xref: /linux/drivers/pinctrl/core.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Core driver for the pin control subsystem
4  *
5  * Copyright (C) 2011-2012 ST-Ericsson SA
6  * Written on behalf of Linaro for ST-Ericsson
7  * Based on bits of regulator core, gpio core and clk core
8  *
9  * Author: Linus Walleij <linus.walleij@linaro.org>
10  *
11  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12  */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kref.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/err.h>
22 #include <linux/list.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/pinctrl/consumer.h>
26 #include <linux/pinctrl/pinctrl.h>
27 #include <linux/pinctrl/machine.h>
28 
29 #ifdef CONFIG_GPIOLIB
30 #include <asm-generic/gpio.h>
31 #endif
32 
33 #include "core.h"
34 #include "devicetree.h"
35 #include "pinmux.h"
36 #include "pinconf.h"
37 
38 
39 static bool pinctrl_dummy_state;
40 
41 /* Mutex taken to protect pinctrl_list */
42 static DEFINE_MUTEX(pinctrl_list_mutex);
43 
44 /* Mutex taken to protect pinctrl_maps */
45 DEFINE_MUTEX(pinctrl_maps_mutex);
46 
47 /* Mutex taken to protect pinctrldev_list */
48 static DEFINE_MUTEX(pinctrldev_list_mutex);
49 
50 /* Global list of pin control devices (struct pinctrl_dev) */
51 static LIST_HEAD(pinctrldev_list);
52 
53 /* List of pin controller handles (struct pinctrl) */
54 static LIST_HEAD(pinctrl_list);
55 
56 /* List of pinctrl maps (struct pinctrl_maps) */
57 LIST_HEAD(pinctrl_maps);
58 
59 
60 /**
61  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
62  *
63  * Usually this function is called by platforms without pinctrl driver support
64  * but run with some shared drivers using pinctrl APIs.
65  * After calling this function, the pinctrl core will return successfully
66  * with creating a dummy state for the driver to keep going smoothly.
67  */
68 void pinctrl_provide_dummies(void)
69 {
70 	pinctrl_dummy_state = true;
71 }
72 
73 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
74 {
75 	/* We're not allowed to register devices without name */
76 	return pctldev->desc->name;
77 }
78 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
79 
80 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
81 {
82 	return dev_name(pctldev->dev);
83 }
84 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
85 
86 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
87 {
88 	return pctldev->driver_data;
89 }
90 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
91 
92 /**
93  * get_pinctrl_dev_from_devname() - look up pin controller device
94  * @devname: the name of a device instance, as returned by dev_name()
95  *
96  * Looks up a pin control device matching a certain device name or pure device
97  * pointer, the pure device pointer will take precedence.
98  */
99 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
100 {
101 	struct pinctrl_dev *pctldev;
102 
103 	if (!devname)
104 		return NULL;
105 
106 	mutex_lock(&pinctrldev_list_mutex);
107 
108 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
109 		if (!strcmp(dev_name(pctldev->dev), devname)) {
110 			/* Matched on device name */
111 			mutex_unlock(&pinctrldev_list_mutex);
112 			return pctldev;
113 		}
114 	}
115 
116 	mutex_unlock(&pinctrldev_list_mutex);
117 
118 	return NULL;
119 }
120 
121 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
122 {
123 	struct pinctrl_dev *pctldev;
124 
125 	mutex_lock(&pinctrldev_list_mutex);
126 
127 	list_for_each_entry(pctldev, &pinctrldev_list, node)
128 		if (pctldev->dev->of_node == np) {
129 			mutex_unlock(&pinctrldev_list_mutex);
130 			return pctldev;
131 		}
132 
133 	mutex_unlock(&pinctrldev_list_mutex);
134 
135 	return NULL;
136 }
137 
138 /**
139  * pin_get_from_name() - look up a pin number from a name
140  * @pctldev: the pin control device to lookup the pin on
141  * @name: the name of the pin to look up
142  */
143 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
144 {
145 	unsigned i, pin;
146 
147 	/* The pin number can be retrived from the pin controller descriptor */
148 	for (i = 0; i < pctldev->desc->npins; i++) {
149 		struct pin_desc *desc;
150 
151 		pin = pctldev->desc->pins[i].number;
152 		desc = pin_desc_get(pctldev, pin);
153 		/* Pin space may be sparse */
154 		if (desc && !strcmp(name, desc->name))
155 			return pin;
156 	}
157 
158 	return -EINVAL;
159 }
160 
161 /**
162  * pin_get_name_from_id() - look up a pin name from a pin id
163  * @pctldev: the pin control device to lookup the pin on
164  * @name: the name of the pin to look up
165  */
166 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
167 {
168 	const struct pin_desc *desc;
169 
170 	desc = pin_desc_get(pctldev, pin);
171 	if (!desc) {
172 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
173 			pin);
174 		return NULL;
175 	}
176 
177 	return desc->name;
178 }
179 
180 /* Deletes a range of pin descriptors */
181 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
182 				  const struct pinctrl_pin_desc *pins,
183 				  unsigned num_pins)
184 {
185 	int i;
186 
187 	for (i = 0; i < num_pins; i++) {
188 		struct pin_desc *pindesc;
189 
190 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
191 					    pins[i].number);
192 		if (pindesc) {
193 			radix_tree_delete(&pctldev->pin_desc_tree,
194 					  pins[i].number);
195 			if (pindesc->dynamic_name)
196 				kfree(pindesc->name);
197 		}
198 		kfree(pindesc);
199 	}
200 }
201 
202 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
203 				    const struct pinctrl_pin_desc *pin)
204 {
205 	struct pin_desc *pindesc;
206 
207 	pindesc = pin_desc_get(pctldev, pin->number);
208 	if (pindesc) {
209 		dev_err(pctldev->dev, "pin %d already registered\n",
210 			pin->number);
211 		return -EINVAL;
212 	}
213 
214 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
215 	if (!pindesc)
216 		return -ENOMEM;
217 
218 	/* Set owner */
219 	pindesc->pctldev = pctldev;
220 
221 	/* Copy basic pin info */
222 	if (pin->name) {
223 		pindesc->name = pin->name;
224 	} else {
225 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
226 		if (!pindesc->name) {
227 			kfree(pindesc);
228 			return -ENOMEM;
229 		}
230 		pindesc->dynamic_name = true;
231 	}
232 
233 	pindesc->drv_data = pin->drv_data;
234 
235 	radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
236 	pr_debug("registered pin %d (%s) on %s\n",
237 		 pin->number, pindesc->name, pctldev->desc->name);
238 	return 0;
239 }
240 
241 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
242 				 const struct pinctrl_pin_desc *pins,
243 				 unsigned num_descs)
244 {
245 	unsigned i;
246 	int ret = 0;
247 
248 	for (i = 0; i < num_descs; i++) {
249 		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
250 		if (ret)
251 			return ret;
252 	}
253 
254 	return 0;
255 }
256 
257 /**
258  * gpio_to_pin() - GPIO range GPIO number to pin number translation
259  * @range: GPIO range used for the translation
260  * @gpio: gpio pin to translate to a pin number
261  *
262  * Finds the pin number for a given GPIO using the specified GPIO range
263  * as a base for translation. The distinction between linear GPIO ranges
264  * and pin list based GPIO ranges is managed correctly by this function.
265  *
266  * This function assumes the gpio is part of the specified GPIO range, use
267  * only after making sure this is the case (e.g. by calling it on the
268  * result of successful pinctrl_get_device_gpio_range calls)!
269  */
270 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
271 				unsigned int gpio)
272 {
273 	unsigned int offset = gpio - range->base;
274 	if (range->pins)
275 		return range->pins[offset];
276 	else
277 		return range->pin_base + offset;
278 }
279 
280 /**
281  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
282  * @pctldev: pin controller device to check
283  * @gpio: gpio pin to check taken from the global GPIO pin space
284  *
285  * Tries to match a GPIO pin number to the ranges handled by a certain pin
286  * controller, return the range or NULL
287  */
288 static struct pinctrl_gpio_range *
289 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
290 {
291 	struct pinctrl_gpio_range *range;
292 
293 	mutex_lock(&pctldev->mutex);
294 	/* Loop over the ranges */
295 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
296 		/* Check if we're in the valid range */
297 		if (gpio >= range->base &&
298 		    gpio < range->base + range->npins) {
299 			mutex_unlock(&pctldev->mutex);
300 			return range;
301 		}
302 	}
303 	mutex_unlock(&pctldev->mutex);
304 	return NULL;
305 }
306 
307 /**
308  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
309  * the same GPIO chip are in range
310  * @gpio: gpio pin to check taken from the global GPIO pin space
311  *
312  * This function is complement of pinctrl_match_gpio_range(). If the return
313  * value of pinctrl_match_gpio_range() is NULL, this function could be used
314  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
315  * of the same GPIO chip don't have back-end pinctrl interface.
316  * If the return value is true, it means that pinctrl device is ready & the
317  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
318  * is false, it means that pinctrl device may not be ready.
319  */
320 #ifdef CONFIG_GPIOLIB
321 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
322 {
323 	struct pinctrl_dev *pctldev;
324 	struct pinctrl_gpio_range *range = NULL;
325 	struct gpio_chip *chip = gpio_to_chip(gpio);
326 
327 	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
328 		return false;
329 
330 	mutex_lock(&pinctrldev_list_mutex);
331 
332 	/* Loop over the pin controllers */
333 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
334 		/* Loop over the ranges */
335 		mutex_lock(&pctldev->mutex);
336 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
337 			/* Check if any gpio range overlapped with gpio chip */
338 			if (range->base + range->npins - 1 < chip->base ||
339 			    range->base > chip->base + chip->ngpio - 1)
340 				continue;
341 			mutex_unlock(&pctldev->mutex);
342 			mutex_unlock(&pinctrldev_list_mutex);
343 			return true;
344 		}
345 		mutex_unlock(&pctldev->mutex);
346 	}
347 
348 	mutex_unlock(&pinctrldev_list_mutex);
349 
350 	return false;
351 }
352 #else
353 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
354 #endif
355 
356 /**
357  * pinctrl_get_device_gpio_range() - find device for GPIO range
358  * @gpio: the pin to locate the pin controller for
359  * @outdev: the pin control device if found
360  * @outrange: the GPIO range if found
361  *
362  * Find the pin controller handling a certain GPIO pin from the pinspace of
363  * the GPIO subsystem, return the device and the matching GPIO range. Returns
364  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
365  * may still have not been registered.
366  */
367 static int pinctrl_get_device_gpio_range(unsigned gpio,
368 					 struct pinctrl_dev **outdev,
369 					 struct pinctrl_gpio_range **outrange)
370 {
371 	struct pinctrl_dev *pctldev;
372 
373 	mutex_lock(&pinctrldev_list_mutex);
374 
375 	/* Loop over the pin controllers */
376 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
377 		struct pinctrl_gpio_range *range;
378 
379 		range = pinctrl_match_gpio_range(pctldev, gpio);
380 		if (range) {
381 			*outdev = pctldev;
382 			*outrange = range;
383 			mutex_unlock(&pinctrldev_list_mutex);
384 			return 0;
385 		}
386 	}
387 
388 	mutex_unlock(&pinctrldev_list_mutex);
389 
390 	return -EPROBE_DEFER;
391 }
392 
393 /**
394  * pinctrl_add_gpio_range() - register a GPIO range for a controller
395  * @pctldev: pin controller device to add the range to
396  * @range: the GPIO range to add
397  *
398  * This adds a range of GPIOs to be handled by a certain pin controller. Call
399  * this to register handled ranges after registering your pin controller.
400  */
401 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
402 			    struct pinctrl_gpio_range *range)
403 {
404 	mutex_lock(&pctldev->mutex);
405 	list_add_tail(&range->node, &pctldev->gpio_ranges);
406 	mutex_unlock(&pctldev->mutex);
407 }
408 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
409 
410 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
411 			     struct pinctrl_gpio_range *ranges,
412 			     unsigned nranges)
413 {
414 	int i;
415 
416 	for (i = 0; i < nranges; i++)
417 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
418 }
419 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
420 
421 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
422 		struct pinctrl_gpio_range *range)
423 {
424 	struct pinctrl_dev *pctldev;
425 
426 	pctldev = get_pinctrl_dev_from_devname(devname);
427 
428 	/*
429 	 * If we can't find this device, let's assume that is because
430 	 * it has not probed yet, so the driver trying to register this
431 	 * range need to defer probing.
432 	 */
433 	if (!pctldev) {
434 		return ERR_PTR(-EPROBE_DEFER);
435 	}
436 	pinctrl_add_gpio_range(pctldev, range);
437 
438 	return pctldev;
439 }
440 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
441 
442 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
443 				const unsigned **pins, unsigned *num_pins)
444 {
445 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
446 	int gs;
447 
448 	if (!pctlops->get_group_pins)
449 		return -EINVAL;
450 
451 	gs = pinctrl_get_group_selector(pctldev, pin_group);
452 	if (gs < 0)
453 		return gs;
454 
455 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
456 }
457 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
458 
459 struct pinctrl_gpio_range *
460 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
461 					unsigned int pin)
462 {
463 	struct pinctrl_gpio_range *range;
464 
465 	/* Loop over the ranges */
466 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
467 		/* Check if we're in the valid range */
468 		if (range->pins) {
469 			int a;
470 			for (a = 0; a < range->npins; a++) {
471 				if (range->pins[a] == pin)
472 					return range;
473 			}
474 		} else if (pin >= range->pin_base &&
475 			   pin < range->pin_base + range->npins)
476 			return range;
477 	}
478 
479 	return NULL;
480 }
481 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
482 
483 /**
484  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
485  * @pctldev: the pin controller device to look in
486  * @pin: a controller-local number to find the range for
487  */
488 struct pinctrl_gpio_range *
489 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
490 				 unsigned int pin)
491 {
492 	struct pinctrl_gpio_range *range;
493 
494 	mutex_lock(&pctldev->mutex);
495 	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
496 	mutex_unlock(&pctldev->mutex);
497 
498 	return range;
499 }
500 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
501 
502 /**
503  * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
504  * @pctldev: pin controller device to remove the range from
505  * @range: the GPIO range to remove
506  */
507 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
508 			       struct pinctrl_gpio_range *range)
509 {
510 	mutex_lock(&pctldev->mutex);
511 	list_del(&range->node);
512 	mutex_unlock(&pctldev->mutex);
513 }
514 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
515 
516 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
517 
518 /**
519  * pinctrl_generic_get_group_count() - returns the number of pin groups
520  * @pctldev: pin controller device
521  */
522 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
523 {
524 	return pctldev->num_groups;
525 }
526 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
527 
528 /**
529  * pinctrl_generic_get_group_name() - returns the name of a pin group
530  * @pctldev: pin controller device
531  * @selector: group number
532  */
533 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
534 					   unsigned int selector)
535 {
536 	struct group_desc *group;
537 
538 	group = radix_tree_lookup(&pctldev->pin_group_tree,
539 				  selector);
540 	if (!group)
541 		return NULL;
542 
543 	return group->name;
544 }
545 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
546 
547 /**
548  * pinctrl_generic_get_group_pins() - gets the pin group pins
549  * @pctldev: pin controller device
550  * @selector: group number
551  * @pins: pins in the group
552  * @num_pins: number of pins in the group
553  */
554 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
555 				   unsigned int selector,
556 				   const unsigned int **pins,
557 				   unsigned int *num_pins)
558 {
559 	struct group_desc *group;
560 
561 	group = radix_tree_lookup(&pctldev->pin_group_tree,
562 				  selector);
563 	if (!group) {
564 		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
565 			__func__, selector);
566 		return -EINVAL;
567 	}
568 
569 	*pins = group->pins;
570 	*num_pins = group->num_pins;
571 
572 	return 0;
573 }
574 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
575 
576 /**
577  * pinctrl_generic_get_group() - returns a pin group based on the number
578  * @pctldev: pin controller device
579  * @gselector: group number
580  */
581 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
582 					     unsigned int selector)
583 {
584 	struct group_desc *group;
585 
586 	group = radix_tree_lookup(&pctldev->pin_group_tree,
587 				  selector);
588 	if (!group)
589 		return NULL;
590 
591 	return group;
592 }
593 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
594 
595 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
596 						  const char *function)
597 {
598 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
599 	int ngroups = ops->get_groups_count(pctldev);
600 	int selector = 0;
601 
602 	/* See if this pctldev has this group */
603 	while (selector < ngroups) {
604 		const char *gname = ops->get_group_name(pctldev, selector);
605 
606 		if (gname && !strcmp(function, gname))
607 			return selector;
608 
609 		selector++;
610 	}
611 
612 	return -EINVAL;
613 }
614 
615 /**
616  * pinctrl_generic_add_group() - adds a new pin group
617  * @pctldev: pin controller device
618  * @name: name of the pin group
619  * @pins: pins in the pin group
620  * @num_pins: number of pins in the pin group
621  * @data: pin controller driver specific data
622  *
623  * Note that the caller must take care of locking.
624  */
625 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
626 			      int *pins, int num_pins, void *data)
627 {
628 	struct group_desc *group;
629 	int selector;
630 
631 	if (!name)
632 		return -EINVAL;
633 
634 	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
635 	if (selector >= 0)
636 		return selector;
637 
638 	selector = pctldev->num_groups;
639 
640 	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
641 	if (!group)
642 		return -ENOMEM;
643 
644 	group->name = name;
645 	group->pins = pins;
646 	group->num_pins = num_pins;
647 	group->data = data;
648 
649 	radix_tree_insert(&pctldev->pin_group_tree, selector, group);
650 
651 	pctldev->num_groups++;
652 
653 	return selector;
654 }
655 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
656 
657 /**
658  * pinctrl_generic_remove_group() - removes a numbered pin group
659  * @pctldev: pin controller device
660  * @selector: group number
661  *
662  * Note that the caller must take care of locking.
663  */
664 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
665 				 unsigned int selector)
666 {
667 	struct group_desc *group;
668 
669 	group = radix_tree_lookup(&pctldev->pin_group_tree,
670 				  selector);
671 	if (!group)
672 		return -ENOENT;
673 
674 	radix_tree_delete(&pctldev->pin_group_tree, selector);
675 	devm_kfree(pctldev->dev, group);
676 
677 	pctldev->num_groups--;
678 
679 	return 0;
680 }
681 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
682 
683 /**
684  * pinctrl_generic_free_groups() - removes all pin groups
685  * @pctldev: pin controller device
686  *
687  * Note that the caller must take care of locking. The pinctrl groups
688  * are allocated with devm_kzalloc() so no need to free them here.
689  */
690 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
691 {
692 	struct radix_tree_iter iter;
693 	void __rcu **slot;
694 
695 	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
696 		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
697 
698 	pctldev->num_groups = 0;
699 }
700 
701 #else
702 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
703 {
704 }
705 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
706 
707 /**
708  * pinctrl_get_group_selector() - returns the group selector for a group
709  * @pctldev: the pin controller handling the group
710  * @pin_group: the pin group to look up
711  */
712 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
713 			       const char *pin_group)
714 {
715 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
716 	unsigned ngroups = pctlops->get_groups_count(pctldev);
717 	unsigned group_selector = 0;
718 
719 	while (group_selector < ngroups) {
720 		const char *gname = pctlops->get_group_name(pctldev,
721 							    group_selector);
722 		if (gname && !strcmp(gname, pin_group)) {
723 			dev_dbg(pctldev->dev,
724 				"found group selector %u for %s\n",
725 				group_selector,
726 				pin_group);
727 			return group_selector;
728 		}
729 
730 		group_selector++;
731 	}
732 
733 	dev_err(pctldev->dev, "does not have pin group %s\n",
734 		pin_group);
735 
736 	return -EINVAL;
737 }
738 
739 bool pinctrl_gpio_can_use_line(unsigned gpio)
740 {
741 	struct pinctrl_dev *pctldev;
742 	struct pinctrl_gpio_range *range;
743 	bool result;
744 	int pin;
745 
746 	/*
747 	 * Try to obtain GPIO range, if it fails
748 	 * we're probably dealing with GPIO driver
749 	 * without a backing pin controller - bail out.
750 	 */
751 	if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
752 		return true;
753 
754 	mutex_lock(&pctldev->mutex);
755 
756 	/* Convert to the pin controllers number space */
757 	pin = gpio_to_pin(range, gpio);
758 
759 	result = pinmux_can_be_used_for_gpio(pctldev, pin);
760 
761 	mutex_unlock(&pctldev->mutex);
762 
763 	return result;
764 }
765 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
766 
767 /**
768  * pinctrl_gpio_request() - request a single pin to be used as GPIO
769  * @gpio: the GPIO pin number from the GPIO subsystem number space
770  *
771  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
772  * as part of their gpio_request() semantics, platforms and individual drivers
773  * shall *NOT* request GPIO pins to be muxed in.
774  */
775 int pinctrl_gpio_request(unsigned gpio)
776 {
777 	struct pinctrl_dev *pctldev;
778 	struct pinctrl_gpio_range *range;
779 	int ret;
780 	int pin;
781 
782 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
783 	if (ret) {
784 		if (pinctrl_ready_for_gpio_range(gpio))
785 			ret = 0;
786 		return ret;
787 	}
788 
789 	mutex_lock(&pctldev->mutex);
790 
791 	/* Convert to the pin controllers number space */
792 	pin = gpio_to_pin(range, gpio);
793 
794 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
795 
796 	mutex_unlock(&pctldev->mutex);
797 
798 	return ret;
799 }
800 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
801 
802 /**
803  * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
804  * @gpio: the GPIO pin number from the GPIO subsystem number space
805  *
806  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
807  * as part of their gpio_free() semantics, platforms and individual drivers
808  * shall *NOT* request GPIO pins to be muxed out.
809  */
810 void pinctrl_gpio_free(unsigned gpio)
811 {
812 	struct pinctrl_dev *pctldev;
813 	struct pinctrl_gpio_range *range;
814 	int ret;
815 	int pin;
816 
817 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
818 	if (ret) {
819 		return;
820 	}
821 	mutex_lock(&pctldev->mutex);
822 
823 	/* Convert to the pin controllers number space */
824 	pin = gpio_to_pin(range, gpio);
825 
826 	pinmux_free_gpio(pctldev, pin, range);
827 
828 	mutex_unlock(&pctldev->mutex);
829 }
830 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
831 
832 static int pinctrl_gpio_direction(unsigned gpio, bool input)
833 {
834 	struct pinctrl_dev *pctldev;
835 	struct pinctrl_gpio_range *range;
836 	int ret;
837 	int pin;
838 
839 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
840 	if (ret) {
841 		return ret;
842 	}
843 
844 	mutex_lock(&pctldev->mutex);
845 
846 	/* Convert to the pin controllers number space */
847 	pin = gpio_to_pin(range, gpio);
848 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
849 
850 	mutex_unlock(&pctldev->mutex);
851 
852 	return ret;
853 }
854 
855 /**
856  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
857  * @gpio: the GPIO pin number from the GPIO subsystem number space
858  *
859  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
860  * as part of their gpio_direction_input() semantics, platforms and individual
861  * drivers shall *NOT* touch pin control GPIO calls.
862  */
863 int pinctrl_gpio_direction_input(unsigned gpio)
864 {
865 	return pinctrl_gpio_direction(gpio, true);
866 }
867 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
868 
869 /**
870  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
871  * @gpio: the GPIO pin number from the GPIO subsystem number space
872  *
873  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
874  * as part of their gpio_direction_output() semantics, platforms and individual
875  * drivers shall *NOT* touch pin control GPIO calls.
876  */
877 int pinctrl_gpio_direction_output(unsigned gpio)
878 {
879 	return pinctrl_gpio_direction(gpio, false);
880 }
881 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
882 
883 /**
884  * pinctrl_gpio_set_config() - Apply config to given GPIO pin
885  * @gpio: the GPIO pin number from the GPIO subsystem number space
886  * @config: the configuration to apply to the GPIO
887  *
888  * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
889  * they need to call the underlying pin controller to change GPIO config
890  * (for example set debounce time).
891  */
892 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
893 {
894 	unsigned long configs[] = { config };
895 	struct pinctrl_gpio_range *range;
896 	struct pinctrl_dev *pctldev;
897 	int ret, pin;
898 
899 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
900 	if (ret)
901 		return ret;
902 
903 	mutex_lock(&pctldev->mutex);
904 	pin = gpio_to_pin(range, gpio);
905 	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
906 	mutex_unlock(&pctldev->mutex);
907 
908 	return ret;
909 }
910 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
911 
912 static struct pinctrl_state *find_state(struct pinctrl *p,
913 					const char *name)
914 {
915 	struct pinctrl_state *state;
916 
917 	list_for_each_entry(state, &p->states, node)
918 		if (!strcmp(state->name, name))
919 			return state;
920 
921 	return NULL;
922 }
923 
924 static struct pinctrl_state *create_state(struct pinctrl *p,
925 					  const char *name)
926 {
927 	struct pinctrl_state *state;
928 
929 	state = kzalloc(sizeof(*state), GFP_KERNEL);
930 	if (!state)
931 		return ERR_PTR(-ENOMEM);
932 
933 	state->name = name;
934 	INIT_LIST_HEAD(&state->settings);
935 
936 	list_add_tail(&state->node, &p->states);
937 
938 	return state;
939 }
940 
941 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
942 		       const struct pinctrl_map *map)
943 {
944 	struct pinctrl_state *state;
945 	struct pinctrl_setting *setting;
946 	int ret;
947 
948 	state = find_state(p, map->name);
949 	if (!state)
950 		state = create_state(p, map->name);
951 	if (IS_ERR(state))
952 		return PTR_ERR(state);
953 
954 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
955 		return 0;
956 
957 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
958 	if (!setting)
959 		return -ENOMEM;
960 
961 	setting->type = map->type;
962 
963 	if (pctldev)
964 		setting->pctldev = pctldev;
965 	else
966 		setting->pctldev =
967 			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
968 	if (!setting->pctldev) {
969 		kfree(setting);
970 		/* Do not defer probing of hogs (circular loop) */
971 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
972 			return -ENODEV;
973 		/*
974 		 * OK let us guess that the driver is not there yet, and
975 		 * let's defer obtaining this pinctrl handle to later...
976 		 */
977 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
978 			map->ctrl_dev_name);
979 		return -EPROBE_DEFER;
980 	}
981 
982 	setting->dev_name = map->dev_name;
983 
984 	switch (map->type) {
985 	case PIN_MAP_TYPE_MUX_GROUP:
986 		ret = pinmux_map_to_setting(map, setting);
987 		break;
988 	case PIN_MAP_TYPE_CONFIGS_PIN:
989 	case PIN_MAP_TYPE_CONFIGS_GROUP:
990 		ret = pinconf_map_to_setting(map, setting);
991 		break;
992 	default:
993 		ret = -EINVAL;
994 		break;
995 	}
996 	if (ret < 0) {
997 		kfree(setting);
998 		return ret;
999 	}
1000 
1001 	list_add_tail(&setting->node, &state->settings);
1002 
1003 	return 0;
1004 }
1005 
1006 static struct pinctrl *find_pinctrl(struct device *dev)
1007 {
1008 	struct pinctrl *p;
1009 
1010 	mutex_lock(&pinctrl_list_mutex);
1011 	list_for_each_entry(p, &pinctrl_list, node)
1012 		if (p->dev == dev) {
1013 			mutex_unlock(&pinctrl_list_mutex);
1014 			return p;
1015 		}
1016 
1017 	mutex_unlock(&pinctrl_list_mutex);
1018 	return NULL;
1019 }
1020 
1021 static void pinctrl_free(struct pinctrl *p, bool inlist);
1022 
1023 static struct pinctrl *create_pinctrl(struct device *dev,
1024 				      struct pinctrl_dev *pctldev)
1025 {
1026 	struct pinctrl *p;
1027 	const char *devname;
1028 	struct pinctrl_maps *maps_node;
1029 	int i;
1030 	const struct pinctrl_map *map;
1031 	int ret;
1032 
1033 	/*
1034 	 * create the state cookie holder struct pinctrl for each
1035 	 * mapping, this is what consumers will get when requesting
1036 	 * a pin control handle with pinctrl_get()
1037 	 */
1038 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1039 	if (!p)
1040 		return ERR_PTR(-ENOMEM);
1041 	p->dev = dev;
1042 	INIT_LIST_HEAD(&p->states);
1043 	INIT_LIST_HEAD(&p->dt_maps);
1044 
1045 	ret = pinctrl_dt_to_map(p, pctldev);
1046 	if (ret < 0) {
1047 		kfree(p);
1048 		return ERR_PTR(ret);
1049 	}
1050 
1051 	devname = dev_name(dev);
1052 
1053 	mutex_lock(&pinctrl_maps_mutex);
1054 	/* Iterate over the pin control maps to locate the right ones */
1055 	for_each_maps(maps_node, i, map) {
1056 		/* Map must be for this device */
1057 		if (strcmp(map->dev_name, devname))
1058 			continue;
1059 		/*
1060 		 * If pctldev is not null, we are claiming hog for it,
1061 		 * that means, setting that is served by pctldev by itself.
1062 		 *
1063 		 * Thus we must skip map that is for this device but is served
1064 		 * by other device.
1065 		 */
1066 		if (pctldev &&
1067 		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1068 			continue;
1069 
1070 		ret = add_setting(p, pctldev, map);
1071 		/*
1072 		 * At this point the adding of a setting may:
1073 		 *
1074 		 * - Defer, if the pinctrl device is not yet available
1075 		 * - Fail, if the pinctrl device is not yet available,
1076 		 *   AND the setting is a hog. We cannot defer that, since
1077 		 *   the hog will kick in immediately after the device
1078 		 *   is registered.
1079 		 *
1080 		 * If the error returned was not -EPROBE_DEFER then we
1081 		 * accumulate the errors to see if we end up with
1082 		 * an -EPROBE_DEFER later, as that is the worst case.
1083 		 */
1084 		if (ret == -EPROBE_DEFER) {
1085 			pinctrl_free(p, false);
1086 			mutex_unlock(&pinctrl_maps_mutex);
1087 			return ERR_PTR(ret);
1088 		}
1089 	}
1090 	mutex_unlock(&pinctrl_maps_mutex);
1091 
1092 	if (ret < 0) {
1093 		/* If some other error than deferral occurred, return here */
1094 		pinctrl_free(p, false);
1095 		return ERR_PTR(ret);
1096 	}
1097 
1098 	kref_init(&p->users);
1099 
1100 	/* Add the pinctrl handle to the global list */
1101 	mutex_lock(&pinctrl_list_mutex);
1102 	list_add_tail(&p->node, &pinctrl_list);
1103 	mutex_unlock(&pinctrl_list_mutex);
1104 
1105 	return p;
1106 }
1107 
1108 /**
1109  * pinctrl_get() - retrieves the pinctrl handle for a device
1110  * @dev: the device to obtain the handle for
1111  */
1112 struct pinctrl *pinctrl_get(struct device *dev)
1113 {
1114 	struct pinctrl *p;
1115 
1116 	if (WARN_ON(!dev))
1117 		return ERR_PTR(-EINVAL);
1118 
1119 	/*
1120 	 * See if somebody else (such as the device core) has already
1121 	 * obtained a handle to the pinctrl for this device. In that case,
1122 	 * return another pointer to it.
1123 	 */
1124 	p = find_pinctrl(dev);
1125 	if (p) {
1126 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1127 		kref_get(&p->users);
1128 		return p;
1129 	}
1130 
1131 	return create_pinctrl(dev, NULL);
1132 }
1133 EXPORT_SYMBOL_GPL(pinctrl_get);
1134 
1135 static void pinctrl_free_setting(bool disable_setting,
1136 				 struct pinctrl_setting *setting)
1137 {
1138 	switch (setting->type) {
1139 	case PIN_MAP_TYPE_MUX_GROUP:
1140 		if (disable_setting)
1141 			pinmux_disable_setting(setting);
1142 		pinmux_free_setting(setting);
1143 		break;
1144 	case PIN_MAP_TYPE_CONFIGS_PIN:
1145 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1146 		pinconf_free_setting(setting);
1147 		break;
1148 	default:
1149 		break;
1150 	}
1151 }
1152 
1153 static void pinctrl_free(struct pinctrl *p, bool inlist)
1154 {
1155 	struct pinctrl_state *state, *n1;
1156 	struct pinctrl_setting *setting, *n2;
1157 
1158 	mutex_lock(&pinctrl_list_mutex);
1159 	list_for_each_entry_safe(state, n1, &p->states, node) {
1160 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1161 			pinctrl_free_setting(state == p->state, setting);
1162 			list_del(&setting->node);
1163 			kfree(setting);
1164 		}
1165 		list_del(&state->node);
1166 		kfree(state);
1167 	}
1168 
1169 	pinctrl_dt_free_maps(p);
1170 
1171 	if (inlist)
1172 		list_del(&p->node);
1173 	kfree(p);
1174 	mutex_unlock(&pinctrl_list_mutex);
1175 }
1176 
1177 /**
1178  * pinctrl_release() - release the pinctrl handle
1179  * @kref: the kref in the pinctrl being released
1180  */
1181 static void pinctrl_release(struct kref *kref)
1182 {
1183 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1184 
1185 	pinctrl_free(p, true);
1186 }
1187 
1188 /**
1189  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1190  * @p: the pinctrl handle to release
1191  */
1192 void pinctrl_put(struct pinctrl *p)
1193 {
1194 	kref_put(&p->users, pinctrl_release);
1195 }
1196 EXPORT_SYMBOL_GPL(pinctrl_put);
1197 
1198 /**
1199  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1200  * @p: the pinctrl handle to retrieve the state from
1201  * @name: the state name to retrieve
1202  */
1203 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1204 						 const char *name)
1205 {
1206 	struct pinctrl_state *state;
1207 
1208 	state = find_state(p, name);
1209 	if (!state) {
1210 		if (pinctrl_dummy_state) {
1211 			/* create dummy state */
1212 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1213 				name);
1214 			state = create_state(p, name);
1215 		} else
1216 			state = ERR_PTR(-ENODEV);
1217 	}
1218 
1219 	return state;
1220 }
1221 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1222 
1223 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1224 			     struct device *consumer)
1225 {
1226 	if (pctldev->desc->link_consumers)
1227 		device_link_add(consumer, pctldev->dev,
1228 				DL_FLAG_PM_RUNTIME |
1229 				DL_FLAG_AUTOREMOVE_CONSUMER);
1230 }
1231 
1232 /**
1233  * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1234  * @p: the pinctrl handle for the device that requests configuration
1235  * @state: the state handle to select/activate/program
1236  */
1237 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1238 {
1239 	struct pinctrl_setting *setting, *setting2;
1240 	struct pinctrl_state *old_state = p->state;
1241 	int ret;
1242 
1243 	if (p->state) {
1244 		/*
1245 		 * For each pinmux setting in the old state, forget SW's record
1246 		 * of mux owner for that pingroup. Any pingroups which are
1247 		 * still owned by the new state will be re-acquired by the call
1248 		 * to pinmux_enable_setting() in the loop below.
1249 		 */
1250 		list_for_each_entry(setting, &p->state->settings, node) {
1251 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1252 				continue;
1253 			pinmux_disable_setting(setting);
1254 		}
1255 	}
1256 
1257 	p->state = NULL;
1258 
1259 	/* Apply all the settings for the new state */
1260 	list_for_each_entry(setting, &state->settings, node) {
1261 		switch (setting->type) {
1262 		case PIN_MAP_TYPE_MUX_GROUP:
1263 			ret = pinmux_enable_setting(setting);
1264 			break;
1265 		case PIN_MAP_TYPE_CONFIGS_PIN:
1266 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1267 			ret = pinconf_apply_setting(setting);
1268 			break;
1269 		default:
1270 			ret = -EINVAL;
1271 			break;
1272 		}
1273 
1274 		if (ret < 0) {
1275 			goto unapply_new_state;
1276 		}
1277 
1278 		/* Do not link hogs (circular dependency) */
1279 		if (p != setting->pctldev->p)
1280 			pinctrl_link_add(setting->pctldev, p->dev);
1281 	}
1282 
1283 	p->state = state;
1284 
1285 	return 0;
1286 
1287 unapply_new_state:
1288 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1289 
1290 	list_for_each_entry(setting2, &state->settings, node) {
1291 		if (&setting2->node == &setting->node)
1292 			break;
1293 		/*
1294 		 * All we can do here is pinmux_disable_setting.
1295 		 * That means that some pins are muxed differently now
1296 		 * than they were before applying the setting (We can't
1297 		 * "unmux a pin"!), but it's not a big deal since the pins
1298 		 * are free to be muxed by another apply_setting.
1299 		 */
1300 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1301 			pinmux_disable_setting(setting2);
1302 	}
1303 
1304 	/* There's no infinite recursive loop here because p->state is NULL */
1305 	if (old_state)
1306 		pinctrl_select_state(p, old_state);
1307 
1308 	return ret;
1309 }
1310 
1311 /**
1312  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1313  * @p: the pinctrl handle for the device that requests configuration
1314  * @state: the state handle to select/activate/program
1315  */
1316 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1317 {
1318 	if (p->state == state)
1319 		return 0;
1320 
1321 	return pinctrl_commit_state(p, state);
1322 }
1323 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1324 
1325 static void devm_pinctrl_release(struct device *dev, void *res)
1326 {
1327 	pinctrl_put(*(struct pinctrl **)res);
1328 }
1329 
1330 /**
1331  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1332  * @dev: the device to obtain the handle for
1333  *
1334  * If there is a need to explicitly destroy the returned struct pinctrl,
1335  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1336  */
1337 struct pinctrl *devm_pinctrl_get(struct device *dev)
1338 {
1339 	struct pinctrl **ptr, *p;
1340 
1341 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1342 	if (!ptr)
1343 		return ERR_PTR(-ENOMEM);
1344 
1345 	p = pinctrl_get(dev);
1346 	if (!IS_ERR(p)) {
1347 		*ptr = p;
1348 		devres_add(dev, ptr);
1349 	} else {
1350 		devres_free(ptr);
1351 	}
1352 
1353 	return p;
1354 }
1355 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1356 
1357 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1358 {
1359 	struct pinctrl **p = res;
1360 
1361 	return *p == data;
1362 }
1363 
1364 /**
1365  * devm_pinctrl_put() - Resource managed pinctrl_put()
1366  * @p: the pinctrl handle to release
1367  *
1368  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1369  * this function will not need to be called and the resource management
1370  * code will ensure that the resource is freed.
1371  */
1372 void devm_pinctrl_put(struct pinctrl *p)
1373 {
1374 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1375 			       devm_pinctrl_match, p));
1376 }
1377 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1378 
1379 /**
1380  * pinctrl_register_mappings() - register a set of pin controller mappings
1381  * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1382  *	keeps a reference to the passed in maps, so they should _not_ be
1383  *	marked with __initdata.
1384  * @num_maps: the number of maps in the mapping table
1385  */
1386 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1387 			      unsigned num_maps)
1388 {
1389 	int i, ret;
1390 	struct pinctrl_maps *maps_node;
1391 
1392 	pr_debug("add %u pinctrl maps\n", num_maps);
1393 
1394 	/* First sanity check the new mapping */
1395 	for (i = 0; i < num_maps; i++) {
1396 		if (!maps[i].dev_name) {
1397 			pr_err("failed to register map %s (%d): no device given\n",
1398 			       maps[i].name, i);
1399 			return -EINVAL;
1400 		}
1401 
1402 		if (!maps[i].name) {
1403 			pr_err("failed to register map %d: no map name given\n",
1404 			       i);
1405 			return -EINVAL;
1406 		}
1407 
1408 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1409 				!maps[i].ctrl_dev_name) {
1410 			pr_err("failed to register map %s (%d): no pin control device given\n",
1411 			       maps[i].name, i);
1412 			return -EINVAL;
1413 		}
1414 
1415 		switch (maps[i].type) {
1416 		case PIN_MAP_TYPE_DUMMY_STATE:
1417 			break;
1418 		case PIN_MAP_TYPE_MUX_GROUP:
1419 			ret = pinmux_validate_map(&maps[i], i);
1420 			if (ret < 0)
1421 				return ret;
1422 			break;
1423 		case PIN_MAP_TYPE_CONFIGS_PIN:
1424 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1425 			ret = pinconf_validate_map(&maps[i], i);
1426 			if (ret < 0)
1427 				return ret;
1428 			break;
1429 		default:
1430 			pr_err("failed to register map %s (%d): invalid type given\n",
1431 			       maps[i].name, i);
1432 			return -EINVAL;
1433 		}
1434 	}
1435 
1436 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1437 	if (!maps_node)
1438 		return -ENOMEM;
1439 
1440 	maps_node->maps = maps;
1441 	maps_node->num_maps = num_maps;
1442 
1443 	mutex_lock(&pinctrl_maps_mutex);
1444 	list_add_tail(&maps_node->node, &pinctrl_maps);
1445 	mutex_unlock(&pinctrl_maps_mutex);
1446 
1447 	return 0;
1448 }
1449 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1450 
1451 /**
1452  * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1453  * @maps: the pincontrol mappings table passed to pinctrl_register_mappings()
1454  *	when registering the mappings.
1455  */
1456 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1457 {
1458 	struct pinctrl_maps *maps_node;
1459 
1460 	mutex_lock(&pinctrl_maps_mutex);
1461 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1462 		if (maps_node->maps == map) {
1463 			list_del(&maps_node->node);
1464 			kfree(maps_node);
1465 			mutex_unlock(&pinctrl_maps_mutex);
1466 			return;
1467 		}
1468 	}
1469 	mutex_unlock(&pinctrl_maps_mutex);
1470 }
1471 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1472 
1473 /**
1474  * pinctrl_force_sleep() - turn a given controller device into sleep state
1475  * @pctldev: pin controller device
1476  */
1477 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1478 {
1479 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1480 		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1481 	return 0;
1482 }
1483 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1484 
1485 /**
1486  * pinctrl_force_default() - turn a given controller device into default state
1487  * @pctldev: pin controller device
1488  */
1489 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1490 {
1491 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1492 		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1493 	return 0;
1494 }
1495 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1496 
1497 /**
1498  * pinctrl_init_done() - tell pinctrl probe is done
1499  *
1500  * We'll use this time to switch the pins from "init" to "default" unless the
1501  * driver selected some other state.
1502  *
1503  * @dev: device to that's done probing
1504  */
1505 int pinctrl_init_done(struct device *dev)
1506 {
1507 	struct dev_pin_info *pins = dev->pins;
1508 	int ret;
1509 
1510 	if (!pins)
1511 		return 0;
1512 
1513 	if (IS_ERR(pins->init_state))
1514 		return 0; /* No such state */
1515 
1516 	if (pins->p->state != pins->init_state)
1517 		return 0; /* Not at init anyway */
1518 
1519 	if (IS_ERR(pins->default_state))
1520 		return 0; /* No default state */
1521 
1522 	ret = pinctrl_select_state(pins->p, pins->default_state);
1523 	if (ret)
1524 		dev_err(dev, "failed to activate default pinctrl state\n");
1525 
1526 	return ret;
1527 }
1528 
1529 static int pinctrl_select_bound_state(struct device *dev,
1530 				      struct pinctrl_state *state)
1531 {
1532 	struct dev_pin_info *pins = dev->pins;
1533 	int ret;
1534 
1535 	if (IS_ERR(state))
1536 		return 0; /* No such state */
1537 	ret = pinctrl_select_state(pins->p, state);
1538 	if (ret)
1539 		dev_err(dev, "failed to activate pinctrl state %s\n",
1540 			state->name);
1541 	return ret;
1542 }
1543 
1544 /**
1545  * pinctrl_select_default_state() - select default pinctrl state
1546  * @dev: device to select default state for
1547  */
1548 int pinctrl_select_default_state(struct device *dev)
1549 {
1550 	if (!dev->pins)
1551 		return 0;
1552 
1553 	return pinctrl_select_bound_state(dev, dev->pins->default_state);
1554 }
1555 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1556 
1557 #ifdef CONFIG_PM
1558 
1559 /**
1560  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1561  * @dev: device to select default state for
1562  */
1563 int pinctrl_pm_select_default_state(struct device *dev)
1564 {
1565 	return pinctrl_select_default_state(dev);
1566 }
1567 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1568 
1569 /**
1570  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1571  * @dev: device to select sleep state for
1572  */
1573 int pinctrl_pm_select_sleep_state(struct device *dev)
1574 {
1575 	if (!dev->pins)
1576 		return 0;
1577 
1578 	return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1579 }
1580 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1581 
1582 /**
1583  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1584  * @dev: device to select idle state for
1585  */
1586 int pinctrl_pm_select_idle_state(struct device *dev)
1587 {
1588 	if (!dev->pins)
1589 		return 0;
1590 
1591 	return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1592 }
1593 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1594 #endif
1595 
1596 #ifdef CONFIG_DEBUG_FS
1597 
1598 static int pinctrl_pins_show(struct seq_file *s, void *what)
1599 {
1600 	struct pinctrl_dev *pctldev = s->private;
1601 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1602 	unsigned i, pin;
1603 
1604 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1605 
1606 	mutex_lock(&pctldev->mutex);
1607 
1608 	/* The pin number can be retrived from the pin controller descriptor */
1609 	for (i = 0; i < pctldev->desc->npins; i++) {
1610 		struct pin_desc *desc;
1611 
1612 		pin = pctldev->desc->pins[i].number;
1613 		desc = pin_desc_get(pctldev, pin);
1614 		/* Pin space may be sparse */
1615 		if (!desc)
1616 			continue;
1617 
1618 		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1619 
1620 		/* Driver-specific info per pin */
1621 		if (ops->pin_dbg_show)
1622 			ops->pin_dbg_show(pctldev, s, pin);
1623 
1624 		seq_puts(s, "\n");
1625 	}
1626 
1627 	mutex_unlock(&pctldev->mutex);
1628 
1629 	return 0;
1630 }
1631 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1632 
1633 static int pinctrl_groups_show(struct seq_file *s, void *what)
1634 {
1635 	struct pinctrl_dev *pctldev = s->private;
1636 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1637 	unsigned ngroups, selector = 0;
1638 
1639 	mutex_lock(&pctldev->mutex);
1640 
1641 	ngroups = ops->get_groups_count(pctldev);
1642 
1643 	seq_puts(s, "registered pin groups:\n");
1644 	while (selector < ngroups) {
1645 		const unsigned *pins = NULL;
1646 		unsigned num_pins = 0;
1647 		const char *gname = ops->get_group_name(pctldev, selector);
1648 		const char *pname;
1649 		int ret = 0;
1650 		int i;
1651 
1652 		if (ops->get_group_pins)
1653 			ret = ops->get_group_pins(pctldev, selector,
1654 						  &pins, &num_pins);
1655 		if (ret)
1656 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1657 				   gname);
1658 		else {
1659 			seq_printf(s, "group: %s\n", gname);
1660 			for (i = 0; i < num_pins; i++) {
1661 				pname = pin_get_name(pctldev, pins[i]);
1662 				if (WARN_ON(!pname)) {
1663 					mutex_unlock(&pctldev->mutex);
1664 					return -EINVAL;
1665 				}
1666 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1667 			}
1668 			seq_puts(s, "\n");
1669 		}
1670 		selector++;
1671 	}
1672 
1673 	mutex_unlock(&pctldev->mutex);
1674 
1675 	return 0;
1676 }
1677 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1678 
1679 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1680 {
1681 	struct pinctrl_dev *pctldev = s->private;
1682 	struct pinctrl_gpio_range *range;
1683 
1684 	seq_puts(s, "GPIO ranges handled:\n");
1685 
1686 	mutex_lock(&pctldev->mutex);
1687 
1688 	/* Loop over the ranges */
1689 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1690 		if (range->pins) {
1691 			int a;
1692 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1693 				range->id, range->name,
1694 				range->base, (range->base + range->npins - 1));
1695 			for (a = 0; a < range->npins - 1; a++)
1696 				seq_printf(s, "%u, ", range->pins[a]);
1697 			seq_printf(s, "%u}\n", range->pins[a]);
1698 		}
1699 		else
1700 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1701 				range->id, range->name,
1702 				range->base, (range->base + range->npins - 1),
1703 				range->pin_base,
1704 				(range->pin_base + range->npins - 1));
1705 	}
1706 
1707 	mutex_unlock(&pctldev->mutex);
1708 
1709 	return 0;
1710 }
1711 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1712 
1713 static int pinctrl_devices_show(struct seq_file *s, void *what)
1714 {
1715 	struct pinctrl_dev *pctldev;
1716 
1717 	seq_puts(s, "name [pinmux] [pinconf]\n");
1718 
1719 	mutex_lock(&pinctrldev_list_mutex);
1720 
1721 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1722 		seq_printf(s, "%s ", pctldev->desc->name);
1723 		if (pctldev->desc->pmxops)
1724 			seq_puts(s, "yes ");
1725 		else
1726 			seq_puts(s, "no ");
1727 		if (pctldev->desc->confops)
1728 			seq_puts(s, "yes");
1729 		else
1730 			seq_puts(s, "no");
1731 		seq_puts(s, "\n");
1732 	}
1733 
1734 	mutex_unlock(&pinctrldev_list_mutex);
1735 
1736 	return 0;
1737 }
1738 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1739 
1740 static inline const char *map_type(enum pinctrl_map_type type)
1741 {
1742 	static const char * const names[] = {
1743 		"INVALID",
1744 		"DUMMY_STATE",
1745 		"MUX_GROUP",
1746 		"CONFIGS_PIN",
1747 		"CONFIGS_GROUP",
1748 	};
1749 
1750 	if (type >= ARRAY_SIZE(names))
1751 		return "UNKNOWN";
1752 
1753 	return names[type];
1754 }
1755 
1756 static int pinctrl_maps_show(struct seq_file *s, void *what)
1757 {
1758 	struct pinctrl_maps *maps_node;
1759 	int i;
1760 	const struct pinctrl_map *map;
1761 
1762 	seq_puts(s, "Pinctrl maps:\n");
1763 
1764 	mutex_lock(&pinctrl_maps_mutex);
1765 	for_each_maps(maps_node, i, map) {
1766 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1767 			   map->dev_name, map->name, map_type(map->type),
1768 			   map->type);
1769 
1770 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1771 			seq_printf(s, "controlling device %s\n",
1772 				   map->ctrl_dev_name);
1773 
1774 		switch (map->type) {
1775 		case PIN_MAP_TYPE_MUX_GROUP:
1776 			pinmux_show_map(s, map);
1777 			break;
1778 		case PIN_MAP_TYPE_CONFIGS_PIN:
1779 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1780 			pinconf_show_map(s, map);
1781 			break;
1782 		default:
1783 			break;
1784 		}
1785 
1786 		seq_putc(s, '\n');
1787 	}
1788 	mutex_unlock(&pinctrl_maps_mutex);
1789 
1790 	return 0;
1791 }
1792 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1793 
1794 static int pinctrl_show(struct seq_file *s, void *what)
1795 {
1796 	struct pinctrl *p;
1797 	struct pinctrl_state *state;
1798 	struct pinctrl_setting *setting;
1799 
1800 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1801 
1802 	mutex_lock(&pinctrl_list_mutex);
1803 
1804 	list_for_each_entry(p, &pinctrl_list, node) {
1805 		seq_printf(s, "device: %s current state: %s\n",
1806 			   dev_name(p->dev),
1807 			   p->state ? p->state->name : "none");
1808 
1809 		list_for_each_entry(state, &p->states, node) {
1810 			seq_printf(s, "  state: %s\n", state->name);
1811 
1812 			list_for_each_entry(setting, &state->settings, node) {
1813 				struct pinctrl_dev *pctldev = setting->pctldev;
1814 
1815 				seq_printf(s, "    type: %s controller %s ",
1816 					   map_type(setting->type),
1817 					   pinctrl_dev_get_name(pctldev));
1818 
1819 				switch (setting->type) {
1820 				case PIN_MAP_TYPE_MUX_GROUP:
1821 					pinmux_show_setting(s, setting);
1822 					break;
1823 				case PIN_MAP_TYPE_CONFIGS_PIN:
1824 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1825 					pinconf_show_setting(s, setting);
1826 					break;
1827 				default:
1828 					break;
1829 				}
1830 			}
1831 		}
1832 	}
1833 
1834 	mutex_unlock(&pinctrl_list_mutex);
1835 
1836 	return 0;
1837 }
1838 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1839 
1840 static struct dentry *debugfs_root;
1841 
1842 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1843 {
1844 	struct dentry *device_root;
1845 	const char *debugfs_name;
1846 
1847 	if (pctldev->desc->name &&
1848 			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1849 		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1850 				"%s-%s", dev_name(pctldev->dev),
1851 				pctldev->desc->name);
1852 		if (!debugfs_name) {
1853 			pr_warn("failed to determine debugfs dir name for %s\n",
1854 				dev_name(pctldev->dev));
1855 			return;
1856 		}
1857 	} else {
1858 		debugfs_name = dev_name(pctldev->dev);
1859 	}
1860 
1861 	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1862 	pctldev->device_root = device_root;
1863 
1864 	if (IS_ERR(device_root) || !device_root) {
1865 		pr_warn("failed to create debugfs directory for %s\n",
1866 			dev_name(pctldev->dev));
1867 		return;
1868 	}
1869 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1870 			    device_root, pctldev, &pinctrl_pins_fops);
1871 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1872 			    device_root, pctldev, &pinctrl_groups_fops);
1873 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1874 			    device_root, pctldev, &pinctrl_gpioranges_fops);
1875 	if (pctldev->desc->pmxops)
1876 		pinmux_init_device_debugfs(device_root, pctldev);
1877 	if (pctldev->desc->confops)
1878 		pinconf_init_device_debugfs(device_root, pctldev);
1879 }
1880 
1881 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1882 {
1883 	debugfs_remove_recursive(pctldev->device_root);
1884 }
1885 
1886 static void pinctrl_init_debugfs(void)
1887 {
1888 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1889 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1890 		pr_warn("failed to create debugfs directory\n");
1891 		debugfs_root = NULL;
1892 		return;
1893 	}
1894 
1895 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1896 			    debugfs_root, NULL, &pinctrl_devices_fops);
1897 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1898 			    debugfs_root, NULL, &pinctrl_maps_fops);
1899 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1900 			    debugfs_root, NULL, &pinctrl_fops);
1901 }
1902 
1903 #else /* CONFIG_DEBUG_FS */
1904 
1905 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1906 {
1907 }
1908 
1909 static void pinctrl_init_debugfs(void)
1910 {
1911 }
1912 
1913 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1914 {
1915 }
1916 
1917 #endif
1918 
1919 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1920 {
1921 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1922 
1923 	if (!ops ||
1924 	    !ops->get_groups_count ||
1925 	    !ops->get_group_name)
1926 		return -EINVAL;
1927 
1928 	return 0;
1929 }
1930 
1931 /**
1932  * pinctrl_init_controller() - init a pin controller device
1933  * @pctldesc: descriptor for this pin controller
1934  * @dev: parent device for this pin controller
1935  * @driver_data: private pin controller data for this pin controller
1936  */
1937 static struct pinctrl_dev *
1938 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1939 			void *driver_data)
1940 {
1941 	struct pinctrl_dev *pctldev;
1942 	int ret;
1943 
1944 	if (!pctldesc)
1945 		return ERR_PTR(-EINVAL);
1946 	if (!pctldesc->name)
1947 		return ERR_PTR(-EINVAL);
1948 
1949 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1950 	if (!pctldev)
1951 		return ERR_PTR(-ENOMEM);
1952 
1953 	/* Initialize pin control device struct */
1954 	pctldev->owner = pctldesc->owner;
1955 	pctldev->desc = pctldesc;
1956 	pctldev->driver_data = driver_data;
1957 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1958 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1959 	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1960 #endif
1961 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1962 	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1963 #endif
1964 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1965 	INIT_LIST_HEAD(&pctldev->node);
1966 	pctldev->dev = dev;
1967 	mutex_init(&pctldev->mutex);
1968 
1969 	/* check core ops for sanity */
1970 	ret = pinctrl_check_ops(pctldev);
1971 	if (ret) {
1972 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1973 		goto out_err;
1974 	}
1975 
1976 	/* If we're implementing pinmuxing, check the ops for sanity */
1977 	if (pctldesc->pmxops) {
1978 		ret = pinmux_check_ops(pctldev);
1979 		if (ret)
1980 			goto out_err;
1981 	}
1982 
1983 	/* If we're implementing pinconfig, check the ops for sanity */
1984 	if (pctldesc->confops) {
1985 		ret = pinconf_check_ops(pctldev);
1986 		if (ret)
1987 			goto out_err;
1988 	}
1989 
1990 	/* Register all the pins */
1991 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1992 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1993 	if (ret) {
1994 		dev_err(dev, "error during pin registration\n");
1995 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1996 				      pctldesc->npins);
1997 		goto out_err;
1998 	}
1999 
2000 	return pctldev;
2001 
2002 out_err:
2003 	mutex_destroy(&pctldev->mutex);
2004 	kfree(pctldev);
2005 	return ERR_PTR(ret);
2006 }
2007 
2008 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2009 {
2010 	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2011 	if (PTR_ERR(pctldev->p) == -ENODEV) {
2012 		dev_dbg(pctldev->dev, "no hogs found\n");
2013 
2014 		return 0;
2015 	}
2016 
2017 	if (IS_ERR(pctldev->p)) {
2018 		dev_err(pctldev->dev, "error claiming hogs: %li\n",
2019 			PTR_ERR(pctldev->p));
2020 
2021 		return PTR_ERR(pctldev->p);
2022 	}
2023 
2024 	kref_get(&pctldev->p->users);
2025 	pctldev->hog_default =
2026 		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2027 	if (IS_ERR(pctldev->hog_default)) {
2028 		dev_dbg(pctldev->dev,
2029 			"failed to lookup the default state\n");
2030 	} else {
2031 		if (pinctrl_select_state(pctldev->p,
2032 					 pctldev->hog_default))
2033 			dev_err(pctldev->dev,
2034 				"failed to select default state\n");
2035 	}
2036 
2037 	pctldev->hog_sleep =
2038 		pinctrl_lookup_state(pctldev->p,
2039 				     PINCTRL_STATE_SLEEP);
2040 	if (IS_ERR(pctldev->hog_sleep))
2041 		dev_dbg(pctldev->dev,
2042 			"failed to lookup the sleep state\n");
2043 
2044 	return 0;
2045 }
2046 
2047 int pinctrl_enable(struct pinctrl_dev *pctldev)
2048 {
2049 	int error;
2050 
2051 	error = pinctrl_claim_hogs(pctldev);
2052 	if (error) {
2053 		dev_err(pctldev->dev, "could not claim hogs: %i\n",
2054 			error);
2055 		mutex_destroy(&pctldev->mutex);
2056 		kfree(pctldev);
2057 
2058 		return error;
2059 	}
2060 
2061 	mutex_lock(&pinctrldev_list_mutex);
2062 	list_add_tail(&pctldev->node, &pinctrldev_list);
2063 	mutex_unlock(&pinctrldev_list_mutex);
2064 
2065 	pinctrl_init_device_debugfs(pctldev);
2066 
2067 	return 0;
2068 }
2069 EXPORT_SYMBOL_GPL(pinctrl_enable);
2070 
2071 /**
2072  * pinctrl_register() - register a pin controller device
2073  * @pctldesc: descriptor for this pin controller
2074  * @dev: parent device for this pin controller
2075  * @driver_data: private pin controller data for this pin controller
2076  *
2077  * Note that pinctrl_register() is known to have problems as the pin
2078  * controller driver functions are called before the driver has a
2079  * struct pinctrl_dev handle. To avoid issues later on, please use the
2080  * new pinctrl_register_and_init() below instead.
2081  */
2082 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2083 				    struct device *dev, void *driver_data)
2084 {
2085 	struct pinctrl_dev *pctldev;
2086 	int error;
2087 
2088 	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2089 	if (IS_ERR(pctldev))
2090 		return pctldev;
2091 
2092 	error = pinctrl_enable(pctldev);
2093 	if (error)
2094 		return ERR_PTR(error);
2095 
2096 	return pctldev;
2097 
2098 }
2099 EXPORT_SYMBOL_GPL(pinctrl_register);
2100 
2101 /**
2102  * pinctrl_register_and_init() - register and init pin controller device
2103  * @pctldesc: descriptor for this pin controller
2104  * @dev: parent device for this pin controller
2105  * @driver_data: private pin controller data for this pin controller
2106  * @pctldev: pin controller device
2107  *
2108  * Note that pinctrl_enable() still needs to be manually called after
2109  * this once the driver is ready.
2110  */
2111 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2112 			      struct device *dev, void *driver_data,
2113 			      struct pinctrl_dev **pctldev)
2114 {
2115 	struct pinctrl_dev *p;
2116 
2117 	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2118 	if (IS_ERR(p))
2119 		return PTR_ERR(p);
2120 
2121 	/*
2122 	 * We have pinctrl_start() call functions in the pin controller
2123 	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2124 	 * let's make sure pctldev is properly initialized for the
2125 	 * pin controller driver before we do anything.
2126 	 */
2127 	*pctldev = p;
2128 
2129 	return 0;
2130 }
2131 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2132 
2133 /**
2134  * pinctrl_unregister() - unregister pinmux
2135  * @pctldev: pin controller to unregister
2136  *
2137  * Called by pinmux drivers to unregister a pinmux.
2138  */
2139 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2140 {
2141 	struct pinctrl_gpio_range *range, *n;
2142 
2143 	if (!pctldev)
2144 		return;
2145 
2146 	mutex_lock(&pctldev->mutex);
2147 	pinctrl_remove_device_debugfs(pctldev);
2148 	mutex_unlock(&pctldev->mutex);
2149 
2150 	if (!IS_ERR_OR_NULL(pctldev->p))
2151 		pinctrl_put(pctldev->p);
2152 
2153 	mutex_lock(&pinctrldev_list_mutex);
2154 	mutex_lock(&pctldev->mutex);
2155 	/* TODO: check that no pinmuxes are still active? */
2156 	list_del(&pctldev->node);
2157 	pinmux_generic_free_functions(pctldev);
2158 	pinctrl_generic_free_groups(pctldev);
2159 	/* Destroy descriptor tree */
2160 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2161 			      pctldev->desc->npins);
2162 	/* remove gpio ranges map */
2163 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2164 		list_del(&range->node);
2165 
2166 	mutex_unlock(&pctldev->mutex);
2167 	mutex_destroy(&pctldev->mutex);
2168 	kfree(pctldev);
2169 	mutex_unlock(&pinctrldev_list_mutex);
2170 }
2171 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2172 
2173 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2174 {
2175 	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2176 
2177 	pinctrl_unregister(pctldev);
2178 }
2179 
2180 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2181 {
2182 	struct pctldev **r = res;
2183 
2184 	if (WARN_ON(!r || !*r))
2185 		return 0;
2186 
2187 	return *r == data;
2188 }
2189 
2190 /**
2191  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2192  * @dev: parent device for this pin controller
2193  * @pctldesc: descriptor for this pin controller
2194  * @driver_data: private pin controller data for this pin controller
2195  *
2196  * Returns an error pointer if pincontrol register failed. Otherwise
2197  * it returns valid pinctrl handle.
2198  *
2199  * The pinctrl device will be automatically released when the device is unbound.
2200  */
2201 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2202 					  struct pinctrl_desc *pctldesc,
2203 					  void *driver_data)
2204 {
2205 	struct pinctrl_dev **ptr, *pctldev;
2206 
2207 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2208 	if (!ptr)
2209 		return ERR_PTR(-ENOMEM);
2210 
2211 	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2212 	if (IS_ERR(pctldev)) {
2213 		devres_free(ptr);
2214 		return pctldev;
2215 	}
2216 
2217 	*ptr = pctldev;
2218 	devres_add(dev, ptr);
2219 
2220 	return pctldev;
2221 }
2222 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2223 
2224 /**
2225  * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2226  * @dev: parent device for this pin controller
2227  * @pctldesc: descriptor for this pin controller
2228  * @driver_data: private pin controller data for this pin controller
2229  *
2230  * Returns an error pointer if pincontrol register failed. Otherwise
2231  * it returns valid pinctrl handle.
2232  *
2233  * The pinctrl device will be automatically released when the device is unbound.
2234  */
2235 int devm_pinctrl_register_and_init(struct device *dev,
2236 				   struct pinctrl_desc *pctldesc,
2237 				   void *driver_data,
2238 				   struct pinctrl_dev **pctldev)
2239 {
2240 	struct pinctrl_dev **ptr;
2241 	int error;
2242 
2243 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2244 	if (!ptr)
2245 		return -ENOMEM;
2246 
2247 	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2248 	if (error) {
2249 		devres_free(ptr);
2250 		return error;
2251 	}
2252 
2253 	*ptr = *pctldev;
2254 	devres_add(dev, ptr);
2255 
2256 	return 0;
2257 }
2258 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2259 
2260 /**
2261  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2262  * @dev: device for which which resource was allocated
2263  * @pctldev: the pinctrl device to unregister.
2264  */
2265 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2266 {
2267 	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2268 			       devm_pinctrl_dev_match, pctldev));
2269 }
2270 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2271 
2272 static int __init pinctrl_init(void)
2273 {
2274 	pr_info("initialized pinctrl subsystem\n");
2275 	pinctrl_init_debugfs();
2276 	return 0;
2277 }
2278 
2279 /* init early since many drivers really need to initialized pinmux early */
2280 core_initcall(pinctrl_init);
2281