xref: /linux/drivers/phy/xilinx/phy-zynqmp.c (revision 32fafaf2ab185d26337f79d3ae558b4cb2b4a5d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
4  *
5  * Copyright (C) 2018-2020 Xilinx Inc.
6  *
7  * Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
8  * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
9  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10  *
11  * This driver is tested for USB, SGMII, SATA and Display Port currently.
12  * PCIe should also work but that is experimental as of now.
13  */
14 
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/delay.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/phy/phy.h>
23 #include <linux/platform_device.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/slab.h>
26 
27 #include <dt-bindings/phy/phy.h>
28 
29 /*
30  * Lane Registers
31  */
32 
33 /* TX De-emphasis parameters */
34 #define L0_TX_ANA_TM_18			0x0048
35 #define L0_TX_ANA_TM_118		0x01d8
36 #define L0_TX_ANA_TM_118_FORCE_17_0	BIT(0)
37 
38 /* DN Resistor calibration code parameters */
39 #define L0_TXPMA_ST_3			0x0b0c
40 #define L0_DN_CALIB_CODE		0x3f
41 
42 /* PMA control parameters */
43 #define L0_TXPMD_TM_45			0x0cb4
44 #define L0_TXPMD_TM_48			0x0cc0
45 #define L0_TXPMD_TM_45_OVER_DP_MAIN	BIT(0)
46 #define L0_TXPMD_TM_45_ENABLE_DP_MAIN	BIT(1)
47 #define L0_TXPMD_TM_45_OVER_DP_POST1	BIT(2)
48 #define L0_TXPMD_TM_45_ENABLE_DP_POST1	BIT(3)
49 #define L0_TXPMD_TM_45_OVER_DP_POST2	BIT(4)
50 #define L0_TXPMD_TM_45_ENABLE_DP_POST2	BIT(5)
51 
52 /* PCS control parameters */
53 #define L0_TM_DIG_6			0x106c
54 #define L0_TM_DIS_DESCRAMBLE_DECODER	0x0f
55 #define L0_TX_DIG_61			0x00f4
56 #define L0_TM_DISABLE_SCRAMBLE_ENCODER	0x0f
57 
58 /* PLL Test Mode register parameters */
59 #define L0_TM_PLL_DIG_37		0x2094
60 #define L0_TM_COARSE_CODE_LIMIT		0x10
61 
62 /* PLL SSC step size offsets */
63 #define L0_PLL_SS_STEPS_0_LSB		0x2368
64 #define L0_PLL_SS_STEPS_1_MSB		0x236c
65 #define L0_PLL_SS_STEP_SIZE_0_LSB	0x2370
66 #define L0_PLL_SS_STEP_SIZE_1		0x2374
67 #define L0_PLL_SS_STEP_SIZE_2		0x2378
68 #define L0_PLL_SS_STEP_SIZE_3_MSB	0x237c
69 #define L0_PLL_STATUS_READ_1		0x23e4
70 
71 /* SSC step size parameters */
72 #define STEP_SIZE_0_MASK		0xff
73 #define STEP_SIZE_1_MASK		0xff
74 #define STEP_SIZE_2_MASK		0xff
75 #define STEP_SIZE_3_MASK		0x3
76 #define STEP_SIZE_SHIFT			8
77 #define FORCE_STEP_SIZE			0x10
78 #define FORCE_STEPS			0x20
79 #define STEPS_0_MASK			0xff
80 #define STEPS_1_MASK			0x07
81 
82 /* Reference clock selection parameters */
83 #define L0_Ln_REF_CLK_SEL(n)		(0x2860 + (n) * 4)
84 #define L0_REF_CLK_LCL_SEL		BIT(7)
85 #define L0_REF_CLK_SEL_MASK		0x9f
86 
87 /* Calibration digital logic parameters */
88 #define L3_TM_CALIB_DIG19		0xec4c
89 #define L3_CALIB_DONE_STATUS		0xef14
90 #define L3_TM_CALIB_DIG18		0xec48
91 #define L3_TM_CALIB_DIG19_NSW		0x07
92 #define L3_TM_CALIB_DIG18_NSW		0xe0
93 #define L3_TM_OVERRIDE_NSW_CODE         0x20
94 #define L3_CALIB_DONE			0x02
95 #define L3_NSW_SHIFT			5
96 #define L3_NSW_PIPE_SHIFT		4
97 #define L3_NSW_CALIB_SHIFT		3
98 
99 #define PHY_REG_OFFSET			0x4000
100 
101 /*
102  * Global Registers
103  */
104 
105 /* Refclk selection parameters */
106 #define PLL_REF_SEL(n)			(0x10000 + (n) * 4)
107 #define PLL_FREQ_MASK			0x1f
108 #define PLL_STATUS_LOCKED		0x10
109 
110 /* Inter Connect Matrix parameters */
111 #define ICM_CFG0			0x10010
112 #define ICM_CFG1			0x10014
113 #define ICM_CFG0_L0_MASK		0x07
114 #define ICM_CFG0_L1_MASK		0x70
115 #define ICM_CFG1_L2_MASK		0x07
116 #define ICM_CFG2_L3_MASK		0x70
117 #define ICM_CFG_SHIFT			4
118 
119 /* Inter Connect Matrix allowed protocols */
120 #define ICM_PROTOCOL_PD			0x0
121 #define ICM_PROTOCOL_PCIE		0x1
122 #define ICM_PROTOCOL_SATA		0x2
123 #define ICM_PROTOCOL_USB		0x3
124 #define ICM_PROTOCOL_DP			0x4
125 #define ICM_PROTOCOL_SGMII		0x5
126 
127 static const char *const xpsgtr_icm_str[] = {
128 	[ICM_PROTOCOL_PD] = "none",
129 	[ICM_PROTOCOL_PCIE] = "PCIe",
130 	[ICM_PROTOCOL_SATA] = "SATA",
131 	[ICM_PROTOCOL_USB] = "USB",
132 	[ICM_PROTOCOL_DP] = "DisplayPort",
133 	[ICM_PROTOCOL_SGMII] = "SGMII",
134 };
135 
136 /* Test Mode common reset control  parameters */
137 #define TM_CMN_RST			0x10018
138 #define TM_CMN_RST_EN			0x1
139 #define TM_CMN_RST_SET			0x2
140 #define TM_CMN_RST_MASK			0x3
141 
142 /* Bus width parameters */
143 #define TX_PROT_BUS_WIDTH		0x10040
144 #define RX_PROT_BUS_WIDTH		0x10044
145 #define PROT_BUS_WIDTH_10		0x0
146 #define PROT_BUS_WIDTH_20		0x1
147 #define PROT_BUS_WIDTH_40		0x2
148 #define PROT_BUS_WIDTH_SHIFT(n)		((n) * 2)
149 #define PROT_BUS_WIDTH_MASK(n)		GENMASK((n) * 2 + 1, (n) * 2)
150 
151 /* Number of GT lanes */
152 #define NUM_LANES			4
153 
154 /* SIOU SATA control register */
155 #define SATA_CONTROL_OFFSET		0x0100
156 
157 /* Total number of controllers */
158 #define CONTROLLERS_PER_LANE		5
159 
160 /* Timeout values */
161 #define TIMEOUT_US			1000
162 
163 /* Lane 0/1/2/3 offset */
164 #define DIG_8(n)		((0x4000 * (n)) + 0x1074)
165 #define ILL13(n)		((0x4000 * (n)) + 0x1994)
166 #define DIG_10(n)		((0x4000 * (n)) + 0x107c)
167 #define RST_DLY(n)		((0x4000 * (n)) + 0x19a4)
168 #define BYP_15(n)		((0x4000 * (n)) + 0x1038)
169 #define BYP_12(n)		((0x4000 * (n)) + 0x102c)
170 #define MISC3(n)		((0x4000 * (n)) + 0x19ac)
171 #define EQ11(n)			((0x4000 * (n)) + 0x1978)
172 
173 static u32 save_reg_address[] = {
174 	/* Lane 0/1/2/3 Register */
175 	DIG_8(0), ILL13(0), DIG_10(0), RST_DLY(0), BYP_15(0), BYP_12(0), MISC3(0), EQ11(0),
176 	DIG_8(1), ILL13(1), DIG_10(1), RST_DLY(1), BYP_15(1), BYP_12(1), MISC3(1), EQ11(1),
177 	DIG_8(2), ILL13(2), DIG_10(2), RST_DLY(2), BYP_15(2), BYP_12(2), MISC3(2), EQ11(2),
178 	DIG_8(3), ILL13(3), DIG_10(3), RST_DLY(3), BYP_15(3), BYP_12(3), MISC3(3), EQ11(3),
179 };
180 
181 struct xpsgtr_dev;
182 
183 /**
184  * struct xpsgtr_ssc - structure to hold SSC settings for a lane
185  * @refclk_rate: PLL reference clock frequency
186  * @pll_ref_clk: value to be written to register for corresponding ref clk rate
187  * @steps: number of steps of SSC (Spread Spectrum Clock)
188  * @step_size: step size of each step
189  */
190 struct xpsgtr_ssc {
191 	u32 refclk_rate;
192 	u8  pll_ref_clk;
193 	u32 steps;
194 	u32 step_size;
195 };
196 
197 /**
198  * struct xpsgtr_phy - representation of a lane
199  * @phy: pointer to the kernel PHY device
200  * @instance: instance of the protocol type (such as the lane within a
201  *            protocol, or the USB/Ethernet controller)
202  * @lane: lane number
203  * @protocol: protocol in which the lane operates
204  * @skip_phy_init: skip phy_init() if true
205  * @dev: pointer to the xpsgtr_dev instance
206  * @refclk: reference clock index
207  */
208 struct xpsgtr_phy {
209 	struct phy *phy;
210 	u8 instance;
211 	u8 lane;
212 	u8 protocol;
213 	bool skip_phy_init;
214 	struct xpsgtr_dev *dev;
215 	unsigned int refclk;
216 };
217 
218 /**
219  * struct xpsgtr_dev - representation of a ZynMP GT device
220  * @dev: pointer to device
221  * @serdes: serdes base address
222  * @siou: siou base address
223  * @gtr_mutex: mutex for locking
224  * @phys: PHY lanes
225  * @refclk_sscs: spread spectrum settings for the reference clocks
226  * @clk: reference clocks
227  * @tx_term_fix: fix for GT issue
228  * @saved_icm_cfg0: stored value of ICM CFG0 register
229  * @saved_icm_cfg1: stored value of ICM CFG1 register
230  * @saved_regs: registers to be saved/restored during suspend/resume
231  */
232 struct xpsgtr_dev {
233 	struct device *dev;
234 	void __iomem *serdes;
235 	void __iomem *siou;
236 	struct mutex gtr_mutex; /* mutex for locking */
237 	struct xpsgtr_phy phys[NUM_LANES];
238 	const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
239 	struct clk *clk[NUM_LANES];
240 	bool tx_term_fix;
241 	unsigned int saved_icm_cfg0;
242 	unsigned int saved_icm_cfg1;
243 	u32 *saved_regs;
244 };
245 
246 /*
247  * Configuration Data
248  */
249 
250 /* lookup table to hold all settings needed for a ref clock frequency */
251 static const struct xpsgtr_ssc ssc_lookup[] = {
252 	{  19200000, 0x05,  608, 264020 },
253 	{  20000000, 0x06,  634, 243454 },
254 	{  24000000, 0x07,  760, 168973 },
255 	{  26000000, 0x08,  824, 143860 },
256 	{  27000000, 0x09,  856,  86551 },
257 	{  38400000, 0x0a, 1218,  65896 },
258 	{  40000000, 0x0b,  634, 243454 },
259 	{  52000000, 0x0c,  824, 143860 },
260 	{ 100000000, 0x0d, 1058,  87533 },
261 	{ 108000000, 0x0e,  856,  86551 },
262 	{ 125000000, 0x0f,  992, 119497 },
263 	{ 135000000, 0x10, 1070,  55393 },
264 	{ 150000000, 0x11,  792, 187091 }
265 };
266 
267 /*
268  * I/O Accessors
269  */
270 
xpsgtr_read(struct xpsgtr_dev * gtr_dev,u32 reg)271 static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
272 {
273 	return readl(gtr_dev->serdes + reg);
274 }
275 
xpsgtr_write(struct xpsgtr_dev * gtr_dev,u32 reg,u32 value)276 static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
277 {
278 	writel(value, gtr_dev->serdes + reg);
279 }
280 
xpsgtr_clr_set(struct xpsgtr_dev * gtr_dev,u32 reg,u32 clr,u32 set)281 static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
282 				  u32 clr, u32 set)
283 {
284 	u32 value = xpsgtr_read(gtr_dev, reg);
285 
286 	value &= ~clr;
287 	value |= set;
288 	xpsgtr_write(gtr_dev, reg, value);
289 }
290 
xpsgtr_read_phy(struct xpsgtr_phy * gtr_phy,u32 reg)291 static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
292 {
293 	void __iomem *addr = gtr_phy->dev->serdes
294 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
295 
296 	return readl(addr);
297 }
298 
xpsgtr_write_phy(struct xpsgtr_phy * gtr_phy,u32 reg,u32 value)299 static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
300 				    u32 reg, u32 value)
301 {
302 	void __iomem *addr = gtr_phy->dev->serdes
303 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
304 
305 	writel(value, addr);
306 }
307 
xpsgtr_clr_set_phy(struct xpsgtr_phy * gtr_phy,u32 reg,u32 clr,u32 set)308 static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
309 				      u32 reg, u32 clr, u32 set)
310 {
311 	void __iomem *addr = gtr_phy->dev->serdes
312 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
313 
314 	writel((readl(addr) & ~clr) | set, addr);
315 }
316 
317 /**
318  * xpsgtr_save_lane_regs - Saves registers on suspend
319  * @gtr_dev: pointer to phy controller context structure
320  */
xpsgtr_save_lane_regs(struct xpsgtr_dev * gtr_dev)321 static void xpsgtr_save_lane_regs(struct xpsgtr_dev *gtr_dev)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(save_reg_address); i++)
326 		gtr_dev->saved_regs[i] = xpsgtr_read(gtr_dev,
327 						     save_reg_address[i]);
328 }
329 
330 /**
331  * xpsgtr_restore_lane_regs - Restores registers on resume
332  * @gtr_dev: pointer to phy controller context structure
333  */
xpsgtr_restore_lane_regs(struct xpsgtr_dev * gtr_dev)334 static void xpsgtr_restore_lane_regs(struct xpsgtr_dev *gtr_dev)
335 {
336 	int i;
337 
338 	for (i = 0; i < ARRAY_SIZE(save_reg_address); i++)
339 		xpsgtr_write(gtr_dev, save_reg_address[i],
340 			     gtr_dev->saved_regs[i]);
341 }
342 
343 /*
344  * Hardware Configuration
345  */
346 
347 /* Wait for the PLL to lock (with a timeout). */
xpsgtr_wait_pll_lock(struct phy * phy)348 static int xpsgtr_wait_pll_lock(struct phy *phy)
349 {
350 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
351 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
352 	unsigned int timeout = TIMEOUT_US;
353 	u8 protocol = gtr_phy->protocol;
354 	int ret;
355 
356 	dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
357 
358 	/*
359 	 * For DP and PCIe, only the instance 0 PLL is used. Switch to that phy
360 	 * so we wait on the right PLL.
361 	 */
362 	if ((protocol == ICM_PROTOCOL_DP || protocol == ICM_PROTOCOL_PCIE) &&
363 	    gtr_phy->instance) {
364 		int i;
365 
366 		for (i = 0; i < NUM_LANES; i++) {
367 			gtr_phy = &gtr_dev->phys[i];
368 
369 			if (gtr_phy->protocol == protocol && !gtr_phy->instance)
370 				goto got_phy;
371 		}
372 
373 		return -EBUSY;
374 	}
375 
376 got_phy:
377 	while (1) {
378 		u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
379 
380 		if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
381 			ret = 0;
382 			break;
383 		}
384 
385 		if (--timeout == 0) {
386 			ret = -ETIMEDOUT;
387 			break;
388 		}
389 
390 		udelay(1);
391 	}
392 
393 	if (ret == -ETIMEDOUT)
394 		dev_err(gtr_dev->dev,
395 			"lane %u (protocol %u, instance %u): PLL lock timeout\n",
396 			gtr_phy->lane, gtr_phy->protocol, gtr_phy->instance);
397 
398 	return ret;
399 }
400 
401 /* Configure PLL and spread-sprectrum clock. */
xpsgtr_configure_pll(struct xpsgtr_phy * gtr_phy)402 static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
403 {
404 	const struct xpsgtr_ssc *ssc;
405 	u32 step_size;
406 
407 	ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
408 	step_size = ssc->step_size;
409 
410 	xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
411 		       PLL_FREQ_MASK, ssc->pll_ref_clk);
412 
413 	/* Enable lane clock sharing, if required */
414 	if (gtr_phy->refclk == gtr_phy->lane)
415 		xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
416 			       L0_REF_CLK_SEL_MASK, L0_REF_CLK_LCL_SEL);
417 	else
418 		xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
419 			       L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
420 
421 	/* SSC step size [7:0] */
422 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
423 			   STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
424 
425 	/* SSC step size [15:8] */
426 	step_size >>= STEP_SIZE_SHIFT;
427 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
428 			   STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
429 
430 	/* SSC step size [23:16] */
431 	step_size >>= STEP_SIZE_SHIFT;
432 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
433 			   STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
434 
435 	/* SSC steps [7:0] */
436 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
437 			   STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
438 
439 	/* SSC steps [10:8] */
440 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
441 			   STEPS_1_MASK,
442 			   (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
443 
444 	/* SSC step size [24:25] */
445 	step_size >>= STEP_SIZE_SHIFT;
446 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
447 			   STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
448 			   FORCE_STEP_SIZE | FORCE_STEPS);
449 }
450 
451 /* Configure the lane protocol. */
xpsgtr_lane_set_protocol(struct xpsgtr_phy * gtr_phy)452 static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
453 {
454 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
455 	u8 protocol = gtr_phy->protocol;
456 
457 	switch (gtr_phy->lane) {
458 	case 0:
459 		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
460 		break;
461 	case 1:
462 		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
463 			       protocol << ICM_CFG_SHIFT);
464 		break;
465 	case 2:
466 		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
467 		break;
468 	case 3:
469 		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
470 			       protocol << ICM_CFG_SHIFT);
471 		break;
472 	default:
473 		/* We already checked 0 <= lane <= 3 */
474 		break;
475 	}
476 }
477 
478 /* Bypass (de)scrambler and 8b/10b decoder and encoder. */
xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy * gtr_phy)479 static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
480 {
481 	xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
482 	xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
483 }
484 
485 /* DP-specific initialization. */
xpsgtr_phy_init_dp(struct xpsgtr_phy * gtr_phy)486 static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
487 {
488 	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
489 			 L0_TXPMD_TM_45_OVER_DP_MAIN |
490 			 L0_TXPMD_TM_45_ENABLE_DP_MAIN |
491 			 L0_TXPMD_TM_45_OVER_DP_POST1 |
492 			 L0_TXPMD_TM_45_OVER_DP_POST2 |
493 			 L0_TXPMD_TM_45_ENABLE_DP_POST2);
494 	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
495 			 L0_TX_ANA_TM_118_FORCE_17_0);
496 }
497 
498 /* SATA-specific initialization. */
xpsgtr_phy_init_sata(struct xpsgtr_phy * gtr_phy)499 static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
500 {
501 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
502 
503 	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
504 
505 	writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
506 }
507 
508 /* SGMII-specific initialization. */
xpsgtr_phy_init_sgmii(struct xpsgtr_phy * gtr_phy)509 static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
510 {
511 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
512 	u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane);
513 	u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane);
514 
515 	/* Set SGMII protocol TX and RX bus width to 10 bits. */
516 	xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, mask, val);
517 	xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, mask, val);
518 
519 	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
520 }
521 
522 /* Configure TX de-emphasis and margining for DP. */
xpsgtr_phy_configure_dp(struct xpsgtr_phy * gtr_phy,unsigned int pre,unsigned int voltage)523 static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre,
524 				    unsigned int voltage)
525 {
526 	static const u8 voltage_swing[4][4] = {
527 		{ 0x2a, 0x27, 0x24, 0x20 },
528 		{ 0x27, 0x23, 0x20, 0xff },
529 		{ 0x24, 0x20, 0xff, 0xff },
530 		{ 0xff, 0xff, 0xff, 0xff }
531 	};
532 	static const u8 pre_emphasis[4][4] = {
533 		{ 0x02, 0x02, 0x02, 0x02 },
534 		{ 0x01, 0x01, 0x01, 0xff },
535 		{ 0x00, 0x00, 0xff, 0xff },
536 		{ 0xff, 0xff, 0xff, 0xff }
537 	};
538 
539 	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]);
540 	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]);
541 }
542 
543 /*
544  * PHY Operations
545  */
546 
xpsgtr_phy_init_required(struct xpsgtr_phy * gtr_phy)547 static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy)
548 {
549 	/*
550 	 * As USB may save the snapshot of the states during hibernation, doing
551 	 * phy_init() will put the USB controller into reset, resulting in the
552 	 * losing of the saved snapshot. So try to avoid phy_init() for USB
553 	 * except when gtr_phy->skip_phy_init is false (this happens when FPD is
554 	 * shutdown during suspend or when gt lane is changed from current one)
555 	 */
556 	if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init)
557 		return false;
558 	else
559 		return true;
560 }
561 
562 /*
563  * There is a functional issue in the GT. The TX termination resistance can be
564  * out of spec due to a issue in the calibration logic. This is the workaround
565  * to fix it, required for XCZU9EG silicon.
566  */
xpsgtr_phy_tx_term_fix(struct xpsgtr_phy * gtr_phy)567 static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy)
568 {
569 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
570 	u32 timeout = TIMEOUT_US;
571 	u32 nsw;
572 
573 	/* Enabling Test Mode control for CMN Rest */
574 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
575 
576 	/* Set Test Mode reset */
577 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
578 
579 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00);
580 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE);
581 
582 	/*
583 	 * As a part of work around sequence for PMOS calibration fix,
584 	 * we need to configure any lane ICM_CFG to valid protocol. This
585 	 * will deassert the CMN_Resetn signal.
586 	 */
587 	xpsgtr_lane_set_protocol(gtr_phy);
588 
589 	/* Clear Test Mode reset */
590 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
591 
592 	dev_dbg(gtr_dev->dev, "calibrating...\n");
593 
594 	do {
595 		u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS);
596 
597 		if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE)
598 			break;
599 
600 		if (!--timeout) {
601 			dev_err(gtr_dev->dev, "calibration time out\n");
602 			return -ETIMEDOUT;
603 		}
604 
605 		udelay(1);
606 	} while (timeout > 0);
607 
608 	dev_dbg(gtr_dev->dev, "calibration done\n");
609 
610 	/* Reading NMOS Register Code */
611 	nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE;
612 
613 	/* Set Test Mode reset */
614 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
615 
616 	/* Writing NMOS register values back [5:3] */
617 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT);
618 
619 	/* Writing NMOS register value [2:0] */
620 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18,
621 		     ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) |
622 		     (1 << L3_NSW_PIPE_SHIFT));
623 
624 	/* Clear Test Mode reset */
625 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
626 
627 	return 0;
628 }
629 
xpsgtr_phy_init(struct phy * phy)630 static int xpsgtr_phy_init(struct phy *phy)
631 {
632 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
633 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
634 	int ret = 0;
635 
636 	mutex_lock(&gtr_dev->gtr_mutex);
637 
638 	/* Configure and enable the clock when peripheral phy_init call */
639 	if (clk_prepare_enable(gtr_dev->clk[gtr_phy->refclk]))
640 		goto out;
641 
642 	/* Skip initialization if not required. */
643 	if (!xpsgtr_phy_init_required(gtr_phy))
644 		goto out;
645 
646 	if (gtr_dev->tx_term_fix) {
647 		ret = xpsgtr_phy_tx_term_fix(gtr_phy);
648 		if (ret < 0)
649 			goto out;
650 
651 		gtr_dev->tx_term_fix = false;
652 	}
653 
654 	/* Enable coarse code saturation limiting logic. */
655 	xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
656 
657 	/*
658 	 * Configure the PLL, the lane protocol, and perform protocol-specific
659 	 * initialization.
660 	 */
661 	xpsgtr_configure_pll(gtr_phy);
662 	xpsgtr_lane_set_protocol(gtr_phy);
663 
664 	switch (gtr_phy->protocol) {
665 	case ICM_PROTOCOL_DP:
666 		xpsgtr_phy_init_dp(gtr_phy);
667 		break;
668 
669 	case ICM_PROTOCOL_SATA:
670 		xpsgtr_phy_init_sata(gtr_phy);
671 		break;
672 
673 	case ICM_PROTOCOL_SGMII:
674 		xpsgtr_phy_init_sgmii(gtr_phy);
675 		break;
676 	}
677 
678 out:
679 	mutex_unlock(&gtr_dev->gtr_mutex);
680 	return ret;
681 }
682 
xpsgtr_phy_exit(struct phy * phy)683 static int xpsgtr_phy_exit(struct phy *phy)
684 {
685 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
686 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
687 
688 	gtr_phy->skip_phy_init = false;
689 
690 	/* Ensure that disable clock only, which configure for lane */
691 	clk_disable_unprepare(gtr_dev->clk[gtr_phy->refclk]);
692 
693 	return 0;
694 }
695 
xpsgtr_phy_power_on(struct phy * phy)696 static int xpsgtr_phy_power_on(struct phy *phy)
697 {
698 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
699 	int ret = 0;
700 
701 	/* Skip initialization if not required. */
702 	if (!xpsgtr_phy_init_required(gtr_phy))
703 		return ret;
704 	return xpsgtr_wait_pll_lock(phy);
705 }
706 
xpsgtr_phy_configure(struct phy * phy,union phy_configure_opts * opts)707 static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts)
708 {
709 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
710 
711 	if (gtr_phy->protocol != ICM_PROTOCOL_DP)
712 		return 0;
713 
714 	xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]);
715 
716 	return 0;
717 }
718 
719 static const struct phy_ops xpsgtr_phyops = {
720 	.init		= xpsgtr_phy_init,
721 	.exit		= xpsgtr_phy_exit,
722 	.power_on	= xpsgtr_phy_power_on,
723 	.configure	= xpsgtr_phy_configure,
724 	.owner		= THIS_MODULE,
725 };
726 
727 /*
728  * OF Xlate Support
729  */
730 
731 /* Set the lane protocol and instance based on the PHY type and instance number. */
xpsgtr_set_lane_type(struct xpsgtr_phy * gtr_phy,u8 phy_type,unsigned int phy_instance)732 static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
733 				unsigned int phy_instance)
734 {
735 	unsigned int num_phy_types;
736 
737 	switch (phy_type) {
738 	case PHY_TYPE_SATA:
739 		num_phy_types = 2;
740 		gtr_phy->protocol = ICM_PROTOCOL_SATA;
741 		break;
742 	case PHY_TYPE_USB3:
743 		num_phy_types = 2;
744 		gtr_phy->protocol = ICM_PROTOCOL_USB;
745 		break;
746 	case PHY_TYPE_DP:
747 		num_phy_types = 2;
748 		gtr_phy->protocol = ICM_PROTOCOL_DP;
749 		break;
750 	case PHY_TYPE_PCIE:
751 		num_phy_types = 4;
752 		gtr_phy->protocol = ICM_PROTOCOL_PCIE;
753 		break;
754 	case PHY_TYPE_SGMII:
755 		num_phy_types = 4;
756 		gtr_phy->protocol = ICM_PROTOCOL_SGMII;
757 		break;
758 	default:
759 		return -EINVAL;
760 	}
761 
762 	if (phy_instance >= num_phy_types)
763 		return -EINVAL;
764 
765 	gtr_phy->instance = phy_instance;
766 	return 0;
767 }
768 
769 /*
770  * Valid combinations of controllers and lanes (Interconnect Matrix). Each
771  * "instance" represents one controller for a lane. For PCIe and DP, the
772  * "instance" is the logical lane in the link. For SATA, USB, and SGMII,
773  * the instance is the index of the controller.
774  *
775  * This information is only used to validate the devicetree reference, and is
776  * not used when programming the hardware.
777  */
778 static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
779 	/* PCIe, SATA, USB, DP, SGMII */
780 	{ 0, 0, 0, 1, 0 }, /* Lane 0 */
781 	{ 1, 1, 0, 0, 1 }, /* Lane 1 */
782 	{ 2, 0, 0, 1, 2 }, /* Lane 2 */
783 	{ 3, 1, 1, 0, 3 }, /* Lane 3 */
784 };
785 
786 /* Translate OF phandle and args to PHY instance. */
xpsgtr_xlate(struct device * dev,const struct of_phandle_args * args)787 static struct phy *xpsgtr_xlate(struct device *dev,
788 				const struct of_phandle_args *args)
789 {
790 	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
791 	struct xpsgtr_phy *gtr_phy;
792 	unsigned int phy_instance;
793 	unsigned int phy_lane;
794 	unsigned int phy_type;
795 	unsigned int refclk;
796 	unsigned int i;
797 	int ret;
798 
799 	if (args->args_count != 4) {
800 		dev_err(dev, "Invalid number of cells in 'phy' property\n");
801 		return ERR_PTR(-EINVAL);
802 	}
803 
804 	/*
805 	 * Get the PHY parameters from the OF arguments and derive the lane
806 	 * type.
807 	 */
808 	phy_lane = args->args[0];
809 	if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) {
810 		dev_err(dev, "Invalid lane number %u\n", phy_lane);
811 		return ERR_PTR(-ENODEV);
812 	}
813 
814 	gtr_phy = &gtr_dev->phys[phy_lane];
815 	phy_type = args->args[1];
816 	phy_instance = args->args[2];
817 
818 	guard(mutex)(&gtr_phy->phy->mutex);
819 	ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
820 	if (ret < 0) {
821 		dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n");
822 		return ERR_PTR(ret);
823 	}
824 
825 	refclk = args->args[3];
826 	if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
827 	    !gtr_dev->refclk_sscs[refclk]) {
828 		dev_err(dev, "Invalid reference clock number %u\n", refclk);
829 		return ERR_PTR(-EINVAL);
830 	}
831 
832 	gtr_phy->refclk = refclk;
833 
834 	/*
835 	 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
836 	 * is allowed to operate on the lane.
837 	 */
838 	for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
839 		if (icm_matrix[phy_lane][i] == gtr_phy->instance)
840 			return gtr_phy->phy;
841 	}
842 
843 	return ERR_PTR(-EINVAL);
844 }
845 
846 /*
847  * DebugFS
848  */
849 
xpsgtr_status_read(struct seq_file * seq,void * data)850 static int xpsgtr_status_read(struct seq_file *seq, void *data)
851 {
852 	struct device *dev = seq->private;
853 	struct xpsgtr_phy *gtr_phy = dev_get_drvdata(dev);
854 	struct clk *clk;
855 	u32 pll_status;
856 
857 	mutex_lock(&gtr_phy->phy->mutex);
858 	pll_status = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
859 	clk = gtr_phy->dev->clk[gtr_phy->refclk];
860 
861 	seq_printf(seq, "Lane:            %u\n", gtr_phy->lane);
862 	seq_printf(seq, "Protocol:        %s\n",
863 		   xpsgtr_icm_str[gtr_phy->protocol]);
864 	seq_printf(seq, "Instance:        %u\n", gtr_phy->instance);
865 	seq_printf(seq, "Reference clock: %u (%pC)\n", gtr_phy->refclk, clk);
866 	seq_printf(seq, "Reference rate:  %lu\n", clk_get_rate(clk));
867 	seq_printf(seq, "PLL locked:      %s\n",
868 		   pll_status & PLL_STATUS_LOCKED ? "yes" : "no");
869 
870 	mutex_unlock(&gtr_phy->phy->mutex);
871 	return 0;
872 }
873 
874 /*
875  * Power Management
876  */
877 
xpsgtr_runtime_suspend(struct device * dev)878 static int xpsgtr_runtime_suspend(struct device *dev)
879 {
880 	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
881 
882 	/* Save the snapshot ICM_CFG registers. */
883 	gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
884 	gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
885 
886 	xpsgtr_save_lane_regs(gtr_dev);
887 
888 	return 0;
889 }
890 
xpsgtr_runtime_resume(struct device * dev)891 static int xpsgtr_runtime_resume(struct device *dev)
892 {
893 	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
894 	unsigned int icm_cfg0, icm_cfg1;
895 	unsigned int i;
896 	bool skip_phy_init;
897 
898 	xpsgtr_restore_lane_regs(gtr_dev);
899 
900 	icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
901 	icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
902 
903 	/* Return if no GT lanes got configured before suspend. */
904 	if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1)
905 		return 0;
906 
907 	/* Check if the ICM configurations changed after suspend. */
908 	if (icm_cfg0 == gtr_dev->saved_icm_cfg0 &&
909 	    icm_cfg1 == gtr_dev->saved_icm_cfg1)
910 		skip_phy_init = true;
911 	else
912 		skip_phy_init = false;
913 
914 	/* Update the skip_phy_init for all gtr_phy instances. */
915 	for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++)
916 		gtr_dev->phys[i].skip_phy_init = skip_phy_init;
917 
918 	return 0;
919 }
920 
921 static DEFINE_RUNTIME_DEV_PM_OPS(xpsgtr_pm_ops, xpsgtr_runtime_suspend,
922 				 xpsgtr_runtime_resume, NULL);
923 /*
924  * Probe & Platform Driver
925  */
926 
xpsgtr_get_ref_clocks(struct xpsgtr_dev * gtr_dev)927 static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev)
928 {
929 	unsigned int refclk;
930 
931 	for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) {
932 		unsigned long rate;
933 		unsigned int i;
934 		struct clk *clk;
935 		char name[8];
936 
937 		snprintf(name, sizeof(name), "ref%u", refclk);
938 		clk = devm_clk_get_optional(gtr_dev->dev, name);
939 		if (IS_ERR(clk)) {
940 			return dev_err_probe(gtr_dev->dev, PTR_ERR(clk),
941 					     "Failed to get ref clock %u\n",
942 					     refclk);
943 		}
944 
945 		if (!clk)
946 			continue;
947 
948 		gtr_dev->clk[refclk] = clk;
949 
950 		/*
951 		 * Get the spread spectrum (SSC) settings for the reference
952 		 * clock rate.
953 		 */
954 		rate = clk_get_rate(clk);
955 
956 		for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
957 			/* Allow an error of 100 ppm */
958 			unsigned long error = ssc_lookup[i].refclk_rate / 10000;
959 
960 			if (abs(rate - ssc_lookup[i].refclk_rate) < error) {
961 				gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
962 				break;
963 			}
964 		}
965 
966 		if (i == ARRAY_SIZE(ssc_lookup)) {
967 			dev_err(gtr_dev->dev,
968 				"Invalid rate %lu for reference clock %u\n",
969 				rate, refclk);
970 			return -EINVAL;
971 		}
972 	}
973 
974 	return 0;
975 }
976 
xpsgtr_probe(struct platform_device * pdev)977 static int xpsgtr_probe(struct platform_device *pdev)
978 {
979 	struct device_node *np = pdev->dev.of_node;
980 	struct xpsgtr_dev *gtr_dev;
981 	struct phy_provider *provider;
982 	unsigned int port;
983 	int ret;
984 
985 	gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL);
986 	if (!gtr_dev)
987 		return -ENOMEM;
988 
989 	gtr_dev->dev = &pdev->dev;
990 	platform_set_drvdata(pdev, gtr_dev);
991 
992 	mutex_init(&gtr_dev->gtr_mutex);
993 
994 	if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr"))
995 		gtr_dev->tx_term_fix =
996 			of_property_read_bool(np, "xlnx,tx-termination-fix");
997 
998 	/* Acquire resources. */
999 	gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes");
1000 	if (IS_ERR(gtr_dev->serdes))
1001 		return PTR_ERR(gtr_dev->serdes);
1002 
1003 	gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou");
1004 	if (IS_ERR(gtr_dev->siou))
1005 		return PTR_ERR(gtr_dev->siou);
1006 
1007 	ret = xpsgtr_get_ref_clocks(gtr_dev);
1008 	if (ret)
1009 		return ret;
1010 
1011 	/* Create PHYs. */
1012 	for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) {
1013 		struct xpsgtr_phy *gtr_phy = &gtr_dev->phys[port];
1014 		struct phy *phy;
1015 
1016 		gtr_phy->lane = port;
1017 		gtr_phy->dev = gtr_dev;
1018 
1019 		phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops);
1020 		if (IS_ERR(phy)) {
1021 			dev_err(&pdev->dev, "failed to create PHY\n");
1022 			return PTR_ERR(phy);
1023 		}
1024 
1025 		gtr_phy->phy = phy;
1026 		phy_set_drvdata(phy, gtr_phy);
1027 		debugfs_create_devm_seqfile(&phy->dev, "status", phy->debugfs,
1028 					    xpsgtr_status_read);
1029 	}
1030 
1031 	/* Register the PHY provider. */
1032 	provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate);
1033 	if (IS_ERR(provider)) {
1034 		dev_err(&pdev->dev, "registering provider failed\n");
1035 		return PTR_ERR(provider);
1036 	}
1037 
1038 	pm_runtime_set_active(gtr_dev->dev);
1039 	pm_runtime_enable(gtr_dev->dev);
1040 
1041 	ret = pm_runtime_resume_and_get(gtr_dev->dev);
1042 	if (ret < 0) {
1043 		pm_runtime_disable(gtr_dev->dev);
1044 		return ret;
1045 	}
1046 
1047 	gtr_dev->saved_regs = devm_kmalloc(gtr_dev->dev,
1048 					   sizeof(save_reg_address),
1049 					   GFP_KERNEL);
1050 	if (!gtr_dev->saved_regs)
1051 		return -ENOMEM;
1052 
1053 	return 0;
1054 }
1055 
xpsgtr_remove(struct platform_device * pdev)1056 static void xpsgtr_remove(struct platform_device *pdev)
1057 {
1058 	struct xpsgtr_dev *gtr_dev = platform_get_drvdata(pdev);
1059 
1060 	pm_runtime_disable(gtr_dev->dev);
1061 	pm_runtime_put_noidle(gtr_dev->dev);
1062 	pm_runtime_set_suspended(gtr_dev->dev);
1063 }
1064 
1065 static const struct of_device_id xpsgtr_of_match[] = {
1066 	{ .compatible = "xlnx,zynqmp-psgtr", },
1067 	{ .compatible = "xlnx,zynqmp-psgtr-v1.1", },
1068 	{},
1069 };
1070 MODULE_DEVICE_TABLE(of, xpsgtr_of_match);
1071 
1072 static struct platform_driver xpsgtr_driver = {
1073 	.probe = xpsgtr_probe,
1074 	.remove_new = xpsgtr_remove,
1075 	.driver = {
1076 		.name = "xilinx-psgtr",
1077 		.of_match_table	= xpsgtr_of_match,
1078 		.pm =  pm_ptr(&xpsgtr_pm_ops),
1079 	},
1080 };
1081 
1082 module_platform_driver(xpsgtr_driver);
1083 
1084 MODULE_AUTHOR("Xilinx Inc.");
1085 MODULE_LICENSE("GPL v2");
1086 MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");
1087