1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Core driver for the pin control subsystem 4 * 5 * Copyright (C) 2011-2012 ST-Ericsson SA 6 * Written on behalf of Linaro for ST-Ericsson 7 * Based on bits of regulator core, gpio core and clk core 8 * 9 * Author: Linus Walleij <linus.walleij@linaro.org> 10 * 11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 12 */ 13 #define pr_fmt(fmt) "pinctrl core: " fmt 14 15 #include <linux/kernel.h> 16 #include <linux/kref.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/err.h> 22 #include <linux/list.h> 23 #include <linux/debugfs.h> 24 #include <linux/seq_file.h> 25 #include <linux/pinctrl/consumer.h> 26 #include <linux/pinctrl/pinctrl.h> 27 #include <linux/pinctrl/machine.h> 28 29 #ifdef CONFIG_GPIOLIB 30 #include <asm-generic/gpio.h> 31 #endif 32 33 #include "core.h" 34 #include "devicetree.h" 35 #include "pinmux.h" 36 #include "pinconf.h" 37 38 39 static bool pinctrl_dummy_state; 40 41 /* Mutex taken to protect pinctrl_list */ 42 static DEFINE_MUTEX(pinctrl_list_mutex); 43 44 /* Mutex taken to protect pinctrl_maps */ 45 DEFINE_MUTEX(pinctrl_maps_mutex); 46 47 /* Mutex taken to protect pinctrldev_list */ 48 static DEFINE_MUTEX(pinctrldev_list_mutex); 49 50 /* Global list of pin control devices (struct pinctrl_dev) */ 51 static LIST_HEAD(pinctrldev_list); 52 53 /* List of pin controller handles (struct pinctrl) */ 54 static LIST_HEAD(pinctrl_list); 55 56 /* List of pinctrl maps (struct pinctrl_maps) */ 57 LIST_HEAD(pinctrl_maps); 58 59 60 /** 61 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 62 * 63 * Usually this function is called by platforms without pinctrl driver support 64 * but run with some shared drivers using pinctrl APIs. 65 * After calling this function, the pinctrl core will return successfully 66 * with creating a dummy state for the driver to keep going smoothly. 67 */ 68 void pinctrl_provide_dummies(void) 69 { 70 pinctrl_dummy_state = true; 71 } 72 73 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 74 { 75 /* We're not allowed to register devices without name */ 76 return pctldev->desc->name; 77 } 78 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 79 80 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 81 { 82 return dev_name(pctldev->dev); 83 } 84 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 85 86 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 87 { 88 return pctldev->driver_data; 89 } 90 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 91 92 /** 93 * get_pinctrl_dev_from_devname() - look up pin controller device 94 * @devname: the name of a device instance, as returned by dev_name() 95 * 96 * Looks up a pin control device matching a certain device name or pure device 97 * pointer, the pure device pointer will take precedence. 98 */ 99 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 100 { 101 struct pinctrl_dev *pctldev; 102 103 if (!devname) 104 return NULL; 105 106 mutex_lock(&pinctrldev_list_mutex); 107 108 list_for_each_entry(pctldev, &pinctrldev_list, node) { 109 if (!strcmp(dev_name(pctldev->dev), devname)) { 110 /* Matched on device name */ 111 mutex_unlock(&pinctrldev_list_mutex); 112 return pctldev; 113 } 114 } 115 116 mutex_unlock(&pinctrldev_list_mutex); 117 118 return NULL; 119 } 120 121 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 122 { 123 struct pinctrl_dev *pctldev; 124 125 mutex_lock(&pinctrldev_list_mutex); 126 127 list_for_each_entry(pctldev, &pinctrldev_list, node) 128 if (pctldev->dev->of_node == np) { 129 mutex_unlock(&pinctrldev_list_mutex); 130 return pctldev; 131 } 132 133 mutex_unlock(&pinctrldev_list_mutex); 134 135 return NULL; 136 } 137 138 /** 139 * pin_get_from_name() - look up a pin number from a name 140 * @pctldev: the pin control device to lookup the pin on 141 * @name: the name of the pin to look up 142 */ 143 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 144 { 145 unsigned i, pin; 146 147 /* The pin number can be retrived from the pin controller descriptor */ 148 for (i = 0; i < pctldev->desc->npins; i++) { 149 struct pin_desc *desc; 150 151 pin = pctldev->desc->pins[i].number; 152 desc = pin_desc_get(pctldev, pin); 153 /* Pin space may be sparse */ 154 if (desc && !strcmp(name, desc->name)) 155 return pin; 156 } 157 158 return -EINVAL; 159 } 160 161 /** 162 * pin_get_name_from_id() - look up a pin name from a pin id 163 * @pctldev: the pin control device to lookup the pin on 164 * @name: the name of the pin to look up 165 */ 166 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 167 { 168 const struct pin_desc *desc; 169 170 desc = pin_desc_get(pctldev, pin); 171 if (!desc) { 172 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 173 pin); 174 return NULL; 175 } 176 177 return desc->name; 178 } 179 180 /* Deletes a range of pin descriptors */ 181 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 182 const struct pinctrl_pin_desc *pins, 183 unsigned num_pins) 184 { 185 int i; 186 187 for (i = 0; i < num_pins; i++) { 188 struct pin_desc *pindesc; 189 190 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 191 pins[i].number); 192 if (pindesc) { 193 radix_tree_delete(&pctldev->pin_desc_tree, 194 pins[i].number); 195 if (pindesc->dynamic_name) 196 kfree(pindesc->name); 197 } 198 kfree(pindesc); 199 } 200 } 201 202 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 203 const struct pinctrl_pin_desc *pin) 204 { 205 struct pin_desc *pindesc; 206 207 pindesc = pin_desc_get(pctldev, pin->number); 208 if (pindesc) { 209 dev_err(pctldev->dev, "pin %d already registered\n", 210 pin->number); 211 return -EINVAL; 212 } 213 214 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 215 if (!pindesc) 216 return -ENOMEM; 217 218 /* Set owner */ 219 pindesc->pctldev = pctldev; 220 221 /* Copy basic pin info */ 222 if (pin->name) { 223 pindesc->name = pin->name; 224 } else { 225 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 226 if (!pindesc->name) { 227 kfree(pindesc); 228 return -ENOMEM; 229 } 230 pindesc->dynamic_name = true; 231 } 232 233 pindesc->drv_data = pin->drv_data; 234 235 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 236 pr_debug("registered pin %d (%s) on %s\n", 237 pin->number, pindesc->name, pctldev->desc->name); 238 return 0; 239 } 240 241 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 242 const struct pinctrl_pin_desc *pins, 243 unsigned num_descs) 244 { 245 unsigned i; 246 int ret = 0; 247 248 for (i = 0; i < num_descs; i++) { 249 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 250 if (ret) 251 return ret; 252 } 253 254 return 0; 255 } 256 257 /** 258 * gpio_to_pin() - GPIO range GPIO number to pin number translation 259 * @range: GPIO range used for the translation 260 * @gpio: gpio pin to translate to a pin number 261 * 262 * Finds the pin number for a given GPIO using the specified GPIO range 263 * as a base for translation. The distinction between linear GPIO ranges 264 * and pin list based GPIO ranges is managed correctly by this function. 265 * 266 * This function assumes the gpio is part of the specified GPIO range, use 267 * only after making sure this is the case (e.g. by calling it on the 268 * result of successful pinctrl_get_device_gpio_range calls)! 269 */ 270 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 271 unsigned int gpio) 272 { 273 unsigned int offset = gpio - range->base; 274 if (range->pins) 275 return range->pins[offset]; 276 else 277 return range->pin_base + offset; 278 } 279 280 /** 281 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 282 * @pctldev: pin controller device to check 283 * @gpio: gpio pin to check taken from the global GPIO pin space 284 * 285 * Tries to match a GPIO pin number to the ranges handled by a certain pin 286 * controller, return the range or NULL 287 */ 288 static struct pinctrl_gpio_range * 289 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 290 { 291 struct pinctrl_gpio_range *range; 292 293 mutex_lock(&pctldev->mutex); 294 /* Loop over the ranges */ 295 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 296 /* Check if we're in the valid range */ 297 if (gpio >= range->base && 298 gpio < range->base + range->npins) { 299 mutex_unlock(&pctldev->mutex); 300 return range; 301 } 302 } 303 mutex_unlock(&pctldev->mutex); 304 return NULL; 305 } 306 307 /** 308 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 309 * the same GPIO chip are in range 310 * @gpio: gpio pin to check taken from the global GPIO pin space 311 * 312 * This function is complement of pinctrl_match_gpio_range(). If the return 313 * value of pinctrl_match_gpio_range() is NULL, this function could be used 314 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 315 * of the same GPIO chip don't have back-end pinctrl interface. 316 * If the return value is true, it means that pinctrl device is ready & the 317 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 318 * is false, it means that pinctrl device may not be ready. 319 */ 320 #ifdef CONFIG_GPIOLIB 321 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 322 { 323 struct pinctrl_dev *pctldev; 324 struct pinctrl_gpio_range *range = NULL; 325 struct gpio_chip *chip = gpio_to_chip(gpio); 326 327 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 328 return false; 329 330 mutex_lock(&pinctrldev_list_mutex); 331 332 /* Loop over the pin controllers */ 333 list_for_each_entry(pctldev, &pinctrldev_list, node) { 334 /* Loop over the ranges */ 335 mutex_lock(&pctldev->mutex); 336 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 337 /* Check if any gpio range overlapped with gpio chip */ 338 if (range->base + range->npins - 1 < chip->base || 339 range->base > chip->base + chip->ngpio - 1) 340 continue; 341 mutex_unlock(&pctldev->mutex); 342 mutex_unlock(&pinctrldev_list_mutex); 343 return true; 344 } 345 mutex_unlock(&pctldev->mutex); 346 } 347 348 mutex_unlock(&pinctrldev_list_mutex); 349 350 return false; 351 } 352 #else 353 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 354 #endif 355 356 /** 357 * pinctrl_get_device_gpio_range() - find device for GPIO range 358 * @gpio: the pin to locate the pin controller for 359 * @outdev: the pin control device if found 360 * @outrange: the GPIO range if found 361 * 362 * Find the pin controller handling a certain GPIO pin from the pinspace of 363 * the GPIO subsystem, return the device and the matching GPIO range. Returns 364 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 365 * may still have not been registered. 366 */ 367 static int pinctrl_get_device_gpio_range(unsigned gpio, 368 struct pinctrl_dev **outdev, 369 struct pinctrl_gpio_range **outrange) 370 { 371 struct pinctrl_dev *pctldev; 372 373 mutex_lock(&pinctrldev_list_mutex); 374 375 /* Loop over the pin controllers */ 376 list_for_each_entry(pctldev, &pinctrldev_list, node) { 377 struct pinctrl_gpio_range *range; 378 379 range = pinctrl_match_gpio_range(pctldev, gpio); 380 if (range) { 381 *outdev = pctldev; 382 *outrange = range; 383 mutex_unlock(&pinctrldev_list_mutex); 384 return 0; 385 } 386 } 387 388 mutex_unlock(&pinctrldev_list_mutex); 389 390 return -EPROBE_DEFER; 391 } 392 393 /** 394 * pinctrl_add_gpio_range() - register a GPIO range for a controller 395 * @pctldev: pin controller device to add the range to 396 * @range: the GPIO range to add 397 * 398 * This adds a range of GPIOs to be handled by a certain pin controller. Call 399 * this to register handled ranges after registering your pin controller. 400 */ 401 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 402 struct pinctrl_gpio_range *range) 403 { 404 mutex_lock(&pctldev->mutex); 405 list_add_tail(&range->node, &pctldev->gpio_ranges); 406 mutex_unlock(&pctldev->mutex); 407 } 408 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 409 410 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 411 struct pinctrl_gpio_range *ranges, 412 unsigned nranges) 413 { 414 int i; 415 416 for (i = 0; i < nranges; i++) 417 pinctrl_add_gpio_range(pctldev, &ranges[i]); 418 } 419 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 420 421 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 422 struct pinctrl_gpio_range *range) 423 { 424 struct pinctrl_dev *pctldev; 425 426 pctldev = get_pinctrl_dev_from_devname(devname); 427 428 /* 429 * If we can't find this device, let's assume that is because 430 * it has not probed yet, so the driver trying to register this 431 * range need to defer probing. 432 */ 433 if (!pctldev) { 434 return ERR_PTR(-EPROBE_DEFER); 435 } 436 pinctrl_add_gpio_range(pctldev, range); 437 438 return pctldev; 439 } 440 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 441 442 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 443 const unsigned **pins, unsigned *num_pins) 444 { 445 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 446 int gs; 447 448 if (!pctlops->get_group_pins) 449 return -EINVAL; 450 451 gs = pinctrl_get_group_selector(pctldev, pin_group); 452 if (gs < 0) 453 return gs; 454 455 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 456 } 457 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 458 459 struct pinctrl_gpio_range * 460 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 461 unsigned int pin) 462 { 463 struct pinctrl_gpio_range *range; 464 465 /* Loop over the ranges */ 466 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 467 /* Check if we're in the valid range */ 468 if (range->pins) { 469 int a; 470 for (a = 0; a < range->npins; a++) { 471 if (range->pins[a] == pin) 472 return range; 473 } 474 } else if (pin >= range->pin_base && 475 pin < range->pin_base + range->npins) 476 return range; 477 } 478 479 return NULL; 480 } 481 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 482 483 /** 484 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 485 * @pctldev: the pin controller device to look in 486 * @pin: a controller-local number to find the range for 487 */ 488 struct pinctrl_gpio_range * 489 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 490 unsigned int pin) 491 { 492 struct pinctrl_gpio_range *range; 493 494 mutex_lock(&pctldev->mutex); 495 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 496 mutex_unlock(&pctldev->mutex); 497 498 return range; 499 } 500 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 501 502 /** 503 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller 504 * @pctldev: pin controller device to remove the range from 505 * @range: the GPIO range to remove 506 */ 507 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 508 struct pinctrl_gpio_range *range) 509 { 510 mutex_lock(&pctldev->mutex); 511 list_del(&range->node); 512 mutex_unlock(&pctldev->mutex); 513 } 514 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 515 516 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 517 518 /** 519 * pinctrl_generic_get_group_count() - returns the number of pin groups 520 * @pctldev: pin controller device 521 */ 522 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 523 { 524 return pctldev->num_groups; 525 } 526 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 527 528 /** 529 * pinctrl_generic_get_group_name() - returns the name of a pin group 530 * @pctldev: pin controller device 531 * @selector: group number 532 */ 533 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 534 unsigned int selector) 535 { 536 struct group_desc *group; 537 538 group = radix_tree_lookup(&pctldev->pin_group_tree, 539 selector); 540 if (!group) 541 return NULL; 542 543 return group->name; 544 } 545 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 546 547 /** 548 * pinctrl_generic_get_group_pins() - gets the pin group pins 549 * @pctldev: pin controller device 550 * @selector: group number 551 * @pins: pins in the group 552 * @num_pins: number of pins in the group 553 */ 554 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 555 unsigned int selector, 556 const unsigned int **pins, 557 unsigned int *num_pins) 558 { 559 struct group_desc *group; 560 561 group = radix_tree_lookup(&pctldev->pin_group_tree, 562 selector); 563 if (!group) { 564 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 565 __func__, selector); 566 return -EINVAL; 567 } 568 569 *pins = group->pins; 570 *num_pins = group->num_pins; 571 572 return 0; 573 } 574 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 575 576 /** 577 * pinctrl_generic_get_group() - returns a pin group based on the number 578 * @pctldev: pin controller device 579 * @gselector: group number 580 */ 581 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 582 unsigned int selector) 583 { 584 struct group_desc *group; 585 586 group = radix_tree_lookup(&pctldev->pin_group_tree, 587 selector); 588 if (!group) 589 return NULL; 590 591 return group; 592 } 593 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 594 595 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev, 596 const char *function) 597 { 598 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 599 int ngroups = ops->get_groups_count(pctldev); 600 int selector = 0; 601 602 /* See if this pctldev has this group */ 603 while (selector < ngroups) { 604 const char *gname = ops->get_group_name(pctldev, selector); 605 606 if (gname && !strcmp(function, gname)) 607 return selector; 608 609 selector++; 610 } 611 612 return -EINVAL; 613 } 614 615 /** 616 * pinctrl_generic_add_group() - adds a new pin group 617 * @pctldev: pin controller device 618 * @name: name of the pin group 619 * @pins: pins in the pin group 620 * @num_pins: number of pins in the pin group 621 * @data: pin controller driver specific data 622 * 623 * Note that the caller must take care of locking. 624 */ 625 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 626 int *pins, int num_pins, void *data) 627 { 628 struct group_desc *group; 629 int selector; 630 631 if (!name) 632 return -EINVAL; 633 634 selector = pinctrl_generic_group_name_to_selector(pctldev, name); 635 if (selector >= 0) 636 return selector; 637 638 selector = pctldev->num_groups; 639 640 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 641 if (!group) 642 return -ENOMEM; 643 644 group->name = name; 645 group->pins = pins; 646 group->num_pins = num_pins; 647 group->data = data; 648 649 radix_tree_insert(&pctldev->pin_group_tree, selector, group); 650 651 pctldev->num_groups++; 652 653 return selector; 654 } 655 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 656 657 /** 658 * pinctrl_generic_remove_group() - removes a numbered pin group 659 * @pctldev: pin controller device 660 * @selector: group number 661 * 662 * Note that the caller must take care of locking. 663 */ 664 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 665 unsigned int selector) 666 { 667 struct group_desc *group; 668 669 group = radix_tree_lookup(&pctldev->pin_group_tree, 670 selector); 671 if (!group) 672 return -ENOENT; 673 674 radix_tree_delete(&pctldev->pin_group_tree, selector); 675 devm_kfree(pctldev->dev, group); 676 677 pctldev->num_groups--; 678 679 return 0; 680 } 681 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 682 683 /** 684 * pinctrl_generic_free_groups() - removes all pin groups 685 * @pctldev: pin controller device 686 * 687 * Note that the caller must take care of locking. The pinctrl groups 688 * are allocated with devm_kzalloc() so no need to free them here. 689 */ 690 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 691 { 692 struct radix_tree_iter iter; 693 void __rcu **slot; 694 695 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 696 radix_tree_delete(&pctldev->pin_group_tree, iter.index); 697 698 pctldev->num_groups = 0; 699 } 700 701 #else 702 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 703 { 704 } 705 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 706 707 /** 708 * pinctrl_get_group_selector() - returns the group selector for a group 709 * @pctldev: the pin controller handling the group 710 * @pin_group: the pin group to look up 711 */ 712 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 713 const char *pin_group) 714 { 715 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 716 unsigned ngroups = pctlops->get_groups_count(pctldev); 717 unsigned group_selector = 0; 718 719 while (group_selector < ngroups) { 720 const char *gname = pctlops->get_group_name(pctldev, 721 group_selector); 722 if (gname && !strcmp(gname, pin_group)) { 723 dev_dbg(pctldev->dev, 724 "found group selector %u for %s\n", 725 group_selector, 726 pin_group); 727 return group_selector; 728 } 729 730 group_selector++; 731 } 732 733 dev_err(pctldev->dev, "does not have pin group %s\n", 734 pin_group); 735 736 return -EINVAL; 737 } 738 739 bool pinctrl_gpio_can_use_line(unsigned gpio) 740 { 741 struct pinctrl_dev *pctldev; 742 struct pinctrl_gpio_range *range; 743 bool result; 744 int pin; 745 746 /* 747 * Try to obtain GPIO range, if it fails 748 * we're probably dealing with GPIO driver 749 * without a backing pin controller - bail out. 750 */ 751 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range)) 752 return true; 753 754 mutex_lock(&pctldev->mutex); 755 756 /* Convert to the pin controllers number space */ 757 pin = gpio_to_pin(range, gpio); 758 759 result = pinmux_can_be_used_for_gpio(pctldev, pin); 760 761 mutex_unlock(&pctldev->mutex); 762 763 return result; 764 } 765 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line); 766 767 /** 768 * pinctrl_gpio_request() - request a single pin to be used as GPIO 769 * @gpio: the GPIO pin number from the GPIO subsystem number space 770 * 771 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 772 * as part of their gpio_request() semantics, platforms and individual drivers 773 * shall *NOT* request GPIO pins to be muxed in. 774 */ 775 int pinctrl_gpio_request(unsigned gpio) 776 { 777 struct pinctrl_dev *pctldev; 778 struct pinctrl_gpio_range *range; 779 int ret; 780 int pin; 781 782 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 783 if (ret) { 784 if (pinctrl_ready_for_gpio_range(gpio)) 785 ret = 0; 786 return ret; 787 } 788 789 mutex_lock(&pctldev->mutex); 790 791 /* Convert to the pin controllers number space */ 792 pin = gpio_to_pin(range, gpio); 793 794 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 795 796 mutex_unlock(&pctldev->mutex); 797 798 return ret; 799 } 800 EXPORT_SYMBOL_GPL(pinctrl_gpio_request); 801 802 /** 803 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO 804 * @gpio: the GPIO pin number from the GPIO subsystem number space 805 * 806 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 807 * as part of their gpio_free() semantics, platforms and individual drivers 808 * shall *NOT* request GPIO pins to be muxed out. 809 */ 810 void pinctrl_gpio_free(unsigned gpio) 811 { 812 struct pinctrl_dev *pctldev; 813 struct pinctrl_gpio_range *range; 814 int ret; 815 int pin; 816 817 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 818 if (ret) { 819 return; 820 } 821 mutex_lock(&pctldev->mutex); 822 823 /* Convert to the pin controllers number space */ 824 pin = gpio_to_pin(range, gpio); 825 826 pinmux_free_gpio(pctldev, pin, range); 827 828 mutex_unlock(&pctldev->mutex); 829 } 830 EXPORT_SYMBOL_GPL(pinctrl_gpio_free); 831 832 static int pinctrl_gpio_direction(unsigned gpio, bool input) 833 { 834 struct pinctrl_dev *pctldev; 835 struct pinctrl_gpio_range *range; 836 int ret; 837 int pin; 838 839 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 840 if (ret) { 841 return ret; 842 } 843 844 mutex_lock(&pctldev->mutex); 845 846 /* Convert to the pin controllers number space */ 847 pin = gpio_to_pin(range, gpio); 848 ret = pinmux_gpio_direction(pctldev, range, pin, input); 849 850 mutex_unlock(&pctldev->mutex); 851 852 return ret; 853 } 854 855 /** 856 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 857 * @gpio: the GPIO pin number from the GPIO subsystem number space 858 * 859 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 860 * as part of their gpio_direction_input() semantics, platforms and individual 861 * drivers shall *NOT* touch pin control GPIO calls. 862 */ 863 int pinctrl_gpio_direction_input(unsigned gpio) 864 { 865 return pinctrl_gpio_direction(gpio, true); 866 } 867 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 868 869 /** 870 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 871 * @gpio: the GPIO pin number from the GPIO subsystem number space 872 * 873 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 874 * as part of their gpio_direction_output() semantics, platforms and individual 875 * drivers shall *NOT* touch pin control GPIO calls. 876 */ 877 int pinctrl_gpio_direction_output(unsigned gpio) 878 { 879 return pinctrl_gpio_direction(gpio, false); 880 } 881 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 882 883 /** 884 * pinctrl_gpio_set_config() - Apply config to given GPIO pin 885 * @gpio: the GPIO pin number from the GPIO subsystem number space 886 * @config: the configuration to apply to the GPIO 887 * 888 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 889 * they need to call the underlying pin controller to change GPIO config 890 * (for example set debounce time). 891 */ 892 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config) 893 { 894 unsigned long configs[] = { config }; 895 struct pinctrl_gpio_range *range; 896 struct pinctrl_dev *pctldev; 897 int ret, pin; 898 899 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 900 if (ret) 901 return ret; 902 903 mutex_lock(&pctldev->mutex); 904 pin = gpio_to_pin(range, gpio); 905 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 906 mutex_unlock(&pctldev->mutex); 907 908 return ret; 909 } 910 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 911 912 static struct pinctrl_state *find_state(struct pinctrl *p, 913 const char *name) 914 { 915 struct pinctrl_state *state; 916 917 list_for_each_entry(state, &p->states, node) 918 if (!strcmp(state->name, name)) 919 return state; 920 921 return NULL; 922 } 923 924 static struct pinctrl_state *create_state(struct pinctrl *p, 925 const char *name) 926 { 927 struct pinctrl_state *state; 928 929 state = kzalloc(sizeof(*state), GFP_KERNEL); 930 if (!state) 931 return ERR_PTR(-ENOMEM); 932 933 state->name = name; 934 INIT_LIST_HEAD(&state->settings); 935 936 list_add_tail(&state->node, &p->states); 937 938 return state; 939 } 940 941 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 942 const struct pinctrl_map *map) 943 { 944 struct pinctrl_state *state; 945 struct pinctrl_setting *setting; 946 int ret; 947 948 state = find_state(p, map->name); 949 if (!state) 950 state = create_state(p, map->name); 951 if (IS_ERR(state)) 952 return PTR_ERR(state); 953 954 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 955 return 0; 956 957 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 958 if (!setting) 959 return -ENOMEM; 960 961 setting->type = map->type; 962 963 if (pctldev) 964 setting->pctldev = pctldev; 965 else 966 setting->pctldev = 967 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 968 if (!setting->pctldev) { 969 kfree(setting); 970 /* Do not defer probing of hogs (circular loop) */ 971 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 972 return -ENODEV; 973 /* 974 * OK let us guess that the driver is not there yet, and 975 * let's defer obtaining this pinctrl handle to later... 976 */ 977 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 978 map->ctrl_dev_name); 979 return -EPROBE_DEFER; 980 } 981 982 setting->dev_name = map->dev_name; 983 984 switch (map->type) { 985 case PIN_MAP_TYPE_MUX_GROUP: 986 ret = pinmux_map_to_setting(map, setting); 987 break; 988 case PIN_MAP_TYPE_CONFIGS_PIN: 989 case PIN_MAP_TYPE_CONFIGS_GROUP: 990 ret = pinconf_map_to_setting(map, setting); 991 break; 992 default: 993 ret = -EINVAL; 994 break; 995 } 996 if (ret < 0) { 997 kfree(setting); 998 return ret; 999 } 1000 1001 list_add_tail(&setting->node, &state->settings); 1002 1003 return 0; 1004 } 1005 1006 static struct pinctrl *find_pinctrl(struct device *dev) 1007 { 1008 struct pinctrl *p; 1009 1010 mutex_lock(&pinctrl_list_mutex); 1011 list_for_each_entry(p, &pinctrl_list, node) 1012 if (p->dev == dev) { 1013 mutex_unlock(&pinctrl_list_mutex); 1014 return p; 1015 } 1016 1017 mutex_unlock(&pinctrl_list_mutex); 1018 return NULL; 1019 } 1020 1021 static void pinctrl_free(struct pinctrl *p, bool inlist); 1022 1023 static struct pinctrl *create_pinctrl(struct device *dev, 1024 struct pinctrl_dev *pctldev) 1025 { 1026 struct pinctrl *p; 1027 const char *devname; 1028 struct pinctrl_maps *maps_node; 1029 int i; 1030 const struct pinctrl_map *map; 1031 int ret; 1032 1033 /* 1034 * create the state cookie holder struct pinctrl for each 1035 * mapping, this is what consumers will get when requesting 1036 * a pin control handle with pinctrl_get() 1037 */ 1038 p = kzalloc(sizeof(*p), GFP_KERNEL); 1039 if (!p) 1040 return ERR_PTR(-ENOMEM); 1041 p->dev = dev; 1042 INIT_LIST_HEAD(&p->states); 1043 INIT_LIST_HEAD(&p->dt_maps); 1044 1045 ret = pinctrl_dt_to_map(p, pctldev); 1046 if (ret < 0) { 1047 kfree(p); 1048 return ERR_PTR(ret); 1049 } 1050 1051 devname = dev_name(dev); 1052 1053 mutex_lock(&pinctrl_maps_mutex); 1054 /* Iterate over the pin control maps to locate the right ones */ 1055 for_each_maps(maps_node, i, map) { 1056 /* Map must be for this device */ 1057 if (strcmp(map->dev_name, devname)) 1058 continue; 1059 /* 1060 * If pctldev is not null, we are claiming hog for it, 1061 * that means, setting that is served by pctldev by itself. 1062 * 1063 * Thus we must skip map that is for this device but is served 1064 * by other device. 1065 */ 1066 if (pctldev && 1067 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name)) 1068 continue; 1069 1070 ret = add_setting(p, pctldev, map); 1071 /* 1072 * At this point the adding of a setting may: 1073 * 1074 * - Defer, if the pinctrl device is not yet available 1075 * - Fail, if the pinctrl device is not yet available, 1076 * AND the setting is a hog. We cannot defer that, since 1077 * the hog will kick in immediately after the device 1078 * is registered. 1079 * 1080 * If the error returned was not -EPROBE_DEFER then we 1081 * accumulate the errors to see if we end up with 1082 * an -EPROBE_DEFER later, as that is the worst case. 1083 */ 1084 if (ret == -EPROBE_DEFER) { 1085 pinctrl_free(p, false); 1086 mutex_unlock(&pinctrl_maps_mutex); 1087 return ERR_PTR(ret); 1088 } 1089 } 1090 mutex_unlock(&pinctrl_maps_mutex); 1091 1092 if (ret < 0) { 1093 /* If some other error than deferral occurred, return here */ 1094 pinctrl_free(p, false); 1095 return ERR_PTR(ret); 1096 } 1097 1098 kref_init(&p->users); 1099 1100 /* Add the pinctrl handle to the global list */ 1101 mutex_lock(&pinctrl_list_mutex); 1102 list_add_tail(&p->node, &pinctrl_list); 1103 mutex_unlock(&pinctrl_list_mutex); 1104 1105 return p; 1106 } 1107 1108 /** 1109 * pinctrl_get() - retrieves the pinctrl handle for a device 1110 * @dev: the device to obtain the handle for 1111 */ 1112 struct pinctrl *pinctrl_get(struct device *dev) 1113 { 1114 struct pinctrl *p; 1115 1116 if (WARN_ON(!dev)) 1117 return ERR_PTR(-EINVAL); 1118 1119 /* 1120 * See if somebody else (such as the device core) has already 1121 * obtained a handle to the pinctrl for this device. In that case, 1122 * return another pointer to it. 1123 */ 1124 p = find_pinctrl(dev); 1125 if (p) { 1126 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1127 kref_get(&p->users); 1128 return p; 1129 } 1130 1131 return create_pinctrl(dev, NULL); 1132 } 1133 EXPORT_SYMBOL_GPL(pinctrl_get); 1134 1135 static void pinctrl_free_setting(bool disable_setting, 1136 struct pinctrl_setting *setting) 1137 { 1138 switch (setting->type) { 1139 case PIN_MAP_TYPE_MUX_GROUP: 1140 if (disable_setting) 1141 pinmux_disable_setting(setting); 1142 pinmux_free_setting(setting); 1143 break; 1144 case PIN_MAP_TYPE_CONFIGS_PIN: 1145 case PIN_MAP_TYPE_CONFIGS_GROUP: 1146 pinconf_free_setting(setting); 1147 break; 1148 default: 1149 break; 1150 } 1151 } 1152 1153 static void pinctrl_free(struct pinctrl *p, bool inlist) 1154 { 1155 struct pinctrl_state *state, *n1; 1156 struct pinctrl_setting *setting, *n2; 1157 1158 mutex_lock(&pinctrl_list_mutex); 1159 list_for_each_entry_safe(state, n1, &p->states, node) { 1160 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1161 pinctrl_free_setting(state == p->state, setting); 1162 list_del(&setting->node); 1163 kfree(setting); 1164 } 1165 list_del(&state->node); 1166 kfree(state); 1167 } 1168 1169 pinctrl_dt_free_maps(p); 1170 1171 if (inlist) 1172 list_del(&p->node); 1173 kfree(p); 1174 mutex_unlock(&pinctrl_list_mutex); 1175 } 1176 1177 /** 1178 * pinctrl_release() - release the pinctrl handle 1179 * @kref: the kref in the pinctrl being released 1180 */ 1181 static void pinctrl_release(struct kref *kref) 1182 { 1183 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1184 1185 pinctrl_free(p, true); 1186 } 1187 1188 /** 1189 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1190 * @p: the pinctrl handle to release 1191 */ 1192 void pinctrl_put(struct pinctrl *p) 1193 { 1194 kref_put(&p->users, pinctrl_release); 1195 } 1196 EXPORT_SYMBOL_GPL(pinctrl_put); 1197 1198 /** 1199 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1200 * @p: the pinctrl handle to retrieve the state from 1201 * @name: the state name to retrieve 1202 */ 1203 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1204 const char *name) 1205 { 1206 struct pinctrl_state *state; 1207 1208 state = find_state(p, name); 1209 if (!state) { 1210 if (pinctrl_dummy_state) { 1211 /* create dummy state */ 1212 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1213 name); 1214 state = create_state(p, name); 1215 } else 1216 state = ERR_PTR(-ENODEV); 1217 } 1218 1219 return state; 1220 } 1221 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1222 1223 static void pinctrl_link_add(struct pinctrl_dev *pctldev, 1224 struct device *consumer) 1225 { 1226 if (pctldev->desc->link_consumers) 1227 device_link_add(consumer, pctldev->dev, 1228 DL_FLAG_PM_RUNTIME | 1229 DL_FLAG_AUTOREMOVE_CONSUMER); 1230 } 1231 1232 /** 1233 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW 1234 * @p: the pinctrl handle for the device that requests configuration 1235 * @state: the state handle to select/activate/program 1236 */ 1237 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state) 1238 { 1239 struct pinctrl_setting *setting, *setting2; 1240 struct pinctrl_state *old_state = p->state; 1241 int ret; 1242 1243 if (p->state) { 1244 /* 1245 * For each pinmux setting in the old state, forget SW's record 1246 * of mux owner for that pingroup. Any pingroups which are 1247 * still owned by the new state will be re-acquired by the call 1248 * to pinmux_enable_setting() in the loop below. 1249 */ 1250 list_for_each_entry(setting, &p->state->settings, node) { 1251 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1252 continue; 1253 pinmux_disable_setting(setting); 1254 } 1255 } 1256 1257 p->state = NULL; 1258 1259 /* Apply all the settings for the new state */ 1260 list_for_each_entry(setting, &state->settings, node) { 1261 switch (setting->type) { 1262 case PIN_MAP_TYPE_MUX_GROUP: 1263 ret = pinmux_enable_setting(setting); 1264 break; 1265 case PIN_MAP_TYPE_CONFIGS_PIN: 1266 case PIN_MAP_TYPE_CONFIGS_GROUP: 1267 ret = pinconf_apply_setting(setting); 1268 break; 1269 default: 1270 ret = -EINVAL; 1271 break; 1272 } 1273 1274 if (ret < 0) { 1275 goto unapply_new_state; 1276 } 1277 1278 /* Do not link hogs (circular dependency) */ 1279 if (p != setting->pctldev->p) 1280 pinctrl_link_add(setting->pctldev, p->dev); 1281 } 1282 1283 p->state = state; 1284 1285 return 0; 1286 1287 unapply_new_state: 1288 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1289 1290 list_for_each_entry(setting2, &state->settings, node) { 1291 if (&setting2->node == &setting->node) 1292 break; 1293 /* 1294 * All we can do here is pinmux_disable_setting. 1295 * That means that some pins are muxed differently now 1296 * than they were before applying the setting (We can't 1297 * "unmux a pin"!), but it's not a big deal since the pins 1298 * are free to be muxed by another apply_setting. 1299 */ 1300 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1301 pinmux_disable_setting(setting2); 1302 } 1303 1304 /* There's no infinite recursive loop here because p->state is NULL */ 1305 if (old_state) 1306 pinctrl_select_state(p, old_state); 1307 1308 return ret; 1309 } 1310 1311 /** 1312 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1313 * @p: the pinctrl handle for the device that requests configuration 1314 * @state: the state handle to select/activate/program 1315 */ 1316 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1317 { 1318 if (p->state == state) 1319 return 0; 1320 1321 return pinctrl_commit_state(p, state); 1322 } 1323 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1324 1325 static void devm_pinctrl_release(struct device *dev, void *res) 1326 { 1327 pinctrl_put(*(struct pinctrl **)res); 1328 } 1329 1330 /** 1331 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1332 * @dev: the device to obtain the handle for 1333 * 1334 * If there is a need to explicitly destroy the returned struct pinctrl, 1335 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1336 */ 1337 struct pinctrl *devm_pinctrl_get(struct device *dev) 1338 { 1339 struct pinctrl **ptr, *p; 1340 1341 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1342 if (!ptr) 1343 return ERR_PTR(-ENOMEM); 1344 1345 p = pinctrl_get(dev); 1346 if (!IS_ERR(p)) { 1347 *ptr = p; 1348 devres_add(dev, ptr); 1349 } else { 1350 devres_free(ptr); 1351 } 1352 1353 return p; 1354 } 1355 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1356 1357 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1358 { 1359 struct pinctrl **p = res; 1360 1361 return *p == data; 1362 } 1363 1364 /** 1365 * devm_pinctrl_put() - Resource managed pinctrl_put() 1366 * @p: the pinctrl handle to release 1367 * 1368 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1369 * this function will not need to be called and the resource management 1370 * code will ensure that the resource is freed. 1371 */ 1372 void devm_pinctrl_put(struct pinctrl *p) 1373 { 1374 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1375 devm_pinctrl_match, p)); 1376 } 1377 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1378 1379 int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps, 1380 bool dup) 1381 { 1382 int i, ret; 1383 struct pinctrl_maps *maps_node; 1384 1385 pr_debug("add %u pinctrl maps\n", num_maps); 1386 1387 /* First sanity check the new mapping */ 1388 for (i = 0; i < num_maps; i++) { 1389 if (!maps[i].dev_name) { 1390 pr_err("failed to register map %s (%d): no device given\n", 1391 maps[i].name, i); 1392 return -EINVAL; 1393 } 1394 1395 if (!maps[i].name) { 1396 pr_err("failed to register map %d: no map name given\n", 1397 i); 1398 return -EINVAL; 1399 } 1400 1401 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1402 !maps[i].ctrl_dev_name) { 1403 pr_err("failed to register map %s (%d): no pin control device given\n", 1404 maps[i].name, i); 1405 return -EINVAL; 1406 } 1407 1408 switch (maps[i].type) { 1409 case PIN_MAP_TYPE_DUMMY_STATE: 1410 break; 1411 case PIN_MAP_TYPE_MUX_GROUP: 1412 ret = pinmux_validate_map(&maps[i], i); 1413 if (ret < 0) 1414 return ret; 1415 break; 1416 case PIN_MAP_TYPE_CONFIGS_PIN: 1417 case PIN_MAP_TYPE_CONFIGS_GROUP: 1418 ret = pinconf_validate_map(&maps[i], i); 1419 if (ret < 0) 1420 return ret; 1421 break; 1422 default: 1423 pr_err("failed to register map %s (%d): invalid type given\n", 1424 maps[i].name, i); 1425 return -EINVAL; 1426 } 1427 } 1428 1429 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1430 if (!maps_node) 1431 return -ENOMEM; 1432 1433 maps_node->num_maps = num_maps; 1434 if (dup) { 1435 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1436 GFP_KERNEL); 1437 if (!maps_node->maps) { 1438 kfree(maps_node); 1439 return -ENOMEM; 1440 } 1441 } else { 1442 maps_node->maps = maps; 1443 } 1444 1445 mutex_lock(&pinctrl_maps_mutex); 1446 list_add_tail(&maps_node->node, &pinctrl_maps); 1447 mutex_unlock(&pinctrl_maps_mutex); 1448 1449 return 0; 1450 } 1451 1452 /** 1453 * pinctrl_register_mappings() - register a set of pin controller mappings 1454 * @maps: the pincontrol mappings table to register. This should probably be 1455 * marked with __initdata so it can be discarded after boot. This 1456 * function will perform a shallow copy for the mapping entries. 1457 * @num_maps: the number of maps in the mapping table 1458 */ 1459 int pinctrl_register_mappings(const struct pinctrl_map *maps, 1460 unsigned num_maps) 1461 { 1462 return pinctrl_register_map(maps, num_maps, true); 1463 } 1464 EXPORT_SYMBOL_GPL(pinctrl_register_mappings); 1465 1466 void pinctrl_unregister_map(const struct pinctrl_map *map) 1467 { 1468 struct pinctrl_maps *maps_node; 1469 1470 mutex_lock(&pinctrl_maps_mutex); 1471 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1472 if (maps_node->maps == map) { 1473 list_del(&maps_node->node); 1474 kfree(maps_node); 1475 mutex_unlock(&pinctrl_maps_mutex); 1476 return; 1477 } 1478 } 1479 mutex_unlock(&pinctrl_maps_mutex); 1480 } 1481 1482 /** 1483 * pinctrl_force_sleep() - turn a given controller device into sleep state 1484 * @pctldev: pin controller device 1485 */ 1486 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1487 { 1488 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1489 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep); 1490 return 0; 1491 } 1492 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1493 1494 /** 1495 * pinctrl_force_default() - turn a given controller device into default state 1496 * @pctldev: pin controller device 1497 */ 1498 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1499 { 1500 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1501 return pinctrl_commit_state(pctldev->p, pctldev->hog_default); 1502 return 0; 1503 } 1504 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1505 1506 /** 1507 * pinctrl_init_done() - tell pinctrl probe is done 1508 * 1509 * We'll use this time to switch the pins from "init" to "default" unless the 1510 * driver selected some other state. 1511 * 1512 * @dev: device to that's done probing 1513 */ 1514 int pinctrl_init_done(struct device *dev) 1515 { 1516 struct dev_pin_info *pins = dev->pins; 1517 int ret; 1518 1519 if (!pins) 1520 return 0; 1521 1522 if (IS_ERR(pins->init_state)) 1523 return 0; /* No such state */ 1524 1525 if (pins->p->state != pins->init_state) 1526 return 0; /* Not at init anyway */ 1527 1528 if (IS_ERR(pins->default_state)) 1529 return 0; /* No default state */ 1530 1531 ret = pinctrl_select_state(pins->p, pins->default_state); 1532 if (ret) 1533 dev_err(dev, "failed to activate default pinctrl state\n"); 1534 1535 return ret; 1536 } 1537 1538 #ifdef CONFIG_PM 1539 1540 /** 1541 * pinctrl_pm_select_state() - select pinctrl state for PM 1542 * @dev: device to select default state for 1543 * @state: state to set 1544 */ 1545 static int pinctrl_pm_select_state(struct device *dev, 1546 struct pinctrl_state *state) 1547 { 1548 struct dev_pin_info *pins = dev->pins; 1549 int ret; 1550 1551 if (IS_ERR(state)) 1552 return 0; /* No such state */ 1553 ret = pinctrl_select_state(pins->p, state); 1554 if (ret) 1555 dev_err(dev, "failed to activate pinctrl state %s\n", 1556 state->name); 1557 return ret; 1558 } 1559 1560 /** 1561 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1562 * @dev: device to select default state for 1563 */ 1564 int pinctrl_pm_select_default_state(struct device *dev) 1565 { 1566 if (!dev->pins) 1567 return 0; 1568 1569 return pinctrl_pm_select_state(dev, dev->pins->default_state); 1570 } 1571 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1572 1573 /** 1574 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1575 * @dev: device to select sleep state for 1576 */ 1577 int pinctrl_pm_select_sleep_state(struct device *dev) 1578 { 1579 if (!dev->pins) 1580 return 0; 1581 1582 return pinctrl_pm_select_state(dev, dev->pins->sleep_state); 1583 } 1584 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1585 1586 /** 1587 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1588 * @dev: device to select idle state for 1589 */ 1590 int pinctrl_pm_select_idle_state(struct device *dev) 1591 { 1592 if (!dev->pins) 1593 return 0; 1594 1595 return pinctrl_pm_select_state(dev, dev->pins->idle_state); 1596 } 1597 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1598 #endif 1599 1600 #ifdef CONFIG_DEBUG_FS 1601 1602 static int pinctrl_pins_show(struct seq_file *s, void *what) 1603 { 1604 struct pinctrl_dev *pctldev = s->private; 1605 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1606 unsigned i, pin; 1607 1608 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1609 1610 mutex_lock(&pctldev->mutex); 1611 1612 /* The pin number can be retrived from the pin controller descriptor */ 1613 for (i = 0; i < pctldev->desc->npins; i++) { 1614 struct pin_desc *desc; 1615 1616 pin = pctldev->desc->pins[i].number; 1617 desc = pin_desc_get(pctldev, pin); 1618 /* Pin space may be sparse */ 1619 if (!desc) 1620 continue; 1621 1622 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1623 1624 /* Driver-specific info per pin */ 1625 if (ops->pin_dbg_show) 1626 ops->pin_dbg_show(pctldev, s, pin); 1627 1628 seq_puts(s, "\n"); 1629 } 1630 1631 mutex_unlock(&pctldev->mutex); 1632 1633 return 0; 1634 } 1635 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins); 1636 1637 static int pinctrl_groups_show(struct seq_file *s, void *what) 1638 { 1639 struct pinctrl_dev *pctldev = s->private; 1640 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1641 unsigned ngroups, selector = 0; 1642 1643 mutex_lock(&pctldev->mutex); 1644 1645 ngroups = ops->get_groups_count(pctldev); 1646 1647 seq_puts(s, "registered pin groups:\n"); 1648 while (selector < ngroups) { 1649 const unsigned *pins = NULL; 1650 unsigned num_pins = 0; 1651 const char *gname = ops->get_group_name(pctldev, selector); 1652 const char *pname; 1653 int ret = 0; 1654 int i; 1655 1656 if (ops->get_group_pins) 1657 ret = ops->get_group_pins(pctldev, selector, 1658 &pins, &num_pins); 1659 if (ret) 1660 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1661 gname); 1662 else { 1663 seq_printf(s, "group: %s\n", gname); 1664 for (i = 0; i < num_pins; i++) { 1665 pname = pin_get_name(pctldev, pins[i]); 1666 if (WARN_ON(!pname)) { 1667 mutex_unlock(&pctldev->mutex); 1668 return -EINVAL; 1669 } 1670 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1671 } 1672 seq_puts(s, "\n"); 1673 } 1674 selector++; 1675 } 1676 1677 mutex_unlock(&pctldev->mutex); 1678 1679 return 0; 1680 } 1681 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups); 1682 1683 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1684 { 1685 struct pinctrl_dev *pctldev = s->private; 1686 struct pinctrl_gpio_range *range; 1687 1688 seq_puts(s, "GPIO ranges handled:\n"); 1689 1690 mutex_lock(&pctldev->mutex); 1691 1692 /* Loop over the ranges */ 1693 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1694 if (range->pins) { 1695 int a; 1696 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1697 range->id, range->name, 1698 range->base, (range->base + range->npins - 1)); 1699 for (a = 0; a < range->npins - 1; a++) 1700 seq_printf(s, "%u, ", range->pins[a]); 1701 seq_printf(s, "%u}\n", range->pins[a]); 1702 } 1703 else 1704 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1705 range->id, range->name, 1706 range->base, (range->base + range->npins - 1), 1707 range->pin_base, 1708 (range->pin_base + range->npins - 1)); 1709 } 1710 1711 mutex_unlock(&pctldev->mutex); 1712 1713 return 0; 1714 } 1715 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges); 1716 1717 static int pinctrl_devices_show(struct seq_file *s, void *what) 1718 { 1719 struct pinctrl_dev *pctldev; 1720 1721 seq_puts(s, "name [pinmux] [pinconf]\n"); 1722 1723 mutex_lock(&pinctrldev_list_mutex); 1724 1725 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1726 seq_printf(s, "%s ", pctldev->desc->name); 1727 if (pctldev->desc->pmxops) 1728 seq_puts(s, "yes "); 1729 else 1730 seq_puts(s, "no "); 1731 if (pctldev->desc->confops) 1732 seq_puts(s, "yes"); 1733 else 1734 seq_puts(s, "no"); 1735 seq_puts(s, "\n"); 1736 } 1737 1738 mutex_unlock(&pinctrldev_list_mutex); 1739 1740 return 0; 1741 } 1742 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices); 1743 1744 static inline const char *map_type(enum pinctrl_map_type type) 1745 { 1746 static const char * const names[] = { 1747 "INVALID", 1748 "DUMMY_STATE", 1749 "MUX_GROUP", 1750 "CONFIGS_PIN", 1751 "CONFIGS_GROUP", 1752 }; 1753 1754 if (type >= ARRAY_SIZE(names)) 1755 return "UNKNOWN"; 1756 1757 return names[type]; 1758 } 1759 1760 static int pinctrl_maps_show(struct seq_file *s, void *what) 1761 { 1762 struct pinctrl_maps *maps_node; 1763 int i; 1764 const struct pinctrl_map *map; 1765 1766 seq_puts(s, "Pinctrl maps:\n"); 1767 1768 mutex_lock(&pinctrl_maps_mutex); 1769 for_each_maps(maps_node, i, map) { 1770 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1771 map->dev_name, map->name, map_type(map->type), 1772 map->type); 1773 1774 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1775 seq_printf(s, "controlling device %s\n", 1776 map->ctrl_dev_name); 1777 1778 switch (map->type) { 1779 case PIN_MAP_TYPE_MUX_GROUP: 1780 pinmux_show_map(s, map); 1781 break; 1782 case PIN_MAP_TYPE_CONFIGS_PIN: 1783 case PIN_MAP_TYPE_CONFIGS_GROUP: 1784 pinconf_show_map(s, map); 1785 break; 1786 default: 1787 break; 1788 } 1789 1790 seq_putc(s, '\n'); 1791 } 1792 mutex_unlock(&pinctrl_maps_mutex); 1793 1794 return 0; 1795 } 1796 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps); 1797 1798 static int pinctrl_show(struct seq_file *s, void *what) 1799 { 1800 struct pinctrl *p; 1801 struct pinctrl_state *state; 1802 struct pinctrl_setting *setting; 1803 1804 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1805 1806 mutex_lock(&pinctrl_list_mutex); 1807 1808 list_for_each_entry(p, &pinctrl_list, node) { 1809 seq_printf(s, "device: %s current state: %s\n", 1810 dev_name(p->dev), 1811 p->state ? p->state->name : "none"); 1812 1813 list_for_each_entry(state, &p->states, node) { 1814 seq_printf(s, " state: %s\n", state->name); 1815 1816 list_for_each_entry(setting, &state->settings, node) { 1817 struct pinctrl_dev *pctldev = setting->pctldev; 1818 1819 seq_printf(s, " type: %s controller %s ", 1820 map_type(setting->type), 1821 pinctrl_dev_get_name(pctldev)); 1822 1823 switch (setting->type) { 1824 case PIN_MAP_TYPE_MUX_GROUP: 1825 pinmux_show_setting(s, setting); 1826 break; 1827 case PIN_MAP_TYPE_CONFIGS_PIN: 1828 case PIN_MAP_TYPE_CONFIGS_GROUP: 1829 pinconf_show_setting(s, setting); 1830 break; 1831 default: 1832 break; 1833 } 1834 } 1835 } 1836 } 1837 1838 mutex_unlock(&pinctrl_list_mutex); 1839 1840 return 0; 1841 } 1842 DEFINE_SHOW_ATTRIBUTE(pinctrl); 1843 1844 static struct dentry *debugfs_root; 1845 1846 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1847 { 1848 struct dentry *device_root; 1849 const char *debugfs_name; 1850 1851 if (pctldev->desc->name && 1852 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) { 1853 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL, 1854 "%s-%s", dev_name(pctldev->dev), 1855 pctldev->desc->name); 1856 if (!debugfs_name) { 1857 pr_warn("failed to determine debugfs dir name for %s\n", 1858 dev_name(pctldev->dev)); 1859 return; 1860 } 1861 } else { 1862 debugfs_name = dev_name(pctldev->dev); 1863 } 1864 1865 device_root = debugfs_create_dir(debugfs_name, debugfs_root); 1866 pctldev->device_root = device_root; 1867 1868 if (IS_ERR(device_root) || !device_root) { 1869 pr_warn("failed to create debugfs directory for %s\n", 1870 dev_name(pctldev->dev)); 1871 return; 1872 } 1873 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1874 device_root, pctldev, &pinctrl_pins_fops); 1875 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1876 device_root, pctldev, &pinctrl_groups_fops); 1877 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1878 device_root, pctldev, &pinctrl_gpioranges_fops); 1879 if (pctldev->desc->pmxops) 1880 pinmux_init_device_debugfs(device_root, pctldev); 1881 if (pctldev->desc->confops) 1882 pinconf_init_device_debugfs(device_root, pctldev); 1883 } 1884 1885 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1886 { 1887 debugfs_remove_recursive(pctldev->device_root); 1888 } 1889 1890 static void pinctrl_init_debugfs(void) 1891 { 1892 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1893 if (IS_ERR(debugfs_root) || !debugfs_root) { 1894 pr_warn("failed to create debugfs directory\n"); 1895 debugfs_root = NULL; 1896 return; 1897 } 1898 1899 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1900 debugfs_root, NULL, &pinctrl_devices_fops); 1901 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1902 debugfs_root, NULL, &pinctrl_maps_fops); 1903 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1904 debugfs_root, NULL, &pinctrl_fops); 1905 } 1906 1907 #else /* CONFIG_DEBUG_FS */ 1908 1909 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1910 { 1911 } 1912 1913 static void pinctrl_init_debugfs(void) 1914 { 1915 } 1916 1917 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1918 { 1919 } 1920 1921 #endif 1922 1923 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1924 { 1925 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1926 1927 if (!ops || 1928 !ops->get_groups_count || 1929 !ops->get_group_name) 1930 return -EINVAL; 1931 1932 return 0; 1933 } 1934 1935 /** 1936 * pinctrl_init_controller() - init a pin controller device 1937 * @pctldesc: descriptor for this pin controller 1938 * @dev: parent device for this pin controller 1939 * @driver_data: private pin controller data for this pin controller 1940 */ 1941 static struct pinctrl_dev * 1942 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev, 1943 void *driver_data) 1944 { 1945 struct pinctrl_dev *pctldev; 1946 int ret; 1947 1948 if (!pctldesc) 1949 return ERR_PTR(-EINVAL); 1950 if (!pctldesc->name) 1951 return ERR_PTR(-EINVAL); 1952 1953 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1954 if (!pctldev) 1955 return ERR_PTR(-ENOMEM); 1956 1957 /* Initialize pin control device struct */ 1958 pctldev->owner = pctldesc->owner; 1959 pctldev->desc = pctldesc; 1960 pctldev->driver_data = driver_data; 1961 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1962 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 1963 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 1964 #endif 1965 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 1966 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 1967 #endif 1968 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1969 INIT_LIST_HEAD(&pctldev->node); 1970 pctldev->dev = dev; 1971 mutex_init(&pctldev->mutex); 1972 1973 /* check core ops for sanity */ 1974 ret = pinctrl_check_ops(pctldev); 1975 if (ret) { 1976 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1977 goto out_err; 1978 } 1979 1980 /* If we're implementing pinmuxing, check the ops for sanity */ 1981 if (pctldesc->pmxops) { 1982 ret = pinmux_check_ops(pctldev); 1983 if (ret) 1984 goto out_err; 1985 } 1986 1987 /* If we're implementing pinconfig, check the ops for sanity */ 1988 if (pctldesc->confops) { 1989 ret = pinconf_check_ops(pctldev); 1990 if (ret) 1991 goto out_err; 1992 } 1993 1994 /* Register all the pins */ 1995 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1996 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1997 if (ret) { 1998 dev_err(dev, "error during pin registration\n"); 1999 pinctrl_free_pindescs(pctldev, pctldesc->pins, 2000 pctldesc->npins); 2001 goto out_err; 2002 } 2003 2004 return pctldev; 2005 2006 out_err: 2007 mutex_destroy(&pctldev->mutex); 2008 kfree(pctldev); 2009 return ERR_PTR(ret); 2010 } 2011 2012 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 2013 { 2014 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 2015 if (PTR_ERR(pctldev->p) == -ENODEV) { 2016 dev_dbg(pctldev->dev, "no hogs found\n"); 2017 2018 return 0; 2019 } 2020 2021 if (IS_ERR(pctldev->p)) { 2022 dev_err(pctldev->dev, "error claiming hogs: %li\n", 2023 PTR_ERR(pctldev->p)); 2024 2025 return PTR_ERR(pctldev->p); 2026 } 2027 2028 kref_get(&pctldev->p->users); 2029 pctldev->hog_default = 2030 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2031 if (IS_ERR(pctldev->hog_default)) { 2032 dev_dbg(pctldev->dev, 2033 "failed to lookup the default state\n"); 2034 } else { 2035 if (pinctrl_select_state(pctldev->p, 2036 pctldev->hog_default)) 2037 dev_err(pctldev->dev, 2038 "failed to select default state\n"); 2039 } 2040 2041 pctldev->hog_sleep = 2042 pinctrl_lookup_state(pctldev->p, 2043 PINCTRL_STATE_SLEEP); 2044 if (IS_ERR(pctldev->hog_sleep)) 2045 dev_dbg(pctldev->dev, 2046 "failed to lookup the sleep state\n"); 2047 2048 return 0; 2049 } 2050 2051 int pinctrl_enable(struct pinctrl_dev *pctldev) 2052 { 2053 int error; 2054 2055 error = pinctrl_claim_hogs(pctldev); 2056 if (error) { 2057 dev_err(pctldev->dev, "could not claim hogs: %i\n", 2058 error); 2059 mutex_destroy(&pctldev->mutex); 2060 kfree(pctldev); 2061 2062 return error; 2063 } 2064 2065 mutex_lock(&pinctrldev_list_mutex); 2066 list_add_tail(&pctldev->node, &pinctrldev_list); 2067 mutex_unlock(&pinctrldev_list_mutex); 2068 2069 pinctrl_init_device_debugfs(pctldev); 2070 2071 return 0; 2072 } 2073 EXPORT_SYMBOL_GPL(pinctrl_enable); 2074 2075 /** 2076 * pinctrl_register() - register a pin controller device 2077 * @pctldesc: descriptor for this pin controller 2078 * @dev: parent device for this pin controller 2079 * @driver_data: private pin controller data for this pin controller 2080 * 2081 * Note that pinctrl_register() is known to have problems as the pin 2082 * controller driver functions are called before the driver has a 2083 * struct pinctrl_dev handle. To avoid issues later on, please use the 2084 * new pinctrl_register_and_init() below instead. 2085 */ 2086 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 2087 struct device *dev, void *driver_data) 2088 { 2089 struct pinctrl_dev *pctldev; 2090 int error; 2091 2092 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2093 if (IS_ERR(pctldev)) 2094 return pctldev; 2095 2096 error = pinctrl_enable(pctldev); 2097 if (error) 2098 return ERR_PTR(error); 2099 2100 return pctldev; 2101 2102 } 2103 EXPORT_SYMBOL_GPL(pinctrl_register); 2104 2105 /** 2106 * pinctrl_register_and_init() - register and init pin controller device 2107 * @pctldesc: descriptor for this pin controller 2108 * @dev: parent device for this pin controller 2109 * @driver_data: private pin controller data for this pin controller 2110 * @pctldev: pin controller device 2111 * 2112 * Note that pinctrl_enable() still needs to be manually called after 2113 * this once the driver is ready. 2114 */ 2115 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, 2116 struct device *dev, void *driver_data, 2117 struct pinctrl_dev **pctldev) 2118 { 2119 struct pinctrl_dev *p; 2120 2121 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2122 if (IS_ERR(p)) 2123 return PTR_ERR(p); 2124 2125 /* 2126 * We have pinctrl_start() call functions in the pin controller 2127 * driver with create_pinctrl() for at least dt_node_to_map(). So 2128 * let's make sure pctldev is properly initialized for the 2129 * pin controller driver before we do anything. 2130 */ 2131 *pctldev = p; 2132 2133 return 0; 2134 } 2135 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2136 2137 /** 2138 * pinctrl_unregister() - unregister pinmux 2139 * @pctldev: pin controller to unregister 2140 * 2141 * Called by pinmux drivers to unregister a pinmux. 2142 */ 2143 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2144 { 2145 struct pinctrl_gpio_range *range, *n; 2146 2147 if (!pctldev) 2148 return; 2149 2150 mutex_lock(&pctldev->mutex); 2151 pinctrl_remove_device_debugfs(pctldev); 2152 mutex_unlock(&pctldev->mutex); 2153 2154 if (!IS_ERR_OR_NULL(pctldev->p)) 2155 pinctrl_put(pctldev->p); 2156 2157 mutex_lock(&pinctrldev_list_mutex); 2158 mutex_lock(&pctldev->mutex); 2159 /* TODO: check that no pinmuxes are still active? */ 2160 list_del(&pctldev->node); 2161 pinmux_generic_free_functions(pctldev); 2162 pinctrl_generic_free_groups(pctldev); 2163 /* Destroy descriptor tree */ 2164 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2165 pctldev->desc->npins); 2166 /* remove gpio ranges map */ 2167 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2168 list_del(&range->node); 2169 2170 mutex_unlock(&pctldev->mutex); 2171 mutex_destroy(&pctldev->mutex); 2172 kfree(pctldev); 2173 mutex_unlock(&pinctrldev_list_mutex); 2174 } 2175 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2176 2177 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2178 { 2179 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2180 2181 pinctrl_unregister(pctldev); 2182 } 2183 2184 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2185 { 2186 struct pctldev **r = res; 2187 2188 if (WARN_ON(!r || !*r)) 2189 return 0; 2190 2191 return *r == data; 2192 } 2193 2194 /** 2195 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2196 * @dev: parent device for this pin controller 2197 * @pctldesc: descriptor for this pin controller 2198 * @driver_data: private pin controller data for this pin controller 2199 * 2200 * Returns an error pointer if pincontrol register failed. Otherwise 2201 * it returns valid pinctrl handle. 2202 * 2203 * The pinctrl device will be automatically released when the device is unbound. 2204 */ 2205 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2206 struct pinctrl_desc *pctldesc, 2207 void *driver_data) 2208 { 2209 struct pinctrl_dev **ptr, *pctldev; 2210 2211 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2212 if (!ptr) 2213 return ERR_PTR(-ENOMEM); 2214 2215 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2216 if (IS_ERR(pctldev)) { 2217 devres_free(ptr); 2218 return pctldev; 2219 } 2220 2221 *ptr = pctldev; 2222 devres_add(dev, ptr); 2223 2224 return pctldev; 2225 } 2226 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2227 2228 /** 2229 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2230 * @dev: parent device for this pin controller 2231 * @pctldesc: descriptor for this pin controller 2232 * @driver_data: private pin controller data for this pin controller 2233 * 2234 * Returns an error pointer if pincontrol register failed. Otherwise 2235 * it returns valid pinctrl handle. 2236 * 2237 * The pinctrl device will be automatically released when the device is unbound. 2238 */ 2239 int devm_pinctrl_register_and_init(struct device *dev, 2240 struct pinctrl_desc *pctldesc, 2241 void *driver_data, 2242 struct pinctrl_dev **pctldev) 2243 { 2244 struct pinctrl_dev **ptr; 2245 int error; 2246 2247 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2248 if (!ptr) 2249 return -ENOMEM; 2250 2251 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2252 if (error) { 2253 devres_free(ptr); 2254 return error; 2255 } 2256 2257 *ptr = *pctldev; 2258 devres_add(dev, ptr); 2259 2260 return 0; 2261 } 2262 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2263 2264 /** 2265 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2266 * @dev: device for which which resource was allocated 2267 * @pctldev: the pinctrl device to unregister. 2268 */ 2269 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2270 { 2271 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2272 devm_pinctrl_dev_match, pctldev)); 2273 } 2274 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2275 2276 static int __init pinctrl_init(void) 2277 { 2278 pr_info("initialized pinctrl subsystem\n"); 2279 pinctrl_init_debugfs(); 2280 return 0; 2281 } 2282 2283 /* init early since many drivers really need to initialized pinmux early */ 2284 core_initcall(pinctrl_init); 2285