 		selector++;
1802 	}
1803 
1804 	mutex_unlock(&pctldev->mutex);
1805 
1806 	return 0;
1807 }
1808 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1809 
1810 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1811 {
1812 	struct pinctrl_dev *pctldev = s->private;
1813 	struct pinctrl_gpio_range *range;
1814 
1815 	seq_puts(s, "GPIO ranges handled:\n");
1816 
1817 	mutex_lock(&pctldev->mutex);
1818 
1819 	/* Loop over the ranges */
1820 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1821 		if (range->pins) {
1822 			int a;
1823 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1824 				range->id, range->name,
1825 				range->base, (range->base + range->npins - 1));
1826 			for (a = 0; a < range->npins - 1; a++)
1827 				seq_printf(s, "%u, ", range->pins[a]);
1828 			seq_printf(s, "%u}\n", range->pins[a]);
1829 		}
1830 		else
1831 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1832 				range->id, range->name,
1833 				range->base, (range->base + range->npins - 1),
1834 				range->pin_base,
1835 				(range->pin_base + range->npins - 1));
1836 	}
1837 
1838 	mutex_unlock(&pctldev->mutex);
1839 
1840 	return 0;
1841 }
1842 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1843 
1844 static int pinctrl_devices_show(struct seq_file *s, void *what)
1845 {
1846 	struct pinctrl_dev *pctldev;
1847 
1848 	seq_puts(s, "name [pinmux] [pinconf]\n");
1849 
1850 	mutex_lock(&pinctrldev_list_mutex);
1851 
1852 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1853 		seq_printf(s, "%s ", pctldev->desc->name);
1854 		if (pctldev->desc->pmxops)
1855 			seq_puts(s, "yes ");
1856 		else
1857 			seq_puts(s, "no ");
1858 		if (pctldev->desc->confops)
1859 			seq_puts(s, "yes");
1860 		else
1861 			seq_puts(s, "no");
1862 		seq_puts(s, "\n");
1863 	}
1864 
1865 	mutex_unlock(&pinctrldev_list_mutex);
1866 
1867 	return 0;
1868 }
1869 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1870 
1871 static inline const char *map_type(enum pinctrl_map_type type)
1872 {
1873 	static const char * const names[] = {
1874 		"INVALID",
1875 		"DUMMY_STATE",
1876 		"MUX_GROUP",
1877 		"CONFIGS_PIN",
1878 		"CONFIGS_GROUP",
1879 	};
1880 
1881 	if (type >= ARRAY_SIZE(names))
1882 		return "UNKNOWN";
1883 
1884 	return names[type];
1885 }
1886 
1887 static int pinctrl_maps_show(struct seq_file *s, void *what)
1888 {
1889 	struct pinctrl_maps *maps_node;
1890 	const struct pinctrl_map *map;
1891 
1892 	seq_puts(s, "Pinctrl maps:\n");
1893 
1894 	mutex_lock(&pinctrl_maps_mutex);
1895 	for_each_pin_map(maps_node, map) {
1896 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1897 			   map->dev_name, map->name, map_type(map->type),
1898 			   map->type);
1899 
1900 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1901 			seq_printf(s, "controlling device %s\n",
1902 				   map->ctrl_dev_name);
1903 
1904 		switch (map->type) {
1905 		case PIN_MAP_TYPE_MUX_GROUP:
1906 			pinmux_show_map(s, map);
1907 			break;
1908 		case PIN_MAP_TYPE_CONFIGS_PIN:
1909 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1910 			pinconf_show_map(s, map);
1911 			break;
1912 		default:
1913 			break;
1914 		}
1915 
1916 		seq_putc(s, '\n');
1917 	}
1918 	mutex_unlock(&pinctrl_maps_mutex);
1919 
1920 	return 0;
1921 }
1922 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1923 
1924 static int pinctrl_show(struct seq_file *s, void *what)
1925 {
1926 	struct pinctrl *p;
1927 	struct pinctrl_state *state;
1928 	struct pinctrl_setting *setting;
1929 
1930 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1931 
1932 	mutex_lock(&pinctrl_list_mutex);
1933 
1934 	list_for_each_entry(p, &pinctrl_list, node) {
1935 		seq_printf(s, "device: %s current state: %s\n",
1936 			   dev_name(p->dev),
1937 			   p->state ? p->state->name : "none");
1938 
1939 		list_for_each_entry(state, &p->states, node) {
1940 			seq_printf(s, "  state: %s\n", state->name);
1941 
1942 			list_for_each_entry(setting, &state->settings, node) {
1943 				struct pinctrl_dev *pctldev = setting->pctldev;
1944 
1945 				seq_printf(s, "    type: %s controller %s ",
1946 					   map_type(setting->type),
1947 					   pinctrl_dev_get_name(pctldev));
1948 
1949 				switch (setting->type) {
1950 				case PIN_MAP_TYPE_MUX_GROUP:
1951 					pinmux_show_setting(s, setting);
1952 					break;
1953 				case PIN_MAP_TYPE_CONFIGS_PIN:
1954 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1955 					pinconf_show_setting(s, setting);
1956 					break;
1957 				default:
1958 					break;
1959 				}
1960 			}
1961 		}
1962 	}
1963 
1964 	mutex_unlock(&pinctrl_list_mutex);
1965 
1966 	return 0;
1967 }
1968 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1969 
1970 static struct dentry *debugfs_root;
1971 
1972 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1973 {
1974 	struct dentry *device_root;
1975 	const char *debugfs_name;
1976 
1977 	if (pctldev->desc->name &&
1978 			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1979 		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1980 				"%s-%s", dev_name(pctldev->dev),
1981 				pctldev->desc->name);
1982 		if (!debugfs_name) {
1983 			pr_warn("failed to determine debugfs dir name for %s\n",
1984 				dev_name(pctldev->dev));
1985 			return;
1986 		}
1987 	} else {
1988 		debugfs_name = dev_name(pctldev->dev);
1989 	}
1990 
1991 	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1992 	pctldev->device_root = device_root;
1993 
1994 	if (IS_ERR(device_root) || !device_root) {
1995 		pr_warn("failed to create debugfs directory for %s\n",
1996 			dev_name(pctldev->dev));
1997 		return;
1998 	}
1999 	debugfs_create_file("pins", 0444,
2000 			    device_root, pctldev, &pinctrl_pins_fops);
2001 	debugfs_create_file("pingroups", 0444,
2002 			    device_root, pctldev, &pinctrl_groups_fops);
2003 	debugfs_create_file("gpio-ranges", 0444,
2004 			    device_root, pctldev, &pinctrl_gpioranges_fops);
2005 	if (pctldev->desc->pmxops)
2006 		pinmux_init_device_debugfs(device_root, pctldev);
2007 	if (pctldev->desc->confops)
2008 		pinconf_init_device_debugfs(device_root, pctldev);
2009 }
2010 
2011 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
2012 {
2013 	debugfs_remove_recursive(pctldev->device_root);
2014 }
2015 
2016 static void pinctrl_init_debugfs(void)
2017 {
2018 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
2019 	if (IS_ERR(debugfs_root)) {
2020 		pr_warn("failed to create debugfs directory\n");
2021 		debugfs_root = NULL;
2022 		return;
2023 	}
2024 
2025 	debugfs_create_file("pinctrl-devices", 0444,
2026 			    debugfs_root, NULL, &pinctrl_devices_fops);
2027 	debugfs_create_file("pinctrl-maps", 0444,
2028 			    debugfs_root, NULL, &pinctrl_maps_fops);
2029 	debugfs_create_file("pinctrl-handles", 0444,
2030 			    debugfs_root, NULL, &pinctrl_fops);
2031 }
2032 
2033 #else /* CONFIG_DEBUG_FS */
2034 
2035 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
2036 {
2037 }
2038 
2039 static void pinctrl_init_debugfs(void)
2040 {
2041 }
2042 
2043 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
2044 {
2045 }
2046 
2047 #endif
2048 
2049 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
2050 {
2051 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
2052 
2053 	if (!ops ||
2054 	    !ops->get_groups_count ||
2055 	    !ops->get_group_name)
2056 		return -EINVAL;
2057 
2058 	return 0;
2059 }
2060 
2061 /**
2062  * pinctrl_init_controller() - init a pin controller device
2063  * @pctldesc: descriptor for this pin controller
2064  * @dev: parent device for this pin controller
2065  * @driver_data: private pin controller data for this pin controller
2066  */
2067 static struct pinctrl_dev *
2068 pinctrl_init_controller(const struct pinctrl_desc *pctldesc, struct device *dev,
2069 			void *driver_data)
2070 {
2071 	struct pinctrl_dev *pctldev;
2072 	int ret;
2073 
2074 	if (!pctldesc)
2075 		return ERR_PTR(-EINVAL);
2076 	if (!pctldesc->name)
2077 		return ERR_PTR(-EINVAL);
2078 
2079 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2080 	if (!pctldev)
2081 		return ERR_PTR(-ENOMEM);
2082 
2083 	/* Initialize pin control device struct */
2084 	pctldev->owner = pctldesc->owner;
2085 	pctldev->desc = pctldesc;
2086 	pctldev->driver_data = driver_data;
2087 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2088 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2089 	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2090 #endif
2091 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2092 	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2093 #endif
2094 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
2095 	INIT_LIST_HEAD(&pctldev->node);
2096 	pctldev->dev = dev;
2097 	mutex_init(&pctldev->mutex);
2098 
2099 	/* check core ops for sanity */
2100 	ret = pinctrl_check_ops(pctldev);
2101 	if (ret) {
2102 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
2103 		goto out_err;
2104 	}
2105 
2106 	/* If we're implementing pinmuxing, check the ops for sanity */
2107 	if (pctldesc->pmxops) {
2108 		ret = pinmux_check_ops(pctldev);
2109 		if (ret)
2110 			goto out_err;
2111 	}
2112 
2113 	/* If we're implementing pinconfig, check the ops for sanity */
2114 	if (pctldesc->confops) {
2115 		ret = pinconf_check_ops(pctldev);
2116 		if (ret)
2117 			goto out_err;
2118 	}
2119 
2120 	/* Register all the pins */
2121 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2122 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2123 	if (ret) {
2124 		dev_err(dev, "error during pin registration\n");
2125 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
2126 				      pctldesc->npins);
2127 		goto out_err;
2128 	}
2129 
2130 	return pctldev;
2131 
2132 out_err:
2133 	mutex_destroy(&pctldev->mutex);
2134 	kfree(pctldev);
2135 	return ERR_PTR(ret);
2136 }
2137 
2138 static void pinctrl_uninit_controller(struct pinctrl_dev *pctldev,
2139 				      const struct pinctrl_desc *pctldesc)
2140 {
2141 	pinctrl_free_pindescs(pctldev, pctldesc->pins,
2142 			      pctldesc->npins);
2143 	mutex_destroy(&pctldev->mutex);
2144 	kfree(pctldev);
2145 }
2146 
2147 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2148 {
2149 	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2150 	if (PTR_ERR(pctldev->p) == -ENODEV) {
2151 		dev_dbg(pctldev->dev, "no hogs found\n");
2152 
2153 		return 0;
2154 	}
2155 
2156 	if (IS_ERR(pctldev->p)) {
2157 		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2158 			PTR_ERR(pctldev->p));
2159 
2160 		return PTR_ERR(pctldev->p);
2161 	}
2162 
2163 	pctldev->hog_default =
2164 		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2165 	if (IS_ERR(pctldev->hog_default)) {
2166 		dev_dbg(pctldev->dev,
2167 			"failed to lookup the default state\n");
2168 	} else {
2169 		if (pinctrl_select_state(pctldev->p,
2170 					 pctldev->hog_default))
2171 			dev_err(pctldev->dev,
2172 				"failed to select default state\n");
2173 	}
2174 
2175 	pctldev->hog_sleep =
2176 		pinctrl_lookup_state(pctldev->p,
2177 				     PINCTRL_STATE_SLEEP);
2178 	if (IS_ERR(pctldev->hog_sleep))
2179 		dev_dbg(pctldev->dev,
2180 			"failed to lookup the sleep state\n");
2181 
2182 	return 0;
2183 }
2184 
2185 int pinctrl_enable(struct pinctrl_dev *pctldev)
2186 {
2187 	int error;
2188 
2189 	error = pinctrl_claim_hogs(pctldev);
2190 	if (error)
2191 		return error;
2192 
2193 	mutex_lock(&pinctrldev_list_mutex);
2194 	list_add_tail(&pctldev->node, &pinctrldev_list);
2195 	mutex_unlock(&pinctrldev_list_mutex);
2196 
2197 	pinctrl_init_device_debugfs(pctldev);
2198 
2199 	return 0;
2200 }
2201 EXPORT_SYMBOL_GPL(pinctrl_enable);
2202 
2203 /**
2204  * pinctrl_register() - register a pin controller device
2205  * @pctldesc: descriptor for this pin controller
2206  * @dev: parent device for this pin controller
2207  * @driver_data: private pin controller data for this pin controller
2208  *
2209  * Note that pinctrl_register() is known to have problems as the pin
2210  * controller driver functions are called before the driver has a
2211  * struct pinctrl_dev handle. To avoid issues later on, please use the
2212  * new pinctrl_register_and_init() below instead.
2213  */
2214 struct pinctrl_dev *pinctrl_register(const struct pinctrl_desc *pctldesc,
2215 				    struct device *dev, void *driver_data)
2216 {
2217 	struct pinctrl_dev *pctldev;
2218 	int error;
2219 
2220 	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2221 	if (IS_ERR(pctldev))
2222 		return pctldev;
2223 
2224 	error = pinctrl_enable(pctldev);
2225 	if (error) {
2226 		pinctrl_uninit_controller(pctldev, pctldesc);
2227 		return ERR_PTR(error);
2228 	}
2229 
2230 	return pctldev;
2231 }
2232 EXPORT_SYMBOL_GPL(pinctrl_register);
2233 
2234 /**
2235  * pinctrl_register_and_init() - register and init pin controller device
2236  * @pctldesc: descriptor for this pin controller
2237  * @dev: parent device for this pin controller
2238  * @driver_data: private pin controller data for this pin controller
2239  * @pctldev: pin controller device
2240  *
2241  * Note that pinctrl_enable() still needs to be manually called after
2242  * this once the driver is ready.
2243  */
2244 int pinctrl_register_and_init(const struct pinctrl_desc *pctldesc,
2245 			      struct device *dev, void *driver_data,
2246 			      struct pinctrl_dev **pctldev)
2247 {
2248 	struct pinctrl_dev *p;
2249 
2250 	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2251 	if (IS_ERR(p))
2252 		return PTR_ERR(p);
2253 
2254 	/*
2255 	 * We have pinctrl_start() call functions in the pin controller
2256 	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2257 	 * let's make sure pctldev is properly initialized for the
2258 	 * pin controller driver before we do anything.
2259 	 */
2260 	*pctldev = p;
2261 
2262 	return 0;
2263 }
2264 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2265 
2266 /**
2267  * pinctrl_unregister() - unregister pinmux
2268  * @pctldev: pin controller to unregister
2269  *
2270  * Called by pinmux drivers to unregister a pinmux.
2271  */
2272 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2273 {
2274 	struct pinctrl_gpio_range *range, *n;
2275 
2276 	if (!pctldev)
2277 		return;
2278 
2279 	mutex_lock(&pctldev->mutex);
2280 	pinctrl_remove_device_debugfs(pctldev);
2281 	mutex_unlock(&pctldev->mutex);
2282 
2283 	if (!IS_ERR_OR_NULL(pctldev->p))
2284 		pinctrl_put(pctldev->p);
2285 
2286 	mutex_lock(&pinctrldev_list_mutex);
2287 	mutex_lock(&pctldev->mutex);
2288 	/* TODO: check that no pinmuxes are still active? */
2289 	list_del(&pctldev->node);
2290 	pinmux_generic_free_functions(pctldev);
2291 	pinctrl_generic_free_groups(pctldev);
2292 	/* Destroy descriptor tree */
2293 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2294 			      pctldev->desc->npins);
2295 	/* remove gpio ranges map */
2296 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2297 		list_del(&range->node);
2298 
2299 	mutex_unlock(&pctldev->mutex);
2300 	mutex_destroy(&pctldev->mutex);
2301 	kfree(pctldev);
2302 	mutex_unlock(&pinctrldev_list_mutex);
2303 }
2304 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2305 
2306 static void devm_pinctrl_dev_release(void *pctldev)
2307 {
2308 	pinctrl_unregister(pctldev);
2309 }
2310 
2311 /**
2312  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2313  * @dev: parent device for this pin controller
2314  * @pctldesc: descriptor for this pin controller
2315  * @driver_data: private pin controller data for this pin controller
2316  *
2317  * Returns an error pointer if pincontrol register failed. Otherwise
2318  * it returns valid pinctrl handle.
2319  *
2320  * The pinctrl device will be automatically released when the device is unbound.
2321  */
2322 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2323 					  const struct pinctrl_desc *pctldesc,
2324 					  void *driver_data)
2325 {
2326 	struct pinctrl_dev *pctldev;
2327 	int ret;
2328 
2329 	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2330 	if (IS_ERR(pctldev))
2331 		return pctldev;
2332 
2333 	ret = devm_add_action_or_reset(dev, devm_pinctrl_dev_release, pctldev);
2334 	if (ret)
2335 		return ERR_PTR(ret);
2336 
2337 	return pctldev;
2338 }
2339 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2340 
2341 /**
2342  * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2343  * @dev: parent device for this pin controller
2344  * @pctldesc: descriptor for this pin controller
2345  * @driver_data: private pin controller data for this pin controller
2346  * @pctldev: pin controller device
2347  *
2348  * Returns zero on success or an error number on failure.
2349  *
2350  * The pinctrl device will be automatically released when the device is unbound.
2351  */
2352 int devm_pinctrl_register_and_init(struct device *dev,
2353 				   const struct pinctrl_desc *pctldesc,
2354 				   void *driver_data,
2355 				   struct pinctrl_dev **pctldev)
2356 {
2357 	int error;
2358 
2359 	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2360 	if (error)
2361 		return error;
2362 
2363 	return devm_add_action_or_reset(dev, devm_pinctrl_dev_release, *pctldev);
2364 }
2365 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2366 
2367 static int __init pinctrl_init(void)
2368 {
2369 	pr_debug("initialized pinctrl subsystem\n");
2370 	pinctrl_init_debugfs();
2371 	return 0;
2372 }
2373 
2374 /* init early since many drivers really need to initialized pinmux early */
2375 core_initcall(pinctrl_init);
2376