1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT. 4 * 5 * Copyright (C) 2018-2020 Xilinx Inc. 6 * 7 * Author: Anurag Kumar Vulisha <anuragku@xilinx.com> 8 * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com> 9 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com> 10 * 11 * This driver is tested for USB, SGMII, SATA and Display Port currently. 12 * PCIe should also work but that is experimental as of now. 13 */ 14 15 #include <linux/clk.h> 16 #include <linux/debugfs.h> 17 #include <linux/delay.h> 18 #include <linux/io.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/of.h> 22 #include <linux/phy/phy.h> 23 #include <linux/platform_device.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/slab.h> 26 27 #include <dt-bindings/phy/phy.h> 28 29 /* 30 * Lane Registers 31 */ 32 33 /* TX De-emphasis parameters */ 34 #define L0_TX_ANA_TM_18 0x0048 35 #define L0_TX_ANA_TM_118 0x01d8 36 #define L0_TX_ANA_TM_118_FORCE_17_0 BIT(0) 37 38 /* DN Resistor calibration code parameters */ 39 #define L0_TXPMA_ST_3 0x0b0c 40 #define L0_DN_CALIB_CODE 0x3f 41 42 /* PMA control parameters */ 43 #define L0_TXPMD_TM_45 0x0cb4 44 #define L0_TXPMD_TM_48 0x0cc0 45 #define L0_TXPMD_TM_45_OVER_DP_MAIN BIT(0) 46 #define L0_TXPMD_TM_45_ENABLE_DP_MAIN BIT(1) 47 #define L0_TXPMD_TM_45_OVER_DP_POST1 BIT(2) 48 #define L0_TXPMD_TM_45_ENABLE_DP_POST1 BIT(3) 49 #define L0_TXPMD_TM_45_OVER_DP_POST2 BIT(4) 50 #define L0_TXPMD_TM_45_ENABLE_DP_POST2 BIT(5) 51 52 /* PCS control parameters */ 53 #define L0_TM_DIG_6 0x106c 54 #define L0_TM_DIS_DESCRAMBLE_DECODER 0x0f 55 #define L0_TX_DIG_61 0x00f4 56 #define L0_TM_DISABLE_SCRAMBLE_ENCODER 0x0f 57 58 /* PLL Test Mode register parameters */ 59 #define L0_TM_PLL_DIG_37 0x2094 60 #define L0_TM_COARSE_CODE_LIMIT 0x10 61 62 /* PLL SSC step size offsets */ 63 #define L0_PLL_SS_STEPS_0_LSB 0x2368 64 #define L0_PLL_SS_STEPS_1_MSB 0x236c 65 #define L0_PLL_SS_STEP_SIZE_0_LSB 0x2370 66 #define L0_PLL_SS_STEP_SIZE_1 0x2374 67 #define L0_PLL_SS_STEP_SIZE_2 0x2378 68 #define L0_PLL_SS_STEP_SIZE_3_MSB 0x237c 69 #define L0_PLL_STATUS_READ_1 0x23e4 70 71 /* SSC step size parameters */ 72 #define STEP_SIZE_0_MASK 0xff 73 #define STEP_SIZE_1_MASK 0xff 74 #define STEP_SIZE_2_MASK 0xff 75 #define STEP_SIZE_3_MASK 0x3 76 #define STEP_SIZE_SHIFT 8 77 #define FORCE_STEP_SIZE 0x10 78 #define FORCE_STEPS 0x20 79 #define STEPS_0_MASK 0xff 80 #define STEPS_1_MASK 0x07 81 82 /* Reference clock selection parameters */ 83 #define L0_Ln_REF_CLK_SEL(n) (0x2860 + (n) * 4) 84 #define L0_REF_CLK_LCL_SEL BIT(7) 85 #define L0_REF_CLK_SEL_MASK 0x9f 86 87 /* Calibration digital logic parameters */ 88 #define L3_TM_CALIB_DIG19 0xec4c 89 #define L3_CALIB_DONE_STATUS 0xef14 90 #define L3_TM_CALIB_DIG18 0xec48 91 #define L3_TM_CALIB_DIG19_NSW 0x07 92 #define L3_TM_CALIB_DIG18_NSW 0xe0 93 #define L3_TM_OVERRIDE_NSW_CODE 0x20 94 #define L3_CALIB_DONE 0x02 95 #define L3_NSW_SHIFT 5 96 #define L3_NSW_PIPE_SHIFT 4 97 #define L3_NSW_CALIB_SHIFT 3 98 99 #define PHY_REG_OFFSET 0x4000 100 101 /* 102 * Global Registers 103 */ 104 105 /* Refclk selection parameters */ 106 #define PLL_REF_SEL(n) (0x10000 + (n) * 4) 107 #define PLL_FREQ_MASK 0x1f 108 #define PLL_STATUS_LOCKED 0x10 109 110 /* Inter Connect Matrix parameters */ 111 #define ICM_CFG0 0x10010 112 #define ICM_CFG1 0x10014 113 #define ICM_CFG0_L0_MASK 0x07 114 #define ICM_CFG0_L1_MASK 0x70 115 #define ICM_CFG1_L2_MASK 0x07 116 #define ICM_CFG2_L3_MASK 0x70 117 #define ICM_CFG_SHIFT 4 118 119 /* Inter Connect Matrix allowed protocols */ 120 #define ICM_PROTOCOL_PD 0x0 121 #define ICM_PROTOCOL_PCIE 0x1 122 #define ICM_PROTOCOL_SATA 0x2 123 #define ICM_PROTOCOL_USB 0x3 124 #define ICM_PROTOCOL_DP 0x4 125 #define ICM_PROTOCOL_SGMII 0x5 126 127 static const char *const xpsgtr_icm_str[] = { 128 [ICM_PROTOCOL_PD] = "none", 129 [ICM_PROTOCOL_PCIE] = "PCIe", 130 [ICM_PROTOCOL_SATA] = "SATA", 131 [ICM_PROTOCOL_USB] = "USB", 132 [ICM_PROTOCOL_DP] = "DisplayPort", 133 [ICM_PROTOCOL_SGMII] = "SGMII", 134 }; 135 136 /* Test Mode common reset control parameters */ 137 #define TM_CMN_RST 0x10018 138 #define TM_CMN_RST_EN 0x1 139 #define TM_CMN_RST_SET 0x2 140 #define TM_CMN_RST_MASK 0x3 141 142 /* Bus width parameters */ 143 #define TX_PROT_BUS_WIDTH 0x10040 144 #define RX_PROT_BUS_WIDTH 0x10044 145 #define PROT_BUS_WIDTH_10 0x0 146 #define PROT_BUS_WIDTH_20 0x1 147 #define PROT_BUS_WIDTH_40 0x2 148 #define PROT_BUS_WIDTH_SHIFT(n) ((n) * 2) 149 #define PROT_BUS_WIDTH_MASK(n) GENMASK((n) * 2 + 1, (n) * 2) 150 151 /* Number of GT lanes */ 152 #define NUM_LANES 4 153 154 /* SIOU SATA control register */ 155 #define SATA_CONTROL_OFFSET 0x0100 156 157 /* Total number of controllers */ 158 #define CONTROLLERS_PER_LANE 5 159 160 /* Timeout values */ 161 #define TIMEOUT_US 1000 162 163 /* Lane 0/1/2/3 offset */ 164 #define DIG_8(n) ((0x4000 * (n)) + 0x1074) 165 #define ILL13(n) ((0x4000 * (n)) + 0x1994) 166 #define DIG_10(n) ((0x4000 * (n)) + 0x107c) 167 #define RST_DLY(n) ((0x4000 * (n)) + 0x19a4) 168 #define BYP_15(n) ((0x4000 * (n)) + 0x1038) 169 #define BYP_12(n) ((0x4000 * (n)) + 0x102c) 170 #define MISC3(n) ((0x4000 * (n)) + 0x19ac) 171 #define EQ11(n) ((0x4000 * (n)) + 0x1978) 172 173 static u32 save_reg_address[] = { 174 /* Lane 0/1/2/3 Register */ 175 DIG_8(0), ILL13(0), DIG_10(0), RST_DLY(0), BYP_15(0), BYP_12(0), MISC3(0), EQ11(0), 176 DIG_8(1), ILL13(1), DIG_10(1), RST_DLY(1), BYP_15(1), BYP_12(1), MISC3(1), EQ11(1), 177 DIG_8(2), ILL13(2), DIG_10(2), RST_DLY(2), BYP_15(2), BYP_12(2), MISC3(2), EQ11(2), 178 DIG_8(3), ILL13(3), DIG_10(3), RST_DLY(3), BYP_15(3), BYP_12(3), MISC3(3), EQ11(3), 179 }; 180 181 struct xpsgtr_dev; 182 183 /** 184 * struct xpsgtr_ssc - structure to hold SSC settings for a lane 185 * @refclk_rate: PLL reference clock frequency 186 * @pll_ref_clk: value to be written to register for corresponding ref clk rate 187 * @steps: number of steps of SSC (Spread Spectrum Clock) 188 * @step_size: step size of each step 189 */ 190 struct xpsgtr_ssc { 191 u32 refclk_rate; 192 u8 pll_ref_clk; 193 u32 steps; 194 u32 step_size; 195 }; 196 197 /** 198 * struct xpsgtr_phy - representation of a lane 199 * @phy: pointer to the kernel PHY device 200 * @instance: instance of the protocol type (such as the lane within a 201 * protocol, or the USB/Ethernet controller) 202 * @lane: lane number 203 * @protocol: protocol in which the lane operates 204 * @skip_phy_init: skip phy_init() if true 205 * @dev: pointer to the xpsgtr_dev instance 206 * @refclk: reference clock index 207 */ 208 struct xpsgtr_phy { 209 struct phy *phy; 210 u8 instance; 211 u8 lane; 212 u8 protocol; 213 bool skip_phy_init; 214 struct xpsgtr_dev *dev; 215 unsigned int refclk; 216 }; 217 218 /** 219 * struct xpsgtr_dev - representation of a ZynMP GT device 220 * @dev: pointer to device 221 * @serdes: serdes base address 222 * @siou: siou base address 223 * @gtr_mutex: mutex for locking 224 * @phys: PHY lanes 225 * @clk: reference clocks 226 * @tx_term_fix: fix for GT issue 227 * @saved_icm_cfg0: stored value of ICM CFG0 register 228 * @saved_icm_cfg1: stored value of ICM CFG1 register 229 * @saved_regs: registers to be saved/restored during suspend/resume 230 */ 231 struct xpsgtr_dev { 232 struct device *dev; 233 void __iomem *serdes; 234 void __iomem *siou; 235 struct mutex gtr_mutex; /* mutex for locking */ 236 struct xpsgtr_phy phys[NUM_LANES]; 237 struct clk *clk[NUM_LANES]; 238 bool tx_term_fix; 239 unsigned int saved_icm_cfg0; 240 unsigned int saved_icm_cfg1; 241 u32 *saved_regs; 242 }; 243 244 /* 245 * Configuration Data 246 */ 247 248 /* lookup table to hold all settings needed for a ref clock frequency */ 249 static const struct xpsgtr_ssc ssc_lookup[] = { 250 { 19200000, 0x05, 608, 264020 }, 251 { 20000000, 0x06, 634, 243454 }, 252 { 24000000, 0x07, 760, 168973 }, 253 { 26000000, 0x08, 824, 143860 }, 254 { 27000000, 0x09, 856, 86551 }, 255 { 38400000, 0x0a, 1218, 65896 }, 256 { 40000000, 0x0b, 634, 243454 }, 257 { 52000000, 0x0c, 824, 143860 }, 258 { 100000000, 0x0d, 1058, 87533 }, 259 { 108000000, 0x0e, 856, 86551 }, 260 { 125000000, 0x0f, 992, 119497 }, 261 { 135000000, 0x10, 1070, 55393 }, 262 { 150000000, 0x11, 792, 187091 } 263 }; 264 265 /* 266 * I/O Accessors 267 */ 268 269 static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg) 270 { 271 return readl(gtr_dev->serdes + reg); 272 } 273 274 static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value) 275 { 276 writel(value, gtr_dev->serdes + reg); 277 } 278 279 static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg, 280 u32 clr, u32 set) 281 { 282 u32 value = xpsgtr_read(gtr_dev, reg); 283 284 value &= ~clr; 285 value |= set; 286 xpsgtr_write(gtr_dev, reg, value); 287 } 288 289 static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg) 290 { 291 void __iomem *addr = gtr_phy->dev->serdes 292 + gtr_phy->lane * PHY_REG_OFFSET + reg; 293 294 return readl(addr); 295 } 296 297 static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy, 298 u32 reg, u32 value) 299 { 300 void __iomem *addr = gtr_phy->dev->serdes 301 + gtr_phy->lane * PHY_REG_OFFSET + reg; 302 303 writel(value, addr); 304 } 305 306 static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy, 307 u32 reg, u32 clr, u32 set) 308 { 309 void __iomem *addr = gtr_phy->dev->serdes 310 + gtr_phy->lane * PHY_REG_OFFSET + reg; 311 312 writel((readl(addr) & ~clr) | set, addr); 313 } 314 315 /** 316 * xpsgtr_save_lane_regs - Saves registers on suspend 317 * @gtr_dev: pointer to phy controller context structure 318 */ 319 static void xpsgtr_save_lane_regs(struct xpsgtr_dev *gtr_dev) 320 { 321 int i; 322 323 for (i = 0; i < ARRAY_SIZE(save_reg_address); i++) 324 gtr_dev->saved_regs[i] = xpsgtr_read(gtr_dev, 325 save_reg_address[i]); 326 } 327 328 /** 329 * xpsgtr_restore_lane_regs - Restores registers on resume 330 * @gtr_dev: pointer to phy controller context structure 331 */ 332 static void xpsgtr_restore_lane_regs(struct xpsgtr_dev *gtr_dev) 333 { 334 int i; 335 336 for (i = 0; i < ARRAY_SIZE(save_reg_address); i++) 337 xpsgtr_write(gtr_dev, save_reg_address[i], 338 gtr_dev->saved_regs[i]); 339 } 340 341 /* 342 * Hardware Configuration 343 */ 344 345 /* Wait for the PLL to lock (with a timeout). */ 346 static int xpsgtr_wait_pll_lock(struct phy *phy) 347 { 348 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 349 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 350 unsigned int timeout = TIMEOUT_US; 351 u8 protocol = gtr_phy->protocol; 352 int ret; 353 354 dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n"); 355 356 /* 357 * For DP and PCIe, only the instance 0 PLL is used. Switch to that phy 358 * so we wait on the right PLL. 359 */ 360 if ((protocol == ICM_PROTOCOL_DP || protocol == ICM_PROTOCOL_PCIE) && 361 gtr_phy->instance) { 362 int i; 363 364 for (i = 0; i < NUM_LANES; i++) { 365 gtr_phy = >r_dev->phys[i]; 366 367 if (gtr_phy->protocol == protocol && !gtr_phy->instance) 368 goto got_phy; 369 } 370 371 return -EBUSY; 372 } 373 374 got_phy: 375 while (1) { 376 u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1); 377 378 if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) { 379 ret = 0; 380 break; 381 } 382 383 if (--timeout == 0) { 384 ret = -ETIMEDOUT; 385 break; 386 } 387 388 udelay(1); 389 } 390 391 if (ret == -ETIMEDOUT) 392 dev_err(gtr_dev->dev, 393 "lane %u (protocol %u, instance %u): PLL lock timeout\n", 394 gtr_phy->lane, gtr_phy->protocol, gtr_phy->instance); 395 396 return ret; 397 } 398 399 /* Get the spread spectrum (SSC) settings for the reference clock rate */ 400 static const struct xpsgtr_ssc *xpsgtr_find_sscs(struct xpsgtr_phy *gtr_phy) 401 { 402 unsigned long rate; 403 struct clk *clk; 404 unsigned int i; 405 406 clk = gtr_phy->dev->clk[gtr_phy->refclk]; 407 rate = clk_get_rate(clk); 408 409 for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) { 410 /* Allow an error of 100 ppm */ 411 unsigned long error = ssc_lookup[i].refclk_rate / 10000; 412 413 if (abs(rate - ssc_lookup[i].refclk_rate) < error) 414 return &ssc_lookup[i]; 415 } 416 417 dev_err(gtr_phy->dev->dev, "Invalid rate %lu for reference clock %u\n", 418 rate, gtr_phy->refclk); 419 420 return NULL; 421 } 422 423 /* Configure PLL and spread-sprectrum clock. */ 424 static int xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy) 425 { 426 const struct xpsgtr_ssc *ssc; 427 u32 step_size; 428 429 ssc = xpsgtr_find_sscs(gtr_phy); 430 if (!ssc) 431 return -EINVAL; 432 433 step_size = ssc->step_size; 434 435 xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane), 436 PLL_FREQ_MASK, ssc->pll_ref_clk); 437 438 /* Enable lane clock sharing, if required */ 439 if (gtr_phy->refclk == gtr_phy->lane) 440 xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane), 441 L0_REF_CLK_SEL_MASK, L0_REF_CLK_LCL_SEL); 442 else 443 xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane), 444 L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk); 445 446 /* SSC step size [7:0] */ 447 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB, 448 STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK); 449 450 /* SSC step size [15:8] */ 451 step_size >>= STEP_SIZE_SHIFT; 452 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1, 453 STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK); 454 455 /* SSC step size [23:16] */ 456 step_size >>= STEP_SIZE_SHIFT; 457 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2, 458 STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK); 459 460 /* SSC steps [7:0] */ 461 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB, 462 STEPS_0_MASK, ssc->steps & STEPS_0_MASK); 463 464 /* SSC steps [10:8] */ 465 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB, 466 STEPS_1_MASK, 467 (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK); 468 469 /* SSC step size [24:25] */ 470 step_size >>= STEP_SIZE_SHIFT; 471 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB, 472 STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) | 473 FORCE_STEP_SIZE | FORCE_STEPS); 474 475 return 0; 476 } 477 478 /* Configure the lane protocol. */ 479 static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy) 480 { 481 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 482 u8 protocol = gtr_phy->protocol; 483 484 switch (gtr_phy->lane) { 485 case 0: 486 xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol); 487 break; 488 case 1: 489 xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK, 490 protocol << ICM_CFG_SHIFT); 491 break; 492 case 2: 493 xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol); 494 break; 495 case 3: 496 xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK, 497 protocol << ICM_CFG_SHIFT); 498 break; 499 default: 500 /* We already checked 0 <= lane <= 3 */ 501 break; 502 } 503 } 504 505 /* Bypass (de)scrambler and 8b/10b decoder and encoder. */ 506 static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy) 507 { 508 xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER); 509 xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER); 510 } 511 512 /* DP-specific initialization. */ 513 static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy) 514 { 515 xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45, 516 L0_TXPMD_TM_45_OVER_DP_MAIN | 517 L0_TXPMD_TM_45_ENABLE_DP_MAIN | 518 L0_TXPMD_TM_45_OVER_DP_POST1 | 519 L0_TXPMD_TM_45_OVER_DP_POST2 | 520 L0_TXPMD_TM_45_ENABLE_DP_POST2); 521 xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118, 522 L0_TX_ANA_TM_118_FORCE_17_0); 523 } 524 525 /* SATA-specific initialization. */ 526 static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy) 527 { 528 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 529 530 xpsgtr_bypass_scrambler_8b10b(gtr_phy); 531 532 writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET); 533 } 534 535 /* SGMII-specific initialization. */ 536 static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy) 537 { 538 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 539 u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane); 540 u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane); 541 542 /* Set SGMII protocol TX and RX bus width to 10 bits. */ 543 xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, mask, val); 544 xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, mask, val); 545 546 xpsgtr_bypass_scrambler_8b10b(gtr_phy); 547 } 548 549 /* Configure TX de-emphasis and margining for DP. */ 550 static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre, 551 unsigned int voltage) 552 { 553 static const u8 voltage_swing[4][4] = { 554 { 0x2a, 0x27, 0x24, 0x20 }, 555 { 0x27, 0x23, 0x20, 0xff }, 556 { 0x24, 0x20, 0xff, 0xff }, 557 { 0xff, 0xff, 0xff, 0xff } 558 }; 559 static const u8 pre_emphasis[4][4] = { 560 { 0x02, 0x02, 0x02, 0x02 }, 561 { 0x01, 0x01, 0x01, 0xff }, 562 { 0x00, 0x00, 0xff, 0xff }, 563 { 0xff, 0xff, 0xff, 0xff } 564 }; 565 566 xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]); 567 xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]); 568 } 569 570 /* 571 * PHY Operations 572 */ 573 574 static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy) 575 { 576 /* 577 * As USB may save the snapshot of the states during hibernation, doing 578 * phy_init() will put the USB controller into reset, resulting in the 579 * losing of the saved snapshot. So try to avoid phy_init() for USB 580 * except when gtr_phy->skip_phy_init is false (this happens when FPD is 581 * shutdown during suspend or when gt lane is changed from current one) 582 */ 583 if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init) 584 return false; 585 else 586 return true; 587 } 588 589 /* 590 * There is a functional issue in the GT. The TX termination resistance can be 591 * out of spec due to a issue in the calibration logic. This is the workaround 592 * to fix it, required for XCZU9EG silicon. 593 */ 594 static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy) 595 { 596 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 597 u32 timeout = TIMEOUT_US; 598 u32 nsw; 599 600 /* Enabling Test Mode control for CMN Rest */ 601 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); 602 603 /* Set Test Mode reset */ 604 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN); 605 606 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00); 607 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE); 608 609 /* 610 * As a part of work around sequence for PMOS calibration fix, 611 * we need to configure any lane ICM_CFG to valid protocol. This 612 * will deassert the CMN_Resetn signal. 613 */ 614 xpsgtr_lane_set_protocol(gtr_phy); 615 616 /* Clear Test Mode reset */ 617 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); 618 619 dev_dbg(gtr_dev->dev, "calibrating...\n"); 620 621 do { 622 u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS); 623 624 if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE) 625 break; 626 627 if (!--timeout) { 628 dev_err(gtr_dev->dev, "calibration time out\n"); 629 return -ETIMEDOUT; 630 } 631 632 udelay(1); 633 } while (timeout > 0); 634 635 dev_dbg(gtr_dev->dev, "calibration done\n"); 636 637 /* Reading NMOS Register Code */ 638 nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE; 639 640 /* Set Test Mode reset */ 641 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN); 642 643 /* Writing NMOS register values back [5:3] */ 644 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT); 645 646 /* Writing NMOS register value [2:0] */ 647 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 648 ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) | 649 (1 << L3_NSW_PIPE_SHIFT)); 650 651 /* Clear Test Mode reset */ 652 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); 653 654 return 0; 655 } 656 657 static int xpsgtr_phy_init(struct phy *phy) 658 { 659 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 660 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 661 int ret = 0; 662 663 mutex_lock(>r_dev->gtr_mutex); 664 665 /* Configure and enable the clock when peripheral phy_init call */ 666 if (clk_prepare_enable(gtr_dev->clk[gtr_phy->refclk])) 667 goto out; 668 669 /* Skip initialization if not required. */ 670 if (!xpsgtr_phy_init_required(gtr_phy)) 671 goto out; 672 673 if (gtr_dev->tx_term_fix) { 674 ret = xpsgtr_phy_tx_term_fix(gtr_phy); 675 if (ret < 0) 676 goto out; 677 678 gtr_dev->tx_term_fix = false; 679 } 680 681 /* Enable coarse code saturation limiting logic. */ 682 xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT); 683 684 /* 685 * Configure the PLL, the lane protocol, and perform protocol-specific 686 * initialization. 687 */ 688 ret = xpsgtr_configure_pll(gtr_phy); 689 if (ret) 690 goto out; 691 692 xpsgtr_lane_set_protocol(gtr_phy); 693 694 switch (gtr_phy->protocol) { 695 case ICM_PROTOCOL_DP: 696 xpsgtr_phy_init_dp(gtr_phy); 697 break; 698 699 case ICM_PROTOCOL_SATA: 700 xpsgtr_phy_init_sata(gtr_phy); 701 break; 702 703 case ICM_PROTOCOL_SGMII: 704 xpsgtr_phy_init_sgmii(gtr_phy); 705 break; 706 } 707 708 out: 709 mutex_unlock(>r_dev->gtr_mutex); 710 return ret; 711 } 712 713 static int xpsgtr_phy_exit(struct phy *phy) 714 { 715 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 716 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 717 718 gtr_phy->skip_phy_init = false; 719 720 /* Ensure that disable clock only, which configure for lane */ 721 clk_disable_unprepare(gtr_dev->clk[gtr_phy->refclk]); 722 723 return 0; 724 } 725 726 static int xpsgtr_phy_power_on(struct phy *phy) 727 { 728 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 729 int ret = 0; 730 731 /* Skip initialization if not required. */ 732 if (!xpsgtr_phy_init_required(gtr_phy)) 733 return ret; 734 return xpsgtr_wait_pll_lock(phy); 735 } 736 737 static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts) 738 { 739 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 740 741 if (gtr_phy->protocol != ICM_PROTOCOL_DP) 742 return 0; 743 744 xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]); 745 746 return 0; 747 } 748 749 static const struct phy_ops xpsgtr_phyops = { 750 .init = xpsgtr_phy_init, 751 .exit = xpsgtr_phy_exit, 752 .power_on = xpsgtr_phy_power_on, 753 .configure = xpsgtr_phy_configure, 754 .owner = THIS_MODULE, 755 }; 756 757 /* 758 * OF Xlate Support 759 */ 760 761 /* Set the lane protocol and instance based on the PHY type and instance number. */ 762 static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type, 763 unsigned int phy_instance) 764 { 765 unsigned int num_phy_types; 766 767 switch (phy_type) { 768 case PHY_TYPE_SATA: 769 num_phy_types = 2; 770 gtr_phy->protocol = ICM_PROTOCOL_SATA; 771 break; 772 case PHY_TYPE_USB3: 773 num_phy_types = 2; 774 gtr_phy->protocol = ICM_PROTOCOL_USB; 775 break; 776 case PHY_TYPE_DP: 777 num_phy_types = 2; 778 gtr_phy->protocol = ICM_PROTOCOL_DP; 779 break; 780 case PHY_TYPE_PCIE: 781 num_phy_types = 4; 782 gtr_phy->protocol = ICM_PROTOCOL_PCIE; 783 break; 784 case PHY_TYPE_SGMII: 785 num_phy_types = 4; 786 gtr_phy->protocol = ICM_PROTOCOL_SGMII; 787 break; 788 default: 789 return -EINVAL; 790 } 791 792 if (phy_instance >= num_phy_types) 793 return -EINVAL; 794 795 gtr_phy->instance = phy_instance; 796 return 0; 797 } 798 799 /* 800 * Valid combinations of controllers and lanes (Interconnect Matrix). Each 801 * "instance" represents one controller for a lane. For PCIe and DP, the 802 * "instance" is the logical lane in the link. For SATA, USB, and SGMII, 803 * the instance is the index of the controller. 804 * 805 * This information is only used to validate the devicetree reference, and is 806 * not used when programming the hardware. 807 */ 808 static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = { 809 /* PCIe, SATA, USB, DP, SGMII */ 810 { 0, 0, 0, 1, 0 }, /* Lane 0 */ 811 { 1, 1, 0, 0, 1 }, /* Lane 1 */ 812 { 2, 0, 0, 1, 2 }, /* Lane 2 */ 813 { 3, 1, 1, 0, 3 }, /* Lane 3 */ 814 }; 815 816 /* Translate OF phandle and args to PHY instance. */ 817 static struct phy *xpsgtr_xlate(struct device *dev, 818 const struct of_phandle_args *args) 819 { 820 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); 821 struct xpsgtr_phy *gtr_phy; 822 unsigned int phy_instance; 823 unsigned int phy_lane; 824 unsigned int phy_type; 825 unsigned int refclk; 826 unsigned int i; 827 int ret; 828 829 if (args->args_count != 4) { 830 dev_err(dev, "Invalid number of cells in 'phy' property\n"); 831 return ERR_PTR(-EINVAL); 832 } 833 834 /* 835 * Get the PHY parameters from the OF arguments and derive the lane 836 * type. 837 */ 838 phy_lane = args->args[0]; 839 if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) { 840 dev_err(dev, "Invalid lane number %u\n", phy_lane); 841 return ERR_PTR(-ENODEV); 842 } 843 844 gtr_phy = >r_dev->phys[phy_lane]; 845 phy_type = args->args[1]; 846 phy_instance = args->args[2]; 847 848 guard(mutex)(>r_phy->phy->mutex); 849 ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance); 850 if (ret < 0) { 851 dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n"); 852 return ERR_PTR(ret); 853 } 854 855 refclk = args->args[3]; 856 if (refclk >= ARRAY_SIZE(gtr_dev->clk)) { 857 dev_err(dev, "Invalid reference clock number %u\n", refclk); 858 return ERR_PTR(-EINVAL); 859 } 860 861 gtr_phy->refclk = refclk; 862 863 /* 864 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type 865 * is allowed to operate on the lane. 866 */ 867 for (i = 0; i < CONTROLLERS_PER_LANE; i++) { 868 if (icm_matrix[phy_lane][i] == gtr_phy->instance) 869 return gtr_phy->phy; 870 } 871 872 return ERR_PTR(-EINVAL); 873 } 874 875 /* 876 * DebugFS 877 */ 878 879 static int xpsgtr_status_read(struct seq_file *seq, void *data) 880 { 881 struct device *dev = seq->private; 882 struct xpsgtr_phy *gtr_phy = dev_get_drvdata(dev); 883 struct clk *clk; 884 u32 pll_status; 885 886 mutex_lock(>r_phy->phy->mutex); 887 pll_status = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1); 888 clk = gtr_phy->dev->clk[gtr_phy->refclk]; 889 890 seq_printf(seq, "Lane: %u\n", gtr_phy->lane); 891 seq_printf(seq, "Protocol: %s\n", 892 xpsgtr_icm_str[gtr_phy->protocol]); 893 seq_printf(seq, "Instance: %u\n", gtr_phy->instance); 894 seq_printf(seq, "Reference clock: %u (%pC)\n", gtr_phy->refclk, clk); 895 seq_printf(seq, "Reference rate: %lu\n", clk_get_rate(clk)); 896 seq_printf(seq, "PLL locked: %s\n", 897 pll_status & PLL_STATUS_LOCKED ? "yes" : "no"); 898 899 mutex_unlock(>r_phy->phy->mutex); 900 return 0; 901 } 902 903 /* 904 * Power Management 905 */ 906 907 static int xpsgtr_runtime_suspend(struct device *dev) 908 { 909 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); 910 911 /* Save the snapshot ICM_CFG registers. */ 912 gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0); 913 gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1); 914 915 xpsgtr_save_lane_regs(gtr_dev); 916 917 return 0; 918 } 919 920 static int xpsgtr_runtime_resume(struct device *dev) 921 { 922 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); 923 unsigned int icm_cfg0, icm_cfg1; 924 unsigned int i; 925 bool skip_phy_init; 926 927 xpsgtr_restore_lane_regs(gtr_dev); 928 929 icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0); 930 icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1); 931 932 /* Return if no GT lanes got configured before suspend. */ 933 if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1) 934 return 0; 935 936 /* Check if the ICM configurations changed after suspend. */ 937 if (icm_cfg0 == gtr_dev->saved_icm_cfg0 && 938 icm_cfg1 == gtr_dev->saved_icm_cfg1) 939 skip_phy_init = true; 940 else 941 skip_phy_init = false; 942 943 /* Update the skip_phy_init for all gtr_phy instances. */ 944 for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++) 945 gtr_dev->phys[i].skip_phy_init = skip_phy_init; 946 947 return 0; 948 } 949 950 static DEFINE_RUNTIME_DEV_PM_OPS(xpsgtr_pm_ops, xpsgtr_runtime_suspend, 951 xpsgtr_runtime_resume, NULL); 952 /* 953 * Probe & Platform Driver 954 */ 955 956 static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev) 957 { 958 unsigned int refclk; 959 960 for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->clk); ++refclk) { 961 struct clk *clk; 962 char name[8]; 963 964 snprintf(name, sizeof(name), "ref%u", refclk); 965 clk = devm_clk_get_optional(gtr_dev->dev, name); 966 if (IS_ERR(clk)) { 967 return dev_err_probe(gtr_dev->dev, PTR_ERR(clk), 968 "Failed to get ref clock %u\n", 969 refclk); 970 } 971 972 if (!clk) 973 continue; 974 975 gtr_dev->clk[refclk] = clk; 976 } 977 978 return 0; 979 } 980 981 static int xpsgtr_probe(struct platform_device *pdev) 982 { 983 struct device_node *np = pdev->dev.of_node; 984 struct xpsgtr_dev *gtr_dev; 985 struct phy_provider *provider; 986 unsigned int port; 987 int ret; 988 989 gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL); 990 if (!gtr_dev) 991 return -ENOMEM; 992 993 gtr_dev->dev = &pdev->dev; 994 platform_set_drvdata(pdev, gtr_dev); 995 996 mutex_init(>r_dev->gtr_mutex); 997 998 if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr")) 999 gtr_dev->tx_term_fix = 1000 of_property_read_bool(np, "xlnx,tx-termination-fix"); 1001 1002 /* Acquire resources. */ 1003 gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes"); 1004 if (IS_ERR(gtr_dev->serdes)) 1005 return PTR_ERR(gtr_dev->serdes); 1006 1007 gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou"); 1008 if (IS_ERR(gtr_dev->siou)) 1009 return PTR_ERR(gtr_dev->siou); 1010 1011 ret = xpsgtr_get_ref_clocks(gtr_dev); 1012 if (ret) 1013 return ret; 1014 1015 /* Create PHYs. */ 1016 for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) { 1017 struct xpsgtr_phy *gtr_phy = >r_dev->phys[port]; 1018 struct phy *phy; 1019 1020 gtr_phy->lane = port; 1021 gtr_phy->dev = gtr_dev; 1022 1023 phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops); 1024 if (IS_ERR(phy)) { 1025 dev_err(&pdev->dev, "failed to create PHY\n"); 1026 return PTR_ERR(phy); 1027 } 1028 1029 gtr_phy->phy = phy; 1030 phy_set_drvdata(phy, gtr_phy); 1031 debugfs_create_devm_seqfile(&phy->dev, "status", phy->debugfs, 1032 xpsgtr_status_read); 1033 } 1034 1035 /* Register the PHY provider. */ 1036 provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate); 1037 if (IS_ERR(provider)) { 1038 dev_err(&pdev->dev, "registering provider failed\n"); 1039 return PTR_ERR(provider); 1040 } 1041 1042 pm_runtime_set_active(gtr_dev->dev); 1043 pm_runtime_enable(gtr_dev->dev); 1044 1045 ret = pm_runtime_resume_and_get(gtr_dev->dev); 1046 if (ret < 0) { 1047 pm_runtime_disable(gtr_dev->dev); 1048 return ret; 1049 } 1050 1051 gtr_dev->saved_regs = devm_kmalloc(gtr_dev->dev, 1052 sizeof(save_reg_address), 1053 GFP_KERNEL); 1054 if (!gtr_dev->saved_regs) 1055 return -ENOMEM; 1056 1057 return 0; 1058 } 1059 1060 static void xpsgtr_remove(struct platform_device *pdev) 1061 { 1062 struct xpsgtr_dev *gtr_dev = platform_get_drvdata(pdev); 1063 1064 pm_runtime_disable(gtr_dev->dev); 1065 pm_runtime_put_noidle(gtr_dev->dev); 1066 pm_runtime_set_suspended(gtr_dev->dev); 1067 } 1068 1069 static const struct of_device_id xpsgtr_of_match[] = { 1070 { .compatible = "xlnx,zynqmp-psgtr", }, 1071 { .compatible = "xlnx,zynqmp-psgtr-v1.1", }, 1072 {}, 1073 }; 1074 MODULE_DEVICE_TABLE(of, xpsgtr_of_match); 1075 1076 static struct platform_driver xpsgtr_driver = { 1077 .probe = xpsgtr_probe, 1078 .remove = xpsgtr_remove, 1079 .driver = { 1080 .name = "xilinx-psgtr", 1081 .of_match_table = xpsgtr_of_match, 1082 .pm = pm_ptr(&xpsgtr_pm_ops), 1083 }, 1084 }; 1085 1086 module_platform_driver(xpsgtr_driver); 1087 1088 MODULE_AUTHOR("Xilinx Inc."); 1089 MODULE_LICENSE("GPL v2"); 1090 MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver"); 1091