xref: /linux/drivers/phy/xilinx/phy-zynqmp.c (revision e74e1d55728509b352e4eec4283dd5b2781b2070)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
4  *
5  * Copyright (C) 2018-2020 Xilinx Inc.
6  *
7  * Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
8  * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
9  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10  *
11  * This driver is tested for USB, SATA and Display Port currently.
12  * Other controllers PCIe and SGMII should also work but that is
13  * experimental as of now.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/delay.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/phy/phy.h>
23 #include <linux/platform_device.h>
24 #include <linux/slab.h>
25 
26 #include <dt-bindings/phy/phy.h>
27 
28 /*
29  * Lane Registers
30  */
31 
32 /* TX De-emphasis parameters */
33 #define L0_TX_ANA_TM_18			0x0048
34 #define L0_TX_ANA_TM_118		0x01d8
35 #define L0_TX_ANA_TM_118_FORCE_17_0	BIT(0)
36 
37 /* DN Resistor calibration code parameters */
38 #define L0_TXPMA_ST_3			0x0b0c
39 #define L0_DN_CALIB_CODE		0x3f
40 
41 /* PMA control parameters */
42 #define L0_TXPMD_TM_45			0x0cb4
43 #define L0_TXPMD_TM_48			0x0cc0
44 #define L0_TXPMD_TM_45_OVER_DP_MAIN	BIT(0)
45 #define L0_TXPMD_TM_45_ENABLE_DP_MAIN	BIT(1)
46 #define L0_TXPMD_TM_45_OVER_DP_POST1	BIT(2)
47 #define L0_TXPMD_TM_45_ENABLE_DP_POST1	BIT(3)
48 #define L0_TXPMD_TM_45_OVER_DP_POST2	BIT(4)
49 #define L0_TXPMD_TM_45_ENABLE_DP_POST2	BIT(5)
50 
51 /* PCS control parameters */
52 #define L0_TM_DIG_6			0x106c
53 #define L0_TM_DIS_DESCRAMBLE_DECODER	0x0f
54 #define L0_TX_DIG_61			0x00f4
55 #define L0_TM_DISABLE_SCRAMBLE_ENCODER	0x0f
56 
57 /* PLL Test Mode register parameters */
58 #define L0_TM_PLL_DIG_37		0x2094
59 #define L0_TM_COARSE_CODE_LIMIT		0x10
60 
61 /* PLL SSC step size offsets */
62 #define L0_PLL_SS_STEPS_0_LSB		0x2368
63 #define L0_PLL_SS_STEPS_1_MSB		0x236c
64 #define L0_PLL_SS_STEP_SIZE_0_LSB	0x2370
65 #define L0_PLL_SS_STEP_SIZE_1		0x2374
66 #define L0_PLL_SS_STEP_SIZE_2		0x2378
67 #define L0_PLL_SS_STEP_SIZE_3_MSB	0x237c
68 #define L0_PLL_STATUS_READ_1		0x23e4
69 
70 /* SSC step size parameters */
71 #define STEP_SIZE_0_MASK		0xff
72 #define STEP_SIZE_1_MASK		0xff
73 #define STEP_SIZE_2_MASK		0xff
74 #define STEP_SIZE_3_MASK		0x3
75 #define STEP_SIZE_SHIFT			8
76 #define FORCE_STEP_SIZE			0x10
77 #define FORCE_STEPS			0x20
78 #define STEPS_0_MASK			0xff
79 #define STEPS_1_MASK			0x07
80 
81 /* Reference clock selection parameters */
82 #define L0_Ln_REF_CLK_SEL(n)		(0x2860 + (n) * 4)
83 #define L0_REF_CLK_SEL_MASK		0x8f
84 
85 /* Calibration digital logic parameters */
86 #define L3_TM_CALIB_DIG19		0xec4c
87 #define L3_CALIB_DONE_STATUS		0xef14
88 #define L3_TM_CALIB_DIG18		0xec48
89 #define L3_TM_CALIB_DIG19_NSW		0x07
90 #define L3_TM_CALIB_DIG18_NSW		0xe0
91 #define L3_TM_OVERRIDE_NSW_CODE         0x20
92 #define L3_CALIB_DONE			0x02
93 #define L3_NSW_SHIFT			5
94 #define L3_NSW_PIPE_SHIFT		4
95 #define L3_NSW_CALIB_SHIFT		3
96 
97 #define PHY_REG_OFFSET			0x4000
98 
99 /*
100  * Global Registers
101  */
102 
103 /* Refclk selection parameters */
104 #define PLL_REF_SEL(n)			(0x10000 + (n) * 4)
105 #define PLL_FREQ_MASK			0x1f
106 #define PLL_STATUS_LOCKED		0x10
107 
108 /* Inter Connect Matrix parameters */
109 #define ICM_CFG0			0x10010
110 #define ICM_CFG1			0x10014
111 #define ICM_CFG0_L0_MASK		0x07
112 #define ICM_CFG0_L1_MASK		0x70
113 #define ICM_CFG1_L2_MASK		0x07
114 #define ICM_CFG2_L3_MASK		0x70
115 #define ICM_CFG_SHIFT			4
116 
117 /* Inter Connect Matrix allowed protocols */
118 #define ICM_PROTOCOL_PD			0x0
119 #define ICM_PROTOCOL_PCIE		0x1
120 #define ICM_PROTOCOL_SATA		0x2
121 #define ICM_PROTOCOL_USB		0x3
122 #define ICM_PROTOCOL_DP			0x4
123 #define ICM_PROTOCOL_SGMII		0x5
124 
125 /* Test Mode common reset control  parameters */
126 #define TM_CMN_RST			0x10018
127 #define TM_CMN_RST_EN			0x1
128 #define TM_CMN_RST_SET			0x2
129 #define TM_CMN_RST_MASK			0x3
130 
131 /* Bus width parameters */
132 #define TX_PROT_BUS_WIDTH		0x10040
133 #define RX_PROT_BUS_WIDTH		0x10044
134 #define PROT_BUS_WIDTH_10		0x0
135 #define PROT_BUS_WIDTH_20		0x1
136 #define PROT_BUS_WIDTH_40		0x2
137 #define PROT_BUS_WIDTH_SHIFT		2
138 
139 /* Number of GT lanes */
140 #define NUM_LANES			4
141 
142 /* SIOU SATA control register */
143 #define SATA_CONTROL_OFFSET		0x0100
144 
145 /* Total number of controllers */
146 #define CONTROLLERS_PER_LANE		5
147 
148 /* Protocol Type parameters */
149 #define XPSGTR_TYPE_USB0		0  /* USB controller 0 */
150 #define XPSGTR_TYPE_USB1		1  /* USB controller 1 */
151 #define XPSGTR_TYPE_SATA_0		2  /* SATA controller lane 0 */
152 #define XPSGTR_TYPE_SATA_1		3  /* SATA controller lane 1 */
153 #define XPSGTR_TYPE_PCIE_0		4  /* PCIe controller lane 0 */
154 #define XPSGTR_TYPE_PCIE_1		5  /* PCIe controller lane 1 */
155 #define XPSGTR_TYPE_PCIE_2		6  /* PCIe controller lane 2 */
156 #define XPSGTR_TYPE_PCIE_3		7  /* PCIe controller lane 3 */
157 #define XPSGTR_TYPE_DP_0		8  /* Display Port controller lane 0 */
158 #define XPSGTR_TYPE_DP_1		9  /* Display Port controller lane 1 */
159 #define XPSGTR_TYPE_SGMII0		10 /* Ethernet SGMII controller 0 */
160 #define XPSGTR_TYPE_SGMII1		11 /* Ethernet SGMII controller 1 */
161 #define XPSGTR_TYPE_SGMII2		12 /* Ethernet SGMII controller 2 */
162 #define XPSGTR_TYPE_SGMII3		13 /* Ethernet SGMII controller 3 */
163 
164 /* Timeout values */
165 #define TIMEOUT_US			1000
166 
167 struct xpsgtr_dev;
168 
169 /**
170  * struct xpsgtr_ssc - structure to hold SSC settings for a lane
171  * @refclk_rate: PLL reference clock frequency
172  * @pll_ref_clk: value to be written to register for corresponding ref clk rate
173  * @steps: number of steps of SSC (Spread Spectrum Clock)
174  * @step_size: step size of each step
175  */
176 struct xpsgtr_ssc {
177 	u32 refclk_rate;
178 	u8  pll_ref_clk;
179 	u32 steps;
180 	u32 step_size;
181 };
182 
183 /**
184  * struct xpsgtr_phy - representation of a lane
185  * @phy: pointer to the kernel PHY device
186  * @type: controller which uses this lane
187  * @lane: lane number
188  * @protocol: protocol in which the lane operates
189  * @skip_phy_init: skip phy_init() if true
190  * @dev: pointer to the xpsgtr_dev instance
191  * @refclk: reference clock index
192  */
193 struct xpsgtr_phy {
194 	struct phy *phy;
195 	u8 type;
196 	u8 lane;
197 	u8 protocol;
198 	bool skip_phy_init;
199 	struct xpsgtr_dev *dev;
200 	unsigned int refclk;
201 };
202 
203 /**
204  * struct xpsgtr_dev - representation of a ZynMP GT device
205  * @dev: pointer to device
206  * @serdes: serdes base address
207  * @siou: siou base address
208  * @gtr_mutex: mutex for locking
209  * @phys: PHY lanes
210  * @refclk_sscs: spread spectrum settings for the reference clocks
211  * @tx_term_fix: fix for GT issue
212  * @saved_icm_cfg0: stored value of ICM CFG0 register
213  * @saved_icm_cfg1: stored value of ICM CFG1 register
214  */
215 struct xpsgtr_dev {
216 	struct device *dev;
217 	void __iomem *serdes;
218 	void __iomem *siou;
219 	struct mutex gtr_mutex; /* mutex for locking */
220 	struct xpsgtr_phy phys[NUM_LANES];
221 	const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
222 	bool tx_term_fix;
223 	unsigned int saved_icm_cfg0;
224 	unsigned int saved_icm_cfg1;
225 };
226 
227 /*
228  * Configuration Data
229  */
230 
231 /* lookup table to hold all settings needed for a ref clock frequency */
232 static const struct xpsgtr_ssc ssc_lookup[] = {
233 	{  19200000, 0x05,  608, 264020 },
234 	{  20000000, 0x06,  634, 243454 },
235 	{  24000000, 0x07,  760, 168973 },
236 	{  26000000, 0x08,  824, 143860 },
237 	{  27000000, 0x09,  856,  86551 },
238 	{  38400000, 0x0a, 1218,  65896 },
239 	{  40000000, 0x0b,  634, 243454 },
240 	{  52000000, 0x0c,  824, 143860 },
241 	{ 100000000, 0x0d, 1058,  87533 },
242 	{ 108000000, 0x0e,  856,  86551 },
243 	{ 125000000, 0x0f,  992, 119497 },
244 	{ 135000000, 0x10, 1070,  55393 },
245 	{ 150000000, 0x11,  792, 187091 }
246 };
247 
248 /*
249  * I/O Accessors
250  */
251 
252 static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
253 {
254 	return readl(gtr_dev->serdes + reg);
255 }
256 
257 static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
258 {
259 	writel(value, gtr_dev->serdes + reg);
260 }
261 
262 static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
263 				  u32 clr, u32 set)
264 {
265 	u32 value = xpsgtr_read(gtr_dev, reg);
266 
267 	value &= ~clr;
268 	value |= set;
269 	xpsgtr_write(gtr_dev, reg, value);
270 }
271 
272 static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
273 {
274 	void __iomem *addr = gtr_phy->dev->serdes
275 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
276 
277 	return readl(addr);
278 }
279 
280 static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
281 				    u32 reg, u32 value)
282 {
283 	void __iomem *addr = gtr_phy->dev->serdes
284 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
285 
286 	writel(value, addr);
287 }
288 
289 static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
290 				      u32 reg, u32 clr, u32 set)
291 {
292 	void __iomem *addr = gtr_phy->dev->serdes
293 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
294 
295 	writel((readl(addr) & ~clr) | set, addr);
296 }
297 
298 /*
299  * Hardware Configuration
300  */
301 
302 /* Wait for the PLL to lock (with a timeout). */
303 static int xpsgtr_wait_pll_lock(struct phy *phy)
304 {
305 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
306 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
307 	unsigned int timeout = TIMEOUT_US;
308 	int ret;
309 
310 	dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
311 
312 	while (1) {
313 		u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
314 
315 		if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
316 			ret = 0;
317 			break;
318 		}
319 
320 		if (--timeout == 0) {
321 			ret = -ETIMEDOUT;
322 			break;
323 		}
324 
325 		udelay(1);
326 	}
327 
328 	if (ret == -ETIMEDOUT)
329 		dev_err(gtr_dev->dev,
330 			"lane %u (type %u, protocol %u): PLL lock timeout\n",
331 			gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
332 
333 	return ret;
334 }
335 
336 /* Configure PLL and spread-sprectrum clock. */
337 static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
338 {
339 	const struct xpsgtr_ssc *ssc;
340 	u32 step_size;
341 
342 	ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
343 	step_size = ssc->step_size;
344 
345 	xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
346 		       PLL_FREQ_MASK, ssc->pll_ref_clk);
347 
348 	/* Enable lane clock sharing, if required */
349 	if (gtr_phy->refclk != gtr_phy->lane) {
350 		/* Lane3 Ref Clock Selection Register */
351 		xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
352 			       L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
353 	}
354 
355 	/* SSC step size [7:0] */
356 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
357 			   STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
358 
359 	/* SSC step size [15:8] */
360 	step_size >>= STEP_SIZE_SHIFT;
361 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
362 			   STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
363 
364 	/* SSC step size [23:16] */
365 	step_size >>= STEP_SIZE_SHIFT;
366 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
367 			   STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
368 
369 	/* SSC steps [7:0] */
370 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
371 			   STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
372 
373 	/* SSC steps [10:8] */
374 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
375 			   STEPS_1_MASK,
376 			   (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
377 
378 	/* SSC step size [24:25] */
379 	step_size >>= STEP_SIZE_SHIFT;
380 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
381 			   STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
382 			   FORCE_STEP_SIZE | FORCE_STEPS);
383 }
384 
385 /* Configure the lane protocol. */
386 static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
387 {
388 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
389 	u8 protocol = gtr_phy->protocol;
390 
391 	switch (gtr_phy->lane) {
392 	case 0:
393 		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
394 		break;
395 	case 1:
396 		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
397 			       protocol << ICM_CFG_SHIFT);
398 		break;
399 	case 2:
400 		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
401 		break;
402 	case 3:
403 		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
404 			       protocol << ICM_CFG_SHIFT);
405 		break;
406 	default:
407 		/* We already checked 0 <= lane <= 3 */
408 		break;
409 	}
410 }
411 
412 /* Bypass (de)scrambler and 8b/10b decoder and encoder. */
413 static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
414 {
415 	xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
416 	xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
417 }
418 
419 /* DP-specific initialization. */
420 static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
421 {
422 	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
423 			 L0_TXPMD_TM_45_OVER_DP_MAIN |
424 			 L0_TXPMD_TM_45_ENABLE_DP_MAIN |
425 			 L0_TXPMD_TM_45_OVER_DP_POST1 |
426 			 L0_TXPMD_TM_45_OVER_DP_POST2 |
427 			 L0_TXPMD_TM_45_ENABLE_DP_POST2);
428 	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
429 			 L0_TX_ANA_TM_118_FORCE_17_0);
430 }
431 
432 /* SATA-specific initialization. */
433 static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
434 {
435 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
436 
437 	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
438 
439 	writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
440 }
441 
442 /* SGMII-specific initialization. */
443 static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
444 {
445 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
446 
447 	/* Set SGMII protocol TX and RX bus width to 10 bits. */
448 	xpsgtr_write(gtr_dev, TX_PROT_BUS_WIDTH,
449 		     PROT_BUS_WIDTH_10 << (gtr_phy->lane * PROT_BUS_WIDTH_SHIFT));
450 	xpsgtr_write(gtr_dev, RX_PROT_BUS_WIDTH,
451 		     PROT_BUS_WIDTH_10 << (gtr_phy->lane * PROT_BUS_WIDTH_SHIFT));
452 
453 	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
454 }
455 
456 /* Configure TX de-emphasis and margining for DP. */
457 static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre,
458 				    unsigned int voltage)
459 {
460 	static const u8 voltage_swing[4][4] = {
461 		{ 0x2a, 0x27, 0x24, 0x20 },
462 		{ 0x27, 0x23, 0x20, 0xff },
463 		{ 0x24, 0x20, 0xff, 0xff },
464 		{ 0xff, 0xff, 0xff, 0xff }
465 	};
466 	static const u8 pre_emphasis[4][4] = {
467 		{ 0x02, 0x02, 0x02, 0x02 },
468 		{ 0x01, 0x01, 0x01, 0xff },
469 		{ 0x00, 0x00, 0xff, 0xff },
470 		{ 0xff, 0xff, 0xff, 0xff }
471 	};
472 
473 	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]);
474 	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]);
475 }
476 
477 /*
478  * PHY Operations
479  */
480 
481 static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy)
482 {
483 	/*
484 	 * As USB may save the snapshot of the states during hibernation, doing
485 	 * phy_init() will put the USB controller into reset, resulting in the
486 	 * losing of the saved snapshot. So try to avoid phy_init() for USB
487 	 * except when gtr_phy->skip_phy_init is false (this happens when FPD is
488 	 * shutdown during suspend or when gt lane is changed from current one)
489 	 */
490 	if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init)
491 		return false;
492 	else
493 		return true;
494 }
495 
496 /*
497  * There is a functional issue in the GT. The TX termination resistance can be
498  * out of spec due to a issue in the calibration logic. This is the workaround
499  * to fix it, required for XCZU9EG silicon.
500  */
501 static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy)
502 {
503 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
504 	u32 timeout = TIMEOUT_US;
505 	u32 nsw;
506 
507 	/* Enabling Test Mode control for CMN Rest */
508 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
509 
510 	/* Set Test Mode reset */
511 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
512 
513 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00);
514 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE);
515 
516 	/*
517 	 * As a part of work around sequence for PMOS calibration fix,
518 	 * we need to configure any lane ICM_CFG to valid protocol. This
519 	 * will deassert the CMN_Resetn signal.
520 	 */
521 	xpsgtr_lane_set_protocol(gtr_phy);
522 
523 	/* Clear Test Mode reset */
524 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
525 
526 	dev_dbg(gtr_dev->dev, "calibrating...\n");
527 
528 	do {
529 		u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS);
530 
531 		if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE)
532 			break;
533 
534 		if (!--timeout) {
535 			dev_err(gtr_dev->dev, "calibration time out\n");
536 			return -ETIMEDOUT;
537 		}
538 
539 		udelay(1);
540 	} while (timeout > 0);
541 
542 	dev_dbg(gtr_dev->dev, "calibration done\n");
543 
544 	/* Reading NMOS Register Code */
545 	nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE;
546 
547 	/* Set Test Mode reset */
548 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
549 
550 	/* Writing NMOS register values back [5:3] */
551 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT);
552 
553 	/* Writing NMOS register value [2:0] */
554 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18,
555 		     ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) |
556 		     (1 << L3_NSW_PIPE_SHIFT));
557 
558 	/* Clear Test Mode reset */
559 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
560 
561 	return 0;
562 }
563 
564 static int xpsgtr_phy_init(struct phy *phy)
565 {
566 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
567 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
568 	int ret = 0;
569 
570 	mutex_lock(&gtr_dev->gtr_mutex);
571 
572 	/* Skip initialization if not required. */
573 	if (!xpsgtr_phy_init_required(gtr_phy))
574 		goto out;
575 
576 	if (gtr_dev->tx_term_fix) {
577 		ret = xpsgtr_phy_tx_term_fix(gtr_phy);
578 		if (ret < 0)
579 			goto out;
580 
581 		gtr_dev->tx_term_fix = false;
582 	}
583 
584 	/* Enable coarse code saturation limiting logic. */
585 	xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
586 
587 	/*
588 	 * Configure the PLL, the lane protocol, and perform protocol-specific
589 	 * initialization.
590 	 */
591 	xpsgtr_configure_pll(gtr_phy);
592 	xpsgtr_lane_set_protocol(gtr_phy);
593 
594 	switch (gtr_phy->protocol) {
595 	case ICM_PROTOCOL_DP:
596 		xpsgtr_phy_init_dp(gtr_phy);
597 		break;
598 
599 	case ICM_PROTOCOL_SATA:
600 		xpsgtr_phy_init_sata(gtr_phy);
601 		break;
602 
603 	case ICM_PROTOCOL_SGMII:
604 		xpsgtr_phy_init_sgmii(gtr_phy);
605 		break;
606 	}
607 
608 out:
609 	mutex_unlock(&gtr_dev->gtr_mutex);
610 	return ret;
611 }
612 
613 static int xpsgtr_phy_exit(struct phy *phy)
614 {
615 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
616 
617 	gtr_phy->skip_phy_init = false;
618 
619 	return 0;
620 }
621 
622 static int xpsgtr_phy_power_on(struct phy *phy)
623 {
624 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
625 	int ret = 0;
626 
627 	/*
628 	 * Wait for the PLL to lock. For DP, only wait on DP0 to avoid
629 	 * cumulating waits for both lanes. The user is expected to initialize
630 	 * lane 0 last.
631 	 */
632 	if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
633 	    gtr_phy->type == XPSGTR_TYPE_DP_0)
634 		ret = xpsgtr_wait_pll_lock(phy);
635 
636 	return ret;
637 }
638 
639 static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts)
640 {
641 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
642 
643 	if (gtr_phy->protocol != ICM_PROTOCOL_DP)
644 		return 0;
645 
646 	xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]);
647 
648 	return 0;
649 }
650 
651 static const struct phy_ops xpsgtr_phyops = {
652 	.init		= xpsgtr_phy_init,
653 	.exit		= xpsgtr_phy_exit,
654 	.power_on	= xpsgtr_phy_power_on,
655 	.configure	= xpsgtr_phy_configure,
656 	.owner		= THIS_MODULE,
657 };
658 
659 /*
660  * OF Xlate Support
661  */
662 
663 /* Set the lane type and protocol based on the PHY type and instance number. */
664 static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
665 				unsigned int phy_instance)
666 {
667 	unsigned int num_phy_types;
668 	const int *phy_types;
669 
670 	switch (phy_type) {
671 	case PHY_TYPE_SATA: {
672 		static const int types[] = {
673 			XPSGTR_TYPE_SATA_0,
674 			XPSGTR_TYPE_SATA_1,
675 		};
676 
677 		phy_types = types;
678 		num_phy_types = ARRAY_SIZE(types);
679 		gtr_phy->protocol = ICM_PROTOCOL_SATA;
680 		break;
681 	}
682 	case PHY_TYPE_USB3: {
683 		static const int types[] = {
684 			XPSGTR_TYPE_USB0,
685 			XPSGTR_TYPE_USB1,
686 		};
687 
688 		phy_types = types;
689 		num_phy_types = ARRAY_SIZE(types);
690 		gtr_phy->protocol = ICM_PROTOCOL_USB;
691 		break;
692 	}
693 	case PHY_TYPE_DP: {
694 		static const int types[] = {
695 			XPSGTR_TYPE_DP_0,
696 			XPSGTR_TYPE_DP_1,
697 		};
698 
699 		phy_types = types;
700 		num_phy_types = ARRAY_SIZE(types);
701 		gtr_phy->protocol = ICM_PROTOCOL_DP;
702 		break;
703 	}
704 	case PHY_TYPE_PCIE: {
705 		static const int types[] = {
706 			XPSGTR_TYPE_PCIE_0,
707 			XPSGTR_TYPE_PCIE_1,
708 			XPSGTR_TYPE_PCIE_2,
709 			XPSGTR_TYPE_PCIE_3,
710 		};
711 
712 		phy_types = types;
713 		num_phy_types = ARRAY_SIZE(types);
714 		gtr_phy->protocol = ICM_PROTOCOL_PCIE;
715 		break;
716 	}
717 	case PHY_TYPE_SGMII: {
718 		static const int types[] = {
719 			XPSGTR_TYPE_SGMII0,
720 			XPSGTR_TYPE_SGMII1,
721 			XPSGTR_TYPE_SGMII2,
722 			XPSGTR_TYPE_SGMII3,
723 		};
724 
725 		phy_types = types;
726 		num_phy_types = ARRAY_SIZE(types);
727 		gtr_phy->protocol = ICM_PROTOCOL_SGMII;
728 		break;
729 	}
730 	default:
731 		return -EINVAL;
732 	}
733 
734 	if (phy_instance >= num_phy_types)
735 		return -EINVAL;
736 
737 	gtr_phy->type = phy_types[phy_instance];
738 	return 0;
739 }
740 
741 /*
742  * Valid combinations of controllers and lanes (Interconnect Matrix).
743  */
744 static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
745 	{ XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
746 		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
747 	{ XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
748 		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
749 	{ XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
750 		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
751 	{ XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
752 		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
753 };
754 
755 /* Translate OF phandle and args to PHY instance. */
756 static struct phy *xpsgtr_xlate(struct device *dev,
757 				struct of_phandle_args *args)
758 {
759 	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
760 	struct xpsgtr_phy *gtr_phy;
761 	unsigned int phy_instance;
762 	unsigned int phy_lane;
763 	unsigned int phy_type;
764 	unsigned int refclk;
765 	unsigned int i;
766 	int ret;
767 
768 	if (args->args_count != 4) {
769 		dev_err(dev, "Invalid number of cells in 'phy' property\n");
770 		return ERR_PTR(-EINVAL);
771 	}
772 
773 	/*
774 	 * Get the PHY parameters from the OF arguments and derive the lane
775 	 * type.
776 	 */
777 	phy_lane = args->args[0];
778 	if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) {
779 		dev_err(dev, "Invalid lane number %u\n", phy_lane);
780 		return ERR_PTR(-ENODEV);
781 	}
782 
783 	gtr_phy = &gtr_dev->phys[phy_lane];
784 	phy_type = args->args[1];
785 	phy_instance = args->args[2];
786 
787 	ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
788 	if (ret < 0) {
789 		dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n");
790 		return ERR_PTR(ret);
791 	}
792 
793 	refclk = args->args[3];
794 	if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
795 	    !gtr_dev->refclk_sscs[refclk]) {
796 		dev_err(dev, "Invalid reference clock number %u\n", refclk);
797 		return ERR_PTR(-EINVAL);
798 	}
799 
800 	gtr_phy->refclk = refclk;
801 
802 	/*
803 	 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
804 	 * is allowed to operate on the lane.
805 	 */
806 	for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
807 		if (icm_matrix[phy_lane][i] == gtr_phy->type)
808 			return gtr_phy->phy;
809 	}
810 
811 	return ERR_PTR(-EINVAL);
812 }
813 
814 /*
815  * Power Management
816  */
817 
818 static int __maybe_unused xpsgtr_suspend(struct device *dev)
819 {
820 	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
821 
822 	/* Save the snapshot ICM_CFG registers. */
823 	gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
824 	gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
825 
826 	return 0;
827 }
828 
829 static int __maybe_unused xpsgtr_resume(struct device *dev)
830 {
831 	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
832 	unsigned int icm_cfg0, icm_cfg1;
833 	unsigned int i;
834 	bool skip_phy_init;
835 
836 	icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
837 	icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
838 
839 	/* Return if no GT lanes got configured before suspend. */
840 	if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1)
841 		return 0;
842 
843 	/* Check if the ICM configurations changed after suspend. */
844 	if (icm_cfg0 == gtr_dev->saved_icm_cfg0 &&
845 	    icm_cfg1 == gtr_dev->saved_icm_cfg1)
846 		skip_phy_init = true;
847 	else
848 		skip_phy_init = false;
849 
850 	/* Update the skip_phy_init for all gtr_phy instances. */
851 	for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++)
852 		gtr_dev->phys[i].skip_phy_init = skip_phy_init;
853 
854 	return 0;
855 }
856 
857 static const struct dev_pm_ops xpsgtr_pm_ops = {
858 	SET_SYSTEM_SLEEP_PM_OPS(xpsgtr_suspend, xpsgtr_resume)
859 };
860 
861 /*
862  * Probe & Platform Driver
863  */
864 
865 static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev)
866 {
867 	unsigned int refclk;
868 
869 	for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) {
870 		unsigned long rate;
871 		unsigned int i;
872 		struct clk *clk;
873 		char name[8];
874 
875 		snprintf(name, sizeof(name), "ref%u", refclk);
876 		clk = devm_clk_get_optional(gtr_dev->dev, name);
877 		if (IS_ERR(clk)) {
878 			if (PTR_ERR(clk) != -EPROBE_DEFER)
879 				dev_err(gtr_dev->dev,
880 					"Failed to get reference clock %u: %ld\n",
881 					refclk, PTR_ERR(clk));
882 			return PTR_ERR(clk);
883 		}
884 
885 		if (!clk)
886 			continue;
887 
888 		/*
889 		 * Get the spread spectrum (SSC) settings for the reference
890 		 * clock rate.
891 		 */
892 		rate = clk_get_rate(clk);
893 
894 		for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
895 			if (rate == ssc_lookup[i].refclk_rate) {
896 				gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
897 				break;
898 			}
899 		}
900 
901 		if (i == ARRAY_SIZE(ssc_lookup)) {
902 			dev_err(gtr_dev->dev,
903 				"Invalid rate %lu for reference clock %u\n",
904 				rate, refclk);
905 			return -EINVAL;
906 		}
907 	}
908 
909 	return 0;
910 }
911 
912 static int xpsgtr_probe(struct platform_device *pdev)
913 {
914 	struct device_node *np = pdev->dev.of_node;
915 	struct xpsgtr_dev *gtr_dev;
916 	struct phy_provider *provider;
917 	unsigned int port;
918 	int ret;
919 
920 	gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL);
921 	if (!gtr_dev)
922 		return -ENOMEM;
923 
924 	gtr_dev->dev = &pdev->dev;
925 	platform_set_drvdata(pdev, gtr_dev);
926 
927 	mutex_init(&gtr_dev->gtr_mutex);
928 
929 	if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr"))
930 		gtr_dev->tx_term_fix =
931 			of_property_read_bool(np, "xlnx,tx-termination-fix");
932 
933 	/* Acquire resources. */
934 	gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes");
935 	if (IS_ERR(gtr_dev->serdes))
936 		return PTR_ERR(gtr_dev->serdes);
937 
938 	gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou");
939 	if (IS_ERR(gtr_dev->siou))
940 		return PTR_ERR(gtr_dev->siou);
941 
942 	ret = xpsgtr_get_ref_clocks(gtr_dev);
943 	if (ret)
944 		return ret;
945 
946 	/* Create PHYs. */
947 	for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) {
948 		struct xpsgtr_phy *gtr_phy = &gtr_dev->phys[port];
949 		struct phy *phy;
950 
951 		gtr_phy->lane = port;
952 		gtr_phy->dev = gtr_dev;
953 
954 		phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops);
955 		if (IS_ERR(phy)) {
956 			dev_err(&pdev->dev, "failed to create PHY\n");
957 			return PTR_ERR(phy);
958 		}
959 
960 		gtr_phy->phy = phy;
961 		phy_set_drvdata(phy, gtr_phy);
962 	}
963 
964 	/* Register the PHY provider. */
965 	provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate);
966 	if (IS_ERR(provider)) {
967 		dev_err(&pdev->dev, "registering provider failed\n");
968 		return PTR_ERR(provider);
969 	}
970 	return 0;
971 }
972 
973 static const struct of_device_id xpsgtr_of_match[] = {
974 	{ .compatible = "xlnx,zynqmp-psgtr", },
975 	{ .compatible = "xlnx,zynqmp-psgtr-v1.1", },
976 	{},
977 };
978 MODULE_DEVICE_TABLE(of, xpsgtr_of_match);
979 
980 static struct platform_driver xpsgtr_driver = {
981 	.probe = xpsgtr_probe,
982 	.driver = {
983 		.name = "xilinx-psgtr",
984 		.of_match_table	= xpsgtr_of_match,
985 		.pm =  &xpsgtr_pm_ops,
986 	},
987 };
988 
989 module_platform_driver(xpsgtr_driver);
990 
991 MODULE_AUTHOR("Xilinx Inc.");
992 MODULE_LICENSE("GPL v2");
993 MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");
994