1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT. 4 * 5 * Copyright (C) 2018-2020 Xilinx Inc. 6 * 7 * Author: Anurag Kumar Vulisha <anuragku@xilinx.com> 8 * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com> 9 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com> 10 * 11 * This driver is tested for USB, SGMII, SATA and Display Port currently. 12 * PCIe should also work but that is experimental as of now. 13 */ 14 15 #include <linux/clk.h> 16 #include <linux/delay.h> 17 #include <linux/io.h> 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/of.h> 21 #include <linux/phy/phy.h> 22 #include <linux/platform_device.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/slab.h> 25 26 #include <dt-bindings/phy/phy.h> 27 28 /* 29 * Lane Registers 30 */ 31 32 /* TX De-emphasis parameters */ 33 #define L0_TX_ANA_TM_18 0x0048 34 #define L0_TX_ANA_TM_118 0x01d8 35 #define L0_TX_ANA_TM_118_FORCE_17_0 BIT(0) 36 37 /* DN Resistor calibration code parameters */ 38 #define L0_TXPMA_ST_3 0x0b0c 39 #define L0_DN_CALIB_CODE 0x3f 40 41 /* PMA control parameters */ 42 #define L0_TXPMD_TM_45 0x0cb4 43 #define L0_TXPMD_TM_48 0x0cc0 44 #define L0_TXPMD_TM_45_OVER_DP_MAIN BIT(0) 45 #define L0_TXPMD_TM_45_ENABLE_DP_MAIN BIT(1) 46 #define L0_TXPMD_TM_45_OVER_DP_POST1 BIT(2) 47 #define L0_TXPMD_TM_45_ENABLE_DP_POST1 BIT(3) 48 #define L0_TXPMD_TM_45_OVER_DP_POST2 BIT(4) 49 #define L0_TXPMD_TM_45_ENABLE_DP_POST2 BIT(5) 50 51 /* PCS control parameters */ 52 #define L0_TM_DIG_6 0x106c 53 #define L0_TM_DIS_DESCRAMBLE_DECODER 0x0f 54 #define L0_TX_DIG_61 0x00f4 55 #define L0_TM_DISABLE_SCRAMBLE_ENCODER 0x0f 56 57 /* PLL Test Mode register parameters */ 58 #define L0_TM_PLL_DIG_37 0x2094 59 #define L0_TM_COARSE_CODE_LIMIT 0x10 60 61 /* PLL SSC step size offsets */ 62 #define L0_PLL_SS_STEPS_0_LSB 0x2368 63 #define L0_PLL_SS_STEPS_1_MSB 0x236c 64 #define L0_PLL_SS_STEP_SIZE_0_LSB 0x2370 65 #define L0_PLL_SS_STEP_SIZE_1 0x2374 66 #define L0_PLL_SS_STEP_SIZE_2 0x2378 67 #define L0_PLL_SS_STEP_SIZE_3_MSB 0x237c 68 #define L0_PLL_STATUS_READ_1 0x23e4 69 70 /* SSC step size parameters */ 71 #define STEP_SIZE_0_MASK 0xff 72 #define STEP_SIZE_1_MASK 0xff 73 #define STEP_SIZE_2_MASK 0xff 74 #define STEP_SIZE_3_MASK 0x3 75 #define STEP_SIZE_SHIFT 8 76 #define FORCE_STEP_SIZE 0x10 77 #define FORCE_STEPS 0x20 78 #define STEPS_0_MASK 0xff 79 #define STEPS_1_MASK 0x07 80 81 /* Reference clock selection parameters */ 82 #define L0_Ln_REF_CLK_SEL(n) (0x2860 + (n) * 4) 83 #define L0_REF_CLK_SEL_MASK 0x8f 84 85 /* Calibration digital logic parameters */ 86 #define L3_TM_CALIB_DIG19 0xec4c 87 #define L3_CALIB_DONE_STATUS 0xef14 88 #define L3_TM_CALIB_DIG18 0xec48 89 #define L3_TM_CALIB_DIG19_NSW 0x07 90 #define L3_TM_CALIB_DIG18_NSW 0xe0 91 #define L3_TM_OVERRIDE_NSW_CODE 0x20 92 #define L3_CALIB_DONE 0x02 93 #define L3_NSW_SHIFT 5 94 #define L3_NSW_PIPE_SHIFT 4 95 #define L3_NSW_CALIB_SHIFT 3 96 97 #define PHY_REG_OFFSET 0x4000 98 99 /* 100 * Global Registers 101 */ 102 103 /* Refclk selection parameters */ 104 #define PLL_REF_SEL(n) (0x10000 + (n) * 4) 105 #define PLL_FREQ_MASK 0x1f 106 #define PLL_STATUS_LOCKED 0x10 107 108 /* Inter Connect Matrix parameters */ 109 #define ICM_CFG0 0x10010 110 #define ICM_CFG1 0x10014 111 #define ICM_CFG0_L0_MASK 0x07 112 #define ICM_CFG0_L1_MASK 0x70 113 #define ICM_CFG1_L2_MASK 0x07 114 #define ICM_CFG2_L3_MASK 0x70 115 #define ICM_CFG_SHIFT 4 116 117 /* Inter Connect Matrix allowed protocols */ 118 #define ICM_PROTOCOL_PD 0x0 119 #define ICM_PROTOCOL_PCIE 0x1 120 #define ICM_PROTOCOL_SATA 0x2 121 #define ICM_PROTOCOL_USB 0x3 122 #define ICM_PROTOCOL_DP 0x4 123 #define ICM_PROTOCOL_SGMII 0x5 124 125 /* Test Mode common reset control parameters */ 126 #define TM_CMN_RST 0x10018 127 #define TM_CMN_RST_EN 0x1 128 #define TM_CMN_RST_SET 0x2 129 #define TM_CMN_RST_MASK 0x3 130 131 /* Bus width parameters */ 132 #define TX_PROT_BUS_WIDTH 0x10040 133 #define RX_PROT_BUS_WIDTH 0x10044 134 #define PROT_BUS_WIDTH_10 0x0 135 #define PROT_BUS_WIDTH_20 0x1 136 #define PROT_BUS_WIDTH_40 0x2 137 #define PROT_BUS_WIDTH_SHIFT(n) ((n) * 2) 138 #define PROT_BUS_WIDTH_MASK(n) GENMASK((n) * 2 + 1, (n) * 2) 139 140 /* Number of GT lanes */ 141 #define NUM_LANES 4 142 143 /* SIOU SATA control register */ 144 #define SATA_CONTROL_OFFSET 0x0100 145 146 /* Total number of controllers */ 147 #define CONTROLLERS_PER_LANE 5 148 149 /* Protocol Type parameters */ 150 #define XPSGTR_TYPE_USB0 0 /* USB controller 0 */ 151 #define XPSGTR_TYPE_USB1 1 /* USB controller 1 */ 152 #define XPSGTR_TYPE_SATA_0 2 /* SATA controller lane 0 */ 153 #define XPSGTR_TYPE_SATA_1 3 /* SATA controller lane 1 */ 154 #define XPSGTR_TYPE_PCIE_0 4 /* PCIe controller lane 0 */ 155 #define XPSGTR_TYPE_PCIE_1 5 /* PCIe controller lane 1 */ 156 #define XPSGTR_TYPE_PCIE_2 6 /* PCIe controller lane 2 */ 157 #define XPSGTR_TYPE_PCIE_3 7 /* PCIe controller lane 3 */ 158 #define XPSGTR_TYPE_DP_0 8 /* Display Port controller lane 0 */ 159 #define XPSGTR_TYPE_DP_1 9 /* Display Port controller lane 1 */ 160 #define XPSGTR_TYPE_SGMII0 10 /* Ethernet SGMII controller 0 */ 161 #define XPSGTR_TYPE_SGMII1 11 /* Ethernet SGMII controller 1 */ 162 #define XPSGTR_TYPE_SGMII2 12 /* Ethernet SGMII controller 2 */ 163 #define XPSGTR_TYPE_SGMII3 13 /* Ethernet SGMII controller 3 */ 164 165 /* Timeout values */ 166 #define TIMEOUT_US 1000 167 168 struct xpsgtr_dev; 169 170 /** 171 * struct xpsgtr_ssc - structure to hold SSC settings for a lane 172 * @refclk_rate: PLL reference clock frequency 173 * @pll_ref_clk: value to be written to register for corresponding ref clk rate 174 * @steps: number of steps of SSC (Spread Spectrum Clock) 175 * @step_size: step size of each step 176 */ 177 struct xpsgtr_ssc { 178 u32 refclk_rate; 179 u8 pll_ref_clk; 180 u32 steps; 181 u32 step_size; 182 }; 183 184 /** 185 * struct xpsgtr_phy - representation of a lane 186 * @phy: pointer to the kernel PHY device 187 * @type: controller which uses this lane 188 * @lane: lane number 189 * @protocol: protocol in which the lane operates 190 * @skip_phy_init: skip phy_init() if true 191 * @dev: pointer to the xpsgtr_dev instance 192 * @refclk: reference clock index 193 */ 194 struct xpsgtr_phy { 195 struct phy *phy; 196 u8 type; 197 u8 lane; 198 u8 protocol; 199 bool skip_phy_init; 200 struct xpsgtr_dev *dev; 201 unsigned int refclk; 202 }; 203 204 /** 205 * struct xpsgtr_dev - representation of a ZynMP GT device 206 * @dev: pointer to device 207 * @serdes: serdes base address 208 * @siou: siou base address 209 * @gtr_mutex: mutex for locking 210 * @phys: PHY lanes 211 * @refclk_sscs: spread spectrum settings for the reference clocks 212 * @clk: reference clocks 213 * @tx_term_fix: fix for GT issue 214 * @saved_icm_cfg0: stored value of ICM CFG0 register 215 * @saved_icm_cfg1: stored value of ICM CFG1 register 216 */ 217 struct xpsgtr_dev { 218 struct device *dev; 219 void __iomem *serdes; 220 void __iomem *siou; 221 struct mutex gtr_mutex; /* mutex for locking */ 222 struct xpsgtr_phy phys[NUM_LANES]; 223 const struct xpsgtr_ssc *refclk_sscs[NUM_LANES]; 224 struct clk *clk[NUM_LANES]; 225 bool tx_term_fix; 226 unsigned int saved_icm_cfg0; 227 unsigned int saved_icm_cfg1; 228 }; 229 230 /* 231 * Configuration Data 232 */ 233 234 /* lookup table to hold all settings needed for a ref clock frequency */ 235 static const struct xpsgtr_ssc ssc_lookup[] = { 236 { 19200000, 0x05, 608, 264020 }, 237 { 20000000, 0x06, 634, 243454 }, 238 { 24000000, 0x07, 760, 168973 }, 239 { 26000000, 0x08, 824, 143860 }, 240 { 27000000, 0x09, 856, 86551 }, 241 { 38400000, 0x0a, 1218, 65896 }, 242 { 40000000, 0x0b, 634, 243454 }, 243 { 52000000, 0x0c, 824, 143860 }, 244 { 100000000, 0x0d, 1058, 87533 }, 245 { 108000000, 0x0e, 856, 86551 }, 246 { 125000000, 0x0f, 992, 119497 }, 247 { 135000000, 0x10, 1070, 55393 }, 248 { 150000000, 0x11, 792, 187091 } 249 }; 250 251 /* 252 * I/O Accessors 253 */ 254 255 static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg) 256 { 257 return readl(gtr_dev->serdes + reg); 258 } 259 260 static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value) 261 { 262 writel(value, gtr_dev->serdes + reg); 263 } 264 265 static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg, 266 u32 clr, u32 set) 267 { 268 u32 value = xpsgtr_read(gtr_dev, reg); 269 270 value &= ~clr; 271 value |= set; 272 xpsgtr_write(gtr_dev, reg, value); 273 } 274 275 static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg) 276 { 277 void __iomem *addr = gtr_phy->dev->serdes 278 + gtr_phy->lane * PHY_REG_OFFSET + reg; 279 280 return readl(addr); 281 } 282 283 static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy, 284 u32 reg, u32 value) 285 { 286 void __iomem *addr = gtr_phy->dev->serdes 287 + gtr_phy->lane * PHY_REG_OFFSET + reg; 288 289 writel(value, addr); 290 } 291 292 static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy, 293 u32 reg, u32 clr, u32 set) 294 { 295 void __iomem *addr = gtr_phy->dev->serdes 296 + gtr_phy->lane * PHY_REG_OFFSET + reg; 297 298 writel((readl(addr) & ~clr) | set, addr); 299 } 300 301 /* 302 * Hardware Configuration 303 */ 304 305 /* Wait for the PLL to lock (with a timeout). */ 306 static int xpsgtr_wait_pll_lock(struct phy *phy) 307 { 308 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 309 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 310 unsigned int timeout = TIMEOUT_US; 311 int ret; 312 313 dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n"); 314 315 while (1) { 316 u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1); 317 318 if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) { 319 ret = 0; 320 break; 321 } 322 323 if (--timeout == 0) { 324 ret = -ETIMEDOUT; 325 break; 326 } 327 328 udelay(1); 329 } 330 331 if (ret == -ETIMEDOUT) 332 dev_err(gtr_dev->dev, 333 "lane %u (type %u, protocol %u): PLL lock timeout\n", 334 gtr_phy->lane, gtr_phy->type, gtr_phy->protocol); 335 336 return ret; 337 } 338 339 /* Configure PLL and spread-sprectrum clock. */ 340 static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy) 341 { 342 const struct xpsgtr_ssc *ssc; 343 u32 step_size; 344 345 ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk]; 346 step_size = ssc->step_size; 347 348 xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane), 349 PLL_FREQ_MASK, ssc->pll_ref_clk); 350 351 /* Enable lane clock sharing, if required */ 352 if (gtr_phy->refclk != gtr_phy->lane) { 353 /* Lane3 Ref Clock Selection Register */ 354 xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane), 355 L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk); 356 } 357 358 /* SSC step size [7:0] */ 359 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB, 360 STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK); 361 362 /* SSC step size [15:8] */ 363 step_size >>= STEP_SIZE_SHIFT; 364 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1, 365 STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK); 366 367 /* SSC step size [23:16] */ 368 step_size >>= STEP_SIZE_SHIFT; 369 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2, 370 STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK); 371 372 /* SSC steps [7:0] */ 373 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB, 374 STEPS_0_MASK, ssc->steps & STEPS_0_MASK); 375 376 /* SSC steps [10:8] */ 377 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB, 378 STEPS_1_MASK, 379 (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK); 380 381 /* SSC step size [24:25] */ 382 step_size >>= STEP_SIZE_SHIFT; 383 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB, 384 STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) | 385 FORCE_STEP_SIZE | FORCE_STEPS); 386 } 387 388 /* Configure the lane protocol. */ 389 static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy) 390 { 391 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 392 u8 protocol = gtr_phy->protocol; 393 394 switch (gtr_phy->lane) { 395 case 0: 396 xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol); 397 break; 398 case 1: 399 xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK, 400 protocol << ICM_CFG_SHIFT); 401 break; 402 case 2: 403 xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol); 404 break; 405 case 3: 406 xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK, 407 protocol << ICM_CFG_SHIFT); 408 break; 409 default: 410 /* We already checked 0 <= lane <= 3 */ 411 break; 412 } 413 } 414 415 /* Bypass (de)scrambler and 8b/10b decoder and encoder. */ 416 static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy) 417 { 418 xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER); 419 xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER); 420 } 421 422 /* DP-specific initialization. */ 423 static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy) 424 { 425 xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45, 426 L0_TXPMD_TM_45_OVER_DP_MAIN | 427 L0_TXPMD_TM_45_ENABLE_DP_MAIN | 428 L0_TXPMD_TM_45_OVER_DP_POST1 | 429 L0_TXPMD_TM_45_OVER_DP_POST2 | 430 L0_TXPMD_TM_45_ENABLE_DP_POST2); 431 xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118, 432 L0_TX_ANA_TM_118_FORCE_17_0); 433 } 434 435 /* SATA-specific initialization. */ 436 static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy) 437 { 438 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 439 440 xpsgtr_bypass_scrambler_8b10b(gtr_phy); 441 442 writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET); 443 } 444 445 /* SGMII-specific initialization. */ 446 static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy) 447 { 448 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 449 u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane); 450 u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane); 451 452 /* Set SGMII protocol TX and RX bus width to 10 bits. */ 453 xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, mask, val); 454 xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, mask, val); 455 456 xpsgtr_bypass_scrambler_8b10b(gtr_phy); 457 } 458 459 /* Configure TX de-emphasis and margining for DP. */ 460 static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre, 461 unsigned int voltage) 462 { 463 static const u8 voltage_swing[4][4] = { 464 { 0x2a, 0x27, 0x24, 0x20 }, 465 { 0x27, 0x23, 0x20, 0xff }, 466 { 0x24, 0x20, 0xff, 0xff }, 467 { 0xff, 0xff, 0xff, 0xff } 468 }; 469 static const u8 pre_emphasis[4][4] = { 470 { 0x02, 0x02, 0x02, 0x02 }, 471 { 0x01, 0x01, 0x01, 0xff }, 472 { 0x00, 0x00, 0xff, 0xff }, 473 { 0xff, 0xff, 0xff, 0xff } 474 }; 475 476 xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]); 477 xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]); 478 } 479 480 /* 481 * PHY Operations 482 */ 483 484 static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy) 485 { 486 /* 487 * As USB may save the snapshot of the states during hibernation, doing 488 * phy_init() will put the USB controller into reset, resulting in the 489 * losing of the saved snapshot. So try to avoid phy_init() for USB 490 * except when gtr_phy->skip_phy_init is false (this happens when FPD is 491 * shutdown during suspend or when gt lane is changed from current one) 492 */ 493 if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init) 494 return false; 495 else 496 return true; 497 } 498 499 /* 500 * There is a functional issue in the GT. The TX termination resistance can be 501 * out of spec due to a issue in the calibration logic. This is the workaround 502 * to fix it, required for XCZU9EG silicon. 503 */ 504 static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy) 505 { 506 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 507 u32 timeout = TIMEOUT_US; 508 u32 nsw; 509 510 /* Enabling Test Mode control for CMN Rest */ 511 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); 512 513 /* Set Test Mode reset */ 514 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN); 515 516 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00); 517 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE); 518 519 /* 520 * As a part of work around sequence for PMOS calibration fix, 521 * we need to configure any lane ICM_CFG to valid protocol. This 522 * will deassert the CMN_Resetn signal. 523 */ 524 xpsgtr_lane_set_protocol(gtr_phy); 525 526 /* Clear Test Mode reset */ 527 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); 528 529 dev_dbg(gtr_dev->dev, "calibrating...\n"); 530 531 do { 532 u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS); 533 534 if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE) 535 break; 536 537 if (!--timeout) { 538 dev_err(gtr_dev->dev, "calibration time out\n"); 539 return -ETIMEDOUT; 540 } 541 542 udelay(1); 543 } while (timeout > 0); 544 545 dev_dbg(gtr_dev->dev, "calibration done\n"); 546 547 /* Reading NMOS Register Code */ 548 nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE; 549 550 /* Set Test Mode reset */ 551 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN); 552 553 /* Writing NMOS register values back [5:3] */ 554 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT); 555 556 /* Writing NMOS register value [2:0] */ 557 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 558 ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) | 559 (1 << L3_NSW_PIPE_SHIFT)); 560 561 /* Clear Test Mode reset */ 562 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); 563 564 return 0; 565 } 566 567 static int xpsgtr_phy_init(struct phy *phy) 568 { 569 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 570 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 571 int ret = 0; 572 573 mutex_lock(>r_dev->gtr_mutex); 574 575 /* Configure and enable the clock when peripheral phy_init call */ 576 if (clk_prepare_enable(gtr_dev->clk[gtr_phy->lane])) 577 goto out; 578 579 /* Skip initialization if not required. */ 580 if (!xpsgtr_phy_init_required(gtr_phy)) 581 goto out; 582 583 if (gtr_dev->tx_term_fix) { 584 ret = xpsgtr_phy_tx_term_fix(gtr_phy); 585 if (ret < 0) 586 goto out; 587 588 gtr_dev->tx_term_fix = false; 589 } 590 591 /* Enable coarse code saturation limiting logic. */ 592 xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT); 593 594 /* 595 * Configure the PLL, the lane protocol, and perform protocol-specific 596 * initialization. 597 */ 598 xpsgtr_configure_pll(gtr_phy); 599 xpsgtr_lane_set_protocol(gtr_phy); 600 601 switch (gtr_phy->protocol) { 602 case ICM_PROTOCOL_DP: 603 xpsgtr_phy_init_dp(gtr_phy); 604 break; 605 606 case ICM_PROTOCOL_SATA: 607 xpsgtr_phy_init_sata(gtr_phy); 608 break; 609 610 case ICM_PROTOCOL_SGMII: 611 xpsgtr_phy_init_sgmii(gtr_phy); 612 break; 613 } 614 615 out: 616 mutex_unlock(>r_dev->gtr_mutex); 617 return ret; 618 } 619 620 static int xpsgtr_phy_exit(struct phy *phy) 621 { 622 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 623 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 624 625 gtr_phy->skip_phy_init = false; 626 627 /* Ensure that disable clock only, which configure for lane */ 628 clk_disable_unprepare(gtr_dev->clk[gtr_phy->lane]); 629 630 return 0; 631 } 632 633 static int xpsgtr_phy_power_on(struct phy *phy) 634 { 635 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 636 int ret = 0; 637 638 /* Skip initialization if not required. */ 639 if (!xpsgtr_phy_init_required(gtr_phy)) 640 return ret; 641 /* 642 * Wait for the PLL to lock. For DP, only wait on DP0 to avoid 643 * cumulating waits for both lanes. The user is expected to initialize 644 * lane 0 last. 645 */ 646 if (gtr_phy->protocol != ICM_PROTOCOL_DP || 647 gtr_phy->type == XPSGTR_TYPE_DP_0) 648 ret = xpsgtr_wait_pll_lock(phy); 649 650 return ret; 651 } 652 653 static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts) 654 { 655 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 656 657 if (gtr_phy->protocol != ICM_PROTOCOL_DP) 658 return 0; 659 660 xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]); 661 662 return 0; 663 } 664 665 static const struct phy_ops xpsgtr_phyops = { 666 .init = xpsgtr_phy_init, 667 .exit = xpsgtr_phy_exit, 668 .power_on = xpsgtr_phy_power_on, 669 .configure = xpsgtr_phy_configure, 670 .owner = THIS_MODULE, 671 }; 672 673 /* 674 * OF Xlate Support 675 */ 676 677 /* Set the lane type and protocol based on the PHY type and instance number. */ 678 static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type, 679 unsigned int phy_instance) 680 { 681 unsigned int num_phy_types; 682 const int *phy_types; 683 684 switch (phy_type) { 685 case PHY_TYPE_SATA: { 686 static const int types[] = { 687 XPSGTR_TYPE_SATA_0, 688 XPSGTR_TYPE_SATA_1, 689 }; 690 691 phy_types = types; 692 num_phy_types = ARRAY_SIZE(types); 693 gtr_phy->protocol = ICM_PROTOCOL_SATA; 694 break; 695 } 696 case PHY_TYPE_USB3: { 697 static const int types[] = { 698 XPSGTR_TYPE_USB0, 699 XPSGTR_TYPE_USB1, 700 }; 701 702 phy_types = types; 703 num_phy_types = ARRAY_SIZE(types); 704 gtr_phy->protocol = ICM_PROTOCOL_USB; 705 break; 706 } 707 case PHY_TYPE_DP: { 708 static const int types[] = { 709 XPSGTR_TYPE_DP_0, 710 XPSGTR_TYPE_DP_1, 711 }; 712 713 phy_types = types; 714 num_phy_types = ARRAY_SIZE(types); 715 gtr_phy->protocol = ICM_PROTOCOL_DP; 716 break; 717 } 718 case PHY_TYPE_PCIE: { 719 static const int types[] = { 720 XPSGTR_TYPE_PCIE_0, 721 XPSGTR_TYPE_PCIE_1, 722 XPSGTR_TYPE_PCIE_2, 723 XPSGTR_TYPE_PCIE_3, 724 }; 725 726 phy_types = types; 727 num_phy_types = ARRAY_SIZE(types); 728 gtr_phy->protocol = ICM_PROTOCOL_PCIE; 729 break; 730 } 731 case PHY_TYPE_SGMII: { 732 static const int types[] = { 733 XPSGTR_TYPE_SGMII0, 734 XPSGTR_TYPE_SGMII1, 735 XPSGTR_TYPE_SGMII2, 736 XPSGTR_TYPE_SGMII3, 737 }; 738 739 phy_types = types; 740 num_phy_types = ARRAY_SIZE(types); 741 gtr_phy->protocol = ICM_PROTOCOL_SGMII; 742 break; 743 } 744 default: 745 return -EINVAL; 746 } 747 748 if (phy_instance >= num_phy_types) 749 return -EINVAL; 750 751 gtr_phy->type = phy_types[phy_instance]; 752 return 0; 753 } 754 755 /* 756 * Valid combinations of controllers and lanes (Interconnect Matrix). 757 */ 758 static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = { 759 { XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0, 760 XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 }, 761 { XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0, 762 XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 }, 763 { XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0, 764 XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 }, 765 { XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1, 766 XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 } 767 }; 768 769 /* Translate OF phandle and args to PHY instance. */ 770 static struct phy *xpsgtr_xlate(struct device *dev, 771 const struct of_phandle_args *args) 772 { 773 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); 774 struct xpsgtr_phy *gtr_phy; 775 unsigned int phy_instance; 776 unsigned int phy_lane; 777 unsigned int phy_type; 778 unsigned int refclk; 779 unsigned int i; 780 int ret; 781 782 if (args->args_count != 4) { 783 dev_err(dev, "Invalid number of cells in 'phy' property\n"); 784 return ERR_PTR(-EINVAL); 785 } 786 787 /* 788 * Get the PHY parameters from the OF arguments and derive the lane 789 * type. 790 */ 791 phy_lane = args->args[0]; 792 if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) { 793 dev_err(dev, "Invalid lane number %u\n", phy_lane); 794 return ERR_PTR(-ENODEV); 795 } 796 797 gtr_phy = >r_dev->phys[phy_lane]; 798 phy_type = args->args[1]; 799 phy_instance = args->args[2]; 800 801 ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance); 802 if (ret < 0) { 803 dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n"); 804 return ERR_PTR(ret); 805 } 806 807 refclk = args->args[3]; 808 if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) || 809 !gtr_dev->refclk_sscs[refclk]) { 810 dev_err(dev, "Invalid reference clock number %u\n", refclk); 811 return ERR_PTR(-EINVAL); 812 } 813 814 gtr_phy->refclk = refclk; 815 816 /* 817 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type 818 * is allowed to operate on the lane. 819 */ 820 for (i = 0; i < CONTROLLERS_PER_LANE; i++) { 821 if (icm_matrix[phy_lane][i] == gtr_phy->type) 822 return gtr_phy->phy; 823 } 824 825 return ERR_PTR(-EINVAL); 826 } 827 828 /* 829 * Power Management 830 */ 831 832 static int xpsgtr_runtime_suspend(struct device *dev) 833 { 834 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); 835 836 /* Save the snapshot ICM_CFG registers. */ 837 gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0); 838 gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1); 839 840 return 0; 841 } 842 843 static int xpsgtr_runtime_resume(struct device *dev) 844 { 845 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); 846 unsigned int icm_cfg0, icm_cfg1; 847 unsigned int i; 848 bool skip_phy_init; 849 850 icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0); 851 icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1); 852 853 /* Return if no GT lanes got configured before suspend. */ 854 if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1) 855 return 0; 856 857 /* Check if the ICM configurations changed after suspend. */ 858 if (icm_cfg0 == gtr_dev->saved_icm_cfg0 && 859 icm_cfg1 == gtr_dev->saved_icm_cfg1) 860 skip_phy_init = true; 861 else 862 skip_phy_init = false; 863 864 /* Update the skip_phy_init for all gtr_phy instances. */ 865 for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++) 866 gtr_dev->phys[i].skip_phy_init = skip_phy_init; 867 868 return 0; 869 } 870 871 static DEFINE_RUNTIME_DEV_PM_OPS(xpsgtr_pm_ops, xpsgtr_runtime_suspend, 872 xpsgtr_runtime_resume, NULL); 873 /* 874 * Probe & Platform Driver 875 */ 876 877 static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev) 878 { 879 unsigned int refclk; 880 881 for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) { 882 unsigned long rate; 883 unsigned int i; 884 struct clk *clk; 885 char name[8]; 886 887 snprintf(name, sizeof(name), "ref%u", refclk); 888 clk = devm_clk_get_optional(gtr_dev->dev, name); 889 if (IS_ERR(clk)) { 890 return dev_err_probe(gtr_dev->dev, PTR_ERR(clk), 891 "Failed to get ref clock %u\n", 892 refclk); 893 } 894 895 if (!clk) 896 continue; 897 898 gtr_dev->clk[refclk] = clk; 899 900 /* 901 * Get the spread spectrum (SSC) settings for the reference 902 * clock rate. 903 */ 904 rate = clk_get_rate(clk); 905 906 for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) { 907 /* Allow an error of 100 ppm */ 908 unsigned long error = ssc_lookup[i].refclk_rate / 10000; 909 910 if (abs(rate - ssc_lookup[i].refclk_rate) < error) { 911 gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i]; 912 break; 913 } 914 } 915 916 if (i == ARRAY_SIZE(ssc_lookup)) { 917 dev_err(gtr_dev->dev, 918 "Invalid rate %lu for reference clock %u\n", 919 rate, refclk); 920 return -EINVAL; 921 } 922 } 923 924 return 0; 925 } 926 927 static int xpsgtr_probe(struct platform_device *pdev) 928 { 929 struct device_node *np = pdev->dev.of_node; 930 struct xpsgtr_dev *gtr_dev; 931 struct phy_provider *provider; 932 unsigned int port; 933 int ret; 934 935 gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL); 936 if (!gtr_dev) 937 return -ENOMEM; 938 939 gtr_dev->dev = &pdev->dev; 940 platform_set_drvdata(pdev, gtr_dev); 941 942 mutex_init(>r_dev->gtr_mutex); 943 944 if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr")) 945 gtr_dev->tx_term_fix = 946 of_property_read_bool(np, "xlnx,tx-termination-fix"); 947 948 /* Acquire resources. */ 949 gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes"); 950 if (IS_ERR(gtr_dev->serdes)) 951 return PTR_ERR(gtr_dev->serdes); 952 953 gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou"); 954 if (IS_ERR(gtr_dev->siou)) 955 return PTR_ERR(gtr_dev->siou); 956 957 ret = xpsgtr_get_ref_clocks(gtr_dev); 958 if (ret) 959 return ret; 960 961 /* Create PHYs. */ 962 for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) { 963 struct xpsgtr_phy *gtr_phy = >r_dev->phys[port]; 964 struct phy *phy; 965 966 gtr_phy->lane = port; 967 gtr_phy->dev = gtr_dev; 968 969 phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops); 970 if (IS_ERR(phy)) { 971 dev_err(&pdev->dev, "failed to create PHY\n"); 972 return PTR_ERR(phy); 973 } 974 975 gtr_phy->phy = phy; 976 phy_set_drvdata(phy, gtr_phy); 977 } 978 979 /* Register the PHY provider. */ 980 provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate); 981 if (IS_ERR(provider)) { 982 dev_err(&pdev->dev, "registering provider failed\n"); 983 return PTR_ERR(provider); 984 } 985 986 pm_runtime_set_active(gtr_dev->dev); 987 pm_runtime_enable(gtr_dev->dev); 988 989 ret = pm_runtime_resume_and_get(gtr_dev->dev); 990 if (ret < 0) { 991 pm_runtime_disable(gtr_dev->dev); 992 return ret; 993 } 994 995 return 0; 996 } 997 998 static int xpsgtr_remove(struct platform_device *pdev) 999 { 1000 struct xpsgtr_dev *gtr_dev = platform_get_drvdata(pdev); 1001 1002 pm_runtime_disable(gtr_dev->dev); 1003 pm_runtime_put_noidle(gtr_dev->dev); 1004 pm_runtime_set_suspended(gtr_dev->dev); 1005 1006 return 0; 1007 } 1008 1009 static const struct of_device_id xpsgtr_of_match[] = { 1010 { .compatible = "xlnx,zynqmp-psgtr", }, 1011 { .compatible = "xlnx,zynqmp-psgtr-v1.1", }, 1012 {}, 1013 }; 1014 MODULE_DEVICE_TABLE(of, xpsgtr_of_match); 1015 1016 static struct platform_driver xpsgtr_driver = { 1017 .probe = xpsgtr_probe, 1018 .remove = xpsgtr_remove, 1019 .driver = { 1020 .name = "xilinx-psgtr", 1021 .of_match_table = xpsgtr_of_match, 1022 .pm = pm_ptr(&xpsgtr_pm_ops), 1023 }, 1024 }; 1025 1026 module_platform_driver(xpsgtr_driver); 1027 1028 MODULE_AUTHOR("Xilinx Inc."); 1029 MODULE_LICENSE("GPL v2"); 1030 MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver"); 1031