xref: /linux/drivers/pinctrl/core.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * Core driver for the pin control subsystem
3  *
4  * Copyright (C) 2011-2012 ST-Ericsson SA
5  * Written on behalf of Linaro for ST-Ericsson
6  * Based on bits of regulator core, gpio core and clk core
7  *
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11  *
12  * License terms: GNU General Public License (GPL) version 2
13  */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15 
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30 
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34 
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39 
40 
41 static bool pinctrl_dummy_state;
42 
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45 
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48 
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51 
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54 
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57 
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60 
61 
62 /**
63  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64  *
65  * Usually this function is called by platforms without pinctrl driver support
66  * but run with some shared drivers using pinctrl APIs.
67  * After calling this function, the pinctrl core will return successfully
68  * with creating a dummy state for the driver to keep going smoothly.
69  */
70 void pinctrl_provide_dummies(void)
71 {
72 	pinctrl_dummy_state = true;
73 }
74 
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 	/* We're not allowed to register devices without name */
78 	return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81 
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 	return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87 
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 	return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93 
94 /**
95  * get_pinctrl_dev_from_devname() - look up pin controller device
96  * @devname: the name of a device instance, as returned by dev_name()
97  *
98  * Looks up a pin control device matching a certain device name or pure device
99  * pointer, the pure device pointer will take precedence.
100  */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 	struct pinctrl_dev *pctldev = NULL;
104 
105 	if (!devname)
106 		return NULL;
107 
108 	mutex_lock(&pinctrldev_list_mutex);
109 
110 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 		if (!strcmp(dev_name(pctldev->dev), devname)) {
112 			/* Matched on device name */
113 			mutex_unlock(&pinctrldev_list_mutex);
114 			return pctldev;
115 		}
116 	}
117 
118 	mutex_unlock(&pinctrldev_list_mutex);
119 
120 	return NULL;
121 }
122 
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 	struct pinctrl_dev *pctldev;
126 
127 	mutex_lock(&pinctrldev_list_mutex);
128 
129 	list_for_each_entry(pctldev, &pinctrldev_list, node)
130 		if (pctldev->dev->of_node == np) {
131 			mutex_unlock(&pinctrldev_list_mutex);
132 			return pctldev;
133 		}
134 
135 	mutex_unlock(&pinctrldev_list_mutex);
136 
137 	return NULL;
138 }
139 
140 /**
141  * pin_get_from_name() - look up a pin number from a name
142  * @pctldev: the pin control device to lookup the pin on
143  * @name: the name of the pin to look up
144  */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 	unsigned i, pin;
148 
149 	/* The pin number can be retrived from the pin controller descriptor */
150 	for (i = 0; i < pctldev->desc->npins; i++) {
151 		struct pin_desc *desc;
152 
153 		pin = pctldev->desc->pins[i].number;
154 		desc = pin_desc_get(pctldev, pin);
155 		/* Pin space may be sparse */
156 		if (desc && !strcmp(name, desc->name))
157 			return pin;
158 	}
159 
160 	return -EINVAL;
161 }
162 
163 /**
164  * pin_get_name_from_id() - look up a pin name from a pin id
165  * @pctldev: the pin control device to lookup the pin on
166  * @name: the name of the pin to look up
167  */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 	const struct pin_desc *desc;
171 
172 	desc = pin_desc_get(pctldev, pin);
173 	if (desc == NULL) {
174 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 			pin);
176 		return NULL;
177 	}
178 
179 	return desc->name;
180 }
181 
182 /**
183  * pin_is_valid() - check if pin exists on controller
184  * @pctldev: the pin control device to check the pin on
185  * @pin: pin to check, use the local pin controller index number
186  *
187  * This tells us whether a certain pin exist on a certain pin controller or
188  * not. Pin lists may be sparse, so some pins may not exist.
189  */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 	struct pin_desc *pindesc;
193 
194 	if (pin < 0)
195 		return false;
196 
197 	mutex_lock(&pctldev->mutex);
198 	pindesc = pin_desc_get(pctldev, pin);
199 	mutex_unlock(&pctldev->mutex);
200 
201 	return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204 
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 				  const struct pinctrl_pin_desc *pins,
208 				  unsigned num_pins)
209 {
210 	int i;
211 
212 	for (i = 0; i < num_pins; i++) {
213 		struct pin_desc *pindesc;
214 
215 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 					    pins[i].number);
217 		if (pindesc != NULL) {
218 			radix_tree_delete(&pctldev->pin_desc_tree,
219 					  pins[i].number);
220 			if (pindesc->dynamic_name)
221 				kfree(pindesc->name);
222 		}
223 		kfree(pindesc);
224 	}
225 }
226 
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 				    const struct pinctrl_pin_desc *pin)
229 {
230 	struct pin_desc *pindesc;
231 
232 	pindesc = pin_desc_get(pctldev, pin->number);
233 	if (pindesc != NULL) {
234 		dev_err(pctldev->dev, "pin %d already registered\n",
235 			pin->number);
236 		return -EINVAL;
237 	}
238 
239 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 	if (pindesc == NULL) {
241 		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
242 		return -ENOMEM;
243 	}
244 
245 	/* Set owner */
246 	pindesc->pctldev = pctldev;
247 
248 	/* Copy basic pin info */
249 	if (pin->name) {
250 		pindesc->name = pin->name;
251 	} else {
252 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
253 		if (pindesc->name == NULL) {
254 			kfree(pindesc);
255 			return -ENOMEM;
256 		}
257 		pindesc->dynamic_name = true;
258 	}
259 
260 	pindesc->drv_data = pin->drv_data;
261 
262 	radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
263 	pr_debug("registered pin %d (%s) on %s\n",
264 		 pin->number, pindesc->name, pctldev->desc->name);
265 	return 0;
266 }
267 
268 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
269 				 struct pinctrl_pin_desc const *pins,
270 				 unsigned num_descs)
271 {
272 	unsigned i;
273 	int ret = 0;
274 
275 	for (i = 0; i < num_descs; i++) {
276 		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
277 		if (ret)
278 			return ret;
279 	}
280 
281 	return 0;
282 }
283 
284 /**
285  * gpio_to_pin() - GPIO range GPIO number to pin number translation
286  * @range: GPIO range used for the translation
287  * @gpio: gpio pin to translate to a pin number
288  *
289  * Finds the pin number for a given GPIO using the specified GPIO range
290  * as a base for translation. The distinction between linear GPIO ranges
291  * and pin list based GPIO ranges is managed correctly by this function.
292  *
293  * This function assumes the gpio is part of the specified GPIO range, use
294  * only after making sure this is the case (e.g. by calling it on the
295  * result of successful pinctrl_get_device_gpio_range calls)!
296  */
297 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
298 				unsigned int gpio)
299 {
300 	unsigned int offset = gpio - range->base;
301 	if (range->pins)
302 		return range->pins[offset];
303 	else
304 		return range->pin_base + offset;
305 }
306 
307 /**
308  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
309  * @pctldev: pin controller device to check
310  * @gpio: gpio pin to check taken from the global GPIO pin space
311  *
312  * Tries to match a GPIO pin number to the ranges handled by a certain pin
313  * controller, return the range or NULL
314  */
315 static struct pinctrl_gpio_range *
316 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
317 {
318 	struct pinctrl_gpio_range *range = NULL;
319 
320 	mutex_lock(&pctldev->mutex);
321 	/* Loop over the ranges */
322 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
323 		/* Check if we're in the valid range */
324 		if (gpio >= range->base &&
325 		    gpio < range->base + range->npins) {
326 			mutex_unlock(&pctldev->mutex);
327 			return range;
328 		}
329 	}
330 	mutex_unlock(&pctldev->mutex);
331 	return NULL;
332 }
333 
334 /**
335  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
336  * the same GPIO chip are in range
337  * @gpio: gpio pin to check taken from the global GPIO pin space
338  *
339  * This function is complement of pinctrl_match_gpio_range(). If the return
340  * value of pinctrl_match_gpio_range() is NULL, this function could be used
341  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
342  * of the same GPIO chip don't have back-end pinctrl interface.
343  * If the return value is true, it means that pinctrl device is ready & the
344  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
345  * is false, it means that pinctrl device may not be ready.
346  */
347 #ifdef CONFIG_GPIOLIB
348 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
349 {
350 	struct pinctrl_dev *pctldev;
351 	struct pinctrl_gpio_range *range = NULL;
352 	struct gpio_chip *chip = gpio_to_chip(gpio);
353 
354 	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
355 		return false;
356 
357 	mutex_lock(&pinctrldev_list_mutex);
358 
359 	/* Loop over the pin controllers */
360 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
361 		/* Loop over the ranges */
362 		mutex_lock(&pctldev->mutex);
363 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
364 			/* Check if any gpio range overlapped with gpio chip */
365 			if (range->base + range->npins - 1 < chip->base ||
366 			    range->base > chip->base + chip->ngpio - 1)
367 				continue;
368 			mutex_unlock(&pctldev->mutex);
369 			mutex_unlock(&pinctrldev_list_mutex);
370 			return true;
371 		}
372 		mutex_unlock(&pctldev->mutex);
373 	}
374 
375 	mutex_unlock(&pinctrldev_list_mutex);
376 
377 	return false;
378 }
379 #else
380 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
381 #endif
382 
383 /**
384  * pinctrl_get_device_gpio_range() - find device for GPIO range
385  * @gpio: the pin to locate the pin controller for
386  * @outdev: the pin control device if found
387  * @outrange: the GPIO range if found
388  *
389  * Find the pin controller handling a certain GPIO pin from the pinspace of
390  * the GPIO subsystem, return the device and the matching GPIO range. Returns
391  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
392  * may still have not been registered.
393  */
394 static int pinctrl_get_device_gpio_range(unsigned gpio,
395 					 struct pinctrl_dev **outdev,
396 					 struct pinctrl_gpio_range **outrange)
397 {
398 	struct pinctrl_dev *pctldev = NULL;
399 
400 	mutex_lock(&pinctrldev_list_mutex);
401 
402 	/* Loop over the pin controllers */
403 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
404 		struct pinctrl_gpio_range *range;
405 
406 		range = pinctrl_match_gpio_range(pctldev, gpio);
407 		if (range != NULL) {
408 			*outdev = pctldev;
409 			*outrange = range;
410 			mutex_unlock(&pinctrldev_list_mutex);
411 			return 0;
412 		}
413 	}
414 
415 	mutex_unlock(&pinctrldev_list_mutex);
416 
417 	return -EPROBE_DEFER;
418 }
419 
420 /**
421  * pinctrl_add_gpio_range() - register a GPIO range for a controller
422  * @pctldev: pin controller device to add the range to
423  * @range: the GPIO range to add
424  *
425  * This adds a range of GPIOs to be handled by a certain pin controller. Call
426  * this to register handled ranges after registering your pin controller.
427  */
428 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
429 			    struct pinctrl_gpio_range *range)
430 {
431 	mutex_lock(&pctldev->mutex);
432 	list_add_tail(&range->node, &pctldev->gpio_ranges);
433 	mutex_unlock(&pctldev->mutex);
434 }
435 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
436 
437 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
438 			     struct pinctrl_gpio_range *ranges,
439 			     unsigned nranges)
440 {
441 	int i;
442 
443 	for (i = 0; i < nranges; i++)
444 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
445 }
446 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
447 
448 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
449 		struct pinctrl_gpio_range *range)
450 {
451 	struct pinctrl_dev *pctldev;
452 
453 	pctldev = get_pinctrl_dev_from_devname(devname);
454 
455 	/*
456 	 * If we can't find this device, let's assume that is because
457 	 * it has not probed yet, so the driver trying to register this
458 	 * range need to defer probing.
459 	 */
460 	if (!pctldev) {
461 		return ERR_PTR(-EPROBE_DEFER);
462 	}
463 	pinctrl_add_gpio_range(pctldev, range);
464 
465 	return pctldev;
466 }
467 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
468 
469 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
470 				const unsigned **pins, unsigned *num_pins)
471 {
472 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
473 	int gs;
474 
475 	if (!pctlops->get_group_pins)
476 		return -EINVAL;
477 
478 	gs = pinctrl_get_group_selector(pctldev, pin_group);
479 	if (gs < 0)
480 		return gs;
481 
482 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
483 }
484 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
485 
486 struct pinctrl_gpio_range *
487 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
488 					unsigned int pin)
489 {
490 	struct pinctrl_gpio_range *range;
491 
492 	/* Loop over the ranges */
493 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
494 		/* Check if we're in the valid range */
495 		if (range->pins) {
496 			int a;
497 			for (a = 0; a < range->npins; a++) {
498 				if (range->pins[a] == pin)
499 					return range;
500 			}
501 		} else if (pin >= range->pin_base &&
502 			   pin < range->pin_base + range->npins)
503 			return range;
504 	}
505 
506 	return NULL;
507 }
508 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
509 
510 /**
511  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
512  * @pctldev: the pin controller device to look in
513  * @pin: a controller-local number to find the range for
514  */
515 struct pinctrl_gpio_range *
516 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
517 				 unsigned int pin)
518 {
519 	struct pinctrl_gpio_range *range;
520 
521 	mutex_lock(&pctldev->mutex);
522 	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
523 	mutex_unlock(&pctldev->mutex);
524 
525 	return range;
526 }
527 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
528 
529 /**
530  * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
531  * @pctldev: pin controller device to remove the range from
532  * @range: the GPIO range to remove
533  */
534 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
535 			       struct pinctrl_gpio_range *range)
536 {
537 	mutex_lock(&pctldev->mutex);
538 	list_del(&range->node);
539 	mutex_unlock(&pctldev->mutex);
540 }
541 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
542 
543 /**
544  * pinctrl_get_group_selector() - returns the group selector for a group
545  * @pctldev: the pin controller handling the group
546  * @pin_group: the pin group to look up
547  */
548 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
549 			       const char *pin_group)
550 {
551 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
552 	unsigned ngroups = pctlops->get_groups_count(pctldev);
553 	unsigned group_selector = 0;
554 
555 	while (group_selector < ngroups) {
556 		const char *gname = pctlops->get_group_name(pctldev,
557 							    group_selector);
558 		if (!strcmp(gname, pin_group)) {
559 			dev_dbg(pctldev->dev,
560 				"found group selector %u for %s\n",
561 				group_selector,
562 				pin_group);
563 			return group_selector;
564 		}
565 
566 		group_selector++;
567 	}
568 
569 	dev_err(pctldev->dev, "does not have pin group %s\n",
570 		pin_group);
571 
572 	return -EINVAL;
573 }
574 
575 /**
576  * pinctrl_request_gpio() - request a single pin to be used as GPIO
577  * @gpio: the GPIO pin number from the GPIO subsystem number space
578  *
579  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
580  * as part of their gpio_request() semantics, platforms and individual drivers
581  * shall *NOT* request GPIO pins to be muxed in.
582  */
583 int pinctrl_request_gpio(unsigned gpio)
584 {
585 	struct pinctrl_dev *pctldev;
586 	struct pinctrl_gpio_range *range;
587 	int ret;
588 	int pin;
589 
590 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
591 	if (ret) {
592 		if (pinctrl_ready_for_gpio_range(gpio))
593 			ret = 0;
594 		return ret;
595 	}
596 
597 	mutex_lock(&pctldev->mutex);
598 
599 	/* Convert to the pin controllers number space */
600 	pin = gpio_to_pin(range, gpio);
601 
602 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
603 
604 	mutex_unlock(&pctldev->mutex);
605 
606 	return ret;
607 }
608 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
609 
610 /**
611  * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
612  * @gpio: the GPIO pin number from the GPIO subsystem number space
613  *
614  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
615  * as part of their gpio_free() semantics, platforms and individual drivers
616  * shall *NOT* request GPIO pins to be muxed out.
617  */
618 void pinctrl_free_gpio(unsigned gpio)
619 {
620 	struct pinctrl_dev *pctldev;
621 	struct pinctrl_gpio_range *range;
622 	int ret;
623 	int pin;
624 
625 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
626 	if (ret) {
627 		return;
628 	}
629 	mutex_lock(&pctldev->mutex);
630 
631 	/* Convert to the pin controllers number space */
632 	pin = gpio_to_pin(range, gpio);
633 
634 	pinmux_free_gpio(pctldev, pin, range);
635 
636 	mutex_unlock(&pctldev->mutex);
637 }
638 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
639 
640 static int pinctrl_gpio_direction(unsigned gpio, bool input)
641 {
642 	struct pinctrl_dev *pctldev;
643 	struct pinctrl_gpio_range *range;
644 	int ret;
645 	int pin;
646 
647 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
648 	if (ret) {
649 		return ret;
650 	}
651 
652 	mutex_lock(&pctldev->mutex);
653 
654 	/* Convert to the pin controllers number space */
655 	pin = gpio_to_pin(range, gpio);
656 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
657 
658 	mutex_unlock(&pctldev->mutex);
659 
660 	return ret;
661 }
662 
663 /**
664  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
665  * @gpio: the GPIO pin number from the GPIO subsystem number space
666  *
667  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
668  * as part of their gpio_direction_input() semantics, platforms and individual
669  * drivers shall *NOT* touch pin control GPIO calls.
670  */
671 int pinctrl_gpio_direction_input(unsigned gpio)
672 {
673 	return pinctrl_gpio_direction(gpio, true);
674 }
675 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
676 
677 /**
678  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
679  * @gpio: the GPIO pin number from the GPIO subsystem number space
680  *
681  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
682  * as part of their gpio_direction_output() semantics, platforms and individual
683  * drivers shall *NOT* touch pin control GPIO calls.
684  */
685 int pinctrl_gpio_direction_output(unsigned gpio)
686 {
687 	return pinctrl_gpio_direction(gpio, false);
688 }
689 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
690 
691 static struct pinctrl_state *find_state(struct pinctrl *p,
692 					const char *name)
693 {
694 	struct pinctrl_state *state;
695 
696 	list_for_each_entry(state, &p->states, node)
697 		if (!strcmp(state->name, name))
698 			return state;
699 
700 	return NULL;
701 }
702 
703 static struct pinctrl_state *create_state(struct pinctrl *p,
704 					  const char *name)
705 {
706 	struct pinctrl_state *state;
707 
708 	state = kzalloc(sizeof(*state), GFP_KERNEL);
709 	if (state == NULL) {
710 		dev_err(p->dev,
711 			"failed to alloc struct pinctrl_state\n");
712 		return ERR_PTR(-ENOMEM);
713 	}
714 
715 	state->name = name;
716 	INIT_LIST_HEAD(&state->settings);
717 
718 	list_add_tail(&state->node, &p->states);
719 
720 	return state;
721 }
722 
723 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
724 {
725 	struct pinctrl_state *state;
726 	struct pinctrl_setting *setting;
727 	int ret;
728 
729 	state = find_state(p, map->name);
730 	if (!state)
731 		state = create_state(p, map->name);
732 	if (IS_ERR(state))
733 		return PTR_ERR(state);
734 
735 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
736 		return 0;
737 
738 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
739 	if (setting == NULL) {
740 		dev_err(p->dev,
741 			"failed to alloc struct pinctrl_setting\n");
742 		return -ENOMEM;
743 	}
744 
745 	setting->type = map->type;
746 
747 	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
748 	if (setting->pctldev == NULL) {
749 		kfree(setting);
750 		/* Do not defer probing of hogs (circular loop) */
751 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
752 			return -ENODEV;
753 		/*
754 		 * OK let us guess that the driver is not there yet, and
755 		 * let's defer obtaining this pinctrl handle to later...
756 		 */
757 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
758 			map->ctrl_dev_name);
759 		return -EPROBE_DEFER;
760 	}
761 
762 	setting->dev_name = map->dev_name;
763 
764 	switch (map->type) {
765 	case PIN_MAP_TYPE_MUX_GROUP:
766 		ret = pinmux_map_to_setting(map, setting);
767 		break;
768 	case PIN_MAP_TYPE_CONFIGS_PIN:
769 	case PIN_MAP_TYPE_CONFIGS_GROUP:
770 		ret = pinconf_map_to_setting(map, setting);
771 		break;
772 	default:
773 		ret = -EINVAL;
774 		break;
775 	}
776 	if (ret < 0) {
777 		kfree(setting);
778 		return ret;
779 	}
780 
781 	list_add_tail(&setting->node, &state->settings);
782 
783 	return 0;
784 }
785 
786 static struct pinctrl *find_pinctrl(struct device *dev)
787 {
788 	struct pinctrl *p;
789 
790 	mutex_lock(&pinctrl_list_mutex);
791 	list_for_each_entry(p, &pinctrl_list, node)
792 		if (p->dev == dev) {
793 			mutex_unlock(&pinctrl_list_mutex);
794 			return p;
795 		}
796 
797 	mutex_unlock(&pinctrl_list_mutex);
798 	return NULL;
799 }
800 
801 static void pinctrl_free(struct pinctrl *p, bool inlist);
802 
803 static struct pinctrl *create_pinctrl(struct device *dev)
804 {
805 	struct pinctrl *p;
806 	const char *devname;
807 	struct pinctrl_maps *maps_node;
808 	int i;
809 	struct pinctrl_map const *map;
810 	int ret;
811 
812 	/*
813 	 * create the state cookie holder struct pinctrl for each
814 	 * mapping, this is what consumers will get when requesting
815 	 * a pin control handle with pinctrl_get()
816 	 */
817 	p = kzalloc(sizeof(*p), GFP_KERNEL);
818 	if (p == NULL) {
819 		dev_err(dev, "failed to alloc struct pinctrl\n");
820 		return ERR_PTR(-ENOMEM);
821 	}
822 	p->dev = dev;
823 	INIT_LIST_HEAD(&p->states);
824 	INIT_LIST_HEAD(&p->dt_maps);
825 
826 	ret = pinctrl_dt_to_map(p);
827 	if (ret < 0) {
828 		kfree(p);
829 		return ERR_PTR(ret);
830 	}
831 
832 	devname = dev_name(dev);
833 
834 	mutex_lock(&pinctrl_maps_mutex);
835 	/* Iterate over the pin control maps to locate the right ones */
836 	for_each_maps(maps_node, i, map) {
837 		/* Map must be for this device */
838 		if (strcmp(map->dev_name, devname))
839 			continue;
840 
841 		ret = add_setting(p, map);
842 		/*
843 		 * At this point the adding of a setting may:
844 		 *
845 		 * - Defer, if the pinctrl device is not yet available
846 		 * - Fail, if the pinctrl device is not yet available,
847 		 *   AND the setting is a hog. We cannot defer that, since
848 		 *   the hog will kick in immediately after the device
849 		 *   is registered.
850 		 *
851 		 * If the error returned was not -EPROBE_DEFER then we
852 		 * accumulate the errors to see if we end up with
853 		 * an -EPROBE_DEFER later, as that is the worst case.
854 		 */
855 		if (ret == -EPROBE_DEFER) {
856 			pinctrl_free(p, false);
857 			mutex_unlock(&pinctrl_maps_mutex);
858 			return ERR_PTR(ret);
859 		}
860 	}
861 	mutex_unlock(&pinctrl_maps_mutex);
862 
863 	if (ret < 0) {
864 		/* If some other error than deferral occured, return here */
865 		pinctrl_free(p, false);
866 		return ERR_PTR(ret);
867 	}
868 
869 	kref_init(&p->users);
870 
871 	/* Add the pinctrl handle to the global list */
872 	mutex_lock(&pinctrl_list_mutex);
873 	list_add_tail(&p->node, &pinctrl_list);
874 	mutex_unlock(&pinctrl_list_mutex);
875 
876 	return p;
877 }
878 
879 /**
880  * pinctrl_get() - retrieves the pinctrl handle for a device
881  * @dev: the device to obtain the handle for
882  */
883 struct pinctrl *pinctrl_get(struct device *dev)
884 {
885 	struct pinctrl *p;
886 
887 	if (WARN_ON(!dev))
888 		return ERR_PTR(-EINVAL);
889 
890 	/*
891 	 * See if somebody else (such as the device core) has already
892 	 * obtained a handle to the pinctrl for this device. In that case,
893 	 * return another pointer to it.
894 	 */
895 	p = find_pinctrl(dev);
896 	if (p != NULL) {
897 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
898 		kref_get(&p->users);
899 		return p;
900 	}
901 
902 	return create_pinctrl(dev);
903 }
904 EXPORT_SYMBOL_GPL(pinctrl_get);
905 
906 static void pinctrl_free_setting(bool disable_setting,
907 				 struct pinctrl_setting *setting)
908 {
909 	switch (setting->type) {
910 	case PIN_MAP_TYPE_MUX_GROUP:
911 		if (disable_setting)
912 			pinmux_disable_setting(setting);
913 		pinmux_free_setting(setting);
914 		break;
915 	case PIN_MAP_TYPE_CONFIGS_PIN:
916 	case PIN_MAP_TYPE_CONFIGS_GROUP:
917 		pinconf_free_setting(setting);
918 		break;
919 	default:
920 		break;
921 	}
922 }
923 
924 static void pinctrl_free(struct pinctrl *p, bool inlist)
925 {
926 	struct pinctrl_state *state, *n1;
927 	struct pinctrl_setting *setting, *n2;
928 
929 	mutex_lock(&pinctrl_list_mutex);
930 	list_for_each_entry_safe(state, n1, &p->states, node) {
931 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
932 			pinctrl_free_setting(state == p->state, setting);
933 			list_del(&setting->node);
934 			kfree(setting);
935 		}
936 		list_del(&state->node);
937 		kfree(state);
938 	}
939 
940 	pinctrl_dt_free_maps(p);
941 
942 	if (inlist)
943 		list_del(&p->node);
944 	kfree(p);
945 	mutex_unlock(&pinctrl_list_mutex);
946 }
947 
948 /**
949  * pinctrl_release() - release the pinctrl handle
950  * @kref: the kref in the pinctrl being released
951  */
952 static void pinctrl_release(struct kref *kref)
953 {
954 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
955 
956 	pinctrl_free(p, true);
957 }
958 
959 /**
960  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
961  * @p: the pinctrl handle to release
962  */
963 void pinctrl_put(struct pinctrl *p)
964 {
965 	kref_put(&p->users, pinctrl_release);
966 }
967 EXPORT_SYMBOL_GPL(pinctrl_put);
968 
969 /**
970  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
971  * @p: the pinctrl handle to retrieve the state from
972  * @name: the state name to retrieve
973  */
974 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
975 						 const char *name)
976 {
977 	struct pinctrl_state *state;
978 
979 	state = find_state(p, name);
980 	if (!state) {
981 		if (pinctrl_dummy_state) {
982 			/* create dummy state */
983 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
984 				name);
985 			state = create_state(p, name);
986 		} else
987 			state = ERR_PTR(-ENODEV);
988 	}
989 
990 	return state;
991 }
992 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
993 
994 /**
995  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
996  * @p: the pinctrl handle for the device that requests configuration
997  * @state: the state handle to select/activate/program
998  */
999 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1000 {
1001 	struct pinctrl_setting *setting, *setting2;
1002 	struct pinctrl_state *old_state = p->state;
1003 	int ret;
1004 
1005 	if (p->state == state)
1006 		return 0;
1007 
1008 	if (p->state) {
1009 		/*
1010 		 * For each pinmux setting in the old state, forget SW's record
1011 		 * of mux owner for that pingroup. Any pingroups which are
1012 		 * still owned by the new state will be re-acquired by the call
1013 		 * to pinmux_enable_setting() in the loop below.
1014 		 */
1015 		list_for_each_entry(setting, &p->state->settings, node) {
1016 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1017 				continue;
1018 			pinmux_disable_setting(setting);
1019 		}
1020 	}
1021 
1022 	p->state = NULL;
1023 
1024 	/* Apply all the settings for the new state */
1025 	list_for_each_entry(setting, &state->settings, node) {
1026 		switch (setting->type) {
1027 		case PIN_MAP_TYPE_MUX_GROUP:
1028 			ret = pinmux_enable_setting(setting);
1029 			break;
1030 		case PIN_MAP_TYPE_CONFIGS_PIN:
1031 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1032 			ret = pinconf_apply_setting(setting);
1033 			break;
1034 		default:
1035 			ret = -EINVAL;
1036 			break;
1037 		}
1038 
1039 		if (ret < 0) {
1040 			goto unapply_new_state;
1041 		}
1042 	}
1043 
1044 	p->state = state;
1045 
1046 	return 0;
1047 
1048 unapply_new_state:
1049 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1050 
1051 	list_for_each_entry(setting2, &state->settings, node) {
1052 		if (&setting2->node == &setting->node)
1053 			break;
1054 		/*
1055 		 * All we can do here is pinmux_disable_setting.
1056 		 * That means that some pins are muxed differently now
1057 		 * than they were before applying the setting (We can't
1058 		 * "unmux a pin"!), but it's not a big deal since the pins
1059 		 * are free to be muxed by another apply_setting.
1060 		 */
1061 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1062 			pinmux_disable_setting(setting2);
1063 	}
1064 
1065 	/* There's no infinite recursive loop here because p->state is NULL */
1066 	if (old_state)
1067 		pinctrl_select_state(p, old_state);
1068 
1069 	return ret;
1070 }
1071 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1072 
1073 static void devm_pinctrl_release(struct device *dev, void *res)
1074 {
1075 	pinctrl_put(*(struct pinctrl **)res);
1076 }
1077 
1078 /**
1079  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1080  * @dev: the device to obtain the handle for
1081  *
1082  * If there is a need to explicitly destroy the returned struct pinctrl,
1083  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1084  */
1085 struct pinctrl *devm_pinctrl_get(struct device *dev)
1086 {
1087 	struct pinctrl **ptr, *p;
1088 
1089 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1090 	if (!ptr)
1091 		return ERR_PTR(-ENOMEM);
1092 
1093 	p = pinctrl_get(dev);
1094 	if (!IS_ERR(p)) {
1095 		*ptr = p;
1096 		devres_add(dev, ptr);
1097 	} else {
1098 		devres_free(ptr);
1099 	}
1100 
1101 	return p;
1102 }
1103 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1104 
1105 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1106 {
1107 	struct pinctrl **p = res;
1108 
1109 	return *p == data;
1110 }
1111 
1112 /**
1113  * devm_pinctrl_put() - Resource managed pinctrl_put()
1114  * @p: the pinctrl handle to release
1115  *
1116  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1117  * this function will not need to be called and the resource management
1118  * code will ensure that the resource is freed.
1119  */
1120 void devm_pinctrl_put(struct pinctrl *p)
1121 {
1122 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1123 			       devm_pinctrl_match, p));
1124 }
1125 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1126 
1127 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1128 			 bool dup)
1129 {
1130 	int i, ret;
1131 	struct pinctrl_maps *maps_node;
1132 
1133 	pr_debug("add %u pinctrl maps\n", num_maps);
1134 
1135 	/* First sanity check the new mapping */
1136 	for (i = 0; i < num_maps; i++) {
1137 		if (!maps[i].dev_name) {
1138 			pr_err("failed to register map %s (%d): no device given\n",
1139 			       maps[i].name, i);
1140 			return -EINVAL;
1141 		}
1142 
1143 		if (!maps[i].name) {
1144 			pr_err("failed to register map %d: no map name given\n",
1145 			       i);
1146 			return -EINVAL;
1147 		}
1148 
1149 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1150 				!maps[i].ctrl_dev_name) {
1151 			pr_err("failed to register map %s (%d): no pin control device given\n",
1152 			       maps[i].name, i);
1153 			return -EINVAL;
1154 		}
1155 
1156 		switch (maps[i].type) {
1157 		case PIN_MAP_TYPE_DUMMY_STATE:
1158 			break;
1159 		case PIN_MAP_TYPE_MUX_GROUP:
1160 			ret = pinmux_validate_map(&maps[i], i);
1161 			if (ret < 0)
1162 				return ret;
1163 			break;
1164 		case PIN_MAP_TYPE_CONFIGS_PIN:
1165 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1166 			ret = pinconf_validate_map(&maps[i], i);
1167 			if (ret < 0)
1168 				return ret;
1169 			break;
1170 		default:
1171 			pr_err("failed to register map %s (%d): invalid type given\n",
1172 			       maps[i].name, i);
1173 			return -EINVAL;
1174 		}
1175 	}
1176 
1177 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1178 	if (!maps_node) {
1179 		pr_err("failed to alloc struct pinctrl_maps\n");
1180 		return -ENOMEM;
1181 	}
1182 
1183 	maps_node->num_maps = num_maps;
1184 	if (dup) {
1185 		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1186 					  GFP_KERNEL);
1187 		if (!maps_node->maps) {
1188 			pr_err("failed to duplicate mapping table\n");
1189 			kfree(maps_node);
1190 			return -ENOMEM;
1191 		}
1192 	} else {
1193 		maps_node->maps = maps;
1194 	}
1195 
1196 	mutex_lock(&pinctrl_maps_mutex);
1197 	list_add_tail(&maps_node->node, &pinctrl_maps);
1198 	mutex_unlock(&pinctrl_maps_mutex);
1199 
1200 	return 0;
1201 }
1202 
1203 /**
1204  * pinctrl_register_mappings() - register a set of pin controller mappings
1205  * @maps: the pincontrol mappings table to register. This should probably be
1206  *	marked with __initdata so it can be discarded after boot. This
1207  *	function will perform a shallow copy for the mapping entries.
1208  * @num_maps: the number of maps in the mapping table
1209  */
1210 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1211 			      unsigned num_maps)
1212 {
1213 	return pinctrl_register_map(maps, num_maps, true);
1214 }
1215 
1216 void pinctrl_unregister_map(struct pinctrl_map const *map)
1217 {
1218 	struct pinctrl_maps *maps_node;
1219 
1220 	mutex_lock(&pinctrl_maps_mutex);
1221 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1222 		if (maps_node->maps == map) {
1223 			list_del(&maps_node->node);
1224 			kfree(maps_node);
1225 			mutex_unlock(&pinctrl_maps_mutex);
1226 			return;
1227 		}
1228 	}
1229 	mutex_unlock(&pinctrl_maps_mutex);
1230 }
1231 
1232 /**
1233  * pinctrl_force_sleep() - turn a given controller device into sleep state
1234  * @pctldev: pin controller device
1235  */
1236 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1237 {
1238 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1239 		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1240 	return 0;
1241 }
1242 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1243 
1244 /**
1245  * pinctrl_force_default() - turn a given controller device into default state
1246  * @pctldev: pin controller device
1247  */
1248 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1249 {
1250 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1251 		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1252 	return 0;
1253 }
1254 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1255 
1256 /**
1257  * pinctrl_init_done() - tell pinctrl probe is done
1258  *
1259  * We'll use this time to switch the pins from "init" to "default" unless the
1260  * driver selected some other state.
1261  *
1262  * @dev: device to that's done probing
1263  */
1264 int pinctrl_init_done(struct device *dev)
1265 {
1266 	struct dev_pin_info *pins = dev->pins;
1267 	int ret;
1268 
1269 	if (!pins)
1270 		return 0;
1271 
1272 	if (IS_ERR(pins->init_state))
1273 		return 0; /* No such state */
1274 
1275 	if (pins->p->state != pins->init_state)
1276 		return 0; /* Not at init anyway */
1277 
1278 	if (IS_ERR(pins->default_state))
1279 		return 0; /* No default state */
1280 
1281 	ret = pinctrl_select_state(pins->p, pins->default_state);
1282 	if (ret)
1283 		dev_err(dev, "failed to activate default pinctrl state\n");
1284 
1285 	return ret;
1286 }
1287 
1288 #ifdef CONFIG_PM
1289 
1290 /**
1291  * pinctrl_pm_select_state() - select pinctrl state for PM
1292  * @dev: device to select default state for
1293  * @state: state to set
1294  */
1295 static int pinctrl_pm_select_state(struct device *dev,
1296 				   struct pinctrl_state *state)
1297 {
1298 	struct dev_pin_info *pins = dev->pins;
1299 	int ret;
1300 
1301 	if (IS_ERR(state))
1302 		return 0; /* No such state */
1303 	ret = pinctrl_select_state(pins->p, state);
1304 	if (ret)
1305 		dev_err(dev, "failed to activate pinctrl state %s\n",
1306 			state->name);
1307 	return ret;
1308 }
1309 
1310 /**
1311  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1312  * @dev: device to select default state for
1313  */
1314 int pinctrl_pm_select_default_state(struct device *dev)
1315 {
1316 	if (!dev->pins)
1317 		return 0;
1318 
1319 	return pinctrl_pm_select_state(dev, dev->pins->default_state);
1320 }
1321 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1322 
1323 /**
1324  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1325  * @dev: device to select sleep state for
1326  */
1327 int pinctrl_pm_select_sleep_state(struct device *dev)
1328 {
1329 	if (!dev->pins)
1330 		return 0;
1331 
1332 	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1333 }
1334 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1335 
1336 /**
1337  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1338  * @dev: device to select idle state for
1339  */
1340 int pinctrl_pm_select_idle_state(struct device *dev)
1341 {
1342 	if (!dev->pins)
1343 		return 0;
1344 
1345 	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1346 }
1347 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1348 #endif
1349 
1350 #ifdef CONFIG_DEBUG_FS
1351 
1352 static int pinctrl_pins_show(struct seq_file *s, void *what)
1353 {
1354 	struct pinctrl_dev *pctldev = s->private;
1355 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1356 	unsigned i, pin;
1357 
1358 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1359 
1360 	mutex_lock(&pctldev->mutex);
1361 
1362 	/* The pin number can be retrived from the pin controller descriptor */
1363 	for (i = 0; i < pctldev->desc->npins; i++) {
1364 		struct pin_desc *desc;
1365 
1366 		pin = pctldev->desc->pins[i].number;
1367 		desc = pin_desc_get(pctldev, pin);
1368 		/* Pin space may be sparse */
1369 		if (desc == NULL)
1370 			continue;
1371 
1372 		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1373 
1374 		/* Driver-specific info per pin */
1375 		if (ops->pin_dbg_show)
1376 			ops->pin_dbg_show(pctldev, s, pin);
1377 
1378 		seq_puts(s, "\n");
1379 	}
1380 
1381 	mutex_unlock(&pctldev->mutex);
1382 
1383 	return 0;
1384 }
1385 
1386 static int pinctrl_groups_show(struct seq_file *s, void *what)
1387 {
1388 	struct pinctrl_dev *pctldev = s->private;
1389 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1390 	unsigned ngroups, selector = 0;
1391 
1392 	mutex_lock(&pctldev->mutex);
1393 
1394 	ngroups = ops->get_groups_count(pctldev);
1395 
1396 	seq_puts(s, "registered pin groups:\n");
1397 	while (selector < ngroups) {
1398 		const unsigned *pins = NULL;
1399 		unsigned num_pins = 0;
1400 		const char *gname = ops->get_group_name(pctldev, selector);
1401 		const char *pname;
1402 		int ret = 0;
1403 		int i;
1404 
1405 		if (ops->get_group_pins)
1406 			ret = ops->get_group_pins(pctldev, selector,
1407 						  &pins, &num_pins);
1408 		if (ret)
1409 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1410 				   gname);
1411 		else {
1412 			seq_printf(s, "group: %s\n", gname);
1413 			for (i = 0; i < num_pins; i++) {
1414 				pname = pin_get_name(pctldev, pins[i]);
1415 				if (WARN_ON(!pname)) {
1416 					mutex_unlock(&pctldev->mutex);
1417 					return -EINVAL;
1418 				}
1419 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1420 			}
1421 			seq_puts(s, "\n");
1422 		}
1423 		selector++;
1424 	}
1425 
1426 	mutex_unlock(&pctldev->mutex);
1427 
1428 	return 0;
1429 }
1430 
1431 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1432 {
1433 	struct pinctrl_dev *pctldev = s->private;
1434 	struct pinctrl_gpio_range *range = NULL;
1435 
1436 	seq_puts(s, "GPIO ranges handled:\n");
1437 
1438 	mutex_lock(&pctldev->mutex);
1439 
1440 	/* Loop over the ranges */
1441 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1442 		if (range->pins) {
1443 			int a;
1444 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1445 				range->id, range->name,
1446 				range->base, (range->base + range->npins - 1));
1447 			for (a = 0; a < range->npins - 1; a++)
1448 				seq_printf(s, "%u, ", range->pins[a]);
1449 			seq_printf(s, "%u}\n", range->pins[a]);
1450 		}
1451 		else
1452 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1453 				range->id, range->name,
1454 				range->base, (range->base + range->npins - 1),
1455 				range->pin_base,
1456 				(range->pin_base + range->npins - 1));
1457 	}
1458 
1459 	mutex_unlock(&pctldev->mutex);
1460 
1461 	return 0;
1462 }
1463 
1464 static int pinctrl_devices_show(struct seq_file *s, void *what)
1465 {
1466 	struct pinctrl_dev *pctldev;
1467 
1468 	seq_puts(s, "name [pinmux] [pinconf]\n");
1469 
1470 	mutex_lock(&pinctrldev_list_mutex);
1471 
1472 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1473 		seq_printf(s, "%s ", pctldev->desc->name);
1474 		if (pctldev->desc->pmxops)
1475 			seq_puts(s, "yes ");
1476 		else
1477 			seq_puts(s, "no ");
1478 		if (pctldev->desc->confops)
1479 			seq_puts(s, "yes");
1480 		else
1481 			seq_puts(s, "no");
1482 		seq_puts(s, "\n");
1483 	}
1484 
1485 	mutex_unlock(&pinctrldev_list_mutex);
1486 
1487 	return 0;
1488 }
1489 
1490 static inline const char *map_type(enum pinctrl_map_type type)
1491 {
1492 	static const char * const names[] = {
1493 		"INVALID",
1494 		"DUMMY_STATE",
1495 		"MUX_GROUP",
1496 		"CONFIGS_PIN",
1497 		"CONFIGS_GROUP",
1498 	};
1499 
1500 	if (type >= ARRAY_SIZE(names))
1501 		return "UNKNOWN";
1502 
1503 	return names[type];
1504 }
1505 
1506 static int pinctrl_maps_show(struct seq_file *s, void *what)
1507 {
1508 	struct pinctrl_maps *maps_node;
1509 	int i;
1510 	struct pinctrl_map const *map;
1511 
1512 	seq_puts(s, "Pinctrl maps:\n");
1513 
1514 	mutex_lock(&pinctrl_maps_mutex);
1515 	for_each_maps(maps_node, i, map) {
1516 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1517 			   map->dev_name, map->name, map_type(map->type),
1518 			   map->type);
1519 
1520 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1521 			seq_printf(s, "controlling device %s\n",
1522 				   map->ctrl_dev_name);
1523 
1524 		switch (map->type) {
1525 		case PIN_MAP_TYPE_MUX_GROUP:
1526 			pinmux_show_map(s, map);
1527 			break;
1528 		case PIN_MAP_TYPE_CONFIGS_PIN:
1529 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1530 			pinconf_show_map(s, map);
1531 			break;
1532 		default:
1533 			break;
1534 		}
1535 
1536 		seq_printf(s, "\n");
1537 	}
1538 	mutex_unlock(&pinctrl_maps_mutex);
1539 
1540 	return 0;
1541 }
1542 
1543 static int pinctrl_show(struct seq_file *s, void *what)
1544 {
1545 	struct pinctrl *p;
1546 	struct pinctrl_state *state;
1547 	struct pinctrl_setting *setting;
1548 
1549 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1550 
1551 	mutex_lock(&pinctrl_list_mutex);
1552 
1553 	list_for_each_entry(p, &pinctrl_list, node) {
1554 		seq_printf(s, "device: %s current state: %s\n",
1555 			   dev_name(p->dev),
1556 			   p->state ? p->state->name : "none");
1557 
1558 		list_for_each_entry(state, &p->states, node) {
1559 			seq_printf(s, "  state: %s\n", state->name);
1560 
1561 			list_for_each_entry(setting, &state->settings, node) {
1562 				struct pinctrl_dev *pctldev = setting->pctldev;
1563 
1564 				seq_printf(s, "    type: %s controller %s ",
1565 					   map_type(setting->type),
1566 					   pinctrl_dev_get_name(pctldev));
1567 
1568 				switch (setting->type) {
1569 				case PIN_MAP_TYPE_MUX_GROUP:
1570 					pinmux_show_setting(s, setting);
1571 					break;
1572 				case PIN_MAP_TYPE_CONFIGS_PIN:
1573 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1574 					pinconf_show_setting(s, setting);
1575 					break;
1576 				default:
1577 					break;
1578 				}
1579 			}
1580 		}
1581 	}
1582 
1583 	mutex_unlock(&pinctrl_list_mutex);
1584 
1585 	return 0;
1586 }
1587 
1588 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1589 {
1590 	return single_open(file, pinctrl_pins_show, inode->i_private);
1591 }
1592 
1593 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1594 {
1595 	return single_open(file, pinctrl_groups_show, inode->i_private);
1596 }
1597 
1598 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1599 {
1600 	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1601 }
1602 
1603 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1604 {
1605 	return single_open(file, pinctrl_devices_show, NULL);
1606 }
1607 
1608 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1609 {
1610 	return single_open(file, pinctrl_maps_show, NULL);
1611 }
1612 
1613 static int pinctrl_open(struct inode *inode, struct file *file)
1614 {
1615 	return single_open(file, pinctrl_show, NULL);
1616 }
1617 
1618 static const struct file_operations pinctrl_pins_ops = {
1619 	.open		= pinctrl_pins_open,
1620 	.read		= seq_read,
1621 	.llseek		= seq_lseek,
1622 	.release	= single_release,
1623 };
1624 
1625 static const struct file_operations pinctrl_groups_ops = {
1626 	.open		= pinctrl_groups_open,
1627 	.read		= seq_read,
1628 	.llseek		= seq_lseek,
1629 	.release	= single_release,
1630 };
1631 
1632 static const struct file_operations pinctrl_gpioranges_ops = {
1633 	.open		= pinctrl_gpioranges_open,
1634 	.read		= seq_read,
1635 	.llseek		= seq_lseek,
1636 	.release	= single_release,
1637 };
1638 
1639 static const struct file_operations pinctrl_devices_ops = {
1640 	.open		= pinctrl_devices_open,
1641 	.read		= seq_read,
1642 	.llseek		= seq_lseek,
1643 	.release	= single_release,
1644 };
1645 
1646 static const struct file_operations pinctrl_maps_ops = {
1647 	.open		= pinctrl_maps_open,
1648 	.read		= seq_read,
1649 	.llseek		= seq_lseek,
1650 	.release	= single_release,
1651 };
1652 
1653 static const struct file_operations pinctrl_ops = {
1654 	.open		= pinctrl_open,
1655 	.read		= seq_read,
1656 	.llseek		= seq_lseek,
1657 	.release	= single_release,
1658 };
1659 
1660 static struct dentry *debugfs_root;
1661 
1662 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1663 {
1664 	struct dentry *device_root;
1665 
1666 	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1667 					 debugfs_root);
1668 	pctldev->device_root = device_root;
1669 
1670 	if (IS_ERR(device_root) || !device_root) {
1671 		pr_warn("failed to create debugfs directory for %s\n",
1672 			dev_name(pctldev->dev));
1673 		return;
1674 	}
1675 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1676 			    device_root, pctldev, &pinctrl_pins_ops);
1677 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1678 			    device_root, pctldev, &pinctrl_groups_ops);
1679 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1680 			    device_root, pctldev, &pinctrl_gpioranges_ops);
1681 	if (pctldev->desc->pmxops)
1682 		pinmux_init_device_debugfs(device_root, pctldev);
1683 	if (pctldev->desc->confops)
1684 		pinconf_init_device_debugfs(device_root, pctldev);
1685 }
1686 
1687 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1688 {
1689 	debugfs_remove_recursive(pctldev->device_root);
1690 }
1691 
1692 static void pinctrl_init_debugfs(void)
1693 {
1694 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1695 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1696 		pr_warn("failed to create debugfs directory\n");
1697 		debugfs_root = NULL;
1698 		return;
1699 	}
1700 
1701 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1702 			    debugfs_root, NULL, &pinctrl_devices_ops);
1703 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1704 			    debugfs_root, NULL, &pinctrl_maps_ops);
1705 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1706 			    debugfs_root, NULL, &pinctrl_ops);
1707 }
1708 
1709 #else /* CONFIG_DEBUG_FS */
1710 
1711 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1712 {
1713 }
1714 
1715 static void pinctrl_init_debugfs(void)
1716 {
1717 }
1718 
1719 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1720 {
1721 }
1722 
1723 #endif
1724 
1725 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1726 {
1727 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1728 
1729 	if (!ops ||
1730 	    !ops->get_groups_count ||
1731 	    !ops->get_group_name)
1732 		return -EINVAL;
1733 
1734 	if (ops->dt_node_to_map && !ops->dt_free_map)
1735 		return -EINVAL;
1736 
1737 	return 0;
1738 }
1739 
1740 /**
1741  * pinctrl_register() - register a pin controller device
1742  * @pctldesc: descriptor for this pin controller
1743  * @dev: parent device for this pin controller
1744  * @driver_data: private pin controller data for this pin controller
1745  */
1746 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1747 				    struct device *dev, void *driver_data)
1748 {
1749 	struct pinctrl_dev *pctldev;
1750 	int ret;
1751 
1752 	if (!pctldesc)
1753 		return ERR_PTR(-EINVAL);
1754 	if (!pctldesc->name)
1755 		return ERR_PTR(-EINVAL);
1756 
1757 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1758 	if (pctldev == NULL) {
1759 		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1760 		return ERR_PTR(-ENOMEM);
1761 	}
1762 
1763 	/* Initialize pin control device struct */
1764 	pctldev->owner = pctldesc->owner;
1765 	pctldev->desc = pctldesc;
1766 	pctldev->driver_data = driver_data;
1767 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1768 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1769 	pctldev->dev = dev;
1770 	mutex_init(&pctldev->mutex);
1771 
1772 	/* check core ops for sanity */
1773 	ret = pinctrl_check_ops(pctldev);
1774 	if (ret) {
1775 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1776 		goto out_err;
1777 	}
1778 
1779 	/* If we're implementing pinmuxing, check the ops for sanity */
1780 	if (pctldesc->pmxops) {
1781 		ret = pinmux_check_ops(pctldev);
1782 		if (ret)
1783 			goto out_err;
1784 	}
1785 
1786 	/* If we're implementing pinconfig, check the ops for sanity */
1787 	if (pctldesc->confops) {
1788 		ret = pinconf_check_ops(pctldev);
1789 		if (ret)
1790 			goto out_err;
1791 	}
1792 
1793 	/* Register all the pins */
1794 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1795 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1796 	if (ret) {
1797 		dev_err(dev, "error during pin registration\n");
1798 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1799 				      pctldesc->npins);
1800 		goto out_err;
1801 	}
1802 
1803 	mutex_lock(&pinctrldev_list_mutex);
1804 	list_add_tail(&pctldev->node, &pinctrldev_list);
1805 	mutex_unlock(&pinctrldev_list_mutex);
1806 
1807 	pctldev->p = pinctrl_get(pctldev->dev);
1808 
1809 	if (!IS_ERR(pctldev->p)) {
1810 		pctldev->hog_default =
1811 			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1812 		if (IS_ERR(pctldev->hog_default)) {
1813 			dev_dbg(dev, "failed to lookup the default state\n");
1814 		} else {
1815 			if (pinctrl_select_state(pctldev->p,
1816 						pctldev->hog_default))
1817 				dev_err(dev,
1818 					"failed to select default state\n");
1819 		}
1820 
1821 		pctldev->hog_sleep =
1822 			pinctrl_lookup_state(pctldev->p,
1823 						    PINCTRL_STATE_SLEEP);
1824 		if (IS_ERR(pctldev->hog_sleep))
1825 			dev_dbg(dev, "failed to lookup the sleep state\n");
1826 	}
1827 
1828 	pinctrl_init_device_debugfs(pctldev);
1829 
1830 	return pctldev;
1831 
1832 out_err:
1833 	mutex_destroy(&pctldev->mutex);
1834 	kfree(pctldev);
1835 	return ERR_PTR(ret);
1836 }
1837 EXPORT_SYMBOL_GPL(pinctrl_register);
1838 
1839 /**
1840  * pinctrl_unregister() - unregister pinmux
1841  * @pctldev: pin controller to unregister
1842  *
1843  * Called by pinmux drivers to unregister a pinmux.
1844  */
1845 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1846 {
1847 	struct pinctrl_gpio_range *range, *n;
1848 	if (pctldev == NULL)
1849 		return;
1850 
1851 	mutex_lock(&pctldev->mutex);
1852 	pinctrl_remove_device_debugfs(pctldev);
1853 	mutex_unlock(&pctldev->mutex);
1854 
1855 	if (!IS_ERR(pctldev->p))
1856 		pinctrl_put(pctldev->p);
1857 
1858 	mutex_lock(&pinctrldev_list_mutex);
1859 	mutex_lock(&pctldev->mutex);
1860 	/* TODO: check that no pinmuxes are still active? */
1861 	list_del(&pctldev->node);
1862 	/* Destroy descriptor tree */
1863 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1864 			      pctldev->desc->npins);
1865 	/* remove gpio ranges map */
1866 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1867 		list_del(&range->node);
1868 
1869 	mutex_unlock(&pctldev->mutex);
1870 	mutex_destroy(&pctldev->mutex);
1871 	kfree(pctldev);
1872 	mutex_unlock(&pinctrldev_list_mutex);
1873 }
1874 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1875 
1876 static void devm_pinctrl_dev_release(struct device *dev, void *res)
1877 {
1878 	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
1879 
1880 	pinctrl_unregister(pctldev);
1881 }
1882 
1883 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
1884 {
1885 	struct pctldev **r = res;
1886 
1887 	if (WARN_ON(!r || !*r))
1888 		return 0;
1889 
1890 	return *r == data;
1891 }
1892 
1893 /**
1894  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
1895  * @dev: parent device for this pin controller
1896  * @pctldesc: descriptor for this pin controller
1897  * @driver_data: private pin controller data for this pin controller
1898  *
1899  * Returns an error pointer if pincontrol register failed. Otherwise
1900  * it returns valid pinctrl handle.
1901  *
1902  * The pinctrl device will be automatically released when the device is unbound.
1903  */
1904 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
1905 					  struct pinctrl_desc *pctldesc,
1906 					  void *driver_data)
1907 {
1908 	struct pinctrl_dev **ptr, *pctldev;
1909 
1910 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
1911 	if (!ptr)
1912 		return ERR_PTR(-ENOMEM);
1913 
1914 	pctldev = pinctrl_register(pctldesc, dev, driver_data);
1915 	if (IS_ERR(pctldev)) {
1916 		devres_free(ptr);
1917 		return pctldev;
1918 	}
1919 
1920 	*ptr = pctldev;
1921 	devres_add(dev, ptr);
1922 
1923 	return pctldev;
1924 }
1925 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
1926 
1927 /**
1928  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
1929  * @dev: device for which which resource was allocated
1930  * @pctldev: the pinctrl device to unregister.
1931  */
1932 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
1933 {
1934 	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
1935 			       devm_pinctrl_dev_match, pctldev));
1936 }
1937 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
1938 
1939 static int __init pinctrl_init(void)
1940 {
1941 	pr_info("initialized pinctrl subsystem\n");
1942 	pinctrl_init_debugfs();
1943 	return 0;
1944 }
1945 
1946 /* init early since many drivers really need to initialized pinmux early */
1947 core_initcall(pinctrl_init);
1948