1 /* 2 * Core driver for the pin control subsystem 3 * 4 * Copyright (C) 2011-2012 ST-Ericsson SA 5 * Written on behalf of Linaro for ST-Ericsson 6 * Based on bits of regulator core, gpio core and clk core 7 * 8 * Author: Linus Walleij <linus.walleij@linaro.org> 9 * 10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 11 * 12 * License terms: GNU General Public License (GPL) version 2 13 */ 14 #define pr_fmt(fmt) "pinctrl core: " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/kref.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/slab.h> 22 #include <linux/err.h> 23 #include <linux/list.h> 24 #include <linux/sysfs.h> 25 #include <linux/debugfs.h> 26 #include <linux/seq_file.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pinctrl/pinctrl.h> 29 #include <linux/pinctrl/machine.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include <asm-generic/gpio.h> 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinmux.h" 38 #include "pinconf.h" 39 40 41 static bool pinctrl_dummy_state; 42 43 /* Mutex taken to protect pinctrl_list */ 44 static DEFINE_MUTEX(pinctrl_list_mutex); 45 46 /* Mutex taken to protect pinctrl_maps */ 47 DEFINE_MUTEX(pinctrl_maps_mutex); 48 49 /* Mutex taken to protect pinctrldev_list */ 50 static DEFINE_MUTEX(pinctrldev_list_mutex); 51 52 /* Global list of pin control devices (struct pinctrl_dev) */ 53 static LIST_HEAD(pinctrldev_list); 54 55 /* List of pin controller handles (struct pinctrl) */ 56 static LIST_HEAD(pinctrl_list); 57 58 /* List of pinctrl maps (struct pinctrl_maps) */ 59 LIST_HEAD(pinctrl_maps); 60 61 62 /** 63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 64 * 65 * Usually this function is called by platforms without pinctrl driver support 66 * but run with some shared drivers using pinctrl APIs. 67 * After calling this function, the pinctrl core will return successfully 68 * with creating a dummy state for the driver to keep going smoothly. 69 */ 70 void pinctrl_provide_dummies(void) 71 { 72 pinctrl_dummy_state = true; 73 } 74 75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 76 { 77 /* We're not allowed to register devices without name */ 78 return pctldev->desc->name; 79 } 80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 81 82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 83 { 84 return dev_name(pctldev->dev); 85 } 86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 87 88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 89 { 90 return pctldev->driver_data; 91 } 92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 93 94 /** 95 * get_pinctrl_dev_from_devname() - look up pin controller device 96 * @devname: the name of a device instance, as returned by dev_name() 97 * 98 * Looks up a pin control device matching a certain device name or pure device 99 * pointer, the pure device pointer will take precedence. 100 */ 101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 102 { 103 struct pinctrl_dev *pctldev = NULL; 104 105 if (!devname) 106 return NULL; 107 108 mutex_lock(&pinctrldev_list_mutex); 109 110 list_for_each_entry(pctldev, &pinctrldev_list, node) { 111 if (!strcmp(dev_name(pctldev->dev), devname)) { 112 /* Matched on device name */ 113 mutex_unlock(&pinctrldev_list_mutex); 114 return pctldev; 115 } 116 } 117 118 mutex_unlock(&pinctrldev_list_mutex); 119 120 return NULL; 121 } 122 123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 124 { 125 struct pinctrl_dev *pctldev; 126 127 mutex_lock(&pinctrldev_list_mutex); 128 129 list_for_each_entry(pctldev, &pinctrldev_list, node) 130 if (pctldev->dev->of_node == np) { 131 mutex_unlock(&pinctrldev_list_mutex); 132 return pctldev; 133 } 134 135 mutex_unlock(&pinctrldev_list_mutex); 136 137 return NULL; 138 } 139 140 /** 141 * pin_get_from_name() - look up a pin number from a name 142 * @pctldev: the pin control device to lookup the pin on 143 * @name: the name of the pin to look up 144 */ 145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 146 { 147 unsigned i, pin; 148 149 /* The pin number can be retrived from the pin controller descriptor */ 150 for (i = 0; i < pctldev->desc->npins; i++) { 151 struct pin_desc *desc; 152 153 pin = pctldev->desc->pins[i].number; 154 desc = pin_desc_get(pctldev, pin); 155 /* Pin space may be sparse */ 156 if (desc && !strcmp(name, desc->name)) 157 return pin; 158 } 159 160 return -EINVAL; 161 } 162 163 /** 164 * pin_get_name_from_id() - look up a pin name from a pin id 165 * @pctldev: the pin control device to lookup the pin on 166 * @name: the name of the pin to look up 167 */ 168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 169 { 170 const struct pin_desc *desc; 171 172 desc = pin_desc_get(pctldev, pin); 173 if (!desc) { 174 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 175 pin); 176 return NULL; 177 } 178 179 return desc->name; 180 } 181 182 /** 183 * pin_is_valid() - check if pin exists on controller 184 * @pctldev: the pin control device to check the pin on 185 * @pin: pin to check, use the local pin controller index number 186 * 187 * This tells us whether a certain pin exist on a certain pin controller or 188 * not. Pin lists may be sparse, so some pins may not exist. 189 */ 190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 191 { 192 struct pin_desc *pindesc; 193 194 if (pin < 0) 195 return false; 196 197 mutex_lock(&pctldev->mutex); 198 pindesc = pin_desc_get(pctldev, pin); 199 mutex_unlock(&pctldev->mutex); 200 201 return pindesc != NULL; 202 } 203 EXPORT_SYMBOL_GPL(pin_is_valid); 204 205 /* Deletes a range of pin descriptors */ 206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 207 const struct pinctrl_pin_desc *pins, 208 unsigned num_pins) 209 { 210 int i; 211 212 for (i = 0; i < num_pins; i++) { 213 struct pin_desc *pindesc; 214 215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 216 pins[i].number); 217 if (pindesc) { 218 radix_tree_delete(&pctldev->pin_desc_tree, 219 pins[i].number); 220 if (pindesc->dynamic_name) 221 kfree(pindesc->name); 222 } 223 kfree(pindesc); 224 } 225 } 226 227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 228 const struct pinctrl_pin_desc *pin) 229 { 230 struct pin_desc *pindesc; 231 232 pindesc = pin_desc_get(pctldev, pin->number); 233 if (pindesc) { 234 dev_err(pctldev->dev, "pin %d already registered\n", 235 pin->number); 236 return -EINVAL; 237 } 238 239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 240 if (!pindesc) 241 return -ENOMEM; 242 243 /* Set owner */ 244 pindesc->pctldev = pctldev; 245 246 /* Copy basic pin info */ 247 if (pin->name) { 248 pindesc->name = pin->name; 249 } else { 250 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 251 if (!pindesc->name) { 252 kfree(pindesc); 253 return -ENOMEM; 254 } 255 pindesc->dynamic_name = true; 256 } 257 258 pindesc->drv_data = pin->drv_data; 259 260 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 261 pr_debug("registered pin %d (%s) on %s\n", 262 pin->number, pindesc->name, pctldev->desc->name); 263 return 0; 264 } 265 266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 267 const struct pinctrl_pin_desc *pins, 268 unsigned num_descs) 269 { 270 unsigned i; 271 int ret = 0; 272 273 for (i = 0; i < num_descs; i++) { 274 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 275 if (ret) 276 return ret; 277 } 278 279 return 0; 280 } 281 282 /** 283 * gpio_to_pin() - GPIO range GPIO number to pin number translation 284 * @range: GPIO range used for the translation 285 * @gpio: gpio pin to translate to a pin number 286 * 287 * Finds the pin number for a given GPIO using the specified GPIO range 288 * as a base for translation. The distinction between linear GPIO ranges 289 * and pin list based GPIO ranges is managed correctly by this function. 290 * 291 * This function assumes the gpio is part of the specified GPIO range, use 292 * only after making sure this is the case (e.g. by calling it on the 293 * result of successful pinctrl_get_device_gpio_range calls)! 294 */ 295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 296 unsigned int gpio) 297 { 298 unsigned int offset = gpio - range->base; 299 if (range->pins) 300 return range->pins[offset]; 301 else 302 return range->pin_base + offset; 303 } 304 305 /** 306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 307 * @pctldev: pin controller device to check 308 * @gpio: gpio pin to check taken from the global GPIO pin space 309 * 310 * Tries to match a GPIO pin number to the ranges handled by a certain pin 311 * controller, return the range or NULL 312 */ 313 static struct pinctrl_gpio_range * 314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 315 { 316 struct pinctrl_gpio_range *range = NULL; 317 318 mutex_lock(&pctldev->mutex); 319 /* Loop over the ranges */ 320 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 321 /* Check if we're in the valid range */ 322 if (gpio >= range->base && 323 gpio < range->base + range->npins) { 324 mutex_unlock(&pctldev->mutex); 325 return range; 326 } 327 } 328 mutex_unlock(&pctldev->mutex); 329 return NULL; 330 } 331 332 /** 333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 334 * the same GPIO chip are in range 335 * @gpio: gpio pin to check taken from the global GPIO pin space 336 * 337 * This function is complement of pinctrl_match_gpio_range(). If the return 338 * value of pinctrl_match_gpio_range() is NULL, this function could be used 339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 340 * of the same GPIO chip don't have back-end pinctrl interface. 341 * If the return value is true, it means that pinctrl device is ready & the 342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 343 * is false, it means that pinctrl device may not be ready. 344 */ 345 #ifdef CONFIG_GPIOLIB 346 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 347 { 348 struct pinctrl_dev *pctldev; 349 struct pinctrl_gpio_range *range = NULL; 350 struct gpio_chip *chip = gpio_to_chip(gpio); 351 352 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 353 return false; 354 355 mutex_lock(&pinctrldev_list_mutex); 356 357 /* Loop over the pin controllers */ 358 list_for_each_entry(pctldev, &pinctrldev_list, node) { 359 /* Loop over the ranges */ 360 mutex_lock(&pctldev->mutex); 361 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 362 /* Check if any gpio range overlapped with gpio chip */ 363 if (range->base + range->npins - 1 < chip->base || 364 range->base > chip->base + chip->ngpio - 1) 365 continue; 366 mutex_unlock(&pctldev->mutex); 367 mutex_unlock(&pinctrldev_list_mutex); 368 return true; 369 } 370 mutex_unlock(&pctldev->mutex); 371 } 372 373 mutex_unlock(&pinctrldev_list_mutex); 374 375 return false; 376 } 377 #else 378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 379 #endif 380 381 /** 382 * pinctrl_get_device_gpio_range() - find device for GPIO range 383 * @gpio: the pin to locate the pin controller for 384 * @outdev: the pin control device if found 385 * @outrange: the GPIO range if found 386 * 387 * Find the pin controller handling a certain GPIO pin from the pinspace of 388 * the GPIO subsystem, return the device and the matching GPIO range. Returns 389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 390 * may still have not been registered. 391 */ 392 static int pinctrl_get_device_gpio_range(unsigned gpio, 393 struct pinctrl_dev **outdev, 394 struct pinctrl_gpio_range **outrange) 395 { 396 struct pinctrl_dev *pctldev = NULL; 397 398 mutex_lock(&pinctrldev_list_mutex); 399 400 /* Loop over the pin controllers */ 401 list_for_each_entry(pctldev, &pinctrldev_list, node) { 402 struct pinctrl_gpio_range *range; 403 404 range = pinctrl_match_gpio_range(pctldev, gpio); 405 if (range) { 406 *outdev = pctldev; 407 *outrange = range; 408 mutex_unlock(&pinctrldev_list_mutex); 409 return 0; 410 } 411 } 412 413 mutex_unlock(&pinctrldev_list_mutex); 414 415 return -EPROBE_DEFER; 416 } 417 418 /** 419 * pinctrl_add_gpio_range() - register a GPIO range for a controller 420 * @pctldev: pin controller device to add the range to 421 * @range: the GPIO range to add 422 * 423 * This adds a range of GPIOs to be handled by a certain pin controller. Call 424 * this to register handled ranges after registering your pin controller. 425 */ 426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 427 struct pinctrl_gpio_range *range) 428 { 429 mutex_lock(&pctldev->mutex); 430 list_add_tail(&range->node, &pctldev->gpio_ranges); 431 mutex_unlock(&pctldev->mutex); 432 } 433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 434 435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 436 struct pinctrl_gpio_range *ranges, 437 unsigned nranges) 438 { 439 int i; 440 441 for (i = 0; i < nranges; i++) 442 pinctrl_add_gpio_range(pctldev, &ranges[i]); 443 } 444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 445 446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 447 struct pinctrl_gpio_range *range) 448 { 449 struct pinctrl_dev *pctldev; 450 451 pctldev = get_pinctrl_dev_from_devname(devname); 452 453 /* 454 * If we can't find this device, let's assume that is because 455 * it has not probed yet, so the driver trying to register this 456 * range need to defer probing. 457 */ 458 if (!pctldev) { 459 return ERR_PTR(-EPROBE_DEFER); 460 } 461 pinctrl_add_gpio_range(pctldev, range); 462 463 return pctldev; 464 } 465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 466 467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 468 const unsigned **pins, unsigned *num_pins) 469 { 470 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 471 int gs; 472 473 if (!pctlops->get_group_pins) 474 return -EINVAL; 475 476 gs = pinctrl_get_group_selector(pctldev, pin_group); 477 if (gs < 0) 478 return gs; 479 480 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 481 } 482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 483 484 struct pinctrl_gpio_range * 485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 486 unsigned int pin) 487 { 488 struct pinctrl_gpio_range *range; 489 490 /* Loop over the ranges */ 491 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 492 /* Check if we're in the valid range */ 493 if (range->pins) { 494 int a; 495 for (a = 0; a < range->npins; a++) { 496 if (range->pins[a] == pin) 497 return range; 498 } 499 } else if (pin >= range->pin_base && 500 pin < range->pin_base + range->npins) 501 return range; 502 } 503 504 return NULL; 505 } 506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 507 508 /** 509 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 510 * @pctldev: the pin controller device to look in 511 * @pin: a controller-local number to find the range for 512 */ 513 struct pinctrl_gpio_range * 514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 515 unsigned int pin) 516 { 517 struct pinctrl_gpio_range *range; 518 519 mutex_lock(&pctldev->mutex); 520 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 521 mutex_unlock(&pctldev->mutex); 522 523 return range; 524 } 525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 526 527 /** 528 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller 529 * @pctldev: pin controller device to remove the range from 530 * @range: the GPIO range to remove 531 */ 532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 533 struct pinctrl_gpio_range *range) 534 { 535 mutex_lock(&pctldev->mutex); 536 list_del(&range->node); 537 mutex_unlock(&pctldev->mutex); 538 } 539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 540 541 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 542 543 /** 544 * pinctrl_generic_get_group_count() - returns the number of pin groups 545 * @pctldev: pin controller device 546 */ 547 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 548 { 549 return pctldev->num_groups; 550 } 551 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 552 553 /** 554 * pinctrl_generic_get_group_name() - returns the name of a pin group 555 * @pctldev: pin controller device 556 * @selector: group number 557 */ 558 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 559 unsigned int selector) 560 { 561 struct group_desc *group; 562 563 group = radix_tree_lookup(&pctldev->pin_group_tree, 564 selector); 565 if (!group) 566 return NULL; 567 568 return group->name; 569 } 570 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 571 572 /** 573 * pinctrl_generic_get_group_pins() - gets the pin group pins 574 * @pctldev: pin controller device 575 * @selector: group number 576 * @pins: pins in the group 577 * @num_pins: number of pins in the group 578 */ 579 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 580 unsigned int selector, 581 const unsigned int **pins, 582 unsigned int *num_pins) 583 { 584 struct group_desc *group; 585 586 group = radix_tree_lookup(&pctldev->pin_group_tree, 587 selector); 588 if (!group) { 589 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 590 __func__, selector); 591 return -EINVAL; 592 } 593 594 *pins = group->pins; 595 *num_pins = group->num_pins; 596 597 return 0; 598 } 599 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 600 601 /** 602 * pinctrl_generic_get_group() - returns a pin group based on the number 603 * @pctldev: pin controller device 604 * @gselector: group number 605 */ 606 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 607 unsigned int selector) 608 { 609 struct group_desc *group; 610 611 group = radix_tree_lookup(&pctldev->pin_group_tree, 612 selector); 613 if (!group) 614 return NULL; 615 616 return group; 617 } 618 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 619 620 /** 621 * pinctrl_generic_add_group() - adds a new pin group 622 * @pctldev: pin controller device 623 * @name: name of the pin group 624 * @pins: pins in the pin group 625 * @num_pins: number of pins in the pin group 626 * @data: pin controller driver specific data 627 * 628 * Note that the caller must take care of locking. 629 */ 630 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 631 int *pins, int num_pins, void *data) 632 { 633 struct group_desc *group; 634 635 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 636 if (!group) 637 return -ENOMEM; 638 639 group->name = name; 640 group->pins = pins; 641 group->num_pins = num_pins; 642 group->data = data; 643 644 radix_tree_insert(&pctldev->pin_group_tree, pctldev->num_groups, 645 group); 646 647 pctldev->num_groups++; 648 649 return 0; 650 } 651 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 652 653 /** 654 * pinctrl_generic_remove_group() - removes a numbered pin group 655 * @pctldev: pin controller device 656 * @selector: group number 657 * 658 * Note that the caller must take care of locking. 659 */ 660 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 661 unsigned int selector) 662 { 663 struct group_desc *group; 664 665 group = radix_tree_lookup(&pctldev->pin_group_tree, 666 selector); 667 if (!group) 668 return -ENOENT; 669 670 radix_tree_delete(&pctldev->pin_group_tree, selector); 671 devm_kfree(pctldev->dev, group); 672 673 pctldev->num_groups--; 674 675 return 0; 676 } 677 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 678 679 /** 680 * pinctrl_generic_free_groups() - removes all pin groups 681 * @pctldev: pin controller device 682 * 683 * Note that the caller must take care of locking. The pinctrl groups 684 * are allocated with devm_kzalloc() so no need to free them here. 685 */ 686 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 687 { 688 struct radix_tree_iter iter; 689 void __rcu **slot; 690 691 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 692 radix_tree_delete(&pctldev->pin_group_tree, iter.index); 693 694 pctldev->num_groups = 0; 695 } 696 697 #else 698 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 699 { 700 } 701 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 702 703 /** 704 * pinctrl_get_group_selector() - returns the group selector for a group 705 * @pctldev: the pin controller handling the group 706 * @pin_group: the pin group to look up 707 */ 708 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 709 const char *pin_group) 710 { 711 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 712 unsigned ngroups = pctlops->get_groups_count(pctldev); 713 unsigned group_selector = 0; 714 715 while (group_selector < ngroups) { 716 const char *gname = pctlops->get_group_name(pctldev, 717 group_selector); 718 if (!strcmp(gname, pin_group)) { 719 dev_dbg(pctldev->dev, 720 "found group selector %u for %s\n", 721 group_selector, 722 pin_group); 723 return group_selector; 724 } 725 726 group_selector++; 727 } 728 729 dev_err(pctldev->dev, "does not have pin group %s\n", 730 pin_group); 731 732 return -EINVAL; 733 } 734 735 /** 736 * pinctrl_request_gpio() - request a single pin to be used as GPIO 737 * @gpio: the GPIO pin number from the GPIO subsystem number space 738 * 739 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 740 * as part of their gpio_request() semantics, platforms and individual drivers 741 * shall *NOT* request GPIO pins to be muxed in. 742 */ 743 int pinctrl_request_gpio(unsigned gpio) 744 { 745 struct pinctrl_dev *pctldev; 746 struct pinctrl_gpio_range *range; 747 int ret; 748 int pin; 749 750 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 751 if (ret) { 752 if (pinctrl_ready_for_gpio_range(gpio)) 753 ret = 0; 754 return ret; 755 } 756 757 mutex_lock(&pctldev->mutex); 758 759 /* Convert to the pin controllers number space */ 760 pin = gpio_to_pin(range, gpio); 761 762 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 763 764 mutex_unlock(&pctldev->mutex); 765 766 return ret; 767 } 768 EXPORT_SYMBOL_GPL(pinctrl_request_gpio); 769 770 /** 771 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO 772 * @gpio: the GPIO pin number from the GPIO subsystem number space 773 * 774 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 775 * as part of their gpio_free() semantics, platforms and individual drivers 776 * shall *NOT* request GPIO pins to be muxed out. 777 */ 778 void pinctrl_free_gpio(unsigned gpio) 779 { 780 struct pinctrl_dev *pctldev; 781 struct pinctrl_gpio_range *range; 782 int ret; 783 int pin; 784 785 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 786 if (ret) { 787 return; 788 } 789 mutex_lock(&pctldev->mutex); 790 791 /* Convert to the pin controllers number space */ 792 pin = gpio_to_pin(range, gpio); 793 794 pinmux_free_gpio(pctldev, pin, range); 795 796 mutex_unlock(&pctldev->mutex); 797 } 798 EXPORT_SYMBOL_GPL(pinctrl_free_gpio); 799 800 static int pinctrl_gpio_direction(unsigned gpio, bool input) 801 { 802 struct pinctrl_dev *pctldev; 803 struct pinctrl_gpio_range *range; 804 int ret; 805 int pin; 806 807 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 808 if (ret) { 809 return ret; 810 } 811 812 mutex_lock(&pctldev->mutex); 813 814 /* Convert to the pin controllers number space */ 815 pin = gpio_to_pin(range, gpio); 816 ret = pinmux_gpio_direction(pctldev, range, pin, input); 817 818 mutex_unlock(&pctldev->mutex); 819 820 return ret; 821 } 822 823 /** 824 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 825 * @gpio: the GPIO pin number from the GPIO subsystem number space 826 * 827 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 828 * as part of their gpio_direction_input() semantics, platforms and individual 829 * drivers shall *NOT* touch pin control GPIO calls. 830 */ 831 int pinctrl_gpio_direction_input(unsigned gpio) 832 { 833 return pinctrl_gpio_direction(gpio, true); 834 } 835 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 836 837 /** 838 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 839 * @gpio: the GPIO pin number from the GPIO subsystem number space 840 * 841 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 842 * as part of their gpio_direction_output() semantics, platforms and individual 843 * drivers shall *NOT* touch pin control GPIO calls. 844 */ 845 int pinctrl_gpio_direction_output(unsigned gpio) 846 { 847 return pinctrl_gpio_direction(gpio, false); 848 } 849 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 850 851 /** 852 * pinctrl_gpio_set_config() - Apply config to given GPIO pin 853 * @gpio: the GPIO pin number from the GPIO subsystem number space 854 * @config: the configuration to apply to the GPIO 855 * 856 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 857 * they need to call the underlying pin controller to change GPIO config 858 * (for example set debounce time). 859 */ 860 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config) 861 { 862 unsigned long configs[] = { config }; 863 struct pinctrl_gpio_range *range; 864 struct pinctrl_dev *pctldev; 865 int ret, pin; 866 867 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 868 if (ret) 869 return ret; 870 871 mutex_lock(&pctldev->mutex); 872 pin = gpio_to_pin(range, gpio); 873 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 874 mutex_unlock(&pctldev->mutex); 875 876 return ret; 877 } 878 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 879 880 static struct pinctrl_state *find_state(struct pinctrl *p, 881 const char *name) 882 { 883 struct pinctrl_state *state; 884 885 list_for_each_entry(state, &p->states, node) 886 if (!strcmp(state->name, name)) 887 return state; 888 889 return NULL; 890 } 891 892 static struct pinctrl_state *create_state(struct pinctrl *p, 893 const char *name) 894 { 895 struct pinctrl_state *state; 896 897 state = kzalloc(sizeof(*state), GFP_KERNEL); 898 if (!state) 899 return ERR_PTR(-ENOMEM); 900 901 state->name = name; 902 INIT_LIST_HEAD(&state->settings); 903 904 list_add_tail(&state->node, &p->states); 905 906 return state; 907 } 908 909 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 910 const struct pinctrl_map *map) 911 { 912 struct pinctrl_state *state; 913 struct pinctrl_setting *setting; 914 int ret; 915 916 state = find_state(p, map->name); 917 if (!state) 918 state = create_state(p, map->name); 919 if (IS_ERR(state)) 920 return PTR_ERR(state); 921 922 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 923 return 0; 924 925 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 926 if (!setting) 927 return -ENOMEM; 928 929 setting->type = map->type; 930 931 if (pctldev) 932 setting->pctldev = pctldev; 933 else 934 setting->pctldev = 935 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 936 if (!setting->pctldev) { 937 kfree(setting); 938 /* Do not defer probing of hogs (circular loop) */ 939 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 940 return -ENODEV; 941 /* 942 * OK let us guess that the driver is not there yet, and 943 * let's defer obtaining this pinctrl handle to later... 944 */ 945 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 946 map->ctrl_dev_name); 947 return -EPROBE_DEFER; 948 } 949 950 setting->dev_name = map->dev_name; 951 952 switch (map->type) { 953 case PIN_MAP_TYPE_MUX_GROUP: 954 ret = pinmux_map_to_setting(map, setting); 955 break; 956 case PIN_MAP_TYPE_CONFIGS_PIN: 957 case PIN_MAP_TYPE_CONFIGS_GROUP: 958 ret = pinconf_map_to_setting(map, setting); 959 break; 960 default: 961 ret = -EINVAL; 962 break; 963 } 964 if (ret < 0) { 965 kfree(setting); 966 return ret; 967 } 968 969 list_add_tail(&setting->node, &state->settings); 970 971 return 0; 972 } 973 974 static struct pinctrl *find_pinctrl(struct device *dev) 975 { 976 struct pinctrl *p; 977 978 mutex_lock(&pinctrl_list_mutex); 979 list_for_each_entry(p, &pinctrl_list, node) 980 if (p->dev == dev) { 981 mutex_unlock(&pinctrl_list_mutex); 982 return p; 983 } 984 985 mutex_unlock(&pinctrl_list_mutex); 986 return NULL; 987 } 988 989 static void pinctrl_free(struct pinctrl *p, bool inlist); 990 991 static struct pinctrl *create_pinctrl(struct device *dev, 992 struct pinctrl_dev *pctldev) 993 { 994 struct pinctrl *p; 995 const char *devname; 996 struct pinctrl_maps *maps_node; 997 int i; 998 const struct pinctrl_map *map; 999 int ret; 1000 1001 /* 1002 * create the state cookie holder struct pinctrl for each 1003 * mapping, this is what consumers will get when requesting 1004 * a pin control handle with pinctrl_get() 1005 */ 1006 p = kzalloc(sizeof(*p), GFP_KERNEL); 1007 if (!p) 1008 return ERR_PTR(-ENOMEM); 1009 p->dev = dev; 1010 INIT_LIST_HEAD(&p->states); 1011 INIT_LIST_HEAD(&p->dt_maps); 1012 1013 ret = pinctrl_dt_to_map(p, pctldev); 1014 if (ret < 0) { 1015 kfree(p); 1016 return ERR_PTR(ret); 1017 } 1018 1019 devname = dev_name(dev); 1020 1021 mutex_lock(&pinctrl_maps_mutex); 1022 /* Iterate over the pin control maps to locate the right ones */ 1023 for_each_maps(maps_node, i, map) { 1024 /* Map must be for this device */ 1025 if (strcmp(map->dev_name, devname)) 1026 continue; 1027 /* 1028 * If pctldev is not null, we are claiming hog for it, 1029 * that means, setting that is served by pctldev by itself. 1030 * 1031 * Thus we must skip map that is for this device but is served 1032 * by other device. 1033 */ 1034 if (pctldev && 1035 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name)) 1036 continue; 1037 1038 ret = add_setting(p, pctldev, map); 1039 /* 1040 * At this point the adding of a setting may: 1041 * 1042 * - Defer, if the pinctrl device is not yet available 1043 * - Fail, if the pinctrl device is not yet available, 1044 * AND the setting is a hog. We cannot defer that, since 1045 * the hog will kick in immediately after the device 1046 * is registered. 1047 * 1048 * If the error returned was not -EPROBE_DEFER then we 1049 * accumulate the errors to see if we end up with 1050 * an -EPROBE_DEFER later, as that is the worst case. 1051 */ 1052 if (ret == -EPROBE_DEFER) { 1053 pinctrl_free(p, false); 1054 mutex_unlock(&pinctrl_maps_mutex); 1055 return ERR_PTR(ret); 1056 } 1057 } 1058 mutex_unlock(&pinctrl_maps_mutex); 1059 1060 if (ret < 0) { 1061 /* If some other error than deferral occurred, return here */ 1062 pinctrl_free(p, false); 1063 return ERR_PTR(ret); 1064 } 1065 1066 kref_init(&p->users); 1067 1068 /* Add the pinctrl handle to the global list */ 1069 mutex_lock(&pinctrl_list_mutex); 1070 list_add_tail(&p->node, &pinctrl_list); 1071 mutex_unlock(&pinctrl_list_mutex); 1072 1073 return p; 1074 } 1075 1076 /** 1077 * pinctrl_get() - retrieves the pinctrl handle for a device 1078 * @dev: the device to obtain the handle for 1079 */ 1080 struct pinctrl *pinctrl_get(struct device *dev) 1081 { 1082 struct pinctrl *p; 1083 1084 if (WARN_ON(!dev)) 1085 return ERR_PTR(-EINVAL); 1086 1087 /* 1088 * See if somebody else (such as the device core) has already 1089 * obtained a handle to the pinctrl for this device. In that case, 1090 * return another pointer to it. 1091 */ 1092 p = find_pinctrl(dev); 1093 if (p) { 1094 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1095 kref_get(&p->users); 1096 return p; 1097 } 1098 1099 return create_pinctrl(dev, NULL); 1100 } 1101 EXPORT_SYMBOL_GPL(pinctrl_get); 1102 1103 static void pinctrl_free_setting(bool disable_setting, 1104 struct pinctrl_setting *setting) 1105 { 1106 switch (setting->type) { 1107 case PIN_MAP_TYPE_MUX_GROUP: 1108 if (disable_setting) 1109 pinmux_disable_setting(setting); 1110 pinmux_free_setting(setting); 1111 break; 1112 case PIN_MAP_TYPE_CONFIGS_PIN: 1113 case PIN_MAP_TYPE_CONFIGS_GROUP: 1114 pinconf_free_setting(setting); 1115 break; 1116 default: 1117 break; 1118 } 1119 } 1120 1121 static void pinctrl_free(struct pinctrl *p, bool inlist) 1122 { 1123 struct pinctrl_state *state, *n1; 1124 struct pinctrl_setting *setting, *n2; 1125 1126 mutex_lock(&pinctrl_list_mutex); 1127 list_for_each_entry_safe(state, n1, &p->states, node) { 1128 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1129 pinctrl_free_setting(state == p->state, setting); 1130 list_del(&setting->node); 1131 kfree(setting); 1132 } 1133 list_del(&state->node); 1134 kfree(state); 1135 } 1136 1137 pinctrl_dt_free_maps(p); 1138 1139 if (inlist) 1140 list_del(&p->node); 1141 kfree(p); 1142 mutex_unlock(&pinctrl_list_mutex); 1143 } 1144 1145 /** 1146 * pinctrl_release() - release the pinctrl handle 1147 * @kref: the kref in the pinctrl being released 1148 */ 1149 static void pinctrl_release(struct kref *kref) 1150 { 1151 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1152 1153 pinctrl_free(p, true); 1154 } 1155 1156 /** 1157 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1158 * @p: the pinctrl handle to release 1159 */ 1160 void pinctrl_put(struct pinctrl *p) 1161 { 1162 kref_put(&p->users, pinctrl_release); 1163 } 1164 EXPORT_SYMBOL_GPL(pinctrl_put); 1165 1166 /** 1167 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1168 * @p: the pinctrl handle to retrieve the state from 1169 * @name: the state name to retrieve 1170 */ 1171 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1172 const char *name) 1173 { 1174 struct pinctrl_state *state; 1175 1176 state = find_state(p, name); 1177 if (!state) { 1178 if (pinctrl_dummy_state) { 1179 /* create dummy state */ 1180 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1181 name); 1182 state = create_state(p, name); 1183 } else 1184 state = ERR_PTR(-ENODEV); 1185 } 1186 1187 return state; 1188 } 1189 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1190 1191 /** 1192 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1193 * @p: the pinctrl handle for the device that requests configuration 1194 * @state: the state handle to select/activate/program 1195 */ 1196 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1197 { 1198 struct pinctrl_setting *setting, *setting2; 1199 struct pinctrl_state *old_state = p->state; 1200 int ret; 1201 1202 if (p->state == state) 1203 return 0; 1204 1205 if (p->state) { 1206 /* 1207 * For each pinmux setting in the old state, forget SW's record 1208 * of mux owner for that pingroup. Any pingroups which are 1209 * still owned by the new state will be re-acquired by the call 1210 * to pinmux_enable_setting() in the loop below. 1211 */ 1212 list_for_each_entry(setting, &p->state->settings, node) { 1213 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1214 continue; 1215 pinmux_disable_setting(setting); 1216 } 1217 } 1218 1219 p->state = NULL; 1220 1221 /* Apply all the settings for the new state */ 1222 list_for_each_entry(setting, &state->settings, node) { 1223 switch (setting->type) { 1224 case PIN_MAP_TYPE_MUX_GROUP: 1225 ret = pinmux_enable_setting(setting); 1226 break; 1227 case PIN_MAP_TYPE_CONFIGS_PIN: 1228 case PIN_MAP_TYPE_CONFIGS_GROUP: 1229 ret = pinconf_apply_setting(setting); 1230 break; 1231 default: 1232 ret = -EINVAL; 1233 break; 1234 } 1235 1236 if (ret < 0) { 1237 goto unapply_new_state; 1238 } 1239 } 1240 1241 p->state = state; 1242 1243 return 0; 1244 1245 unapply_new_state: 1246 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1247 1248 list_for_each_entry(setting2, &state->settings, node) { 1249 if (&setting2->node == &setting->node) 1250 break; 1251 /* 1252 * All we can do here is pinmux_disable_setting. 1253 * That means that some pins are muxed differently now 1254 * than they were before applying the setting (We can't 1255 * "unmux a pin"!), but it's not a big deal since the pins 1256 * are free to be muxed by another apply_setting. 1257 */ 1258 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1259 pinmux_disable_setting(setting2); 1260 } 1261 1262 /* There's no infinite recursive loop here because p->state is NULL */ 1263 if (old_state) 1264 pinctrl_select_state(p, old_state); 1265 1266 return ret; 1267 } 1268 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1269 1270 static void devm_pinctrl_release(struct device *dev, void *res) 1271 { 1272 pinctrl_put(*(struct pinctrl **)res); 1273 } 1274 1275 /** 1276 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1277 * @dev: the device to obtain the handle for 1278 * 1279 * If there is a need to explicitly destroy the returned struct pinctrl, 1280 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1281 */ 1282 struct pinctrl *devm_pinctrl_get(struct device *dev) 1283 { 1284 struct pinctrl **ptr, *p; 1285 1286 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1287 if (!ptr) 1288 return ERR_PTR(-ENOMEM); 1289 1290 p = pinctrl_get(dev); 1291 if (!IS_ERR(p)) { 1292 *ptr = p; 1293 devres_add(dev, ptr); 1294 } else { 1295 devres_free(ptr); 1296 } 1297 1298 return p; 1299 } 1300 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1301 1302 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1303 { 1304 struct pinctrl **p = res; 1305 1306 return *p == data; 1307 } 1308 1309 /** 1310 * devm_pinctrl_put() - Resource managed pinctrl_put() 1311 * @p: the pinctrl handle to release 1312 * 1313 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1314 * this function will not need to be called and the resource management 1315 * code will ensure that the resource is freed. 1316 */ 1317 void devm_pinctrl_put(struct pinctrl *p) 1318 { 1319 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1320 devm_pinctrl_match, p)); 1321 } 1322 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1323 1324 int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps, 1325 bool dup) 1326 { 1327 int i, ret; 1328 struct pinctrl_maps *maps_node; 1329 1330 pr_debug("add %u pinctrl maps\n", num_maps); 1331 1332 /* First sanity check the new mapping */ 1333 for (i = 0; i < num_maps; i++) { 1334 if (!maps[i].dev_name) { 1335 pr_err("failed to register map %s (%d): no device given\n", 1336 maps[i].name, i); 1337 return -EINVAL; 1338 } 1339 1340 if (!maps[i].name) { 1341 pr_err("failed to register map %d: no map name given\n", 1342 i); 1343 return -EINVAL; 1344 } 1345 1346 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1347 !maps[i].ctrl_dev_name) { 1348 pr_err("failed to register map %s (%d): no pin control device given\n", 1349 maps[i].name, i); 1350 return -EINVAL; 1351 } 1352 1353 switch (maps[i].type) { 1354 case PIN_MAP_TYPE_DUMMY_STATE: 1355 break; 1356 case PIN_MAP_TYPE_MUX_GROUP: 1357 ret = pinmux_validate_map(&maps[i], i); 1358 if (ret < 0) 1359 return ret; 1360 break; 1361 case PIN_MAP_TYPE_CONFIGS_PIN: 1362 case PIN_MAP_TYPE_CONFIGS_GROUP: 1363 ret = pinconf_validate_map(&maps[i], i); 1364 if (ret < 0) 1365 return ret; 1366 break; 1367 default: 1368 pr_err("failed to register map %s (%d): invalid type given\n", 1369 maps[i].name, i); 1370 return -EINVAL; 1371 } 1372 } 1373 1374 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1375 if (!maps_node) 1376 return -ENOMEM; 1377 1378 maps_node->num_maps = num_maps; 1379 if (dup) { 1380 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1381 GFP_KERNEL); 1382 if (!maps_node->maps) { 1383 kfree(maps_node); 1384 return -ENOMEM; 1385 } 1386 } else { 1387 maps_node->maps = maps; 1388 } 1389 1390 mutex_lock(&pinctrl_maps_mutex); 1391 list_add_tail(&maps_node->node, &pinctrl_maps); 1392 mutex_unlock(&pinctrl_maps_mutex); 1393 1394 return 0; 1395 } 1396 1397 /** 1398 * pinctrl_register_mappings() - register a set of pin controller mappings 1399 * @maps: the pincontrol mappings table to register. This should probably be 1400 * marked with __initdata so it can be discarded after boot. This 1401 * function will perform a shallow copy for the mapping entries. 1402 * @num_maps: the number of maps in the mapping table 1403 */ 1404 int pinctrl_register_mappings(const struct pinctrl_map *maps, 1405 unsigned num_maps) 1406 { 1407 return pinctrl_register_map(maps, num_maps, true); 1408 } 1409 1410 void pinctrl_unregister_map(const struct pinctrl_map *map) 1411 { 1412 struct pinctrl_maps *maps_node; 1413 1414 mutex_lock(&pinctrl_maps_mutex); 1415 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1416 if (maps_node->maps == map) { 1417 list_del(&maps_node->node); 1418 kfree(maps_node); 1419 mutex_unlock(&pinctrl_maps_mutex); 1420 return; 1421 } 1422 } 1423 mutex_unlock(&pinctrl_maps_mutex); 1424 } 1425 1426 /** 1427 * pinctrl_force_sleep() - turn a given controller device into sleep state 1428 * @pctldev: pin controller device 1429 */ 1430 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1431 { 1432 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1433 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep); 1434 return 0; 1435 } 1436 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1437 1438 /** 1439 * pinctrl_force_default() - turn a given controller device into default state 1440 * @pctldev: pin controller device 1441 */ 1442 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1443 { 1444 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1445 return pinctrl_select_state(pctldev->p, pctldev->hog_default); 1446 return 0; 1447 } 1448 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1449 1450 /** 1451 * pinctrl_init_done() - tell pinctrl probe is done 1452 * 1453 * We'll use this time to switch the pins from "init" to "default" unless the 1454 * driver selected some other state. 1455 * 1456 * @dev: device to that's done probing 1457 */ 1458 int pinctrl_init_done(struct device *dev) 1459 { 1460 struct dev_pin_info *pins = dev->pins; 1461 int ret; 1462 1463 if (!pins) 1464 return 0; 1465 1466 if (IS_ERR(pins->init_state)) 1467 return 0; /* No such state */ 1468 1469 if (pins->p->state != pins->init_state) 1470 return 0; /* Not at init anyway */ 1471 1472 if (IS_ERR(pins->default_state)) 1473 return 0; /* No default state */ 1474 1475 ret = pinctrl_select_state(pins->p, pins->default_state); 1476 if (ret) 1477 dev_err(dev, "failed to activate default pinctrl state\n"); 1478 1479 return ret; 1480 } 1481 1482 #ifdef CONFIG_PM 1483 1484 /** 1485 * pinctrl_pm_select_state() - select pinctrl state for PM 1486 * @dev: device to select default state for 1487 * @state: state to set 1488 */ 1489 static int pinctrl_pm_select_state(struct device *dev, 1490 struct pinctrl_state *state) 1491 { 1492 struct dev_pin_info *pins = dev->pins; 1493 int ret; 1494 1495 if (IS_ERR(state)) 1496 return 0; /* No such state */ 1497 ret = pinctrl_select_state(pins->p, state); 1498 if (ret) 1499 dev_err(dev, "failed to activate pinctrl state %s\n", 1500 state->name); 1501 return ret; 1502 } 1503 1504 /** 1505 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1506 * @dev: device to select default state for 1507 */ 1508 int pinctrl_pm_select_default_state(struct device *dev) 1509 { 1510 if (!dev->pins) 1511 return 0; 1512 1513 return pinctrl_pm_select_state(dev, dev->pins->default_state); 1514 } 1515 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1516 1517 /** 1518 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1519 * @dev: device to select sleep state for 1520 */ 1521 int pinctrl_pm_select_sleep_state(struct device *dev) 1522 { 1523 if (!dev->pins) 1524 return 0; 1525 1526 return pinctrl_pm_select_state(dev, dev->pins->sleep_state); 1527 } 1528 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1529 1530 /** 1531 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1532 * @dev: device to select idle state for 1533 */ 1534 int pinctrl_pm_select_idle_state(struct device *dev) 1535 { 1536 if (!dev->pins) 1537 return 0; 1538 1539 return pinctrl_pm_select_state(dev, dev->pins->idle_state); 1540 } 1541 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1542 #endif 1543 1544 #ifdef CONFIG_DEBUG_FS 1545 1546 static int pinctrl_pins_show(struct seq_file *s, void *what) 1547 { 1548 struct pinctrl_dev *pctldev = s->private; 1549 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1550 unsigned i, pin; 1551 1552 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1553 1554 mutex_lock(&pctldev->mutex); 1555 1556 /* The pin number can be retrived from the pin controller descriptor */ 1557 for (i = 0; i < pctldev->desc->npins; i++) { 1558 struct pin_desc *desc; 1559 1560 pin = pctldev->desc->pins[i].number; 1561 desc = pin_desc_get(pctldev, pin); 1562 /* Pin space may be sparse */ 1563 if (!desc) 1564 continue; 1565 1566 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1567 1568 /* Driver-specific info per pin */ 1569 if (ops->pin_dbg_show) 1570 ops->pin_dbg_show(pctldev, s, pin); 1571 1572 seq_puts(s, "\n"); 1573 } 1574 1575 mutex_unlock(&pctldev->mutex); 1576 1577 return 0; 1578 } 1579 1580 static int pinctrl_groups_show(struct seq_file *s, void *what) 1581 { 1582 struct pinctrl_dev *pctldev = s->private; 1583 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1584 unsigned ngroups, selector = 0; 1585 1586 mutex_lock(&pctldev->mutex); 1587 1588 ngroups = ops->get_groups_count(pctldev); 1589 1590 seq_puts(s, "registered pin groups:\n"); 1591 while (selector < ngroups) { 1592 const unsigned *pins = NULL; 1593 unsigned num_pins = 0; 1594 const char *gname = ops->get_group_name(pctldev, selector); 1595 const char *pname; 1596 int ret = 0; 1597 int i; 1598 1599 if (ops->get_group_pins) 1600 ret = ops->get_group_pins(pctldev, selector, 1601 &pins, &num_pins); 1602 if (ret) 1603 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1604 gname); 1605 else { 1606 seq_printf(s, "group: %s\n", gname); 1607 for (i = 0; i < num_pins; i++) { 1608 pname = pin_get_name(pctldev, pins[i]); 1609 if (WARN_ON(!pname)) { 1610 mutex_unlock(&pctldev->mutex); 1611 return -EINVAL; 1612 } 1613 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1614 } 1615 seq_puts(s, "\n"); 1616 } 1617 selector++; 1618 } 1619 1620 mutex_unlock(&pctldev->mutex); 1621 1622 return 0; 1623 } 1624 1625 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1626 { 1627 struct pinctrl_dev *pctldev = s->private; 1628 struct pinctrl_gpio_range *range = NULL; 1629 1630 seq_puts(s, "GPIO ranges handled:\n"); 1631 1632 mutex_lock(&pctldev->mutex); 1633 1634 /* Loop over the ranges */ 1635 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1636 if (range->pins) { 1637 int a; 1638 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1639 range->id, range->name, 1640 range->base, (range->base + range->npins - 1)); 1641 for (a = 0; a < range->npins - 1; a++) 1642 seq_printf(s, "%u, ", range->pins[a]); 1643 seq_printf(s, "%u}\n", range->pins[a]); 1644 } 1645 else 1646 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1647 range->id, range->name, 1648 range->base, (range->base + range->npins - 1), 1649 range->pin_base, 1650 (range->pin_base + range->npins - 1)); 1651 } 1652 1653 mutex_unlock(&pctldev->mutex); 1654 1655 return 0; 1656 } 1657 1658 static int pinctrl_devices_show(struct seq_file *s, void *what) 1659 { 1660 struct pinctrl_dev *pctldev; 1661 1662 seq_puts(s, "name [pinmux] [pinconf]\n"); 1663 1664 mutex_lock(&pinctrldev_list_mutex); 1665 1666 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1667 seq_printf(s, "%s ", pctldev->desc->name); 1668 if (pctldev->desc->pmxops) 1669 seq_puts(s, "yes "); 1670 else 1671 seq_puts(s, "no "); 1672 if (pctldev->desc->confops) 1673 seq_puts(s, "yes"); 1674 else 1675 seq_puts(s, "no"); 1676 seq_puts(s, "\n"); 1677 } 1678 1679 mutex_unlock(&pinctrldev_list_mutex); 1680 1681 return 0; 1682 } 1683 1684 static inline const char *map_type(enum pinctrl_map_type type) 1685 { 1686 static const char * const names[] = { 1687 "INVALID", 1688 "DUMMY_STATE", 1689 "MUX_GROUP", 1690 "CONFIGS_PIN", 1691 "CONFIGS_GROUP", 1692 }; 1693 1694 if (type >= ARRAY_SIZE(names)) 1695 return "UNKNOWN"; 1696 1697 return names[type]; 1698 } 1699 1700 static int pinctrl_maps_show(struct seq_file *s, void *what) 1701 { 1702 struct pinctrl_maps *maps_node; 1703 int i; 1704 const struct pinctrl_map *map; 1705 1706 seq_puts(s, "Pinctrl maps:\n"); 1707 1708 mutex_lock(&pinctrl_maps_mutex); 1709 for_each_maps(maps_node, i, map) { 1710 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1711 map->dev_name, map->name, map_type(map->type), 1712 map->type); 1713 1714 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1715 seq_printf(s, "controlling device %s\n", 1716 map->ctrl_dev_name); 1717 1718 switch (map->type) { 1719 case PIN_MAP_TYPE_MUX_GROUP: 1720 pinmux_show_map(s, map); 1721 break; 1722 case PIN_MAP_TYPE_CONFIGS_PIN: 1723 case PIN_MAP_TYPE_CONFIGS_GROUP: 1724 pinconf_show_map(s, map); 1725 break; 1726 default: 1727 break; 1728 } 1729 1730 seq_putc(s, '\n'); 1731 } 1732 mutex_unlock(&pinctrl_maps_mutex); 1733 1734 return 0; 1735 } 1736 1737 static int pinctrl_show(struct seq_file *s, void *what) 1738 { 1739 struct pinctrl *p; 1740 struct pinctrl_state *state; 1741 struct pinctrl_setting *setting; 1742 1743 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1744 1745 mutex_lock(&pinctrl_list_mutex); 1746 1747 list_for_each_entry(p, &pinctrl_list, node) { 1748 seq_printf(s, "device: %s current state: %s\n", 1749 dev_name(p->dev), 1750 p->state ? p->state->name : "none"); 1751 1752 list_for_each_entry(state, &p->states, node) { 1753 seq_printf(s, " state: %s\n", state->name); 1754 1755 list_for_each_entry(setting, &state->settings, node) { 1756 struct pinctrl_dev *pctldev = setting->pctldev; 1757 1758 seq_printf(s, " type: %s controller %s ", 1759 map_type(setting->type), 1760 pinctrl_dev_get_name(pctldev)); 1761 1762 switch (setting->type) { 1763 case PIN_MAP_TYPE_MUX_GROUP: 1764 pinmux_show_setting(s, setting); 1765 break; 1766 case PIN_MAP_TYPE_CONFIGS_PIN: 1767 case PIN_MAP_TYPE_CONFIGS_GROUP: 1768 pinconf_show_setting(s, setting); 1769 break; 1770 default: 1771 break; 1772 } 1773 } 1774 } 1775 } 1776 1777 mutex_unlock(&pinctrl_list_mutex); 1778 1779 return 0; 1780 } 1781 1782 static int pinctrl_pins_open(struct inode *inode, struct file *file) 1783 { 1784 return single_open(file, pinctrl_pins_show, inode->i_private); 1785 } 1786 1787 static int pinctrl_groups_open(struct inode *inode, struct file *file) 1788 { 1789 return single_open(file, pinctrl_groups_show, inode->i_private); 1790 } 1791 1792 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) 1793 { 1794 return single_open(file, pinctrl_gpioranges_show, inode->i_private); 1795 } 1796 1797 static int pinctrl_devices_open(struct inode *inode, struct file *file) 1798 { 1799 return single_open(file, pinctrl_devices_show, NULL); 1800 } 1801 1802 static int pinctrl_maps_open(struct inode *inode, struct file *file) 1803 { 1804 return single_open(file, pinctrl_maps_show, NULL); 1805 } 1806 1807 static int pinctrl_open(struct inode *inode, struct file *file) 1808 { 1809 return single_open(file, pinctrl_show, NULL); 1810 } 1811 1812 static const struct file_operations pinctrl_pins_ops = { 1813 .open = pinctrl_pins_open, 1814 .read = seq_read, 1815 .llseek = seq_lseek, 1816 .release = single_release, 1817 }; 1818 1819 static const struct file_operations pinctrl_groups_ops = { 1820 .open = pinctrl_groups_open, 1821 .read = seq_read, 1822 .llseek = seq_lseek, 1823 .release = single_release, 1824 }; 1825 1826 static const struct file_operations pinctrl_gpioranges_ops = { 1827 .open = pinctrl_gpioranges_open, 1828 .read = seq_read, 1829 .llseek = seq_lseek, 1830 .release = single_release, 1831 }; 1832 1833 static const struct file_operations pinctrl_devices_ops = { 1834 .open = pinctrl_devices_open, 1835 .read = seq_read, 1836 .llseek = seq_lseek, 1837 .release = single_release, 1838 }; 1839 1840 static const struct file_operations pinctrl_maps_ops = { 1841 .open = pinctrl_maps_open, 1842 .read = seq_read, 1843 .llseek = seq_lseek, 1844 .release = single_release, 1845 }; 1846 1847 static const struct file_operations pinctrl_ops = { 1848 .open = pinctrl_open, 1849 .read = seq_read, 1850 .llseek = seq_lseek, 1851 .release = single_release, 1852 }; 1853 1854 static struct dentry *debugfs_root; 1855 1856 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1857 { 1858 struct dentry *device_root; 1859 1860 device_root = debugfs_create_dir(dev_name(pctldev->dev), 1861 debugfs_root); 1862 pctldev->device_root = device_root; 1863 1864 if (IS_ERR(device_root) || !device_root) { 1865 pr_warn("failed to create debugfs directory for %s\n", 1866 dev_name(pctldev->dev)); 1867 return; 1868 } 1869 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1870 device_root, pctldev, &pinctrl_pins_ops); 1871 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1872 device_root, pctldev, &pinctrl_groups_ops); 1873 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1874 device_root, pctldev, &pinctrl_gpioranges_ops); 1875 if (pctldev->desc->pmxops) 1876 pinmux_init_device_debugfs(device_root, pctldev); 1877 if (pctldev->desc->confops) 1878 pinconf_init_device_debugfs(device_root, pctldev); 1879 } 1880 1881 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1882 { 1883 debugfs_remove_recursive(pctldev->device_root); 1884 } 1885 1886 static void pinctrl_init_debugfs(void) 1887 { 1888 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1889 if (IS_ERR(debugfs_root) || !debugfs_root) { 1890 pr_warn("failed to create debugfs directory\n"); 1891 debugfs_root = NULL; 1892 return; 1893 } 1894 1895 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1896 debugfs_root, NULL, &pinctrl_devices_ops); 1897 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1898 debugfs_root, NULL, &pinctrl_maps_ops); 1899 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1900 debugfs_root, NULL, &pinctrl_ops); 1901 } 1902 1903 #else /* CONFIG_DEBUG_FS */ 1904 1905 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1906 { 1907 } 1908 1909 static void pinctrl_init_debugfs(void) 1910 { 1911 } 1912 1913 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1914 { 1915 } 1916 1917 #endif 1918 1919 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1920 { 1921 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1922 1923 if (!ops || 1924 !ops->get_groups_count || 1925 !ops->get_group_name) 1926 return -EINVAL; 1927 1928 return 0; 1929 } 1930 1931 /** 1932 * pinctrl_init_controller() - init a pin controller device 1933 * @pctldesc: descriptor for this pin controller 1934 * @dev: parent device for this pin controller 1935 * @driver_data: private pin controller data for this pin controller 1936 */ 1937 static struct pinctrl_dev * 1938 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev, 1939 void *driver_data) 1940 { 1941 struct pinctrl_dev *pctldev; 1942 int ret; 1943 1944 if (!pctldesc) 1945 return ERR_PTR(-EINVAL); 1946 if (!pctldesc->name) 1947 return ERR_PTR(-EINVAL); 1948 1949 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1950 if (!pctldev) 1951 return ERR_PTR(-ENOMEM); 1952 1953 /* Initialize pin control device struct */ 1954 pctldev->owner = pctldesc->owner; 1955 pctldev->desc = pctldesc; 1956 pctldev->driver_data = driver_data; 1957 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1958 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 1959 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 1960 #endif 1961 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 1962 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 1963 #endif 1964 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1965 INIT_LIST_HEAD(&pctldev->node); 1966 pctldev->dev = dev; 1967 mutex_init(&pctldev->mutex); 1968 1969 /* check core ops for sanity */ 1970 ret = pinctrl_check_ops(pctldev); 1971 if (ret) { 1972 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1973 goto out_err; 1974 } 1975 1976 /* If we're implementing pinmuxing, check the ops for sanity */ 1977 if (pctldesc->pmxops) { 1978 ret = pinmux_check_ops(pctldev); 1979 if (ret) 1980 goto out_err; 1981 } 1982 1983 /* If we're implementing pinconfig, check the ops for sanity */ 1984 if (pctldesc->confops) { 1985 ret = pinconf_check_ops(pctldev); 1986 if (ret) 1987 goto out_err; 1988 } 1989 1990 /* Register all the pins */ 1991 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1992 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1993 if (ret) { 1994 dev_err(dev, "error during pin registration\n"); 1995 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1996 pctldesc->npins); 1997 goto out_err; 1998 } 1999 2000 return pctldev; 2001 2002 out_err: 2003 mutex_destroy(&pctldev->mutex); 2004 kfree(pctldev); 2005 return ERR_PTR(ret); 2006 } 2007 2008 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 2009 { 2010 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 2011 if (PTR_ERR(pctldev->p) == -ENODEV) { 2012 dev_dbg(pctldev->dev, "no hogs found\n"); 2013 2014 return 0; 2015 } 2016 2017 if (IS_ERR(pctldev->p)) { 2018 dev_err(pctldev->dev, "error claiming hogs: %li\n", 2019 PTR_ERR(pctldev->p)); 2020 2021 return PTR_ERR(pctldev->p); 2022 } 2023 2024 kref_get(&pctldev->p->users); 2025 pctldev->hog_default = 2026 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2027 if (IS_ERR(pctldev->hog_default)) { 2028 dev_dbg(pctldev->dev, 2029 "failed to lookup the default state\n"); 2030 } else { 2031 if (pinctrl_select_state(pctldev->p, 2032 pctldev->hog_default)) 2033 dev_err(pctldev->dev, 2034 "failed to select default state\n"); 2035 } 2036 2037 pctldev->hog_sleep = 2038 pinctrl_lookup_state(pctldev->p, 2039 PINCTRL_STATE_SLEEP); 2040 if (IS_ERR(pctldev->hog_sleep)) 2041 dev_dbg(pctldev->dev, 2042 "failed to lookup the sleep state\n"); 2043 2044 return 0; 2045 } 2046 2047 int pinctrl_enable(struct pinctrl_dev *pctldev) 2048 { 2049 int error; 2050 2051 error = pinctrl_claim_hogs(pctldev); 2052 if (error) { 2053 dev_err(pctldev->dev, "could not claim hogs: %i\n", 2054 error); 2055 mutex_destroy(&pctldev->mutex); 2056 kfree(pctldev); 2057 2058 return error; 2059 } 2060 2061 mutex_lock(&pinctrldev_list_mutex); 2062 list_add_tail(&pctldev->node, &pinctrldev_list); 2063 mutex_unlock(&pinctrldev_list_mutex); 2064 2065 pinctrl_init_device_debugfs(pctldev); 2066 2067 return 0; 2068 } 2069 EXPORT_SYMBOL_GPL(pinctrl_enable); 2070 2071 /** 2072 * pinctrl_register() - register a pin controller device 2073 * @pctldesc: descriptor for this pin controller 2074 * @dev: parent device for this pin controller 2075 * @driver_data: private pin controller data for this pin controller 2076 * 2077 * Note that pinctrl_register() is known to have problems as the pin 2078 * controller driver functions are called before the driver has a 2079 * struct pinctrl_dev handle. To avoid issues later on, please use the 2080 * new pinctrl_register_and_init() below instead. 2081 */ 2082 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 2083 struct device *dev, void *driver_data) 2084 { 2085 struct pinctrl_dev *pctldev; 2086 int error; 2087 2088 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2089 if (IS_ERR(pctldev)) 2090 return pctldev; 2091 2092 error = pinctrl_enable(pctldev); 2093 if (error) 2094 return ERR_PTR(error); 2095 2096 return pctldev; 2097 2098 } 2099 EXPORT_SYMBOL_GPL(pinctrl_register); 2100 2101 /** 2102 * pinctrl_register_and_init() - register and init pin controller device 2103 * @pctldesc: descriptor for this pin controller 2104 * @dev: parent device for this pin controller 2105 * @driver_data: private pin controller data for this pin controller 2106 * @pctldev: pin controller device 2107 * 2108 * Note that pinctrl_enable() still needs to be manually called after 2109 * this once the driver is ready. 2110 */ 2111 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, 2112 struct device *dev, void *driver_data, 2113 struct pinctrl_dev **pctldev) 2114 { 2115 struct pinctrl_dev *p; 2116 2117 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2118 if (IS_ERR(p)) 2119 return PTR_ERR(p); 2120 2121 /* 2122 * We have pinctrl_start() call functions in the pin controller 2123 * driver with create_pinctrl() for at least dt_node_to_map(). So 2124 * let's make sure pctldev is properly initialized for the 2125 * pin controller driver before we do anything. 2126 */ 2127 *pctldev = p; 2128 2129 return 0; 2130 } 2131 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2132 2133 /** 2134 * pinctrl_unregister() - unregister pinmux 2135 * @pctldev: pin controller to unregister 2136 * 2137 * Called by pinmux drivers to unregister a pinmux. 2138 */ 2139 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2140 { 2141 struct pinctrl_gpio_range *range, *n; 2142 2143 if (!pctldev) 2144 return; 2145 2146 mutex_lock(&pctldev->mutex); 2147 pinctrl_remove_device_debugfs(pctldev); 2148 mutex_unlock(&pctldev->mutex); 2149 2150 if (!IS_ERR_OR_NULL(pctldev->p)) 2151 pinctrl_put(pctldev->p); 2152 2153 mutex_lock(&pinctrldev_list_mutex); 2154 mutex_lock(&pctldev->mutex); 2155 /* TODO: check that no pinmuxes are still active? */ 2156 list_del(&pctldev->node); 2157 pinmux_generic_free_functions(pctldev); 2158 pinctrl_generic_free_groups(pctldev); 2159 /* Destroy descriptor tree */ 2160 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2161 pctldev->desc->npins); 2162 /* remove gpio ranges map */ 2163 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2164 list_del(&range->node); 2165 2166 mutex_unlock(&pctldev->mutex); 2167 mutex_destroy(&pctldev->mutex); 2168 kfree(pctldev); 2169 mutex_unlock(&pinctrldev_list_mutex); 2170 } 2171 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2172 2173 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2174 { 2175 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2176 2177 pinctrl_unregister(pctldev); 2178 } 2179 2180 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2181 { 2182 struct pctldev **r = res; 2183 2184 if (WARN_ON(!r || !*r)) 2185 return 0; 2186 2187 return *r == data; 2188 } 2189 2190 /** 2191 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2192 * @dev: parent device for this pin controller 2193 * @pctldesc: descriptor for this pin controller 2194 * @driver_data: private pin controller data for this pin controller 2195 * 2196 * Returns an error pointer if pincontrol register failed. Otherwise 2197 * it returns valid pinctrl handle. 2198 * 2199 * The pinctrl device will be automatically released when the device is unbound. 2200 */ 2201 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2202 struct pinctrl_desc *pctldesc, 2203 void *driver_data) 2204 { 2205 struct pinctrl_dev **ptr, *pctldev; 2206 2207 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2208 if (!ptr) 2209 return ERR_PTR(-ENOMEM); 2210 2211 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2212 if (IS_ERR(pctldev)) { 2213 devres_free(ptr); 2214 return pctldev; 2215 } 2216 2217 *ptr = pctldev; 2218 devres_add(dev, ptr); 2219 2220 return pctldev; 2221 } 2222 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2223 2224 /** 2225 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2226 * @dev: parent device for this pin controller 2227 * @pctldesc: descriptor for this pin controller 2228 * @driver_data: private pin controller data for this pin controller 2229 * 2230 * Returns an error pointer if pincontrol register failed. Otherwise 2231 * it returns valid pinctrl handle. 2232 * 2233 * The pinctrl device will be automatically released when the device is unbound. 2234 */ 2235 int devm_pinctrl_register_and_init(struct device *dev, 2236 struct pinctrl_desc *pctldesc, 2237 void *driver_data, 2238 struct pinctrl_dev **pctldev) 2239 { 2240 struct pinctrl_dev **ptr; 2241 int error; 2242 2243 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2244 if (!ptr) 2245 return -ENOMEM; 2246 2247 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2248 if (error) { 2249 devres_free(ptr); 2250 return error; 2251 } 2252 2253 *ptr = *pctldev; 2254 devres_add(dev, ptr); 2255 2256 return 0; 2257 } 2258 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2259 2260 /** 2261 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2262 * @dev: device for which which resource was allocated 2263 * @pctldev: the pinctrl device to unregister. 2264 */ 2265 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2266 { 2267 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2268 devm_pinctrl_dev_match, pctldev)); 2269 } 2270 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2271 2272 static int __init pinctrl_init(void) 2273 { 2274 pr_info("initialized pinctrl subsystem\n"); 2275 pinctrl_init_debugfs(); 2276 return 0; 2277 } 2278 2279 /* init early since many drivers really need to initialized pinmux early */ 2280 core_initcall(pinctrl_init); 2281