1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Core driver for the pin control subsystem 4 * 5 * Copyright (C) 2011-2012 ST-Ericsson SA 6 * Written on behalf of Linaro for ST-Ericsson 7 * Based on bits of regulator core, gpio core and clk core 8 * 9 * Author: Linus Walleij <linus.walleij@linaro.org> 10 * 11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 12 */ 13 #define pr_fmt(fmt) "pinctrl core: " fmt 14 15 #include <linux/debugfs.h> 16 #include <linux/device.h> 17 #include <linux/err.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/kref.h> 22 #include <linux/list.h> 23 #include <linux/seq_file.h> 24 #include <linux/slab.h> 25 26 #include <linux/pinctrl/consumer.h> 27 #include <linux/pinctrl/devinfo.h> 28 #include <linux/pinctrl/machine.h> 29 #include <linux/pinctrl/pinctrl.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include "../gpio/gpiolib.h" 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinconf.h" 38 #include "pinmux.h" 39 40 static bool pinctrl_dummy_state; 41 42 /* Mutex taken to protect pinctrl_list */ 43 static DEFINE_MUTEX(pinctrl_list_mutex); 44 45 /* Mutex taken to protect pinctrl_maps */ 46 DEFINE_MUTEX(pinctrl_maps_mutex); 47 48 /* Mutex taken to protect pinctrldev_list */ 49 static DEFINE_MUTEX(pinctrldev_list_mutex); 50 51 /* Global list of pin control devices (struct pinctrl_dev) */ 52 static LIST_HEAD(pinctrldev_list); 53 54 /* List of pin controller handles (struct pinctrl) */ 55 static LIST_HEAD(pinctrl_list); 56 57 /* List of pinctrl maps (struct pinctrl_maps) */ 58 LIST_HEAD(pinctrl_maps); 59 60 61 /** 62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 63 * 64 * Usually this function is called by platforms without pinctrl driver support 65 * but run with some shared drivers using pinctrl APIs. 66 * After calling this function, the pinctrl core will return successfully 67 * with creating a dummy state for the driver to keep going smoothly. 68 */ 69 void pinctrl_provide_dummies(void) 70 { 71 pinctrl_dummy_state = true; 72 } 73 74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 75 { 76 /* We're not allowed to register devices without name */ 77 return pctldev->desc->name; 78 } 79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 80 81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 82 { 83 return dev_name(pctldev->dev); 84 } 85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 86 87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 88 { 89 return pctldev->driver_data; 90 } 91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 92 93 /** 94 * get_pinctrl_dev_from_devname() - look up pin controller device 95 * @devname: the name of a device instance, as returned by dev_name() 96 * 97 * Looks up a pin control device matching a certain device name or pure device 98 * pointer, the pure device pointer will take precedence. 99 */ 100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 101 { 102 struct pinctrl_dev *pctldev; 103 104 if (!devname) 105 return NULL; 106 107 mutex_lock(&pinctrldev_list_mutex); 108 109 list_for_each_entry(pctldev, &pinctrldev_list, node) { 110 if (!strcmp(dev_name(pctldev->dev), devname)) { 111 /* Matched on device name */ 112 mutex_unlock(&pinctrldev_list_mutex); 113 return pctldev; 114 } 115 } 116 117 mutex_unlock(&pinctrldev_list_mutex); 118 119 return NULL; 120 } 121 122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 123 { 124 struct pinctrl_dev *pctldev; 125 126 mutex_lock(&pinctrldev_list_mutex); 127 128 list_for_each_entry(pctldev, &pinctrldev_list, node) 129 if (device_match_of_node(pctldev->dev, np)) { 130 mutex_unlock(&pinctrldev_list_mutex); 131 return pctldev; 132 } 133 134 mutex_unlock(&pinctrldev_list_mutex); 135 136 return NULL; 137 } 138 139 /** 140 * pin_get_from_name() - look up a pin number from a name 141 * @pctldev: the pin control device to lookup the pin on 142 * @name: the name of the pin to look up 143 */ 144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 145 { 146 unsigned i, pin; 147 148 /* The pin number can be retrived from the pin controller descriptor */ 149 for (i = 0; i < pctldev->desc->npins; i++) { 150 struct pin_desc *desc; 151 152 pin = pctldev->desc->pins[i].number; 153 desc = pin_desc_get(pctldev, pin); 154 /* Pin space may be sparse */ 155 if (desc && !strcmp(name, desc->name)) 156 return pin; 157 } 158 159 return -EINVAL; 160 } 161 162 /** 163 * pin_get_name() - look up a pin name from a pin id 164 * @pctldev: the pin control device to lookup the pin on 165 * @pin: pin number/id to look up 166 */ 167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 168 { 169 const struct pin_desc *desc; 170 171 desc = pin_desc_get(pctldev, pin); 172 if (!desc) { 173 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 174 pin); 175 return NULL; 176 } 177 178 return desc->name; 179 } 180 EXPORT_SYMBOL_GPL(pin_get_name); 181 182 /* Deletes a range of pin descriptors */ 183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 184 const struct pinctrl_pin_desc *pins, 185 unsigned num_pins) 186 { 187 int i; 188 189 for (i = 0; i < num_pins; i++) { 190 struct pin_desc *pindesc; 191 192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 193 pins[i].number); 194 if (pindesc) { 195 radix_tree_delete(&pctldev->pin_desc_tree, 196 pins[i].number); 197 if (pindesc->dynamic_name) 198 kfree(pindesc->name); 199 } 200 kfree(pindesc); 201 } 202 } 203 204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 205 const struct pinctrl_pin_desc *pin) 206 { 207 struct pin_desc *pindesc; 208 209 pindesc = pin_desc_get(pctldev, pin->number); 210 if (pindesc) { 211 dev_err(pctldev->dev, "pin %d already registered\n", 212 pin->number); 213 return -EINVAL; 214 } 215 216 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 217 if (!pindesc) 218 return -ENOMEM; 219 220 /* Set owner */ 221 pindesc->pctldev = pctldev; 222 223 /* Copy basic pin info */ 224 if (pin->name) { 225 pindesc->name = pin->name; 226 } else { 227 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 228 if (!pindesc->name) { 229 kfree(pindesc); 230 return -ENOMEM; 231 } 232 pindesc->dynamic_name = true; 233 } 234 235 pindesc->drv_data = pin->drv_data; 236 237 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 238 pr_debug("registered pin %d (%s) on %s\n", 239 pin->number, pindesc->name, pctldev->desc->name); 240 return 0; 241 } 242 243 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 244 const struct pinctrl_pin_desc *pins, 245 unsigned num_descs) 246 { 247 unsigned i; 248 int ret = 0; 249 250 for (i = 0; i < num_descs; i++) { 251 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 252 if (ret) 253 return ret; 254 } 255 256 return 0; 257 } 258 259 /** 260 * gpio_to_pin() - GPIO range GPIO number to pin number translation 261 * @range: GPIO range used for the translation 262 * @gpio: gpio pin to translate to a pin number 263 * 264 * Finds the pin number for a given GPIO using the specified GPIO range 265 * as a base for translation. The distinction between linear GPIO ranges 266 * and pin list based GPIO ranges is managed correctly by this function. 267 * 268 * This function assumes the gpio is part of the specified GPIO range, use 269 * only after making sure this is the case (e.g. by calling it on the 270 * result of successful pinctrl_get_device_gpio_range calls)! 271 */ 272 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 273 unsigned int gpio) 274 { 275 unsigned int offset = gpio - range->base; 276 if (range->pins) 277 return range->pins[offset]; 278 else 279 return range->pin_base + offset; 280 } 281 282 /** 283 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 284 * @pctldev: pin controller device to check 285 * @gpio: gpio pin to check taken from the global GPIO pin space 286 * 287 * Tries to match a GPIO pin number to the ranges handled by a certain pin 288 * controller, return the range or NULL 289 */ 290 static struct pinctrl_gpio_range * 291 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 292 { 293 struct pinctrl_gpio_range *range; 294 295 mutex_lock(&pctldev->mutex); 296 /* Loop over the ranges */ 297 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 298 /* Check if we're in the valid range */ 299 if (gpio >= range->base && 300 gpio < range->base + range->npins) { 301 mutex_unlock(&pctldev->mutex); 302 return range; 303 } 304 } 305 mutex_unlock(&pctldev->mutex); 306 return NULL; 307 } 308 309 /** 310 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 311 * the same GPIO chip are in range 312 * @gpio: gpio pin to check taken from the global GPIO pin space 313 * 314 * This function is complement of pinctrl_match_gpio_range(). If the return 315 * value of pinctrl_match_gpio_range() is NULL, this function could be used 316 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 317 * of the same GPIO chip don't have back-end pinctrl interface. 318 * If the return value is true, it means that pinctrl device is ready & the 319 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 320 * is false, it means that pinctrl device may not be ready. 321 */ 322 #ifdef CONFIG_GPIOLIB 323 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 324 { 325 struct pinctrl_dev *pctldev; 326 struct pinctrl_gpio_range *range = NULL; 327 /* 328 * FIXME: "gpio" here is a number in the global GPIO numberspace. 329 * get rid of this from the ranges eventually and get the GPIO 330 * descriptor from the gpio_chip. 331 */ 332 struct gpio_chip *chip = gpiod_to_chip(gpio_to_desc(gpio)); 333 334 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 335 return false; 336 337 mutex_lock(&pinctrldev_list_mutex); 338 339 /* Loop over the pin controllers */ 340 list_for_each_entry(pctldev, &pinctrldev_list, node) { 341 /* Loop over the ranges */ 342 mutex_lock(&pctldev->mutex); 343 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 344 /* Check if any gpio range overlapped with gpio chip */ 345 if (range->base + range->npins - 1 < chip->base || 346 range->base > chip->base + chip->ngpio - 1) 347 continue; 348 mutex_unlock(&pctldev->mutex); 349 mutex_unlock(&pinctrldev_list_mutex); 350 return true; 351 } 352 mutex_unlock(&pctldev->mutex); 353 } 354 355 mutex_unlock(&pinctrldev_list_mutex); 356 357 return false; 358 } 359 #else 360 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 361 #endif 362 363 /** 364 * pinctrl_get_device_gpio_range() - find device for GPIO range 365 * @gpio: the pin to locate the pin controller for 366 * @outdev: the pin control device if found 367 * @outrange: the GPIO range if found 368 * 369 * Find the pin controller handling a certain GPIO pin from the pinspace of 370 * the GPIO subsystem, return the device and the matching GPIO range. Returns 371 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 372 * may still have not been registered. 373 */ 374 static int pinctrl_get_device_gpio_range(unsigned gpio, 375 struct pinctrl_dev **outdev, 376 struct pinctrl_gpio_range **outrange) 377 { 378 struct pinctrl_dev *pctldev; 379 380 mutex_lock(&pinctrldev_list_mutex); 381 382 /* Loop over the pin controllers */ 383 list_for_each_entry(pctldev, &pinctrldev_list, node) { 384 struct pinctrl_gpio_range *range; 385 386 range = pinctrl_match_gpio_range(pctldev, gpio); 387 if (range) { 388 *outdev = pctldev; 389 *outrange = range; 390 mutex_unlock(&pinctrldev_list_mutex); 391 return 0; 392 } 393 } 394 395 mutex_unlock(&pinctrldev_list_mutex); 396 397 return -EPROBE_DEFER; 398 } 399 400 /** 401 * pinctrl_add_gpio_range() - register a GPIO range for a controller 402 * @pctldev: pin controller device to add the range to 403 * @range: the GPIO range to add 404 * 405 * This adds a range of GPIOs to be handled by a certain pin controller. Call 406 * this to register handled ranges after registering your pin controller. 407 */ 408 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 409 struct pinctrl_gpio_range *range) 410 { 411 mutex_lock(&pctldev->mutex); 412 list_add_tail(&range->node, &pctldev->gpio_ranges); 413 mutex_unlock(&pctldev->mutex); 414 } 415 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 416 417 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 418 struct pinctrl_gpio_range *ranges, 419 unsigned nranges) 420 { 421 int i; 422 423 for (i = 0; i < nranges; i++) 424 pinctrl_add_gpio_range(pctldev, &ranges[i]); 425 } 426 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 427 428 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 429 struct pinctrl_gpio_range *range) 430 { 431 struct pinctrl_dev *pctldev; 432 433 pctldev = get_pinctrl_dev_from_devname(devname); 434 435 /* 436 * If we can't find this device, let's assume that is because 437 * it has not probed yet, so the driver trying to register this 438 * range need to defer probing. 439 */ 440 if (!pctldev) { 441 return ERR_PTR(-EPROBE_DEFER); 442 } 443 pinctrl_add_gpio_range(pctldev, range); 444 445 return pctldev; 446 } 447 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 448 449 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 450 const unsigned **pins, unsigned *num_pins) 451 { 452 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 453 int gs; 454 455 if (!pctlops->get_group_pins) 456 return -EINVAL; 457 458 gs = pinctrl_get_group_selector(pctldev, pin_group); 459 if (gs < 0) 460 return gs; 461 462 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 463 } 464 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 465 466 struct pinctrl_gpio_range * 467 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 468 unsigned int pin) 469 { 470 struct pinctrl_gpio_range *range; 471 472 /* Loop over the ranges */ 473 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 474 /* Check if we're in the valid range */ 475 if (range->pins) { 476 int a; 477 for (a = 0; a < range->npins; a++) { 478 if (range->pins[a] == pin) 479 return range; 480 } 481 } else if (pin >= range->pin_base && 482 pin < range->pin_base + range->npins) 483 return range; 484 } 485 486 return NULL; 487 } 488 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 489 490 /** 491 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 492 * @pctldev: the pin controller device to look in 493 * @pin: a controller-local number to find the range for 494 */ 495 struct pinctrl_gpio_range * 496 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 497 unsigned int pin) 498 { 499 struct pinctrl_gpio_range *range; 500 501 mutex_lock(&pctldev->mutex); 502 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 503 mutex_unlock(&pctldev->mutex); 504 505 return range; 506 } 507 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 508 509 /** 510 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller 511 * @pctldev: pin controller device to remove the range from 512 * @range: the GPIO range to remove 513 */ 514 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 515 struct pinctrl_gpio_range *range) 516 { 517 mutex_lock(&pctldev->mutex); 518 list_del(&range->node); 519 mutex_unlock(&pctldev->mutex); 520 } 521 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 522 523 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 524 525 /** 526 * pinctrl_generic_get_group_count() - returns the number of pin groups 527 * @pctldev: pin controller device 528 */ 529 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 530 { 531 return pctldev->num_groups; 532 } 533 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 534 535 /** 536 * pinctrl_generic_get_group_name() - returns the name of a pin group 537 * @pctldev: pin controller device 538 * @selector: group number 539 */ 540 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 541 unsigned int selector) 542 { 543 struct group_desc *group; 544 545 group = radix_tree_lookup(&pctldev->pin_group_tree, 546 selector); 547 if (!group) 548 return NULL; 549 550 return group->name; 551 } 552 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 553 554 /** 555 * pinctrl_generic_get_group_pins() - gets the pin group pins 556 * @pctldev: pin controller device 557 * @selector: group number 558 * @pins: pins in the group 559 * @num_pins: number of pins in the group 560 */ 561 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 562 unsigned int selector, 563 const unsigned int **pins, 564 unsigned int *num_pins) 565 { 566 struct group_desc *group; 567 568 group = radix_tree_lookup(&pctldev->pin_group_tree, 569 selector); 570 if (!group) { 571 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 572 __func__, selector); 573 return -EINVAL; 574 } 575 576 *pins = group->pins; 577 *num_pins = group->num_pins; 578 579 return 0; 580 } 581 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 582 583 /** 584 * pinctrl_generic_get_group() - returns a pin group based on the number 585 * @pctldev: pin controller device 586 * @selector: group number 587 */ 588 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 589 unsigned int selector) 590 { 591 struct group_desc *group; 592 593 group = radix_tree_lookup(&pctldev->pin_group_tree, 594 selector); 595 if (!group) 596 return NULL; 597 598 return group; 599 } 600 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 601 602 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev, 603 const char *function) 604 { 605 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 606 int ngroups = ops->get_groups_count(pctldev); 607 int selector = 0; 608 609 /* See if this pctldev has this group */ 610 while (selector < ngroups) { 611 const char *gname = ops->get_group_name(pctldev, selector); 612 613 if (gname && !strcmp(function, gname)) 614 return selector; 615 616 selector++; 617 } 618 619 return -EINVAL; 620 } 621 622 /** 623 * pinctrl_generic_add_group() - adds a new pin group 624 * @pctldev: pin controller device 625 * @name: name of the pin group 626 * @pins: pins in the pin group 627 * @num_pins: number of pins in the pin group 628 * @data: pin controller driver specific data 629 * 630 * Note that the caller must take care of locking. 631 */ 632 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 633 int *pins, int num_pins, void *data) 634 { 635 struct group_desc *group; 636 int selector; 637 638 if (!name) 639 return -EINVAL; 640 641 selector = pinctrl_generic_group_name_to_selector(pctldev, name); 642 if (selector >= 0) 643 return selector; 644 645 selector = pctldev->num_groups; 646 647 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 648 if (!group) 649 return -ENOMEM; 650 651 group->name = name; 652 group->pins = pins; 653 group->num_pins = num_pins; 654 group->data = data; 655 656 radix_tree_insert(&pctldev->pin_group_tree, selector, group); 657 658 pctldev->num_groups++; 659 660 return selector; 661 } 662 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 663 664 /** 665 * pinctrl_generic_remove_group() - removes a numbered pin group 666 * @pctldev: pin controller device 667 * @selector: group number 668 * 669 * Note that the caller must take care of locking. 670 */ 671 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 672 unsigned int selector) 673 { 674 struct group_desc *group; 675 676 group = radix_tree_lookup(&pctldev->pin_group_tree, 677 selector); 678 if (!group) 679 return -ENOENT; 680 681 radix_tree_delete(&pctldev->pin_group_tree, selector); 682 devm_kfree(pctldev->dev, group); 683 684 pctldev->num_groups--; 685 686 return 0; 687 } 688 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 689 690 /** 691 * pinctrl_generic_free_groups() - removes all pin groups 692 * @pctldev: pin controller device 693 * 694 * Note that the caller must take care of locking. The pinctrl groups 695 * are allocated with devm_kzalloc() so no need to free them here. 696 */ 697 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 698 { 699 struct radix_tree_iter iter; 700 void __rcu **slot; 701 702 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 703 radix_tree_delete(&pctldev->pin_group_tree, iter.index); 704 705 pctldev->num_groups = 0; 706 } 707 708 #else 709 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 710 { 711 } 712 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 713 714 /** 715 * pinctrl_get_group_selector() - returns the group selector for a group 716 * @pctldev: the pin controller handling the group 717 * @pin_group: the pin group to look up 718 */ 719 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 720 const char *pin_group) 721 { 722 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 723 unsigned ngroups = pctlops->get_groups_count(pctldev); 724 unsigned group_selector = 0; 725 726 while (group_selector < ngroups) { 727 const char *gname = pctlops->get_group_name(pctldev, 728 group_selector); 729 if (gname && !strcmp(gname, pin_group)) { 730 dev_dbg(pctldev->dev, 731 "found group selector %u for %s\n", 732 group_selector, 733 pin_group); 734 return group_selector; 735 } 736 737 group_selector++; 738 } 739 740 dev_err(pctldev->dev, "does not have pin group %s\n", 741 pin_group); 742 743 return -EINVAL; 744 } 745 746 bool pinctrl_gpio_can_use_line(unsigned gpio) 747 { 748 struct pinctrl_dev *pctldev; 749 struct pinctrl_gpio_range *range; 750 bool result; 751 int pin; 752 753 /* 754 * Try to obtain GPIO range, if it fails 755 * we're probably dealing with GPIO driver 756 * without a backing pin controller - bail out. 757 */ 758 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range)) 759 return true; 760 761 mutex_lock(&pctldev->mutex); 762 763 /* Convert to the pin controllers number space */ 764 pin = gpio_to_pin(range, gpio); 765 766 result = pinmux_can_be_used_for_gpio(pctldev, pin); 767 768 mutex_unlock(&pctldev->mutex); 769 770 return result; 771 } 772 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line); 773 774 /** 775 * pinctrl_gpio_request() - request a single pin to be used as GPIO 776 * @gpio: the GPIO pin number from the GPIO subsystem number space 777 * 778 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 779 * as part of their gpio_request() semantics, platforms and individual drivers 780 * shall *NOT* request GPIO pins to be muxed in. 781 */ 782 int pinctrl_gpio_request(unsigned gpio) 783 { 784 struct pinctrl_dev *pctldev; 785 struct pinctrl_gpio_range *range; 786 int ret; 787 int pin; 788 789 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 790 if (ret) { 791 if (pinctrl_ready_for_gpio_range(gpio)) 792 ret = 0; 793 return ret; 794 } 795 796 mutex_lock(&pctldev->mutex); 797 798 /* Convert to the pin controllers number space */ 799 pin = gpio_to_pin(range, gpio); 800 801 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 802 803 mutex_unlock(&pctldev->mutex); 804 805 return ret; 806 } 807 EXPORT_SYMBOL_GPL(pinctrl_gpio_request); 808 809 /** 810 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO 811 * @gpio: the GPIO pin number from the GPIO subsystem number space 812 * 813 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 814 * as part of their gpio_free() semantics, platforms and individual drivers 815 * shall *NOT* request GPIO pins to be muxed out. 816 */ 817 void pinctrl_gpio_free(unsigned gpio) 818 { 819 struct pinctrl_dev *pctldev; 820 struct pinctrl_gpio_range *range; 821 int ret; 822 int pin; 823 824 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 825 if (ret) { 826 return; 827 } 828 mutex_lock(&pctldev->mutex); 829 830 /* Convert to the pin controllers number space */ 831 pin = gpio_to_pin(range, gpio); 832 833 pinmux_free_gpio(pctldev, pin, range); 834 835 mutex_unlock(&pctldev->mutex); 836 } 837 EXPORT_SYMBOL_GPL(pinctrl_gpio_free); 838 839 static int pinctrl_gpio_direction(unsigned gpio, bool input) 840 { 841 struct pinctrl_dev *pctldev; 842 struct pinctrl_gpio_range *range; 843 int ret; 844 int pin; 845 846 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 847 if (ret) { 848 return ret; 849 } 850 851 mutex_lock(&pctldev->mutex); 852 853 /* Convert to the pin controllers number space */ 854 pin = gpio_to_pin(range, gpio); 855 ret = pinmux_gpio_direction(pctldev, range, pin, input); 856 857 mutex_unlock(&pctldev->mutex); 858 859 return ret; 860 } 861 862 /** 863 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 864 * @gpio: the GPIO pin number from the GPIO subsystem number space 865 * 866 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 867 * as part of their gpio_direction_input() semantics, platforms and individual 868 * drivers shall *NOT* touch pin control GPIO calls. 869 */ 870 int pinctrl_gpio_direction_input(unsigned gpio) 871 { 872 return pinctrl_gpio_direction(gpio, true); 873 } 874 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 875 876 /** 877 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 878 * @gpio: the GPIO pin number from the GPIO subsystem number space 879 * 880 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 881 * as part of their gpio_direction_output() semantics, platforms and individual 882 * drivers shall *NOT* touch pin control GPIO calls. 883 */ 884 int pinctrl_gpio_direction_output(unsigned gpio) 885 { 886 return pinctrl_gpio_direction(gpio, false); 887 } 888 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 889 890 /** 891 * pinctrl_gpio_set_config() - Apply config to given GPIO pin 892 * @gpio: the GPIO pin number from the GPIO subsystem number space 893 * @config: the configuration to apply to the GPIO 894 * 895 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 896 * they need to call the underlying pin controller to change GPIO config 897 * (for example set debounce time). 898 */ 899 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config) 900 { 901 unsigned long configs[] = { config }; 902 struct pinctrl_gpio_range *range; 903 struct pinctrl_dev *pctldev; 904 int ret, pin; 905 906 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 907 if (ret) 908 return ret; 909 910 mutex_lock(&pctldev->mutex); 911 pin = gpio_to_pin(range, gpio); 912 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 913 mutex_unlock(&pctldev->mutex); 914 915 return ret; 916 } 917 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 918 919 static struct pinctrl_state *find_state(struct pinctrl *p, 920 const char *name) 921 { 922 struct pinctrl_state *state; 923 924 list_for_each_entry(state, &p->states, node) 925 if (!strcmp(state->name, name)) 926 return state; 927 928 return NULL; 929 } 930 931 static struct pinctrl_state *create_state(struct pinctrl *p, 932 const char *name) 933 { 934 struct pinctrl_state *state; 935 936 state = kzalloc(sizeof(*state), GFP_KERNEL); 937 if (!state) 938 return ERR_PTR(-ENOMEM); 939 940 state->name = name; 941 INIT_LIST_HEAD(&state->settings); 942 943 list_add_tail(&state->node, &p->states); 944 945 return state; 946 } 947 948 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 949 const struct pinctrl_map *map) 950 { 951 struct pinctrl_state *state; 952 struct pinctrl_setting *setting; 953 int ret; 954 955 state = find_state(p, map->name); 956 if (!state) 957 state = create_state(p, map->name); 958 if (IS_ERR(state)) 959 return PTR_ERR(state); 960 961 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 962 return 0; 963 964 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 965 if (!setting) 966 return -ENOMEM; 967 968 setting->type = map->type; 969 970 if (pctldev) 971 setting->pctldev = pctldev; 972 else 973 setting->pctldev = 974 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 975 if (!setting->pctldev) { 976 kfree(setting); 977 /* Do not defer probing of hogs (circular loop) */ 978 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 979 return -ENODEV; 980 /* 981 * OK let us guess that the driver is not there yet, and 982 * let's defer obtaining this pinctrl handle to later... 983 */ 984 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 985 map->ctrl_dev_name); 986 return -EPROBE_DEFER; 987 } 988 989 setting->dev_name = map->dev_name; 990 991 switch (map->type) { 992 case PIN_MAP_TYPE_MUX_GROUP: 993 ret = pinmux_map_to_setting(map, setting); 994 break; 995 case PIN_MAP_TYPE_CONFIGS_PIN: 996 case PIN_MAP_TYPE_CONFIGS_GROUP: 997 ret = pinconf_map_to_setting(map, setting); 998 break; 999 default: 1000 ret = -EINVAL; 1001 break; 1002 } 1003 if (ret < 0) { 1004 kfree(setting); 1005 return ret; 1006 } 1007 1008 list_add_tail(&setting->node, &state->settings); 1009 1010 return 0; 1011 } 1012 1013 static struct pinctrl *find_pinctrl(struct device *dev) 1014 { 1015 struct pinctrl *p; 1016 1017 mutex_lock(&pinctrl_list_mutex); 1018 list_for_each_entry(p, &pinctrl_list, node) 1019 if (p->dev == dev) { 1020 mutex_unlock(&pinctrl_list_mutex); 1021 return p; 1022 } 1023 1024 mutex_unlock(&pinctrl_list_mutex); 1025 return NULL; 1026 } 1027 1028 static void pinctrl_free(struct pinctrl *p, bool inlist); 1029 1030 static struct pinctrl *create_pinctrl(struct device *dev, 1031 struct pinctrl_dev *pctldev) 1032 { 1033 struct pinctrl *p; 1034 const char *devname; 1035 struct pinctrl_maps *maps_node; 1036 const struct pinctrl_map *map; 1037 int ret; 1038 1039 /* 1040 * create the state cookie holder struct pinctrl for each 1041 * mapping, this is what consumers will get when requesting 1042 * a pin control handle with pinctrl_get() 1043 */ 1044 p = kzalloc(sizeof(*p), GFP_KERNEL); 1045 if (!p) 1046 return ERR_PTR(-ENOMEM); 1047 p->dev = dev; 1048 INIT_LIST_HEAD(&p->states); 1049 INIT_LIST_HEAD(&p->dt_maps); 1050 1051 ret = pinctrl_dt_to_map(p, pctldev); 1052 if (ret < 0) { 1053 kfree(p); 1054 return ERR_PTR(ret); 1055 } 1056 1057 devname = dev_name(dev); 1058 1059 mutex_lock(&pinctrl_maps_mutex); 1060 /* Iterate over the pin control maps to locate the right ones */ 1061 for_each_pin_map(maps_node, map) { 1062 /* Map must be for this device */ 1063 if (strcmp(map->dev_name, devname)) 1064 continue; 1065 /* 1066 * If pctldev is not null, we are claiming hog for it, 1067 * that means, setting that is served by pctldev by itself. 1068 * 1069 * Thus we must skip map that is for this device but is served 1070 * by other device. 1071 */ 1072 if (pctldev && 1073 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name)) 1074 continue; 1075 1076 ret = add_setting(p, pctldev, map); 1077 /* 1078 * At this point the adding of a setting may: 1079 * 1080 * - Defer, if the pinctrl device is not yet available 1081 * - Fail, if the pinctrl device is not yet available, 1082 * AND the setting is a hog. We cannot defer that, since 1083 * the hog will kick in immediately after the device 1084 * is registered. 1085 * 1086 * If the error returned was not -EPROBE_DEFER then we 1087 * accumulate the errors to see if we end up with 1088 * an -EPROBE_DEFER later, as that is the worst case. 1089 */ 1090 if (ret == -EPROBE_DEFER) { 1091 pinctrl_free(p, false); 1092 mutex_unlock(&pinctrl_maps_mutex); 1093 return ERR_PTR(ret); 1094 } 1095 } 1096 mutex_unlock(&pinctrl_maps_mutex); 1097 1098 if (ret < 0) { 1099 /* If some other error than deferral occurred, return here */ 1100 pinctrl_free(p, false); 1101 return ERR_PTR(ret); 1102 } 1103 1104 kref_init(&p->users); 1105 1106 /* Add the pinctrl handle to the global list */ 1107 mutex_lock(&pinctrl_list_mutex); 1108 list_add_tail(&p->node, &pinctrl_list); 1109 mutex_unlock(&pinctrl_list_mutex); 1110 1111 return p; 1112 } 1113 1114 /** 1115 * pinctrl_get() - retrieves the pinctrl handle for a device 1116 * @dev: the device to obtain the handle for 1117 */ 1118 struct pinctrl *pinctrl_get(struct device *dev) 1119 { 1120 struct pinctrl *p; 1121 1122 if (WARN_ON(!dev)) 1123 return ERR_PTR(-EINVAL); 1124 1125 /* 1126 * See if somebody else (such as the device core) has already 1127 * obtained a handle to the pinctrl for this device. In that case, 1128 * return another pointer to it. 1129 */ 1130 p = find_pinctrl(dev); 1131 if (p) { 1132 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1133 kref_get(&p->users); 1134 return p; 1135 } 1136 1137 return create_pinctrl(dev, NULL); 1138 } 1139 EXPORT_SYMBOL_GPL(pinctrl_get); 1140 1141 static void pinctrl_free_setting(bool disable_setting, 1142 struct pinctrl_setting *setting) 1143 { 1144 switch (setting->type) { 1145 case PIN_MAP_TYPE_MUX_GROUP: 1146 if (disable_setting) 1147 pinmux_disable_setting(setting); 1148 pinmux_free_setting(setting); 1149 break; 1150 case PIN_MAP_TYPE_CONFIGS_PIN: 1151 case PIN_MAP_TYPE_CONFIGS_GROUP: 1152 pinconf_free_setting(setting); 1153 break; 1154 default: 1155 break; 1156 } 1157 } 1158 1159 static void pinctrl_free(struct pinctrl *p, bool inlist) 1160 { 1161 struct pinctrl_state *state, *n1; 1162 struct pinctrl_setting *setting, *n2; 1163 1164 mutex_lock(&pinctrl_list_mutex); 1165 list_for_each_entry_safe(state, n1, &p->states, node) { 1166 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1167 pinctrl_free_setting(state == p->state, setting); 1168 list_del(&setting->node); 1169 kfree(setting); 1170 } 1171 list_del(&state->node); 1172 kfree(state); 1173 } 1174 1175 pinctrl_dt_free_maps(p); 1176 1177 if (inlist) 1178 list_del(&p->node); 1179 kfree(p); 1180 mutex_unlock(&pinctrl_list_mutex); 1181 } 1182 1183 /** 1184 * pinctrl_release() - release the pinctrl handle 1185 * @kref: the kref in the pinctrl being released 1186 */ 1187 static void pinctrl_release(struct kref *kref) 1188 { 1189 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1190 1191 pinctrl_free(p, true); 1192 } 1193 1194 /** 1195 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1196 * @p: the pinctrl handle to release 1197 */ 1198 void pinctrl_put(struct pinctrl *p) 1199 { 1200 kref_put(&p->users, pinctrl_release); 1201 } 1202 EXPORT_SYMBOL_GPL(pinctrl_put); 1203 1204 /** 1205 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1206 * @p: the pinctrl handle to retrieve the state from 1207 * @name: the state name to retrieve 1208 */ 1209 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1210 const char *name) 1211 { 1212 struct pinctrl_state *state; 1213 1214 state = find_state(p, name); 1215 if (!state) { 1216 if (pinctrl_dummy_state) { 1217 /* create dummy state */ 1218 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1219 name); 1220 state = create_state(p, name); 1221 } else 1222 state = ERR_PTR(-ENODEV); 1223 } 1224 1225 return state; 1226 } 1227 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1228 1229 static void pinctrl_link_add(struct pinctrl_dev *pctldev, 1230 struct device *consumer) 1231 { 1232 if (pctldev->desc->link_consumers) 1233 device_link_add(consumer, pctldev->dev, 1234 DL_FLAG_PM_RUNTIME | 1235 DL_FLAG_AUTOREMOVE_CONSUMER); 1236 } 1237 1238 /** 1239 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW 1240 * @p: the pinctrl handle for the device that requests configuration 1241 * @state: the state handle to select/activate/program 1242 */ 1243 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state) 1244 { 1245 struct pinctrl_setting *setting, *setting2; 1246 struct pinctrl_state *old_state = p->state; 1247 int ret; 1248 1249 if (p->state) { 1250 /* 1251 * For each pinmux setting in the old state, forget SW's record 1252 * of mux owner for that pingroup. Any pingroups which are 1253 * still owned by the new state will be re-acquired by the call 1254 * to pinmux_enable_setting() in the loop below. 1255 */ 1256 list_for_each_entry(setting, &p->state->settings, node) { 1257 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1258 continue; 1259 pinmux_disable_setting(setting); 1260 } 1261 } 1262 1263 p->state = NULL; 1264 1265 /* Apply all the settings for the new state - pinmux first */ 1266 list_for_each_entry(setting, &state->settings, node) { 1267 switch (setting->type) { 1268 case PIN_MAP_TYPE_MUX_GROUP: 1269 ret = pinmux_enable_setting(setting); 1270 break; 1271 case PIN_MAP_TYPE_CONFIGS_PIN: 1272 case PIN_MAP_TYPE_CONFIGS_GROUP: 1273 ret = 0; 1274 break; 1275 default: 1276 ret = -EINVAL; 1277 break; 1278 } 1279 1280 if (ret < 0) 1281 goto unapply_new_state; 1282 1283 /* Do not link hogs (circular dependency) */ 1284 if (p != setting->pctldev->p) 1285 pinctrl_link_add(setting->pctldev, p->dev); 1286 } 1287 1288 /* Apply all the settings for the new state - pinconf after */ 1289 list_for_each_entry(setting, &state->settings, node) { 1290 switch (setting->type) { 1291 case PIN_MAP_TYPE_MUX_GROUP: 1292 ret = 0; 1293 break; 1294 case PIN_MAP_TYPE_CONFIGS_PIN: 1295 case PIN_MAP_TYPE_CONFIGS_GROUP: 1296 ret = pinconf_apply_setting(setting); 1297 break; 1298 default: 1299 ret = -EINVAL; 1300 break; 1301 } 1302 1303 if (ret < 0) { 1304 goto unapply_new_state; 1305 } 1306 1307 /* Do not link hogs (circular dependency) */ 1308 if (p != setting->pctldev->p) 1309 pinctrl_link_add(setting->pctldev, p->dev); 1310 } 1311 1312 p->state = state; 1313 1314 return 0; 1315 1316 unapply_new_state: 1317 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1318 1319 list_for_each_entry(setting2, &state->settings, node) { 1320 if (&setting2->node == &setting->node) 1321 break; 1322 /* 1323 * All we can do here is pinmux_disable_setting. 1324 * That means that some pins are muxed differently now 1325 * than they were before applying the setting (We can't 1326 * "unmux a pin"!), but it's not a big deal since the pins 1327 * are free to be muxed by another apply_setting. 1328 */ 1329 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1330 pinmux_disable_setting(setting2); 1331 } 1332 1333 /* There's no infinite recursive loop here because p->state is NULL */ 1334 if (old_state) 1335 pinctrl_select_state(p, old_state); 1336 1337 return ret; 1338 } 1339 1340 /** 1341 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1342 * @p: the pinctrl handle for the device that requests configuration 1343 * @state: the state handle to select/activate/program 1344 */ 1345 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1346 { 1347 if (p->state == state) 1348 return 0; 1349 1350 return pinctrl_commit_state(p, state); 1351 } 1352 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1353 1354 static void devm_pinctrl_release(struct device *dev, void *res) 1355 { 1356 pinctrl_put(*(struct pinctrl **)res); 1357 } 1358 1359 /** 1360 * devm_pinctrl_get() - Resource managed pinctrl_get() 1361 * @dev: the device to obtain the handle for 1362 * 1363 * If there is a need to explicitly destroy the returned struct pinctrl, 1364 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1365 */ 1366 struct pinctrl *devm_pinctrl_get(struct device *dev) 1367 { 1368 struct pinctrl **ptr, *p; 1369 1370 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1371 if (!ptr) 1372 return ERR_PTR(-ENOMEM); 1373 1374 p = pinctrl_get(dev); 1375 if (!IS_ERR(p)) { 1376 *ptr = p; 1377 devres_add(dev, ptr); 1378 } else { 1379 devres_free(ptr); 1380 } 1381 1382 return p; 1383 } 1384 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1385 1386 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1387 { 1388 struct pinctrl **p = res; 1389 1390 return *p == data; 1391 } 1392 1393 /** 1394 * devm_pinctrl_put() - Resource managed pinctrl_put() 1395 * @p: the pinctrl handle to release 1396 * 1397 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1398 * this function will not need to be called and the resource management 1399 * code will ensure that the resource is freed. 1400 */ 1401 void devm_pinctrl_put(struct pinctrl *p) 1402 { 1403 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1404 devm_pinctrl_match, p)); 1405 } 1406 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1407 1408 /** 1409 * pinctrl_register_mappings() - register a set of pin controller mappings 1410 * @maps: the pincontrol mappings table to register. Note the pinctrl-core 1411 * keeps a reference to the passed in maps, so they should _not_ be 1412 * marked with __initdata. 1413 * @num_maps: the number of maps in the mapping table 1414 */ 1415 int pinctrl_register_mappings(const struct pinctrl_map *maps, 1416 unsigned num_maps) 1417 { 1418 int i, ret; 1419 struct pinctrl_maps *maps_node; 1420 1421 pr_debug("add %u pinctrl maps\n", num_maps); 1422 1423 /* First sanity check the new mapping */ 1424 for (i = 0; i < num_maps; i++) { 1425 if (!maps[i].dev_name) { 1426 pr_err("failed to register map %s (%d): no device given\n", 1427 maps[i].name, i); 1428 return -EINVAL; 1429 } 1430 1431 if (!maps[i].name) { 1432 pr_err("failed to register map %d: no map name given\n", 1433 i); 1434 return -EINVAL; 1435 } 1436 1437 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1438 !maps[i].ctrl_dev_name) { 1439 pr_err("failed to register map %s (%d): no pin control device given\n", 1440 maps[i].name, i); 1441 return -EINVAL; 1442 } 1443 1444 switch (maps[i].type) { 1445 case PIN_MAP_TYPE_DUMMY_STATE: 1446 break; 1447 case PIN_MAP_TYPE_MUX_GROUP: 1448 ret = pinmux_validate_map(&maps[i], i); 1449 if (ret < 0) 1450 return ret; 1451 break; 1452 case PIN_MAP_TYPE_CONFIGS_PIN: 1453 case PIN_MAP_TYPE_CONFIGS_GROUP: 1454 ret = pinconf_validate_map(&maps[i], i); 1455 if (ret < 0) 1456 return ret; 1457 break; 1458 default: 1459 pr_err("failed to register map %s (%d): invalid type given\n", 1460 maps[i].name, i); 1461 return -EINVAL; 1462 } 1463 } 1464 1465 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1466 if (!maps_node) 1467 return -ENOMEM; 1468 1469 maps_node->maps = maps; 1470 maps_node->num_maps = num_maps; 1471 1472 mutex_lock(&pinctrl_maps_mutex); 1473 list_add_tail(&maps_node->node, &pinctrl_maps); 1474 mutex_unlock(&pinctrl_maps_mutex); 1475 1476 return 0; 1477 } 1478 EXPORT_SYMBOL_GPL(pinctrl_register_mappings); 1479 1480 /** 1481 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings 1482 * @map: the pincontrol mappings table passed to pinctrl_register_mappings() 1483 * when registering the mappings. 1484 */ 1485 void pinctrl_unregister_mappings(const struct pinctrl_map *map) 1486 { 1487 struct pinctrl_maps *maps_node; 1488 1489 mutex_lock(&pinctrl_maps_mutex); 1490 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1491 if (maps_node->maps == map) { 1492 list_del(&maps_node->node); 1493 kfree(maps_node); 1494 mutex_unlock(&pinctrl_maps_mutex); 1495 return; 1496 } 1497 } 1498 mutex_unlock(&pinctrl_maps_mutex); 1499 } 1500 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings); 1501 1502 /** 1503 * pinctrl_force_sleep() - turn a given controller device into sleep state 1504 * @pctldev: pin controller device 1505 */ 1506 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1507 { 1508 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1509 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep); 1510 return 0; 1511 } 1512 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1513 1514 /** 1515 * pinctrl_force_default() - turn a given controller device into default state 1516 * @pctldev: pin controller device 1517 */ 1518 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1519 { 1520 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1521 return pinctrl_commit_state(pctldev->p, pctldev->hog_default); 1522 return 0; 1523 } 1524 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1525 1526 /** 1527 * pinctrl_init_done() - tell pinctrl probe is done 1528 * 1529 * We'll use this time to switch the pins from "init" to "default" unless the 1530 * driver selected some other state. 1531 * 1532 * @dev: device to that's done probing 1533 */ 1534 int pinctrl_init_done(struct device *dev) 1535 { 1536 struct dev_pin_info *pins = dev->pins; 1537 int ret; 1538 1539 if (!pins) 1540 return 0; 1541 1542 if (IS_ERR(pins->init_state)) 1543 return 0; /* No such state */ 1544 1545 if (pins->p->state != pins->init_state) 1546 return 0; /* Not at init anyway */ 1547 1548 if (IS_ERR(pins->default_state)) 1549 return 0; /* No default state */ 1550 1551 ret = pinctrl_select_state(pins->p, pins->default_state); 1552 if (ret) 1553 dev_err(dev, "failed to activate default pinctrl state\n"); 1554 1555 return ret; 1556 } 1557 1558 static int pinctrl_select_bound_state(struct device *dev, 1559 struct pinctrl_state *state) 1560 { 1561 struct dev_pin_info *pins = dev->pins; 1562 int ret; 1563 1564 if (IS_ERR(state)) 1565 return 0; /* No such state */ 1566 ret = pinctrl_select_state(pins->p, state); 1567 if (ret) 1568 dev_err(dev, "failed to activate pinctrl state %s\n", 1569 state->name); 1570 return ret; 1571 } 1572 1573 /** 1574 * pinctrl_select_default_state() - select default pinctrl state 1575 * @dev: device to select default state for 1576 */ 1577 int pinctrl_select_default_state(struct device *dev) 1578 { 1579 if (!dev->pins) 1580 return 0; 1581 1582 return pinctrl_select_bound_state(dev, dev->pins->default_state); 1583 } 1584 EXPORT_SYMBOL_GPL(pinctrl_select_default_state); 1585 1586 #ifdef CONFIG_PM 1587 1588 /** 1589 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1590 * @dev: device to select default state for 1591 */ 1592 int pinctrl_pm_select_default_state(struct device *dev) 1593 { 1594 return pinctrl_select_default_state(dev); 1595 } 1596 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1597 1598 /** 1599 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1600 * @dev: device to select sleep state for 1601 */ 1602 int pinctrl_pm_select_sleep_state(struct device *dev) 1603 { 1604 if (!dev->pins) 1605 return 0; 1606 1607 return pinctrl_select_bound_state(dev, dev->pins->sleep_state); 1608 } 1609 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1610 1611 /** 1612 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1613 * @dev: device to select idle state for 1614 */ 1615 int pinctrl_pm_select_idle_state(struct device *dev) 1616 { 1617 if (!dev->pins) 1618 return 0; 1619 1620 return pinctrl_select_bound_state(dev, dev->pins->idle_state); 1621 } 1622 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1623 #endif 1624 1625 #ifdef CONFIG_DEBUG_FS 1626 1627 static int pinctrl_pins_show(struct seq_file *s, void *what) 1628 { 1629 struct pinctrl_dev *pctldev = s->private; 1630 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1631 unsigned i, pin; 1632 #ifdef CONFIG_GPIOLIB 1633 struct pinctrl_gpio_range *range; 1634 struct gpio_chip *chip; 1635 int gpio_num; 1636 #endif 1637 1638 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1639 1640 mutex_lock(&pctldev->mutex); 1641 1642 /* The pin number can be retrived from the pin controller descriptor */ 1643 for (i = 0; i < pctldev->desc->npins; i++) { 1644 struct pin_desc *desc; 1645 1646 pin = pctldev->desc->pins[i].number; 1647 desc = pin_desc_get(pctldev, pin); 1648 /* Pin space may be sparse */ 1649 if (!desc) 1650 continue; 1651 1652 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1653 1654 #ifdef CONFIG_GPIOLIB 1655 gpio_num = -1; 1656 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1657 if ((pin >= range->pin_base) && 1658 (pin < (range->pin_base + range->npins))) { 1659 gpio_num = range->base + (pin - range->pin_base); 1660 break; 1661 } 1662 } 1663 if (gpio_num >= 0) 1664 /* 1665 * FIXME: gpio_num comes from the global GPIO numberspace. 1666 * we need to get rid of the range->base eventually and 1667 * get the descriptor directly from the gpio_chip. 1668 */ 1669 chip = gpiod_to_chip(gpio_to_desc(gpio_num)); 1670 else 1671 chip = NULL; 1672 if (chip) 1673 seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label); 1674 else 1675 seq_puts(s, "0:? "); 1676 #endif 1677 1678 /* Driver-specific info per pin */ 1679 if (ops->pin_dbg_show) 1680 ops->pin_dbg_show(pctldev, s, pin); 1681 1682 seq_puts(s, "\n"); 1683 } 1684 1685 mutex_unlock(&pctldev->mutex); 1686 1687 return 0; 1688 } 1689 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins); 1690 1691 static int pinctrl_groups_show(struct seq_file *s, void *what) 1692 { 1693 struct pinctrl_dev *pctldev = s->private; 1694 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1695 unsigned ngroups, selector = 0; 1696 1697 mutex_lock(&pctldev->mutex); 1698 1699 ngroups = ops->get_groups_count(pctldev); 1700 1701 seq_puts(s, "registered pin groups:\n"); 1702 while (selector < ngroups) { 1703 const unsigned *pins = NULL; 1704 unsigned num_pins = 0; 1705 const char *gname = ops->get_group_name(pctldev, selector); 1706 const char *pname; 1707 int ret = 0; 1708 int i; 1709 1710 if (ops->get_group_pins) 1711 ret = ops->get_group_pins(pctldev, selector, 1712 &pins, &num_pins); 1713 if (ret) 1714 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1715 gname); 1716 else { 1717 seq_printf(s, "group: %s\n", gname); 1718 for (i = 0; i < num_pins; i++) { 1719 pname = pin_get_name(pctldev, pins[i]); 1720 if (WARN_ON(!pname)) { 1721 mutex_unlock(&pctldev->mutex); 1722 return -EINVAL; 1723 } 1724 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1725 } 1726 seq_puts(s, "\n"); 1727 } 1728 selector++; 1729 } 1730 1731 mutex_unlock(&pctldev->mutex); 1732 1733 return 0; 1734 } 1735 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups); 1736 1737 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1738 { 1739 struct pinctrl_dev *pctldev = s->private; 1740 struct pinctrl_gpio_range *range; 1741 1742 seq_puts(s, "GPIO ranges handled:\n"); 1743 1744 mutex_lock(&pctldev->mutex); 1745 1746 /* Loop over the ranges */ 1747 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1748 if (range->pins) { 1749 int a; 1750 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1751 range->id, range->name, 1752 range->base, (range->base + range->npins - 1)); 1753 for (a = 0; a < range->npins - 1; a++) 1754 seq_printf(s, "%u, ", range->pins[a]); 1755 seq_printf(s, "%u}\n", range->pins[a]); 1756 } 1757 else 1758 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1759 range->id, range->name, 1760 range->base, (range->base + range->npins - 1), 1761 range->pin_base, 1762 (range->pin_base + range->npins - 1)); 1763 } 1764 1765 mutex_unlock(&pctldev->mutex); 1766 1767 return 0; 1768 } 1769 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges); 1770 1771 static int pinctrl_devices_show(struct seq_file *s, void *what) 1772 { 1773 struct pinctrl_dev *pctldev; 1774 1775 seq_puts(s, "name [pinmux] [pinconf]\n"); 1776 1777 mutex_lock(&pinctrldev_list_mutex); 1778 1779 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1780 seq_printf(s, "%s ", pctldev->desc->name); 1781 if (pctldev->desc->pmxops) 1782 seq_puts(s, "yes "); 1783 else 1784 seq_puts(s, "no "); 1785 if (pctldev->desc->confops) 1786 seq_puts(s, "yes"); 1787 else 1788 seq_puts(s, "no"); 1789 seq_puts(s, "\n"); 1790 } 1791 1792 mutex_unlock(&pinctrldev_list_mutex); 1793 1794 return 0; 1795 } 1796 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices); 1797 1798 static inline const char *map_type(enum pinctrl_map_type type) 1799 { 1800 static const char * const names[] = { 1801 "INVALID", 1802 "DUMMY_STATE", 1803 "MUX_GROUP", 1804 "CONFIGS_PIN", 1805 "CONFIGS_GROUP", 1806 }; 1807 1808 if (type >= ARRAY_SIZE(names)) 1809 return "UNKNOWN"; 1810 1811 return names[type]; 1812 } 1813 1814 static int pinctrl_maps_show(struct seq_file *s, void *what) 1815 { 1816 struct pinctrl_maps *maps_node; 1817 const struct pinctrl_map *map; 1818 1819 seq_puts(s, "Pinctrl maps:\n"); 1820 1821 mutex_lock(&pinctrl_maps_mutex); 1822 for_each_pin_map(maps_node, map) { 1823 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1824 map->dev_name, map->name, map_type(map->type), 1825 map->type); 1826 1827 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1828 seq_printf(s, "controlling device %s\n", 1829 map->ctrl_dev_name); 1830 1831 switch (map->type) { 1832 case PIN_MAP_TYPE_MUX_GROUP: 1833 pinmux_show_map(s, map); 1834 break; 1835 case PIN_MAP_TYPE_CONFIGS_PIN: 1836 case PIN_MAP_TYPE_CONFIGS_GROUP: 1837 pinconf_show_map(s, map); 1838 break; 1839 default: 1840 break; 1841 } 1842 1843 seq_putc(s, '\n'); 1844 } 1845 mutex_unlock(&pinctrl_maps_mutex); 1846 1847 return 0; 1848 } 1849 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps); 1850 1851 static int pinctrl_show(struct seq_file *s, void *what) 1852 { 1853 struct pinctrl *p; 1854 struct pinctrl_state *state; 1855 struct pinctrl_setting *setting; 1856 1857 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1858 1859 mutex_lock(&pinctrl_list_mutex); 1860 1861 list_for_each_entry(p, &pinctrl_list, node) { 1862 seq_printf(s, "device: %s current state: %s\n", 1863 dev_name(p->dev), 1864 p->state ? p->state->name : "none"); 1865 1866 list_for_each_entry(state, &p->states, node) { 1867 seq_printf(s, " state: %s\n", state->name); 1868 1869 list_for_each_entry(setting, &state->settings, node) { 1870 struct pinctrl_dev *pctldev = setting->pctldev; 1871 1872 seq_printf(s, " type: %s controller %s ", 1873 map_type(setting->type), 1874 pinctrl_dev_get_name(pctldev)); 1875 1876 switch (setting->type) { 1877 case PIN_MAP_TYPE_MUX_GROUP: 1878 pinmux_show_setting(s, setting); 1879 break; 1880 case PIN_MAP_TYPE_CONFIGS_PIN: 1881 case PIN_MAP_TYPE_CONFIGS_GROUP: 1882 pinconf_show_setting(s, setting); 1883 break; 1884 default: 1885 break; 1886 } 1887 } 1888 } 1889 } 1890 1891 mutex_unlock(&pinctrl_list_mutex); 1892 1893 return 0; 1894 } 1895 DEFINE_SHOW_ATTRIBUTE(pinctrl); 1896 1897 static struct dentry *debugfs_root; 1898 1899 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1900 { 1901 struct dentry *device_root; 1902 const char *debugfs_name; 1903 1904 if (pctldev->desc->name && 1905 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) { 1906 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL, 1907 "%s-%s", dev_name(pctldev->dev), 1908 pctldev->desc->name); 1909 if (!debugfs_name) { 1910 pr_warn("failed to determine debugfs dir name for %s\n", 1911 dev_name(pctldev->dev)); 1912 return; 1913 } 1914 } else { 1915 debugfs_name = dev_name(pctldev->dev); 1916 } 1917 1918 device_root = debugfs_create_dir(debugfs_name, debugfs_root); 1919 pctldev->device_root = device_root; 1920 1921 if (IS_ERR(device_root) || !device_root) { 1922 pr_warn("failed to create debugfs directory for %s\n", 1923 dev_name(pctldev->dev)); 1924 return; 1925 } 1926 debugfs_create_file("pins", 0444, 1927 device_root, pctldev, &pinctrl_pins_fops); 1928 debugfs_create_file("pingroups", 0444, 1929 device_root, pctldev, &pinctrl_groups_fops); 1930 debugfs_create_file("gpio-ranges", 0444, 1931 device_root, pctldev, &pinctrl_gpioranges_fops); 1932 if (pctldev->desc->pmxops) 1933 pinmux_init_device_debugfs(device_root, pctldev); 1934 if (pctldev->desc->confops) 1935 pinconf_init_device_debugfs(device_root, pctldev); 1936 } 1937 1938 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1939 { 1940 debugfs_remove_recursive(pctldev->device_root); 1941 } 1942 1943 static void pinctrl_init_debugfs(void) 1944 { 1945 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1946 if (IS_ERR(debugfs_root) || !debugfs_root) { 1947 pr_warn("failed to create debugfs directory\n"); 1948 debugfs_root = NULL; 1949 return; 1950 } 1951 1952 debugfs_create_file("pinctrl-devices", 0444, 1953 debugfs_root, NULL, &pinctrl_devices_fops); 1954 debugfs_create_file("pinctrl-maps", 0444, 1955 debugfs_root, NULL, &pinctrl_maps_fops); 1956 debugfs_create_file("pinctrl-handles", 0444, 1957 debugfs_root, NULL, &pinctrl_fops); 1958 } 1959 1960 #else /* CONFIG_DEBUG_FS */ 1961 1962 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1963 { 1964 } 1965 1966 static void pinctrl_init_debugfs(void) 1967 { 1968 } 1969 1970 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1971 { 1972 } 1973 1974 #endif 1975 1976 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1977 { 1978 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1979 1980 if (!ops || 1981 !ops->get_groups_count || 1982 !ops->get_group_name) 1983 return -EINVAL; 1984 1985 return 0; 1986 } 1987 1988 /** 1989 * pinctrl_init_controller() - init a pin controller device 1990 * @pctldesc: descriptor for this pin controller 1991 * @dev: parent device for this pin controller 1992 * @driver_data: private pin controller data for this pin controller 1993 */ 1994 static struct pinctrl_dev * 1995 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev, 1996 void *driver_data) 1997 { 1998 struct pinctrl_dev *pctldev; 1999 int ret; 2000 2001 if (!pctldesc) 2002 return ERR_PTR(-EINVAL); 2003 if (!pctldesc->name) 2004 return ERR_PTR(-EINVAL); 2005 2006 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 2007 if (!pctldev) 2008 return ERR_PTR(-ENOMEM); 2009 2010 /* Initialize pin control device struct */ 2011 pctldev->owner = pctldesc->owner; 2012 pctldev->desc = pctldesc; 2013 pctldev->driver_data = driver_data; 2014 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 2015 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 2016 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 2017 #endif 2018 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 2019 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 2020 #endif 2021 INIT_LIST_HEAD(&pctldev->gpio_ranges); 2022 INIT_LIST_HEAD(&pctldev->node); 2023 pctldev->dev = dev; 2024 mutex_init(&pctldev->mutex); 2025 2026 /* check core ops for sanity */ 2027 ret = pinctrl_check_ops(pctldev); 2028 if (ret) { 2029 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 2030 goto out_err; 2031 } 2032 2033 /* If we're implementing pinmuxing, check the ops for sanity */ 2034 if (pctldesc->pmxops) { 2035 ret = pinmux_check_ops(pctldev); 2036 if (ret) 2037 goto out_err; 2038 } 2039 2040 /* If we're implementing pinconfig, check the ops for sanity */ 2041 if (pctldesc->confops) { 2042 ret = pinconf_check_ops(pctldev); 2043 if (ret) 2044 goto out_err; 2045 } 2046 2047 /* Register all the pins */ 2048 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 2049 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 2050 if (ret) { 2051 dev_err(dev, "error during pin registration\n"); 2052 pinctrl_free_pindescs(pctldev, pctldesc->pins, 2053 pctldesc->npins); 2054 goto out_err; 2055 } 2056 2057 return pctldev; 2058 2059 out_err: 2060 mutex_destroy(&pctldev->mutex); 2061 kfree(pctldev); 2062 return ERR_PTR(ret); 2063 } 2064 2065 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 2066 { 2067 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 2068 if (PTR_ERR(pctldev->p) == -ENODEV) { 2069 dev_dbg(pctldev->dev, "no hogs found\n"); 2070 2071 return 0; 2072 } 2073 2074 if (IS_ERR(pctldev->p)) { 2075 dev_err(pctldev->dev, "error claiming hogs: %li\n", 2076 PTR_ERR(pctldev->p)); 2077 2078 return PTR_ERR(pctldev->p); 2079 } 2080 2081 pctldev->hog_default = 2082 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2083 if (IS_ERR(pctldev->hog_default)) { 2084 dev_dbg(pctldev->dev, 2085 "failed to lookup the default state\n"); 2086 } else { 2087 if (pinctrl_select_state(pctldev->p, 2088 pctldev->hog_default)) 2089 dev_err(pctldev->dev, 2090 "failed to select default state\n"); 2091 } 2092 2093 pctldev->hog_sleep = 2094 pinctrl_lookup_state(pctldev->p, 2095 PINCTRL_STATE_SLEEP); 2096 if (IS_ERR(pctldev->hog_sleep)) 2097 dev_dbg(pctldev->dev, 2098 "failed to lookup the sleep state\n"); 2099 2100 return 0; 2101 } 2102 2103 int pinctrl_enable(struct pinctrl_dev *pctldev) 2104 { 2105 int error; 2106 2107 error = pinctrl_claim_hogs(pctldev); 2108 if (error) { 2109 dev_err(pctldev->dev, "could not claim hogs: %i\n", 2110 error); 2111 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2112 pctldev->desc->npins); 2113 mutex_destroy(&pctldev->mutex); 2114 kfree(pctldev); 2115 2116 return error; 2117 } 2118 2119 mutex_lock(&pinctrldev_list_mutex); 2120 list_add_tail(&pctldev->node, &pinctrldev_list); 2121 mutex_unlock(&pinctrldev_list_mutex); 2122 2123 pinctrl_init_device_debugfs(pctldev); 2124 2125 return 0; 2126 } 2127 EXPORT_SYMBOL_GPL(pinctrl_enable); 2128 2129 /** 2130 * pinctrl_register() - register a pin controller device 2131 * @pctldesc: descriptor for this pin controller 2132 * @dev: parent device for this pin controller 2133 * @driver_data: private pin controller data for this pin controller 2134 * 2135 * Note that pinctrl_register() is known to have problems as the pin 2136 * controller driver functions are called before the driver has a 2137 * struct pinctrl_dev handle. To avoid issues later on, please use the 2138 * new pinctrl_register_and_init() below instead. 2139 */ 2140 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 2141 struct device *dev, void *driver_data) 2142 { 2143 struct pinctrl_dev *pctldev; 2144 int error; 2145 2146 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2147 if (IS_ERR(pctldev)) 2148 return pctldev; 2149 2150 error = pinctrl_enable(pctldev); 2151 if (error) 2152 return ERR_PTR(error); 2153 2154 return pctldev; 2155 } 2156 EXPORT_SYMBOL_GPL(pinctrl_register); 2157 2158 /** 2159 * pinctrl_register_and_init() - register and init pin controller device 2160 * @pctldesc: descriptor for this pin controller 2161 * @dev: parent device for this pin controller 2162 * @driver_data: private pin controller data for this pin controller 2163 * @pctldev: pin controller device 2164 * 2165 * Note that pinctrl_enable() still needs to be manually called after 2166 * this once the driver is ready. 2167 */ 2168 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, 2169 struct device *dev, void *driver_data, 2170 struct pinctrl_dev **pctldev) 2171 { 2172 struct pinctrl_dev *p; 2173 2174 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2175 if (IS_ERR(p)) 2176 return PTR_ERR(p); 2177 2178 /* 2179 * We have pinctrl_start() call functions in the pin controller 2180 * driver with create_pinctrl() for at least dt_node_to_map(). So 2181 * let's make sure pctldev is properly initialized for the 2182 * pin controller driver before we do anything. 2183 */ 2184 *pctldev = p; 2185 2186 return 0; 2187 } 2188 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2189 2190 /** 2191 * pinctrl_unregister() - unregister pinmux 2192 * @pctldev: pin controller to unregister 2193 * 2194 * Called by pinmux drivers to unregister a pinmux. 2195 */ 2196 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2197 { 2198 struct pinctrl_gpio_range *range, *n; 2199 2200 if (!pctldev) 2201 return; 2202 2203 mutex_lock(&pctldev->mutex); 2204 pinctrl_remove_device_debugfs(pctldev); 2205 mutex_unlock(&pctldev->mutex); 2206 2207 if (!IS_ERR_OR_NULL(pctldev->p)) 2208 pinctrl_put(pctldev->p); 2209 2210 mutex_lock(&pinctrldev_list_mutex); 2211 mutex_lock(&pctldev->mutex); 2212 /* TODO: check that no pinmuxes are still active? */ 2213 list_del(&pctldev->node); 2214 pinmux_generic_free_functions(pctldev); 2215 pinctrl_generic_free_groups(pctldev); 2216 /* Destroy descriptor tree */ 2217 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2218 pctldev->desc->npins); 2219 /* remove gpio ranges map */ 2220 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2221 list_del(&range->node); 2222 2223 mutex_unlock(&pctldev->mutex); 2224 mutex_destroy(&pctldev->mutex); 2225 kfree(pctldev); 2226 mutex_unlock(&pinctrldev_list_mutex); 2227 } 2228 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2229 2230 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2231 { 2232 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2233 2234 pinctrl_unregister(pctldev); 2235 } 2236 2237 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2238 { 2239 struct pctldev **r = res; 2240 2241 if (WARN_ON(!r || !*r)) 2242 return 0; 2243 2244 return *r == data; 2245 } 2246 2247 /** 2248 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2249 * @dev: parent device for this pin controller 2250 * @pctldesc: descriptor for this pin controller 2251 * @driver_data: private pin controller data for this pin controller 2252 * 2253 * Returns an error pointer if pincontrol register failed. Otherwise 2254 * it returns valid pinctrl handle. 2255 * 2256 * The pinctrl device will be automatically released when the device is unbound. 2257 */ 2258 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2259 struct pinctrl_desc *pctldesc, 2260 void *driver_data) 2261 { 2262 struct pinctrl_dev **ptr, *pctldev; 2263 2264 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2265 if (!ptr) 2266 return ERR_PTR(-ENOMEM); 2267 2268 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2269 if (IS_ERR(pctldev)) { 2270 devres_free(ptr); 2271 return pctldev; 2272 } 2273 2274 *ptr = pctldev; 2275 devres_add(dev, ptr); 2276 2277 return pctldev; 2278 } 2279 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2280 2281 /** 2282 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2283 * @dev: parent device for this pin controller 2284 * @pctldesc: descriptor for this pin controller 2285 * @driver_data: private pin controller data for this pin controller 2286 * @pctldev: pin controller device 2287 * 2288 * Returns zero on success or an error number on failure. 2289 * 2290 * The pinctrl device will be automatically released when the device is unbound. 2291 */ 2292 int devm_pinctrl_register_and_init(struct device *dev, 2293 struct pinctrl_desc *pctldesc, 2294 void *driver_data, 2295 struct pinctrl_dev **pctldev) 2296 { 2297 struct pinctrl_dev **ptr; 2298 int error; 2299 2300 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2301 if (!ptr) 2302 return -ENOMEM; 2303 2304 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2305 if (error) { 2306 devres_free(ptr); 2307 return error; 2308 } 2309 2310 *ptr = *pctldev; 2311 devres_add(dev, ptr); 2312 2313 return 0; 2314 } 2315 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2316 2317 /** 2318 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2319 * @dev: device for which resource was allocated 2320 * @pctldev: the pinctrl device to unregister. 2321 */ 2322 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2323 { 2324 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2325 devm_pinctrl_dev_match, pctldev)); 2326 } 2327 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2328 2329 static int __init pinctrl_init(void) 2330 { 2331 pr_info("initialized pinctrl subsystem\n"); 2332 pinctrl_init_debugfs(); 2333 return 0; 2334 } 2335 2336 /* init early since many drivers really need to initialized pinmux early */ 2337 core_initcall(pinctrl_init); 2338