1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT. 4 * 5 * Copyright (C) 2018-2020 Xilinx Inc. 6 * 7 * Author: Anurag Kumar Vulisha <anuragku@xilinx.com> 8 * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com> 9 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com> 10 * 11 * This driver is tested for USB, SGMII, SATA and Display Port currently. 12 * PCIe should also work but that is experimental as of now. 13 */ 14 15 #include <linux/clk.h> 16 #include <linux/debugfs.h> 17 #include <linux/delay.h> 18 #include <linux/io.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/of.h> 22 #include <linux/phy/phy.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/slab.h> 26 27 #include <dt-bindings/phy/phy.h> 28 29 /* 30 * Lane Registers 31 */ 32 33 /* TX De-emphasis parameters */ 34 #define L0_TX_ANA_TM_18 0x0048 35 #define L0_TX_ANA_TM_118 0x01d8 36 #define L0_TX_ANA_TM_118_FORCE_17_0 BIT(0) 37 38 /* DN Resistor calibration code parameters */ 39 #define L0_TXPMA_ST_3 0x0b0c 40 #define L0_DN_CALIB_CODE 0x3f 41 42 /* PMA control parameters */ 43 #define L0_TXPMD_TM_45 0x0cb4 44 #define L0_TXPMD_TM_48 0x0cc0 45 #define L0_TXPMD_TM_45_OVER_DP_MAIN BIT(0) 46 #define L0_TXPMD_TM_45_ENABLE_DP_MAIN BIT(1) 47 #define L0_TXPMD_TM_45_OVER_DP_POST1 BIT(2) 48 #define L0_TXPMD_TM_45_ENABLE_DP_POST1 BIT(3) 49 #define L0_TXPMD_TM_45_OVER_DP_POST2 BIT(4) 50 #define L0_TXPMD_TM_45_ENABLE_DP_POST2 BIT(5) 51 52 /* PCS control parameters */ 53 #define L0_TM_DIG_6 0x106c 54 #define L0_TM_DIS_DESCRAMBLE_DECODER 0x0f 55 #define L0_TX_DIG_61 0x00f4 56 #define L0_TM_DISABLE_SCRAMBLE_ENCODER 0x0f 57 58 /* PLL Test Mode register parameters */ 59 #define L0_TM_PLL_DIG_37 0x2094 60 #define L0_TM_COARSE_CODE_LIMIT 0x10 61 62 /* PLL SSC step size offsets */ 63 #define L0_PLL_SS_STEPS_0_LSB 0x2368 64 #define L0_PLL_SS_STEPS_1_MSB 0x236c 65 #define L0_PLL_SS_STEP_SIZE_0_LSB 0x2370 66 #define L0_PLL_SS_STEP_SIZE_1 0x2374 67 #define L0_PLL_SS_STEP_SIZE_2 0x2378 68 #define L0_PLL_SS_STEP_SIZE_3_MSB 0x237c 69 #define L0_PLL_STATUS_READ_1 0x23e4 70 71 /* SSC step size parameters */ 72 #define STEP_SIZE_0_MASK 0xff 73 #define STEP_SIZE_1_MASK 0xff 74 #define STEP_SIZE_2_MASK 0xff 75 #define STEP_SIZE_3_MASK 0x3 76 #define STEP_SIZE_SHIFT 8 77 #define FORCE_STEP_SIZE 0x10 78 #define FORCE_STEPS 0x20 79 #define STEPS_0_MASK 0xff 80 #define STEPS_1_MASK 0x07 81 82 /* Reference clock selection parameters */ 83 #define L0_Ln_REF_CLK_SEL(n) (0x2860 + (n) * 4) 84 #define L0_REF_CLK_LCL_SEL BIT(7) 85 #define L0_REF_CLK_SEL_MASK 0x9f 86 87 /* Calibration digital logic parameters */ 88 #define L3_TM_CALIB_DIG19 0xec4c 89 #define L3_CALIB_DONE_STATUS 0xef14 90 #define L3_TM_CALIB_DIG18 0xec48 91 #define L3_TM_CALIB_DIG19_NSW 0x07 92 #define L3_TM_CALIB_DIG18_NSW 0xe0 93 #define L3_TM_OVERRIDE_NSW_CODE 0x20 94 #define L3_CALIB_DONE 0x02 95 #define L3_NSW_SHIFT 5 96 #define L3_NSW_PIPE_SHIFT 4 97 #define L3_NSW_CALIB_SHIFT 3 98 99 #define PHY_REG_OFFSET 0x4000 100 101 /* 102 * Global Registers 103 */ 104 105 /* Refclk selection parameters */ 106 #define PLL_REF_SEL(n) (0x10000 + (n) * 4) 107 #define PLL_FREQ_MASK 0x1f 108 #define PLL_STATUS_LOCKED 0x10 109 110 /* Inter Connect Matrix parameters */ 111 #define ICM_CFG0 0x10010 112 #define ICM_CFG1 0x10014 113 #define ICM_CFG0_L0_MASK 0x07 114 #define ICM_CFG0_L1_MASK 0x70 115 #define ICM_CFG1_L2_MASK 0x07 116 #define ICM_CFG2_L3_MASK 0x70 117 #define ICM_CFG_SHIFT 4 118 119 /* Inter Connect Matrix allowed protocols */ 120 #define ICM_PROTOCOL_PD 0x0 121 #define ICM_PROTOCOL_PCIE 0x1 122 #define ICM_PROTOCOL_SATA 0x2 123 #define ICM_PROTOCOL_USB 0x3 124 #define ICM_PROTOCOL_DP 0x4 125 #define ICM_PROTOCOL_SGMII 0x5 126 127 static const char *const xpsgtr_icm_str[] = { 128 [ICM_PROTOCOL_PD] = "none", 129 [ICM_PROTOCOL_PCIE] = "PCIe", 130 [ICM_PROTOCOL_SATA] = "SATA", 131 [ICM_PROTOCOL_USB] = "USB", 132 [ICM_PROTOCOL_DP] = "DisplayPort", 133 [ICM_PROTOCOL_SGMII] = "SGMII", 134 }; 135 136 /* Test Mode common reset control parameters */ 137 #define TM_CMN_RST 0x10018 138 #define TM_CMN_RST_EN 0x1 139 #define TM_CMN_RST_SET 0x2 140 #define TM_CMN_RST_MASK 0x3 141 142 /* Bus width parameters */ 143 #define TX_PROT_BUS_WIDTH 0x10040 144 #define RX_PROT_BUS_WIDTH 0x10044 145 #define PROT_BUS_WIDTH_10 0x0 146 #define PROT_BUS_WIDTH_20 0x1 147 #define PROT_BUS_WIDTH_40 0x2 148 #define PROT_BUS_WIDTH_SHIFT(n) ((n) * 2) 149 #define PROT_BUS_WIDTH_MASK(n) GENMASK((n) * 2 + 1, (n) * 2) 150 151 /* Number of GT lanes */ 152 #define NUM_LANES 4 153 154 /* SIOU SATA control register */ 155 #define SATA_CONTROL_OFFSET 0x0100 156 157 /* Total number of controllers */ 158 #define CONTROLLERS_PER_LANE 5 159 160 /* Timeout values */ 161 #define TIMEOUT_US 1000 162 163 /* Lane 0/1/2/3 offset */ 164 #define DIG_8(n) ((0x4000 * (n)) + 0x1074) 165 #define ILL13(n) ((0x4000 * (n)) + 0x1994) 166 #define DIG_10(n) ((0x4000 * (n)) + 0x107c) 167 #define RST_DLY(n) ((0x4000 * (n)) + 0x19a4) 168 #define BYP_15(n) ((0x4000 * (n)) + 0x1038) 169 #define BYP_12(n) ((0x4000 * (n)) + 0x102c) 170 #define MISC3(n) ((0x4000 * (n)) + 0x19ac) 171 #define EQ11(n) ((0x4000 * (n)) + 0x1978) 172 173 static u32 save_reg_address[] = { 174 /* Lane 0/1/2/3 Register */ 175 DIG_8(0), ILL13(0), DIG_10(0), RST_DLY(0), BYP_15(0), BYP_12(0), MISC3(0), EQ11(0), 176 DIG_8(1), ILL13(1), DIG_10(1), RST_DLY(1), BYP_15(1), BYP_12(1), MISC3(1), EQ11(1), 177 DIG_8(2), ILL13(2), DIG_10(2), RST_DLY(2), BYP_15(2), BYP_12(2), MISC3(2), EQ11(2), 178 DIG_8(3), ILL13(3), DIG_10(3), RST_DLY(3), BYP_15(3), BYP_12(3), MISC3(3), EQ11(3), 179 }; 180 181 struct xpsgtr_dev; 182 183 /** 184 * struct xpsgtr_ssc - structure to hold SSC settings for a lane 185 * @refclk_rate: PLL reference clock frequency 186 * @pll_ref_clk: value to be written to register for corresponding ref clk rate 187 * @steps: number of steps of SSC (Spread Spectrum Clock) 188 * @step_size: step size of each step 189 */ 190 struct xpsgtr_ssc { 191 u32 refclk_rate; 192 u8 pll_ref_clk; 193 u32 steps; 194 u32 step_size; 195 }; 196 197 /** 198 * struct xpsgtr_phy - representation of a lane 199 * @phy: pointer to the kernel PHY device 200 * @instance: instance of the protocol type (such as the lane within a 201 * protocol, or the USB/Ethernet controller) 202 * @lane: lane number 203 * @protocol: protocol in which the lane operates 204 * @skip_phy_init: skip phy_init() if true 205 * @dev: pointer to the xpsgtr_dev instance 206 * @refclk: reference clock index 207 */ 208 struct xpsgtr_phy { 209 struct phy *phy; 210 u8 instance; 211 u8 lane; 212 u8 protocol; 213 bool skip_phy_init; 214 struct xpsgtr_dev *dev; 215 unsigned int refclk; 216 }; 217 218 /** 219 * struct xpsgtr_dev - representation of a ZynMP GT device 220 * @dev: pointer to device 221 * @serdes: serdes base address 222 * @siou: siou base address 223 * @gtr_mutex: mutex for locking 224 * @phys: PHY lanes 225 * @refclk_sscs: spread spectrum settings for the reference clocks 226 * @clk: reference clocks 227 * @tx_term_fix: fix for GT issue 228 * @saved_icm_cfg0: stored value of ICM CFG0 register 229 * @saved_icm_cfg1: stored value of ICM CFG1 register 230 * @saved_regs: registers to be saved/restored during suspend/resume 231 */ 232 struct xpsgtr_dev { 233 struct device *dev; 234 void __iomem *serdes; 235 void __iomem *siou; 236 struct mutex gtr_mutex; /* mutex for locking */ 237 struct xpsgtr_phy phys[NUM_LANES]; 238 const struct xpsgtr_ssc *refclk_sscs[NUM_LANES]; 239 struct clk *clk[NUM_LANES]; 240 bool tx_term_fix; 241 unsigned int saved_icm_cfg0; 242 unsigned int saved_icm_cfg1; 243 u32 *saved_regs; 244 }; 245 246 /* 247 * Configuration Data 248 */ 249 250 /* lookup table to hold all settings needed for a ref clock frequency */ 251 static const struct xpsgtr_ssc ssc_lookup[] = { 252 { 19200000, 0x05, 608, 264020 }, 253 { 20000000, 0x06, 634, 243454 }, 254 { 24000000, 0x07, 760, 168973 }, 255 { 26000000, 0x08, 824, 143860 }, 256 { 27000000, 0x09, 856, 86551 }, 257 { 38400000, 0x0a, 1218, 65896 }, 258 { 40000000, 0x0b, 634, 243454 }, 259 { 52000000, 0x0c, 824, 143860 }, 260 { 100000000, 0x0d, 1058, 87533 }, 261 { 108000000, 0x0e, 856, 86551 }, 262 { 125000000, 0x0f, 992, 119497 }, 263 { 135000000, 0x10, 1070, 55393 }, 264 { 150000000, 0x11, 792, 187091 } 265 }; 266 267 /* 268 * I/O Accessors 269 */ 270 271 static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg) 272 { 273 return readl(gtr_dev->serdes + reg); 274 } 275 276 static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value) 277 { 278 writel(value, gtr_dev->serdes + reg); 279 } 280 281 static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg, 282 u32 clr, u32 set) 283 { 284 u32 value = xpsgtr_read(gtr_dev, reg); 285 286 value &= ~clr; 287 value |= set; 288 xpsgtr_write(gtr_dev, reg, value); 289 } 290 291 static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg) 292 { 293 void __iomem *addr = gtr_phy->dev->serdes 294 + gtr_phy->lane * PHY_REG_OFFSET + reg; 295 296 return readl(addr); 297 } 298 299 static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy, 300 u32 reg, u32 value) 301 { 302 void __iomem *addr = gtr_phy->dev->serdes 303 + gtr_phy->lane * PHY_REG_OFFSET + reg; 304 305 writel(value, addr); 306 } 307 308 static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy, 309 u32 reg, u32 clr, u32 set) 310 { 311 void __iomem *addr = gtr_phy->dev->serdes 312 + gtr_phy->lane * PHY_REG_OFFSET + reg; 313 314 writel((readl(addr) & ~clr) | set, addr); 315 } 316 317 /** 318 * xpsgtr_save_lane_regs - Saves registers on suspend 319 * @gtr_dev: pointer to phy controller context structure 320 */ 321 static void xpsgtr_save_lane_regs(struct xpsgtr_dev *gtr_dev) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(save_reg_address); i++) 326 gtr_dev->saved_regs[i] = xpsgtr_read(gtr_dev, 327 save_reg_address[i]); 328 } 329 330 /** 331 * xpsgtr_restore_lane_regs - Restores registers on resume 332 * @gtr_dev: pointer to phy controller context structure 333 */ 334 static void xpsgtr_restore_lane_regs(struct xpsgtr_dev *gtr_dev) 335 { 336 int i; 337 338 for (i = 0; i < ARRAY_SIZE(save_reg_address); i++) 339 xpsgtr_write(gtr_dev, save_reg_address[i], 340 gtr_dev->saved_regs[i]); 341 } 342 343 /* 344 * Hardware Configuration 345 */ 346 347 /* Wait for the PLL to lock (with a timeout). */ 348 static int xpsgtr_wait_pll_lock(struct phy *phy) 349 { 350 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 351 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 352 unsigned int timeout = TIMEOUT_US; 353 u8 protocol = gtr_phy->protocol; 354 int ret; 355 356 dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n"); 357 358 /* 359 * For DP and PCIe, only the instance 0 PLL is used. Switch to that phy 360 * so we wait on the right PLL. 361 */ 362 if ((protocol == ICM_PROTOCOL_DP || protocol == ICM_PROTOCOL_PCIE) && 363 gtr_phy->instance) { 364 int i; 365 366 for (i = 0; i < NUM_LANES; i++) { 367 gtr_phy = >r_dev->phys[i]; 368 369 if (gtr_phy->protocol == protocol && !gtr_phy->instance) 370 goto got_phy; 371 } 372 373 return -EBUSY; 374 } 375 376 got_phy: 377 while (1) { 378 u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1); 379 380 if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) { 381 ret = 0; 382 break; 383 } 384 385 if (--timeout == 0) { 386 ret = -ETIMEDOUT; 387 break; 388 } 389 390 udelay(1); 391 } 392 393 if (ret == -ETIMEDOUT) 394 dev_err(gtr_dev->dev, 395 "lane %u (protocol %u, instance %u): PLL lock timeout\n", 396 gtr_phy->lane, gtr_phy->protocol, gtr_phy->instance); 397 398 return ret; 399 } 400 401 /* Configure PLL and spread-sprectrum clock. */ 402 static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy) 403 { 404 const struct xpsgtr_ssc *ssc; 405 u32 step_size; 406 407 ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk]; 408 step_size = ssc->step_size; 409 410 xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane), 411 PLL_FREQ_MASK, ssc->pll_ref_clk); 412 413 /* Enable lane clock sharing, if required */ 414 if (gtr_phy->refclk == gtr_phy->lane) 415 xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane), 416 L0_REF_CLK_SEL_MASK, L0_REF_CLK_LCL_SEL); 417 else 418 xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane), 419 L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk); 420 421 /* SSC step size [7:0] */ 422 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB, 423 STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK); 424 425 /* SSC step size [15:8] */ 426 step_size >>= STEP_SIZE_SHIFT; 427 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1, 428 STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK); 429 430 /* SSC step size [23:16] */ 431 step_size >>= STEP_SIZE_SHIFT; 432 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2, 433 STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK); 434 435 /* SSC steps [7:0] */ 436 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB, 437 STEPS_0_MASK, ssc->steps & STEPS_0_MASK); 438 439 /* SSC steps [10:8] */ 440 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB, 441 STEPS_1_MASK, 442 (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK); 443 444 /* SSC step size [24:25] */ 445 step_size >>= STEP_SIZE_SHIFT; 446 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB, 447 STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) | 448 FORCE_STEP_SIZE | FORCE_STEPS); 449 } 450 451 /* Configure the lane protocol. */ 452 static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy) 453 { 454 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 455 u8 protocol = gtr_phy->protocol; 456 457 switch (gtr_phy->lane) { 458 case 0: 459 xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol); 460 break; 461 case 1: 462 xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK, 463 protocol << ICM_CFG_SHIFT); 464 break; 465 case 2: 466 xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol); 467 break; 468 case 3: 469 xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK, 470 protocol << ICM_CFG_SHIFT); 471 break; 472 default: 473 /* We already checked 0 <= lane <= 3 */ 474 break; 475 } 476 } 477 478 /* Bypass (de)scrambler and 8b/10b decoder and encoder. */ 479 static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy) 480 { 481 xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER); 482 xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER); 483 } 484 485 /* DP-specific initialization. */ 486 static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy) 487 { 488 xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45, 489 L0_TXPMD_TM_45_OVER_DP_MAIN | 490 L0_TXPMD_TM_45_ENABLE_DP_MAIN | 491 L0_TXPMD_TM_45_OVER_DP_POST1 | 492 L0_TXPMD_TM_45_OVER_DP_POST2 | 493 L0_TXPMD_TM_45_ENABLE_DP_POST2); 494 xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118, 495 L0_TX_ANA_TM_118_FORCE_17_0); 496 } 497 498 /* SATA-specific initialization. */ 499 static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy) 500 { 501 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 502 503 xpsgtr_bypass_scrambler_8b10b(gtr_phy); 504 505 writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET); 506 } 507 508 /* SGMII-specific initialization. */ 509 static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy) 510 { 511 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 512 u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane); 513 u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane); 514 515 /* Set SGMII protocol TX and RX bus width to 10 bits. */ 516 xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, mask, val); 517 xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, mask, val); 518 519 xpsgtr_bypass_scrambler_8b10b(gtr_phy); 520 } 521 522 /* Configure TX de-emphasis and margining for DP. */ 523 static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre, 524 unsigned int voltage) 525 { 526 static const u8 voltage_swing[4][4] = { 527 { 0x2a, 0x27, 0x24, 0x20 }, 528 { 0x27, 0x23, 0x20, 0xff }, 529 { 0x24, 0x20, 0xff, 0xff }, 530 { 0xff, 0xff, 0xff, 0xff } 531 }; 532 static const u8 pre_emphasis[4][4] = { 533 { 0x02, 0x02, 0x02, 0x02 }, 534 { 0x01, 0x01, 0x01, 0xff }, 535 { 0x00, 0x00, 0xff, 0xff }, 536 { 0xff, 0xff, 0xff, 0xff } 537 }; 538 539 xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]); 540 xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]); 541 } 542 543 /* 544 * PHY Operations 545 */ 546 547 static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy) 548 { 549 /* 550 * As USB may save the snapshot of the states during hibernation, doing 551 * phy_init() will put the USB controller into reset, resulting in the 552 * losing of the saved snapshot. So try to avoid phy_init() for USB 553 * except when gtr_phy->skip_phy_init is false (this happens when FPD is 554 * shutdown during suspend or when gt lane is changed from current one) 555 */ 556 if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init) 557 return false; 558 else 559 return true; 560 } 561 562 /* 563 * There is a functional issue in the GT. The TX termination resistance can be 564 * out of spec due to a issue in the calibration logic. This is the workaround 565 * to fix it, required for XCZU9EG silicon. 566 */ 567 static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy) 568 { 569 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 570 u32 timeout = TIMEOUT_US; 571 u32 nsw; 572 573 /* Enabling Test Mode control for CMN Rest */ 574 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); 575 576 /* Set Test Mode reset */ 577 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN); 578 579 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00); 580 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE); 581 582 /* 583 * As a part of work around sequence for PMOS calibration fix, 584 * we need to configure any lane ICM_CFG to valid protocol. This 585 * will deassert the CMN_Resetn signal. 586 */ 587 xpsgtr_lane_set_protocol(gtr_phy); 588 589 /* Clear Test Mode reset */ 590 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); 591 592 dev_dbg(gtr_dev->dev, "calibrating...\n"); 593 594 do { 595 u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS); 596 597 if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE) 598 break; 599 600 if (!--timeout) { 601 dev_err(gtr_dev->dev, "calibration time out\n"); 602 return -ETIMEDOUT; 603 } 604 605 udelay(1); 606 } while (timeout > 0); 607 608 dev_dbg(gtr_dev->dev, "calibration done\n"); 609 610 /* Reading NMOS Register Code */ 611 nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE; 612 613 /* Set Test Mode reset */ 614 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN); 615 616 /* Writing NMOS register values back [5:3] */ 617 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT); 618 619 /* Writing NMOS register value [2:0] */ 620 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 621 ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) | 622 (1 << L3_NSW_PIPE_SHIFT)); 623 624 /* Clear Test Mode reset */ 625 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); 626 627 return 0; 628 } 629 630 static int xpsgtr_phy_init(struct phy *phy) 631 { 632 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 633 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 634 int ret = 0; 635 636 mutex_lock(>r_dev->gtr_mutex); 637 638 /* Configure and enable the clock when peripheral phy_init call */ 639 if (clk_prepare_enable(gtr_dev->clk[gtr_phy->refclk])) 640 goto out; 641 642 /* Skip initialization if not required. */ 643 if (!xpsgtr_phy_init_required(gtr_phy)) 644 goto out; 645 646 if (gtr_dev->tx_term_fix) { 647 ret = xpsgtr_phy_tx_term_fix(gtr_phy); 648 if (ret < 0) 649 goto out; 650 651 gtr_dev->tx_term_fix = false; 652 } 653 654 /* Enable coarse code saturation limiting logic. */ 655 xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT); 656 657 /* 658 * Configure the PLL, the lane protocol, and perform protocol-specific 659 * initialization. 660 */ 661 xpsgtr_configure_pll(gtr_phy); 662 xpsgtr_lane_set_protocol(gtr_phy); 663 664 switch (gtr_phy->protocol) { 665 case ICM_PROTOCOL_DP: 666 xpsgtr_phy_init_dp(gtr_phy); 667 break; 668 669 case ICM_PROTOCOL_SATA: 670 xpsgtr_phy_init_sata(gtr_phy); 671 break; 672 673 case ICM_PROTOCOL_SGMII: 674 xpsgtr_phy_init_sgmii(gtr_phy); 675 break; 676 } 677 678 out: 679 mutex_unlock(>r_dev->gtr_mutex); 680 return ret; 681 } 682 683 static int xpsgtr_phy_exit(struct phy *phy) 684 { 685 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 686 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 687 688 gtr_phy->skip_phy_init = false; 689 690 /* Ensure that disable clock only, which configure for lane */ 691 clk_disable_unprepare(gtr_dev->clk[gtr_phy->refclk]); 692 693 return 0; 694 } 695 696 static int xpsgtr_phy_power_on(struct phy *phy) 697 { 698 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 699 int ret = 0; 700 701 /* Skip initialization if not required. */ 702 if (!xpsgtr_phy_init_required(gtr_phy)) 703 return ret; 704 return xpsgtr_wait_pll_lock(phy); 705 } 706 707 static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts) 708 { 709 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 710 711 if (gtr_phy->protocol != ICM_PROTOCOL_DP) 712 return 0; 713 714 xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]); 715 716 return 0; 717 } 718 719 static const struct phy_ops xpsgtr_phyops = { 720 .init = xpsgtr_phy_init, 721 .exit = xpsgtr_phy_exit, 722 .power_on = xpsgtr_phy_power_on, 723 .configure = xpsgtr_phy_configure, 724 .owner = THIS_MODULE, 725 }; 726 727 /* 728 * OF Xlate Support 729 */ 730 731 /* Set the lane protocol and instance based on the PHY type and instance number. */ 732 static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type, 733 unsigned int phy_instance) 734 { 735 unsigned int num_phy_types; 736 737 switch (phy_type) { 738 case PHY_TYPE_SATA: 739 num_phy_types = 2; 740 gtr_phy->protocol = ICM_PROTOCOL_SATA; 741 break; 742 case PHY_TYPE_USB3: 743 num_phy_types = 2; 744 gtr_phy->protocol = ICM_PROTOCOL_USB; 745 break; 746 case PHY_TYPE_DP: 747 num_phy_types = 2; 748 gtr_phy->protocol = ICM_PROTOCOL_DP; 749 break; 750 case PHY_TYPE_PCIE: 751 num_phy_types = 4; 752 gtr_phy->protocol = ICM_PROTOCOL_PCIE; 753 break; 754 case PHY_TYPE_SGMII: 755 num_phy_types = 4; 756 gtr_phy->protocol = ICM_PROTOCOL_SGMII; 757 break; 758 default: 759 return -EINVAL; 760 } 761 762 if (phy_instance >= num_phy_types) 763 return -EINVAL; 764 765 gtr_phy->instance = phy_instance; 766 return 0; 767 } 768 769 /* 770 * Valid combinations of controllers and lanes (Interconnect Matrix). Each 771 * "instance" represents one controller for a lane. For PCIe and DP, the 772 * "instance" is the logical lane in the link. For SATA, USB, and SGMII, 773 * the instance is the index of the controller. 774 * 775 * This information is only used to validate the devicetree reference, and is 776 * not used when programming the hardware. 777 */ 778 static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = { 779 /* PCIe, SATA, USB, DP, SGMII */ 780 { 0, 0, 0, 1, 0 }, /* Lane 0 */ 781 { 1, 1, 0, 0, 1 }, /* Lane 1 */ 782 { 2, 0, 0, 1, 2 }, /* Lane 2 */ 783 { 3, 1, 1, 0, 3 }, /* Lane 3 */ 784 }; 785 786 /* Translate OF phandle and args to PHY instance. */ 787 static struct phy *xpsgtr_xlate(struct device *dev, 788 const struct of_phandle_args *args) 789 { 790 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); 791 struct xpsgtr_phy *gtr_phy; 792 unsigned int phy_instance; 793 unsigned int phy_lane; 794 unsigned int phy_type; 795 unsigned int refclk; 796 unsigned int i; 797 int ret; 798 799 if (args->args_count != 4) { 800 dev_err(dev, "Invalid number of cells in 'phy' property\n"); 801 return ERR_PTR(-EINVAL); 802 } 803 804 /* 805 * Get the PHY parameters from the OF arguments and derive the lane 806 * type. 807 */ 808 phy_lane = args->args[0]; 809 if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) { 810 dev_err(dev, "Invalid lane number %u\n", phy_lane); 811 return ERR_PTR(-ENODEV); 812 } 813 814 gtr_phy = >r_dev->phys[phy_lane]; 815 phy_type = args->args[1]; 816 phy_instance = args->args[2]; 817 818 guard(mutex)(>r_phy->phy->mutex); 819 ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance); 820 if (ret < 0) { 821 dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n"); 822 return ERR_PTR(ret); 823 } 824 825 refclk = args->args[3]; 826 if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) || 827 !gtr_dev->refclk_sscs[refclk]) { 828 dev_err(dev, "Invalid reference clock number %u\n", refclk); 829 return ERR_PTR(-EINVAL); 830 } 831 832 gtr_phy->refclk = refclk; 833 834 /* 835 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type 836 * is allowed to operate on the lane. 837 */ 838 for (i = 0; i < CONTROLLERS_PER_LANE; i++) { 839 if (icm_matrix[phy_lane][i] == gtr_phy->instance) 840 return gtr_phy->phy; 841 } 842 843 return ERR_PTR(-EINVAL); 844 } 845 846 /* 847 * DebugFS 848 */ 849 850 static int xpsgtr_status_read(struct seq_file *seq, void *data) 851 { 852 struct device *dev = seq->private; 853 struct xpsgtr_phy *gtr_phy = dev_get_drvdata(dev); 854 struct clk *clk; 855 u32 pll_status; 856 857 mutex_lock(>r_phy->phy->mutex); 858 pll_status = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1); 859 clk = gtr_phy->dev->clk[gtr_phy->refclk]; 860 861 seq_printf(seq, "Lane: %u\n", gtr_phy->lane); 862 seq_printf(seq, "Protocol: %s\n", 863 xpsgtr_icm_str[gtr_phy->protocol]); 864 seq_printf(seq, "Instance: %u\n", gtr_phy->instance); 865 seq_printf(seq, "Reference clock: %u (%pC)\n", gtr_phy->refclk, clk); 866 seq_printf(seq, "Reference rate: %lu\n", clk_get_rate(clk)); 867 seq_printf(seq, "PLL locked: %s\n", 868 pll_status & PLL_STATUS_LOCKED ? "yes" : "no"); 869 870 mutex_unlock(>r_phy->phy->mutex); 871 return 0; 872 } 873 874 /* 875 * Power Management 876 */ 877 878 static int xpsgtr_runtime_suspend(struct device *dev) 879 { 880 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); 881 882 /* Save the snapshot ICM_CFG registers. */ 883 gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0); 884 gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1); 885 886 xpsgtr_save_lane_regs(gtr_dev); 887 888 return 0; 889 } 890 891 static int xpsgtr_runtime_resume(struct device *dev) 892 { 893 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); 894 unsigned int icm_cfg0, icm_cfg1; 895 unsigned int i; 896 bool skip_phy_init; 897 898 xpsgtr_restore_lane_regs(gtr_dev); 899 900 icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0); 901 icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1); 902 903 /* Return if no GT lanes got configured before suspend. */ 904 if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1) 905 return 0; 906 907 /* Check if the ICM configurations changed after suspend. */ 908 if (icm_cfg0 == gtr_dev->saved_icm_cfg0 && 909 icm_cfg1 == gtr_dev->saved_icm_cfg1) 910 skip_phy_init = true; 911 else 912 skip_phy_init = false; 913 914 /* Update the skip_phy_init for all gtr_phy instances. */ 915 for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++) 916 gtr_dev->phys[i].skip_phy_init = skip_phy_init; 917 918 return 0; 919 } 920 921 static DEFINE_RUNTIME_DEV_PM_OPS(xpsgtr_pm_ops, xpsgtr_runtime_suspend, 922 xpsgtr_runtime_resume, NULL); 923 /* 924 * Probe & Platform Driver 925 */ 926 927 static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev) 928 { 929 unsigned int refclk; 930 931 for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) { 932 unsigned long rate; 933 unsigned int i; 934 struct clk *clk; 935 char name[8]; 936 937 snprintf(name, sizeof(name), "ref%u", refclk); 938 clk = devm_clk_get_optional(gtr_dev->dev, name); 939 if (IS_ERR(clk)) { 940 return dev_err_probe(gtr_dev->dev, PTR_ERR(clk), 941 "Failed to get ref clock %u\n", 942 refclk); 943 } 944 945 if (!clk) 946 continue; 947 948 gtr_dev->clk[refclk] = clk; 949 950 /* 951 * Get the spread spectrum (SSC) settings for the reference 952 * clock rate. 953 */ 954 rate = clk_get_rate(clk); 955 956 for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) { 957 /* Allow an error of 100 ppm */ 958 unsigned long error = ssc_lookup[i].refclk_rate / 10000; 959 960 if (abs(rate - ssc_lookup[i].refclk_rate) < error) { 961 gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i]; 962 break; 963 } 964 } 965 966 if (i == ARRAY_SIZE(ssc_lookup)) { 967 dev_err(gtr_dev->dev, 968 "Invalid rate %lu for reference clock %u\n", 969 rate, refclk); 970 return -EINVAL; 971 } 972 } 973 974 return 0; 975 } 976 977 static int xpsgtr_probe(struct platform_device *pdev) 978 { 979 struct device_node *np = pdev->dev.of_node; 980 struct xpsgtr_dev *gtr_dev; 981 struct phy_provider *provider; 982 unsigned int port; 983 int ret; 984 985 gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL); 986 if (!gtr_dev) 987 return -ENOMEM; 988 989 gtr_dev->dev = &pdev->dev; 990 platform_set_drvdata(pdev, gtr_dev); 991 992 mutex_init(>r_dev->gtr_mutex); 993 994 if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr")) 995 gtr_dev->tx_term_fix = 996 of_property_read_bool(np, "xlnx,tx-termination-fix"); 997 998 /* Acquire resources. */ 999 gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes"); 1000 if (IS_ERR(gtr_dev->serdes)) 1001 return PTR_ERR(gtr_dev->serdes); 1002 1003 gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou"); 1004 if (IS_ERR(gtr_dev->siou)) 1005 return PTR_ERR(gtr_dev->siou); 1006 1007 ret = xpsgtr_get_ref_clocks(gtr_dev); 1008 if (ret) 1009 return ret; 1010 1011 /* Create PHYs. */ 1012 for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) { 1013 struct xpsgtr_phy *gtr_phy = >r_dev->phys[port]; 1014 struct phy *phy; 1015 1016 gtr_phy->lane = port; 1017 gtr_phy->dev = gtr_dev; 1018 1019 phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops); 1020 if (IS_ERR(phy)) { 1021 dev_err(&pdev->dev, "failed to create PHY\n"); 1022 return PTR_ERR(phy); 1023 } 1024 1025 gtr_phy->phy = phy; 1026 phy_set_drvdata(phy, gtr_phy); 1027 debugfs_create_devm_seqfile(&phy->dev, "status", phy->debugfs, 1028 xpsgtr_status_read); 1029 } 1030 1031 /* Register the PHY provider. */ 1032 provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate); 1033 if (IS_ERR(provider)) { 1034 dev_err(&pdev->dev, "registering provider failed\n"); 1035 return PTR_ERR(provider); 1036 } 1037 1038 pm_runtime_set_active(gtr_dev->dev); 1039 pm_runtime_enable(gtr_dev->dev); 1040 1041 ret = pm_runtime_resume_and_get(gtr_dev->dev); 1042 if (ret < 0) { 1043 pm_runtime_disable(gtr_dev->dev); 1044 return ret; 1045 } 1046 1047 gtr_dev->saved_regs = devm_kmalloc(gtr_dev->dev, 1048 sizeof(save_reg_address), 1049 GFP_KERNEL); 1050 if (!gtr_dev->saved_regs) 1051 return -ENOMEM; 1052 1053 return 0; 1054 } 1055 1056 static void xpsgtr_remove(struct platform_device *pdev) 1057 { 1058 struct xpsgtr_dev *gtr_dev = platform_get_drvdata(pdev); 1059 1060 pm_runtime_disable(gtr_dev->dev); 1061 pm_runtime_put_noidle(gtr_dev->dev); 1062 pm_runtime_set_suspended(gtr_dev->dev); 1063 } 1064 1065 static const struct of_device_id xpsgtr_of_match[] = { 1066 { .compatible = "xlnx,zynqmp-psgtr", }, 1067 { .compatible = "xlnx,zynqmp-psgtr-v1.1", }, 1068 {}, 1069 }; 1070 MODULE_DEVICE_TABLE(of, xpsgtr_of_match); 1071 1072 static struct platform_driver xpsgtr_driver = { 1073 .probe = xpsgtr_probe, 1074 .remove = xpsgtr_remove, 1075 .driver = { 1076 .name = "xilinx-psgtr", 1077 .of_match_table = xpsgtr_of_match, 1078 .pm = pm_ptr(&xpsgtr_pm_ops), 1079 }, 1080 }; 1081 1082 module_platform_driver(xpsgtr_driver); 1083 1084 MODULE_AUTHOR("Xilinx Inc."); 1085 MODULE_LICENSE("GPL v2"); 1086 MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver"); 1087